Bipolar Microprocessor Logic and Interface

BIPOLAR

MICROPROCESSOR

LOGIC

INTERFACE

INTERFACE

BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE BIPOLAR MICROPROCESSOR LOGIC AND INTERFACE

```
HOSNOENGOEN
```

y 7 70dIE
EDVAYEIN

π

Advanced Micro Devices

Bipolar
 Microprocessor Logic and Interface Data Book

(C) 1983 Advanced Micro Devices, inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics. The company assumes no responsibility for the use of any circuits described herein.
SYSTEMS
DESIGN
CONSIDERATIONS

BIPOLAR LSIVLSITECHNOLOCIES Am2900 SYSTEMS SOLUTIONS

DESICN
AlOS

DEVELOPMENT SYSTEMS AND SOFTWARE EVALUATION BOARDS ANDKITS TRANING AND APPLICATIONS MATERIAL

Am2960/70
MEMORY
SUPPORT

DYNAMIC MEMORY CONTROL MEMORY TIMING/CONTROL UNITS ERROR DETECTION AND CORRECTION

Am2900
PIT-SLICE PROCESSORS
PROCESSORS
AND PERIPHERALS
MICROCODE SEQUENCERS

Am29100
CONTROLLER
FAMLY

16-BIT MICROPROCESSOR
CONTROLLER INTERRUPTIBLE SEOUENCERS LSI PERIPHERALS

Am29500
ARRAY AND DIGITAL SIGNAL PROCESSING
16×16 PARALLEL MULTIPLIERS MULTIPORT PIPELINED PROCESSORS FFT ADDRESS SEQUENCERS
Am29800
HIGHPERFORMANCE \quad 8, AND 10-BIT IMOX BUS INTERFACE
DUS INTERFACE
DIMOXTIC REGISTERS DIAGGOSTIC REGISTERS IMOX COMPARATORS
HIGH PERFORMANCE SCHOTTKY LOCIC
Am25S
Am25LS
8×8 PARALLELMULTIPYLIERS

Am 265
Am26LS
HIGH PERFORMANCE SCHOTTKY RUS INTERFACE DATA COMMUNICATIONS INTERFACE
8100 MOS MICROPROCESSOR SUPPORTPRODUCTS
8200 FOR 8-BIT AND 16-BITMICROPROCESSORS

MEMORIES,
PALS,
MOS PERIPHERALS,
ANALOG

PROMs, BIPOLAR RAMs, MOS STATIC RAMS 20-PIN AND 24-PIN PALS, MOS LSI PERIPHERALS VERY HIGH SPEED DATA ACCUISITION

GENERAL INFORMATION

PACKAGING, ORDERING INFORMATION TESTING, QUALITY ASSURANCE/GUARANTEES GATE COUNTS, DIE SIZES, RELIABILITY

Index Section

Numerical Device Index 1-1
Functional Index 1-5

NUMERICAL DEVICE INDEX

Am25LS07 6-Bit Register, Common Enable 9-6
Am25LS08 4-Bit Register, Common Enable 9-6
Am25LS09 4-Bit Register, Multiplex Inputs 9-13
Am25LS14A 8-Bit Serial/Parallel Two's Complement Multiplier 9-35
A High-Speed Serial/Parallel Multiplier, the Am25LS14A 9-41
Am25LS15 4-Bit Serial/Parallel Adder Subtractor 9-50
Am25LS22 8-Bit Serial/Parallel Register; Sign Extend 9-59
Am25LS23 8-Bit Universal Shift Register; Synchronous Clear 9-65
Am25LS2513 Priority Encoder, Three-State Outputs, Eight-Line to Three-Line 9-80
Am25LS2516 8-Bit by 8-Bit Multiplier Accumulator 9-86
The Am25LS2516 LSI Multiplier Accumulator 9-95
Am25LS2517 4-Bit ALU/Function Generator; Overflow Detection 9-98
Understanding the Am25LS2517 and Am25LS381 Arithmetic Logic Units 9-106
Am25LS2518 Quad Register with Standard and Three-State Outputs 9-112
Am25LS2519 Quad Register with Dual Three-State Outputs 9-117
Am25LS2520 Octal D-Register, Common Clear and Enable, Three-State Outputs 9-122
Am25LS2521 8-Bit Comparator 9-127
Am25LS2535 8-Bit Multiplexer, Control Storage 9-131
Am25LS2536 8-Bit Decoder with Control Storage 9-136
Am25LS2537 One-of-Ten Decoder, Three-State Outputs 9-140
Am25LS2538 One-of-Eight Decoder, Three-State Outputs 9-145
Am25LS2539 Dual One-of-Four Decoder, Three-State Outputs 9-150
Am25LS2548 Chip Select Address Decoder 9-155
Am25LS2568 BCD Decade Up/Down Counter, Three-State Outputs 9-161
Am25LS2569 4-Bit Up/Down Counter, Three-State Outputs 9-161
Am25S05 4-Bit by 2-Bit Two's Complement Multiplier 9-1
Am25S07 Hex Parallel D-Register with Register Enable 9-9
Am25S08 Quad Parallel D-Register with Register Enable 9-9
Am25S09 Quad 2-Input, High-Speed Register 9-17
Am25S10 4-Bit Shifter with Three-State Outputs 9-21
Am25S10 4-Bit Shifter 9-25
Am25S18 Quad D-Register with Standard and Three-State Outputs 9-54
Am25S557 8×8 Parallel Multiplier, with Latch 9-69
Am25S558 8×8 Parallel Multiplier 9-69
Am25S557, Am25S558 Multipliers in Expanded Arrays 9-75
Am26LS27 Dual Party-Line Transceivers (Serial) 10-13
Am26LS28 Dual Party-Line Transceivers (Parallel) 10-13
Am26LS29 Quad Driver RS-423, Three-State 10-14
Am26LS30 Quad Driver RS-422/423 10-18
Am26LS31 Quad Driver RS-422, High-Speed 10-24
Am26LS32 Quad Differential Line Receivers 10-28
Am26LS32B Quad Differential Line Receiver RS-422/423 10-30
Am26LS33 Quad Differential Line Receiver, High Common Mode 10-28
Use of the Am26LS29, 30, 31 and 32 Quad Driver/Receiver Family in RS-422/423 Applications 10-33
Am26LS34 Quad Differential Line Receiver, High Hysteresis 10-45
Am26S02 Schottky Dual Retriggerable, Resettable Monostable Multivibrator 10-1
Am26S10 Quad Bus Transceiver 10-5
Am26S11 Quad Bus Transceiver 10-5
Am26S12 Quad Bus Transceiver 10-10
Am26S12A Quad Bus Transceiver 10-10
Guidelines on Testing Am2900 Family Devices 13-1
Am2901B 4-Bit Bipolar Microprocessor Slice 5-5
Using the Am2901 5-20

NUMERICAL DEVICE INDEX (Cont.)

Am2901C Improved-Speed 4-Bit Microprocessor Slice 5-5
Am2901C-1 Speed Selected Version of Am2901C 5-5
Am2902A High-Speed Look-Ahead Carry Generator 5-28
Am2903 The Superslice ${ }^{\circledR}$ (Advanced 4-Bit Bipolar Microprocessor Slice) 5-32
Am2903A Higher Speed Version of Am2903 5-32
Using the Am2903 5-57
Am2904 Status and Shift Control Unit 5-72
Am2905 Quad 2-Input OC Bus Transceiver with Three-State Receiver 5-87
Am2906 Quad 2-Input OC Bus Transceiver with Parity 5-93
Am2907/2908 Quad Bus Transceiver with Interface Logic 5-99
Am2909/2909A Microprogram Sequéncer 5-108
Am2910/-1/A Microprogram Controller 5-123
Am2911/2911A Microprogram Sequencer 5-108
Am2912 Quad Bus Transceiver 5-140
Am29.13 Priority Interrupt Expander 5-145
Am2914 Vectored Priority Interrupt Controller 5-150
A Microprogrammable Interrupt Structure 5-159
Priority Interrupt Encoder Logic Description 5-176
Am2915A Quad Three-State Bus Transceiver with Interface Logic 5-182
Am2916A Quad Three-State Bus Transceiver with Interface Logic 5-188
Am2917A Quad Three-State Bus Transceiver with Interface Logic 5-194
Am2918 Quad D-Register with Standard and Three-State Outputs 5-200
Am29LS18 Quad D-Register with Standard and Three-State Outputs 5-204
Am2919 Quad D-Register with Dual Three-State Outputs 5-209
Am2920 Octal D-Type Flip-Flop with Clear, Clock Enable and Three-State Control 5-214
Am2921 One-of-Eight Decoder with Three-State Outputs and Polarity Control 5-220
Am2922 8-Input Multiplexer with Control Register 5-225
Am2923 8-Input Multiplexer 5-230
Am2924 Three-Line to Eight-Line Decoder/Demultiplexer 5-234
Am2925 System Clock Generator and Driver 5-238
Am2926 Schottky Three-State Quad Bus Driver/Receiver 5-252
Am2927/2928 Quad Three-State Bus Transceivers with Clock Enable 5-257
Am2929 Schottky Three-State Quad Bus Driver-Receiver 5-252
Am2930 Program Control Unit 5-264
Am2932 Program Control Unit/Push-Pop Stack 5-275
Am2940 DMA Address Generator 5-285
Am2942 Programmable Timer/Counter/DMA Address Generator 5-294
Am2946/2947 Octal Three-State Bidirectional Bus Transceivers 5-305
Am2948/2949 Octal Three-State Bidirectional Bus Transceivers 5-313
Am2950/2951 8-Bit Bidirectional I/O Ports with Handshake 5-321
Am2950A/2951A High Speed 8-Bit Bidirectional I/O Ports with Handshake 5-321
Am2952/2953 8-Bit Bidirectional I/O Ports 5-329
Am2952A/2953A High Speed 8-Bit Bidirectional I/O Ports 5-329
Am2954/2955 Octal Registers with Three-State Outputs 5-336
Am2956/2957 Octal Latches with Three-State Outputs 5-341
Am2958/2959 Octal Buffers/Line Drivers/Line Receivers with Three-State Outputs 5-347
Am2960/70 Family Overview 4-1
Am2960/-1/A Cascadable 16-Bit Error Detection and Correction Unit (EDC) 4-5
Technical Report Am2960 Boosts Memory Reliability 4-46
Am2961/2962 4-Bit Error Correction Multiple Bus Buffers 4-53
Am2964B Dynamic Memory Controller 4-61
Am2965/2966 Octal Dynamic Memory Driver with Three-State Outputs 4-73
RAM Drivers Maximize Performance without Undershoot 4-79
NUMERICAL DEVICE INDEX (Cont.)
Am2968 Dynamic Memory Controller, 256K DRAMs, up to 1 Megaword 4-87
Am2969 Memory Timing Controller, Including EDC $4-88$
Am2970 Memory Timing Controller 4-88
Am29100 Controller Family Overview 6-1
Am29112 Interruptible 8-Bit Microprogram Sequencer 6-2
Am29116 16-Bit Bipolar Microprocessor 6-15
System Cycle Times 6-44
Bipolar VLSI Builds 16-Bit Controller Handling Many Fast Peripherals at Once 6-46
A Microprogrammed CPU Using the Am29116 6-51
An Intelligent Fast Disk Controller Using the Am29116 6-65
Bit-Mapped Graphics Controller Using Am29116 6-133
Am29118 8-Bit Bidirectional I/O Port for 29116 6-145
Am29500 AP/DSP Family Overview 7-1
Record Signal-Processing Rates Spring from Chip Refinements 7-3
Am29203 Four-Bit Bipolar Microprocessor Slice 5-352
Using the Am29203 5-371
Microprogrammed System Design 5-395
Bit-Slice Processor Speeds through BCD Math 5-403
Am29501 Microprogrammable Signal Processor 7-6
Am29510 16×16 Parallel Multiplier with Accumulator 7-17
Am29516 16×16 Parallel Multiplier with Registers 7-25
Am29516A Highest Speed Version of 29516 7-25
Am29517 Single-Clock 16×16 Parallel Multiplier with Registers 7-25
Am29517A Highest Speed Version of 29517 7-25
32×32 Multiplier 7-34
Am29520/21 Multilevel Pipeline Registers 7-35
Am 29526 High Speed Sine Generators 7-43
Am29527 High Speed Sine Generators 7-43
Am29528 High Speed Cosine Generators 7-43
Am29529 High Speed Cosine Generators 7-43
Am29540 FFT Address Sequencer 7-48
Am29705 16-Word by 4-Bit Two-Port RAM 5-413
Am29705A Improved Speed Two-Port RAM 5-413
Am29707 16-Word by 4-Bit Two Port RAM 5-413
Am29800 Family Overview 8-1
Am29803A 16-Way Branch Control Unit, for 2909A/11A 5-425
Am29806 6-Bit Comparator 8-9
Am29809 9-Bit Comparator 8-9
Am29811A Next Address Control Unit, for 2909A/11A 5-430
Am29818 8-Bit Diagnostic Register 8-15
Am29821 10-Bit Register 8-27
Am29822 10-Bit Register 8-27
Am29823 9-Bit Register 8-27
Am29824 9-Bit Register 8-27
Am29825 8-Bit Register 8-27
Am29826 8-Bit Register 8-27
Am29827 10-Bit Bus Driver 8-34
Am29828 10-Bit Bus Driver 8-34
Am29833 9-Bit Bidirectional Bus Transceiver 8-38
Am29834 9-Bit Bidirectional Bus Transceiver 8-38
Am29841 10-Bit Latch 8-47
Am29842 10-Bit Latch 8-47

NUMERICAL DEVICE INDEX (Cont.)

Am29843 9-Bit Latch 8-47
Am29844 9-Bit Latch 8-47
Am 29845 8-Bit Latch 8-47
Am29846 8-Bit Latch 8-47
Am29853 9-Bit Bidirectional Bus Transceiver 8-38
Am29854 9-Bit Bidirectional Bus Transceiver 8-38
Am29861 10-Bit Bidirectional Bus Transceiver 8-55
Am29862
10-Bit Bidirectional Bus Transceiver 8-55Am29863Am298649-Bit Bidirectional Bus Transceiver8-55
9-Bit Bidirectional Bus Transceiver 8-55Am8120
Octal D-Type Flip-Flop 11-1Am8127
System Clock Generator and Controller 11-5
Am8163 Timing, Refresh and EDC Controller 4-89
Am8167 Timing, Refresh and EDC Controller 4-89
Am8212 8-Bit Input/Output Port 11-17
Am8216 4-Bit Parallel Bidirectional Bus Driver, Noninverting 11-24
Am8224 Clock Generator, 8080A Compatible 11-29
Am8226 4-Bit Parallel Bidirectional Bus Driver, Inverting 11-24
Am8228 System Controller and Bus Driver, 8080A 11-35
Am8238 System Controller and Bus Driver, 8080A, Extended IOW/MEMW 11-35
8284A Clock Generator and Driver for 8086, 8088 Processors $11-40$
8288 Bus Controller. 11-47

FUNCTIONAL INDEX

High Speed Microprogrammable Registered ALUs

Description	Part		
Number			
4-Bit Slice, 16 Registers	Am2901B		
Higher Speed 4-Bit Slice, 16 Registers	Am2901C		
Speed Selected Version of 2901C	Am2901C-1		
Expanded Function 4-Bit Slice, 16 Registers	Am2903		
Higher Speed Version of Am2903	Am2903A		
Enhancement of Am2903A, Including BCD Arithmetic	Am29203		
16-Bit Microprocessor Optimized for High Speed Control	Am29116		
Multiport, Pipelined Processor, 8-Bit Slice	Am29501		

ALU Auxiliary Circuits

Description	Part Number		
Carry Lookahead	Am2902A		
Status and Shift Control Unit for 2901, 2903, 29203	Am2904		

Register File Extensions for ALUs

Description	Part Number		
16-Word by 4-Bit Two-Port Register File, for 2903	Am29705		
Higher Speed Version of 29705, for 2903A	Am29705A		
16-Word by 4-Bit Two-Port Register File, for 29203	Am29707		

Multipliers

Description	Part Number		,
16×16 Parallel Multiplier, with Accumulator	Am29510		
Higher Speed Version of Am29510	Am29510A		
$65 \mathrm{~ns}, 16 \times 16$ Parallel Multiplier with Registers	Am29516		
Speed Selected Version of Am29516	Am29516-1		.
Fastest Version of Am29516	Am29516A		
Low-Power Version of Am29516, <100ns	Am29L516		
Faster Version of Low-Power 29 L516	Am29L516A		
65 ns , Single-Clock 16×16 Parallel Multiplier with Registers	Am29517		
Speed Selected Version of Am29517	Am29517-1		
Fastest Version of Am29517	Am29517A		
Low-Power Version of Am29517, <100ns	Am29L517		
Faster Version of Low-Power 29 L 517	Am29L517A		
8-Bit Serial/Parallel Multiplier	Am25LS14A		
8×8 Parallel Multiplier, with Latchable Outputs	Am25S557		
8×8 Parallel Multiplier	Am25S558	.	

FUNCTIONAL INDEX (Cont.)

Microprogram Sequencers

Description	Part Number		
4-Bit Sequencer Slice	Am2909A		
12-Bit Single-Chip Sequencer, for up to 4K Microwords	Am2910		
Speed Selected Version of Am2910	Am2910-1		
Fastest (IMOX) Version of Am2910, Plus Deeper Stack	Am2910A		
4-Bit Sequencer Slice, Compact Version of Am2909A	Am2911A		
4-Bit Program Control Slice	Am2930		
4-Bit Program Control Slice, Compact Version of 2930	Am2932		
Interruptible Sequencer, 31-Deep Stack, 8-Bit Slice	Am29112		
16-Way Branch Control Unit, for 2909A and 2911A	Am29803A		
Next Address Control Unit, for 2909A and 2911A	Am29811A		

Clocks

Description	Part		
Single-Chip Clock, Microprogrammable Cycle Lengths	Number		

Interrupt Control

Description	Part Number		
Vectored Priority Interrupt Controller, Expandable	Am2914		
Priority Interrupt Expander	Am2913		

Direct Memory Access

Description	Part Number		
8-Bit DMA Slice, Microprogrammable	Am2940		
8-Bit DMA Slice, Compact Version of Am2940	Am2942		

I/O Ports

Description	Part		
8-Bit Bidirectional I/O Port with Handshake	Am2950		
High Speed (IMOX) Version of Am2950	Am2950A		
8-Bit Bidirectional I/O Port with Handshake, Inverting	Am2951		
High Speed (IMOX) Version of Am2951	Am2951A		
8-Bit Bidirectional I/O Port, 24-Pin Slim Package	Am2952		
High Speed (IMOX) Version of Am2952	Am2952A		
8-Bit Bidirectional I/O Port, 24-Pin Slim, Inverting	Am2953		
High Speed (IMOX) Version of Am2953	Am2953A		
8-Bit Bidirectional I/O Port, for 29116	Am29118		

FUNCTIONAL INDEX (Cont.)

Dynamic Memory Support Circuits

Description	Part Number		-
Error Detection and Correction Unit, 16 Bits, Expandable	Am2960		
Speed Selected Version of Am2960	Am2960-1	1	
Fastest (IMOX) Version of Am2960	Am2960A		
Multiple Bus Buffer for Am2960, Inverting	Am2961		
Multiple Bus Buffer for Am2960, Noninverting	Am2962		
Dynamic Memory Controller, 64K DRAMs, up to 256K Words	Am2964B		
Octal Dynamic Memory Drivers, Three-State, Inverting	Am2965		
Octal Dynamic Memory Drivers, Three-State, Noninverting	Am2966		
Dynamic Memory Controller, 256K DRAMs, up to 1 Megaword	Am2968		
Memory System Timing Controller, Including EDC	Am2969		
Memory System Timing Controller	Am2970		
Timing, Refresh, and EDC Controller for MOS MPUs	Am8163		
Timing, Refresh, and EDC Controller for MOS MPUs	Am8167	.	

Array Processing and Digital Signal Processing

Description	Part Number		
Multiport, Pipelined Processor, 8-Bit Slice	Am29501		
Multilevel Pipeline Registers, 8-Bit	Am29520		
Multilevel Pipeline Registers, 8-Bit	Am29521		
Sine Generator	Am29526		
Sine Generator	Am29527		
Cosine Generator	Am29528		
Cosine Generator	Am29529		
FFT Address Sequencer	Am29540		

Diagnostics

Description	Part Number		
Error Detection and Correction Unit, 16 Bits, Expandable	Am2960		
Speed Selected Version of Am2960	Am2960-1		
Fastest (IMOX) Version of Am2960	Am2960A		
Diagnostics Register, 8 Bits	Am29818		

Pipeline Registers

Description	Part Number		
Diagnostics Register, 8 Bits	Am29818		
Multilevel Pipeline Register, 8 Bits	Am29520		
Multilevel Pipeline Register, 8 Bits	Am29521		

FUNCTIONAL INDEX (Cont.)

MSI Logic

Description	Part Number		
One-of-Eight Decoder, Three-State, Polarity Control	Am2921		
8-Input Multiplexer with Control Register	Am2922		
8 -Input Multiplexer	Am2923		
Three-to-Eight Decoder/Demultiplexer	Am2924		
6-Bit Comparator	Am29806		
9-Bit Comparator	Am29809		
4-Bit Shifter, Three-State Outputs	Am25S10		
8-Bit Serial/Parallel Multiplier	Am25LS14A		
4-Bit Serial/Parallel Adder/Subtractor	Am25LS15		
8-Bit Seria//Parallel Register, Sign-Extend	Am25LS22		
8-Bit Shift Register, Synchronous Clear	Am25LS23		
Eight-to-Three Line Priority Encoder, Three-State	Am25LS2513		
4-Bit ALU/Function Generator	Am25LS2517		
8-Bit Comparator	Am25LS2521		
Fastest (IMOX) Version of 25LS2521	Am25LS2521A		
8-Bit Decoder with Control Storage	Am25LS2536		
One-of-Ten Decoder, Three-State	Am25LS2537		
Dual 1-of-4 Decoder, Three-State	Am25LS2539		
Chip Select Address Decoder	Am25LS2548		
BCD Decade Up/Down Counter, Three-State	Am25LS2568		
4-Bit Up/Down Counter, Three-State	Am25LS2569		

Data Communications

Description	Part Number		
Dual Party-Line Transceivers, Serial	Am26LS27		
Dual Party-Line Transceivers, Parallel	Am26LS28		
Quad Driver RS423, Three-State	Am26LS29		
Quad Driver RS422/423 : Am26LS30			
Quad Driver RS422, High-Speed	Am26LS31		
Quad Differential Line Receivers	Am26LS32		
Quad Differential Line Receiver RS422/423	Am26LS32B		
Quad Differential Line Receiver, High Common Mode	Am26LS33		

FUNCTIONAL INDEX (Cont.)

Description	4 Bits	8 Bits	9 Bits	10 Bits
Bus Drivers	2912	$\begin{aligned} & 2958 \\ & 2959 \\ & 2965 \\ & 2966 \end{aligned}$		$\begin{aligned} & 29827 \\ & 29828 \end{aligned}$
Bus Transceivers (Bidirectional)	2926 2929 26 S 10 26 S 11 26 S 12 A	$\begin{aligned} & 2946 \\ & 2947 \\ & 2948 \\ & 2949 \end{aligned}$	$\begin{aligned} & 29833 \\ & 29834 \\ & 29863 \\ & 29864 \\ & 29853 \\ & 29854 \end{aligned}$	$\begin{aligned} & 29861 \\ & 29862 \end{aligned}$
Registered Bus Drivers and Latched Receivers	$\begin{aligned} & 2905 \\ & 2906 \\ & 2997 \\ & 2908 \\ & 2915 \mathrm{~A} \\ & 2916 \mathrm{~A} \\ & 2997 \mathrm{~A} \\ & 2927 \\ & 2928 \end{aligned}$			
Latches		$\begin{aligned} & 2956 \\ & 2957 \\ & 29845 \\ & 29846 \end{aligned}$	$\begin{aligned} & 29843 \\ & 29844 \end{aligned}$	$\begin{aligned} & 29841 \\ & 29842 \end{aligned}$
Registers	$\begin{aligned} & 2918 \\ & \text { 29LS18 } \\ & 2919 \end{aligned}$	$\begin{aligned} & 2920 \\ & 2954 \\ & 2955 \\ & 29825 \\ & 29826 \\ & 8120 \end{aligned}$	$\begin{aligned} & 29823 \\ & 29824 \end{aligned}$	$\begin{aligned} & 29821 \\ & 29822 \end{aligned}$
Multilevel Pipeline Registers		$\begin{aligned} & 29520 \\ & 29521 \end{aligned}$		
Diagnostics Register		29818		
Bidirectional, Double-Registered Bus Transceivers		$\begin{aligned} & 2950 / \mathrm{A} \\ & 2951 / \mathrm{A} \\ & 2952 / \mathrm{A} \\ & 2953 / \mathrm{A} \\ & 29118 \end{aligned}$		

INDEX
SECTION

NUMERIC DEVICE INDEX FUNCTION INDEX

SYSTEMS
DESIGN
BIPOLAR LSI/VLSI TECHNOLOGIES
CONSIDERATIONS Am2900 SYSTEMS SOLUTIONS

Am2960/70
MEMORY
SUPPORT

DYNAMIC MEMORY CONTROL
MEMORY TIMING/CONTROLUNITS ERROR DETECTION AND CORRECTION
Am2900
BIT-SLICE PROCESSORS
PROCESSORS MICROCODE SEQUENCERS
AND PERIPHERALS

Am29100
CONTROLLER
FAMILY

16-BIT MICROPROCESSOR INTERRUPTIBLE SECUENCERS LSI PERIPHERALS

Am29500
ARRAY AND DIGITAL SIGNAL PROCESSING
16×16 PARALLEL MULTIPLIERS MULTIPORT PIPELINED PROCESSORS FFT ADDRESS SEQUENCERS

Am29800
 HIGH PERFORMANCE BUS INTERFACE

Am25s
Am25LS
HIGH PERFORMANCE SCHOTTKY LOGIC
LOW-POWER SCHOTTKY LOGIC
8×8 PARALLEL MULTIPLIERS

Am26S
 Am26LS

```
8100
```

8200

MEMORIES,

PALS,
MOS PERIPHERALS,
ANALOG
GENERAL INFORMATION

8, 9, AND 10 -BIT IMOX BUS INTERFACE DIAGNOSTIC REGISTERS IMOX COMPARATORS

PACKAGING, ORDERING INFORMATION TESTING, QUALITY ASSURANCE/GUARANTEES GATE COUNTS, DIE SIZES, RELIABILITY

Systems Design Considerations Index

Bipolar LSI/VLSI Technologies
Process 2-1
Circuit 2-1
VLSI Integration 2-2
Am 2900 Systems Solutions
Am2900 Processors and Peripherals Overview 2-3
Am29100 Intelligent Controller Overview 2-7
Am29500 Array and Digital Signal Processors Overview 2-8
Am2960/70 Memory Support Overview 2-10

Bipolar Technologies

Abstract

Advanced Micro Devices emphasizes Research and Development expenditures for developing the most advanced technologies for Bipolar processing, circuit design, and Very Large Scale Integration (VLSI). Today, Advanced Micro Devices' bipolar products combine ECL-internal circuitry, the super high performance $I_{M O X}{ }^{\text {M }}$ process, and VLSI integration to offer the system designer the most compact high performance integrated circuits. This, plus AMD's systems solution approach to design problems, makes the Am2900 Family the best choice for fastest applications.

IMOX

First introduced in 1980, IMOX is the name of Advanced Micro Devices' proprietary bipolar process. IMOX is an acronym which means: 1) lon-IMplantation of dopants for tighter parameter control and lower power consumption; and, 2) OXide-isolation of transistor structures which results in faster transistor switching and tighter packing. Older, LS-type processes used diffused isolation for isolating transistor structures; this had the disadvantage of a large die area and high parasitic capacitance.
AMD is also applying IMOX to bring out higher-speed versions of earlier Am2900 devices. Figure 1 shows the evolution of the Am2901 Four-bit Microprocessor Slice. First introduced in 1975, the Am2901 has been repeatedly redesigned and is now available in the IMOX Am2901C version, which is less than half the size and more than twice the speed of the original Am2901 and costs less. The current generation IMOX process has an 8 micron pitch (pitch equals the total of the width of metal lines
plus the spacings between metal lines). In 1983, AMD is bringing into full scale production a completely new Fabrication Facility in San Antonio, Texas which will feature the state-of-the-art in process and masking equipment, and allow products which feature the IMOX process but with a pitch of only 4 microns, by late 1983. This version of IMOX is termed IMOX-S2. The 50% reduction in metal pitch will dramatically increase the level of integration of new products and also provides $>30 \%$ increase in device speed.

ECL-INTERNAL CIRCUITRY

All Am2900 devices today are TTL-compatible on inputs and outputs and use standard +5 V and ground for supply voltages. TTL is a good interface standard for systems design today, but TTL gates are slow, and ECL gates are much faster. To offer TTL-compatibility but near-ECL speeds to our customers, AMD has adopted a circuit design approach which features all ECL-circuitry for the internal circuitry of all LSI and VLSI devices (see Figure 2).
This approach, ECL-internal circuitry, provides near-ECL speeds to TTL-1/O designers. Of course the ECL gate structures inside the device are completely transparent to system designers because of the 100% adherence to TTL standards for I/O specs. Also, these chips only require +5 V and ground because internal gates are not the same type of ECL gates as those used with 10 K or 100 K logic. The final point to note is that ECL has a reputation for being very power intensive. While the Am2900 Family are not low-power devices, they do significantly reduce the total power usage in a high performance

Figurẹ 1. Bipolar Speed/Density Improvements

> Am2901 FOUR-BIT MICROPROCESSOR SLICE

540 GATES 800 mW 40-PIN DIP			

DIE SIZE	Am2901 33,000 MILS 2	Am2901A 20,000 MILS 2	Am2901B 15,000 MILS 2	Am2901C 15,000 MILS
SPEED A, B G, P	80 ns	$65 n s$	50 ns	37ns
TECHNOLOGY	LOW-POWER SCHOTTKY	DUAL LAYER METAL ION- IMPLANTATION	PROJECTION PRINTING	ECL INTERNAL TTL I/O IMOX
	1975	1977	1978	1981

systems design because of the large number of SSI/MSI devices they replace. These ECL gates are not run at the very high power levels of traditional ECL circuits.
Using internal ECL with TTL-I/O does involve paying a translation speed penalty at the inputs and outputs of the device, but because these devices are LSI and VLSI with many levels of internal gating between input and output, the translation penalty is more than compensated for by the extra performance gained by the multiple layers of high speed ECL gates. Figure 3 shows an approximate comparison of the IMOX-with-internal-ECL approach to other process/circuit offerings available to designers utilizing high speed. TTL-compatible ICs. IMOX offers an excellent combination of high speed and relatively low power. The speed comes not only from the IMOX process but also from the use of ECL gates for internal circuitry. The FAST and AS/ALS Families are populated primarily with MSI devices where ECL-internal gating is not feasible due to the few layers of internal gating relative to the TTL/ECL
translation delay penalty. Note also that Am2900/IMOX devices use an order of magnitude less power per gate than traditional ECL 10 K and 100 K devices.

BIPOLAR VLSI

Advanced Micro Devices is the leader in high integration, high performance integrated circuits. Our largest device to date, the Am29116, is a 2500 -gate device measuring 68,000 square mils in area, and currently in development are devices of four times that complexity using our new IMOX-S2 process. AMD's emphasis on Very Large Scale Integration bipolar is best illustrated in Figure 4 below.

Figure 4 demonstrates AMD's commitment and leadership in large scale integration bipolar since the introduction of the original Am2901 in 1975. Another graphic demonstration of the growing complexity of our devices is the relative die sizes of successively complex arithmetic processors, as shown in Figure 5.

Figure 2. Am2900 Circuit Design for Maximum Speed

- All ECL would only be 7-15\% faster
- Practical approach for LSI/VLSI

Figure 3.

SOURCE: MOTOROLA AND ELECTRONICS

Figure 5.

Am2900 Components Continuously Become Faster and Faster

MORE SPEED: NO MORE POWER

There's a good old tried and proven way to make faster IC's burn more power. (That's the only real difference between " $L S$ " and " S " devices). But that solution isn't satisfactory for LSI devices like the Am2900 Family. Power is constrained to existing levels for reliability reasons.
Am2900 parts are always designed to obtain the maximum speed at a power level which is safe for the package types and operating environment of the part. To increase speeds, new technologies must be used to build faster components at no increase in power.

NEW CIRCUIT DESIGN TECHNIQUES MAKE FASTER GATES

One way to make faster components is to use new circuit design techniques. The most obvious is internal ECL, which provides very fast gates at similar power levels to LS TTL. The Am29116 reaches microcycle times of 100 ns through the use of internal ECL. Other design techniques, such as low-level logic (with very small logic swings on-chip), can also provide higher speeds without introducing the time penalty of ECL to TTL conversion.
Finally, very low power gates used in non-critical speed paths make more power available for use in critical speed paths. As the 2900 Family develops, all these technologies will be used within a single component to achieve the highest speeds without increasing power. The Am2903A is one of the first products to take advantage of this mixed circuit technology.

IMPROVED PROCESS CONTROL ALLOWS TIGHTER SPECS

Today's 2900 parts are carefully characterized over a wide range of voltages, temperatures, and process parameters before an AC specification is published. As manufacturing
technology improves, the process is subject to smaller run-torun variations, so that all of the product is closer to design nominal. This makes it possible to specify parameters more closely to typical without incurring large yield losses. The first product reflecting this is the Am2903.

WHAT'S GOOD FOR THE GOOSE IS GOOD FOR THE GANDER

Many new tools in production technology are emerging, primarily spurred by the emphasis on high-speed MOS memories. The same tools, such as projection masking, also provide for smaller geometries in bipolar circuits. As MOS gets faster, so does bipolar. The Am2901C obtains its speed improvement over the Am2901B through these tools.

PROCESS TECHNOLOGY TAKES A QUANTUM LEAP

Current generation LSI/VLSI bipolar devices call for state-of-the-art processing technologies. IMOX ${ }^{\text {TM }}$ ion-implanted micro-oxide technology gives the Am2901C its performance improvement over the Am2901B. IMOX also generates incredible packing densities - the Am29116 has 2500 gates on a single bipolar chip!

DESIGN FOR THE FUTURE

Every Am2900 part will undergo an evolution as new technologies become practical for production. Every part type will continuously become faster. The results are easy to observe - increases in performance at no additional cost (see Figure 1).
Most existing 2900 designs can be offered in higher performance versions simply by substitution of the 2901C for the 2901B, the 2909A for the 2909, the 2903A for the 2903, and so forth. Your 2900 design won't run out of speed in a few years. Advanced Micro Devices' 2900 Family will serve tomorrow's needs as well as today's.

Figure 1. Price/Performance Improvements

Figure 2. Bipolar Speed/Density Improvements

Am2901 FOUR-BIT MICROPROCESSOR SLICE				
540 GATES 800 mW 40-PIN DIP				
DIE SIZE	$\begin{gathered} \text { Am2901 } \\ 33,000 \text { MILS }^{2} \end{gathered}$	$\begin{gathered} \text { Am2901A } \\ 20,000 \text { MILS }^{2} \end{gathered}$	$\begin{aligned} & \text { Am29018 } \\ & 15,000 \text { MLL }^{2} \end{aligned}$	$\begin{gathered} \text { Am2901C } \\ 15,000 \text { MIL. }{ }^{2} \end{gathered}$
$\begin{aligned} & \text { SPEED } \\ & \text { A, B G, P } \end{aligned}$	80 ns	65 ns	50 ns	37 ns
TECHNOLOGY	LOW-POWER SCHOTTKY	DUAL LAYER METAL IONIMPLANTATION	PROJECTION PRINTING	$\begin{aligned} & \text { ECL INTERNAL } \\ & \text { TTL I/O } \\ & \text { IMOX } \end{aligned}$
	1975	1977	1978	1981

Introduction

THREE GENERATIONS OF TTL

Transistor-transistor logic has been the dominant technology for digital circuits since it was developed in the mid-1960's. It has proven itself to be manufacturable in high volume using an extremely reliable process technology. The processes used for TTL have evolved over the years, making components smaller, faster and less expensive. Relative to a TTL gate manufactured in 1966, a gate on a circuit manufactured today occupies $1 / 5$ the area, consumes $1 / 10$ the power, is twice as fast and costs less than $1 / 100$ the price.
The circuits built using TTL technology have gone through two generations; the Am2900 Family represents the beginning of the third. Each generation consists of circuits which are fundamental building blocks of systems - circuits which can be interconnected in many different ways to build many different systems. Only by producing such universal circuits can manufacturing volumes be high enough to generate the rapid cost reductions characteristic of the integrated circuit industry.
The quality which distinguishes one generation from another is the level of integration used, and, because of the level of integration, the philosophy behind the circuit.

If one draws a curve plotting the cost of an individual gate against the number of gates on a chip; Figure 1 results.

Figure 1.
MPR-001
At the left, cost per gate is inversely proportional to the number of gates on the chip. The chip is small enough that it does not represent a significant portion of the cost of the product - it is virtually free. The cost of the product is composed of labor in assembly and test, the cost of processing an order, shipping and fixed overhead. Doubling the number of gates on the chip doesn't materially affect the cost so the cost per gate halves. As the number of gates per chip increases, the die begins to cost more, reversing the downward trend. As die cost dominates, the cost per gate remains relatively flat until the yield of the die begins to decline markedly. The cost per gate then begins to rise again. The lowest cost per gate is achieved at a level of integration corresponding to the flat region. This is the optimum level of integration.

As technology improves, costs are constantly reduced and the optimum level of integration occurs at more and more gates per chip.
The three curves of Figure 2 are the reason for the three generations of TTL. Each generation has consisted of fundamental system building blocks designed to take advantage of the optimum level of integration at the time.

Figure 2.
MPR-002

GENERATION I - SSI, 1965

In 1965, the optimum level of integration was three-to-six gates per chip. Users were delighted to buy such chips at \$10-20 each. The circuits were useful in many systems. They consisted of gates - the $7400,7410,7420$ - and, pressing the state of the art, some flip-flops. They were fundamental building blocks.

GENERATION II - MSI, 1970

Beginning around 1968, it became economical to put more gates on a chip and the industry was faced with a problem: How does one put 20 gates on a chip and build a universal building block? Clearly, one answer was to bring the inputs and outputs off chip as had been done before. But that was the wrong answer. The right answer was to redefine fundamental building blocks. The new building blocks fell into seven categories:

- Counters
- Decoders
- Multiplexers
- Operators (adders, comparators)
- Encoders
- Registers
- Latches

All systems could be defined in terms of these seven functions, and integrated circuits could be defined at the 20-50 gate/ chip level which performed these functions efficiently. This, of course, is MSI. Over the last six or seven years, more and more circuits of this type have been introduced, utilizing standard gold-doped technology, low-power TTL, high-speed TTL, Schottky TTL, and now low-power Schottky TTL technology. Today, there are over 250 different MSI circuits and new ones appear every month. But in today's technology, many of these circuits are not particularly cost effective. They are too small for today's technology and their costs are labor intensive. (Labor costs do not follow traditional semiconductor pricing patterns.) In 1977, the optimum level of integration for bipolar logic was around 500 gates chip.

GENERATION III - The Am2900 Family, 1976

At a 500-gate-per-chip level of integration, one does not build counters, decoders, and multiplexers. A new definition of fundamental system functions was needed. Advanced Micro Devices has defined these eight categories:

- Data Manipulation
- Microprogram Control
- Macroprogram Control
- Priority Interrupt
- Direct Memory Access
- I/O Control
- Memory Control
- Front Panel Control

The Am2900 Family includes circuits designed to perform those functions efficiently. They are fundamental system building blocks; they contain hundreds of gates per chip; they are fast - utilizing Low-Power Schottky TTL technology and AMD's proprietary IMOX ${ }^{\text {™ }}$ technology; they are expandable; they are flexible - useful in emulation; and they are driven under microprogram control.

IMOX AND ECL - THE NEXT STEP

Ever increasing device complexity placed greater and greater demands on existing process technologies. Advanced Micro Devices responded to this challenge by introducing its revolutionary IMOX ion-implanted microoxide technology in 1980. Oxide isolation generated faster transistor switching and tighter packaging. Ionimplantation meant tighter parameter control and lower power consumption. The bottom line - an unequalled combination of speed and density culminating in the Am29116 with a staggering 2500 gates-per-chip. Figure 3 shows this climb in gate density.

Figure 3. Am2900 Bipolar LSI/VLSI
Future refinements of IMOX and new device technologies will keep AMD on the leading edge in bipolar LSI/ VLSI. Designed to take advantage of these improvements in process technology, a new family of microprogrammable 32 -bit controller products will set the pace for bipolar VLSI in the mid-1980s.

THE Am2900 FAMILY

The Am2900 Family consists of a series of LSI building blocks designed for use in microprogrammed computers and controllers. Each device is designed to be expandable and sufficiently flexible to be suitable for emulation of many existing machines. It is the wide variety of machine architectures possible with the Am2900 Family which sets it apart from the fixed-instruction microprocessors such as the Am8086.
While an Am8086 can be used to build a microcomputer with only four or five packages, an Am2900 design will require 30 or 40 or more. The Am8086 design will, therefore, almost always be cheaper. But the Am8086, or any other fixedinstruction processor, can execute only one instruction set, so it is not really suitable for emulation of another machine.
Moreover, a fixed-instruction processor operates only on words of a single length, usually eight bits. An Am2900 design,
on the other hand, can be constructed for any word length which is a multiple of four bits.

Many applications require specialized operations to be performed at relatively high speed. Such functions as multiply and divide and special graphic control operations, can be done in microcode 10-100 times faster than in fixed-instruction MOS processors.

MICROPROGRAMMED ARCHITECTURE

Most small processors today are being designed using a technique called microprogramming. In microprogrammed systems, a large portion of the system's control is performed by a read only memory (usually PROM) rather than large arrays of gates and flip-flops. This technique frequently reduces the package count in the controller and provides a highly ordered structure in the controller, not present when random logic is used. Moreover, microprogramming makes changes in the machines' instruction set very simple to perform - reducing the postproduction engineering costs for the system substantially.
The Am2900 Family of Bipolar LSI devices has been designed for use in microprogrammed systems. Each device performs a basic system function and is driven by a set of control lines from a microinstruction.
Figure 4 illustrates a typical system architecture. There are two "sides" to the system. At the left is the control circuitry and on the right is the data manipulation circuitry. The block labeled "2901C array" consists of the ALU, scratchpad registers, data steering logic (all internal to the Am2901Cs), plus left/right shift control and carry lookahead circuit. Data is processed by moving it from main memory (not shown) into the 2901C registers, performing the required operations on it and returning the result to main memory. Memory addresses may also be generated in the 2901Cs and sent out to the memory address register (MAR). The four status bits from the 2901Cs ALU are captured in the status register after each operation.
The logic on the left side is the control section of the computer. This is where the Am2909A, 2910A, or 2911A is used. The entire system is controlled by a memory, usually PROM, which contains long words called microinstructions. Each microinstruction contains bits to control each of the data manipulation elements in the system. There are, for example, nine bits for the 2901C instruction lines, eight bits for the A and B register addresses, two or three bits to control the shifting multiplexers at the ends of the 2901C array (see Figure 19, 2901C data sheet), and bits to control the register enables on the MAR, instruction register, and various bus transceivers. When the bits in a microinstruction are applied to all the data elements and everything is clocked, then one small operation (such as a data transfer or a register-toregister add) will occur.
A "machine instruction" (such as a minicomputer instruction or an 8086 instruction) is performed by executing several microinstructions in sequence. Each microinstruction therefore contains not only bits to control the data hardware, but also bits to define the location in PROM of the next microinstruction to be executed. The fields are labeled in Figure 4 as I, CC, and BA. The I field controls the sequencer. It indicates where the next address is located - the $\mu \mathrm{PC}$, the stack, or the direct inputs - and whether the stack is to be pushed or popped.
The CC field contains bits indicating the conditions under which the I field applies. These are compared with the condition codes in the status register and may cause modification to the I field. The comparing and modification occurs in the
block labeled "control logic". Frequently this is a PROM or PLA. In the case of the Am2910, it is built into the chip. The BA field is a branch address or the address of a subroutine.

PIPELINING

The address for the microinstructions is generated by the sequencer, starting from a clock edge. The address goes from the sequencer to the ROM and, an access time later, the microinstruction is at the ROM outputs.

A pipeline register is a register placed on the output of the microprogram memory to essentially split the system in two. The pipeline register contains the microinstruction currently being executed (1). (Refer to the circled numbers in Figure 4.) The data manipulation control bits go out to the system
elements and a portion of the microinstruction is returned to the sequencer (2) to determine the address of the next microinstruction to be executed. That address (3) is sent to the ROM and the next microinstruction (4) sits at the input of the pipeline register. So while the 2901 Cs are executing one instruction, the next instruction is being fetched from ROM. Note that there is no sequential logic in the sequencer between the select lines and the output. This is important because the loop (1) to (2) to (3) to (4) must occur during a single clock cycle. During the same time, the loop from (1) to (5) must occur in the 2901 Cs. These two paths are roughly the same (around 200ns worst case for a 16 -bit system). The presence of the pipeline register allows the microinstruction fetch to occur in parallel with the data operation rather than serially, allowing the clock frequency to be doubled.

The system shown in Figure 4 works as follows. A sequence of microinstructions in the PROM is executed to fetch an instruction from main memory. This requires that the program counter, often in a 2901C working register, be sent to the memory address register and incremented. The data returned from memory is loaded into the instruction register. The contents of the instruction register is passed through a PROM or PLA to generate the address of the first microinstruction which must be executed to perform the required function. A branch to this address occurs through the sequencer. Several microinstructions may be executed to fetch data from memory, perform ALU operations, test for overflow, and so forth. Then a branch will be made back to the instruction fetch cycle. At this point, there may be branches to other sections of micro-
code. For example, the machine might test for an interrupt here and obtain an interrupt service routine address from another mapping ROM rather than start on the next machine instruction. There are obviously many possibilities. Throughout this data book, in application notes, and within data sheets, some suggested techniques will be found.

Additional application notes are in preparation and are planned for publication. Advanced Micro Devices' Applications' staff is available to answer questions and provide technical assistance as well. They may be reached by calling (408) 732-2400, or, outside California (800) 538-8450. Ask for Am 2900 Family Applications.

Am29100 High-Performance Controller Products

A BETTER WAY IS HERE

A new family of products from Advanced Micro Devices makes high-performance controller design a snap.

MICROPROGRAMMING; BEST FOR COMPUTERS, BEST FOR CONTROLLERS

Microprogramming, long the preferred approach for computer design, offers lots of advantages in controllers as well. The ease with which the functions of a microprogrammed controller can be enhanced and modified made the original 2900 Family popular for many disk, printer and communications controllers. The high-speed operation of these microprogrammed systems makes it possible to handle higher data rates from newer peripheral devices and to build intelligence into the controller.
But the original 2900 products are architecturally oriented toward computers, with design features optimized for arithmetic functions and short sequences of microinstructions. MOS processors are good choices for many low-speed applications, but when the demand for speed and intelligence goes up, they cannot keep pace. Controllers need something better: the 29100 Family.

The 29100 Family products have been designed from the ground up with peripheral control applications in mind. They are fast, they are optimized for bit-manipulation, character handling, data communication and long, sophisticated microprograms and they are designed to work together in a system.

FAST LIKE YOU'VE NEVER HAD

The central element of our new high-speed controller family is the Am29116 - a 16-bit bipolar microprocessor. It's not a slice it's a complete 16-bit processor, with three-input ALU, 32 scratchpad registers, an accumulator, data latch, barrel shifter,
priority encoder and status register with conditional code generation logic. But the Am29116 is far more than a very fast number cruncher - it's been optimized for controller-oriented applications. It's instruction set has instructions often needed in controllers that are not available in any other processor.

A WHOLE FAMILY OF FAST LSI CONTROLLER PARTS

There's more to our controller family than just the Am29116. A new sequencer, the Am29112, has been expressly designed for 10 MHz microprogram control, with features like real-time interrupt servicing and deep subroutining. Rapid internal data transfer is handled by the Am2940 DMA Address Generator and by the Am2950 handshaking I/O port. The Am9520 Burst Error Processor will provide a solution for error correction on disk reads. Now, more than ever, the 2900 Family is the better solution for high data rate and highly intelligent control problems.

TYPICAL CONFIGURATION USING THE 2900 CONTROLLER FAMILY

A typical intelligent controller configuration is shown below. The basic controller consists of the Am29116, a microprogram control unit and a high-speed buffer memory. Each microinstruction includes: a) a 16-bit instruction field to the Am29116, b) next-microinstruction selection bits, c) control for the buffer memory, d and e) control for the interface circuits and f) possibly an 8 or 16 -bit data field.
Interface circuits like the Am2940 and Am2950 are used to provide DMA and to pass data between the controller and the host computer. Other circuits are used to interface to the peripheral. In this example, a disk interface is shown with a serial-parallel converter, a FIFO and a burst error processor. Controllers for other peripherals use identical hardware except for the peripheral interface itself.

The Am29500 Family

A New High-Performance Architecture for Digital Signal/Array Processing

The 'new system designs of the ' 80 s will continue to press the performance limits of technology. Parallel processing and pipelined architectures will become the standard approach. The new architectures are best implemented with a chip set that has been designed from the ground up with high speed array processing in mind.
The Am29500 Family is designed specifically for these new architectures. Every key product feature supports the system end objective of maximum performance and flexibility. These include:

- Microprogrammable, parallel functions
- Pipelined organization used throughout
- IMOX ${ }^{\text {TM }}$ process and ECL internal structures
- TTL I/O for easy interfacing

The first members of the family are targeted for the efficient execution of DSP and array processing algorithms. The most common include Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) digital filters and Fast Fourier Transform (FFT) processors.
The first major building blocks are designed to support maximum performance signal processing applications.
Included are:

- Am29501 Multi-Port Pipelined Processor

A specialized parallel processor which executes multiple simultaneous data operations. Its Register/ALU structure provides the key functional element for a high performance signal processing system. Eight-bit slice!

- Am29540 FFT Address Sequencer

This algorithm-specific VLSI chip generates data and coefficient addresses for the Fast Fourier Transform. It supports a wide variety of FFT algorithms in either radix-2 or radix-4.

- Am29516/29517 High Speed $16 \times$ 16-Bit Parallel Multipliers Both are 16×16-bit Parallel Multipliers. The Am29516 is pin and functionally compatible with the MPY-16 HJ , but with an added multiplexer to output the LSP at the MSP port. The Am29517 is the same function, but with clock enables for microprogrammed applications.
- Am29520/29521 Multilevel Pipeline Registers

Both devices contain four 8 -bit registers for dual two-stage (FFT butterfly) or single four-stage (general purpose) data or address pipelining. Combined load-and-shift (Am29520) or separate load-and-shift (Am29521) control options are available.

- Am29526/29527/29528/29529 High-Speed Sine/Cosine Function Generators

The sine and cosine functions are necessary for Fast Fourier Transforms (FFT). The Am29526/527 generate the most significant and least significant byte of the 16 -bit sine function and the Am29528/529 generate the most significant and least significant byte of the 16 -bit cosine function. The sine and cosine functions are generated to provide a range of θ for a half cycle, $0 \leqslant \theta \leqslant \pi$, in increments of $\pi / 2048$. All four units have a 50 ns maximum commercial generation time.

HIGH PERFORMANCE SIGNAL PROCESSOR

MPL-025

A high-performance signal processor may be constructed as shown in the diagram. The processor is built entirely with new Am29500 digital signal processing and Am2900 devices. Such a processor is attached as a slave to the main system bus to perform the multitude of arithmetic operations which prevail in DSP algorithms.
Using this architecture it is possible to implement a radix2FFT butterfly in four instruction cycles. This allows a 1024point complex FFT to be performed in approximately 2 ms .
Fast multiplication is the key to high-speed digital-signal processing and high-speed array processing. In addition to the Am29516 and Am29517, Advanced Micro Devices is developing an extensive family of multipliers. The first addition to the high-performance multiplier group:

- Am29510 High-Performance 16×16 Bit Multiply Accumulator

The multiply accumulator provides single cycle multiply accumulation or subtraction. The Am29510 is a pin- and function-compatible alternate source for the TRW TDC1010J. As illustrated with the Am29516/517, the multiply accumulator will have a speed improvement over existing multiply accumulators.

- Am295XX to be announced.
- More Multipliers

A proliferation of the existing multiplier architectures will generate a complete family of multipliers and multiplier accumulators.

- Floating Point Processors (FPP)

A 32-bit FPP capable of performing single-cycle double-precision floating-point addition, subtraction, and multiplication. The FPP performs the arithmetic operations in DEC or IEEE format. Available 1984.

Am2960-70 Memory Support Family System Overview

Memory system designs are increasingly shaped by three requirements:

1. Higher system performance
2. More memory capảcity in less space
3. Increased reliability

The Am2960-70 Memory Support Family is a family of LSI building blocks which excels in satisfying these three requirements and provides a complete systems solution for designs using 64 K or 256 K DRAMs. The family members include:

Am2960 Error Detection and Correction Unit Am2961/62 EDC Bus Buffers
Am2964B Dynamic Memory Controller (64K DRAM Version) Am2965/66 Dynamic RAM Drivers
Am2968 Dynamic Memory Controller (256K DRAM Version)
Am2969 Timing Controller
Am2970 Timing Controller
Am8163/67 System and Timing Controller for MOS MPUs

These are general purpose products. They will support any suppliers' DRAMs and will work with any processor type: 8086, 80186, 80286, 68000, Z8000, and Am2900 processors. They may also be used to support word widths of any size from 8 bits to 64 bits.

Figure 1 shows the system interconnection for a typical memory system for 256 K DRAMs, and Figure 2 shows the system interconnection for a typical memory system using 64K DRAMs. In both cases, the memory support subsystem interfaces to the System Data Bus, Address Bus, and control signals. Also, in both cases all, or almost all, of the memory support functions are handled by AMD LSI devices. This simplifies the design of the memory system and, more importantly, allows the board space available for DRAMs to be maximized because the LSI solution for control and error correction is very compact.

ERROR DETECTION AND CORRECTION

It is important that memory systems function reliably. The number of bytes of storage is increasing rapidly in memory systems at the same time that the density of the MOS DRAMs is growing. With 64 K and 256 K DRAMs, alpha particle sensitivity is much greater than that of smaller DRAMs because of the reduced size of the memory cells and the smaller stored charge of the cell. A Technical Report follows the Am2960 data sheet in this section and is entitled "Am2960 Boosts Memory Reliability." This technical report gives some statistics on soft error rates for DRAMs and demonstrates the dramatic increase in memory reliability gained from the use of Hamming Code Error Detection and Correction schemes, such as those used by the Am2960 EDC (Error Detection and Correction) unit.
Data interface between the dynamic memories, the Am2960 EDC chip and the system data bus is accomplished by means of the Am2961/62 bus buffers. Figure 3 depicts the architecture of these devices along with a simplified block diagram of the Am2960. The Am2961 is inverting between the system data bus and the EDC bus while the Am2962 is noninverting. As shown in Figure 3, the Am2961 and Am2962 contain two internal latches, a multiplexer, and a RAM driver output buffer.

These devices feature 4-bit-wide data paths to and from the RAM, the EDC, and the system data bus. The bus-input (BI) latch is used predominantly in byte WRITE operations, so that an incoming byte from the system data bus can be stored while the memory is being read, and any necessary correction made in the bytes not being changed. The bus-output (BO) latch is used predominantly for storing the output data if the processor is in the single-step mode. In the single-step mode it is necessary to hold the output data on the system data bus, but the memory must be released for refresh.

The Am2960 Error Detection and Correction Unit contains all the logic necessary to generate check bits on a 16 -bit data field according to a modified Hamming code and to correct the data word when check bits are supplied. Operating on the data read from memory, the Am2960 will correct any single-bit error and will detect all double- and some triple-bit errors. For 16-bit words, 6 check bits are used. The Am2960 is expandable to operate on 32 -bit words (7 check bits) and 64 -bit words (8 check bits). In all configurations, the device makes the error syndrome bits available on separate outputs for data logging.
The Am2960 also features two diagnostic modes in which diagnostic data can be forced into portions of the device to simplify device testing and to execute system diagnostic functions.
The 16 -bit Diagnostic Latch is loadable from the bidirectional data lines under control of the Diagnostic Latch Enable, LE DIAG. It contains check bit information in one byte and control information in the other, and is used for driving the device when in the Internal Control mode, or for supplying check bits when in one of the Diagnostic modes.
The control logic determines the specific operating mode. Normally the control logic is driven by external control inputs; however, in the Internal Control mode, the control signals are instead read from the Diagnostic Latch.
The Am2960 is a very fast EDC device, but even faster versions will soon be available. A speed selected version, the Am2960-1, is described in the Am2960 data sheet, and an IMOX ${ }^{\text {M }}$ version, the Am2960A, will be available by early 1984. All speedimproved versions have identical functions and are electrically plug-compatible with the current Am2960.

MEMORY SYSTEM CONTROL AND TIMING

Two Dynamic Memory Controllers are available for generating address, $\overline{R A S}$, and $\overline{\text { CAS signals for memory banks. The }}$ Am2964B is designed to work with 64K DRAMs of which each device can handle up to four banks for a total control capacity of 256K words. The new Am2968 is designed to work with 256 K DRAMs and can also handle up to four banks for a total control capacity of 1 Megaword (the words can be as many bits wide as desired). Also, the Am2968 does not require external driver chips as does the Am2964B - the Am2968 has the memory drivers, with all of the undershoot control and speed features of the Am2965/66, built right into its address, RAS, and CAS outputs.

For generating the timing and control signals required by the Am2964B/68 and the Am2960/61/62, there are several different devices available, optimized for different system requirements. For MOS Microprocessor systems, use the Am8163 or Am8167.

Figure 1. Am2900 High Performance Memory Subsystem Using 256K DRAMs

Figure 2. Am2900 High Performance Memory Subsystem Using 64K DRAMs

Figure 3. EDC Data Path

Figure 4. Am2960 Block Diagram

Both of these devices will interface easily to iAPX86/186/286, Z8000, or 68000 microprocessors. The Am8163 and Am8167 provide the control signals and timing signals for the memory controllers, the EDC, and the data bus buffers - in addition, the Am8163/67 decode the memory system control signals directly from the MOS Microprocessor, requiring in most cases only a single PAL ${ }^{\text {TM }}$ for interfacing. In this section are detailed block diagrams of systems showing how to interface the Am2960-70 Family devices to the most popular MOS microprocessors.
For high-performance Am2900-based processors or other high-speed processor designs, use the Am2969 or Am2970 to generate timing and control signals.
Following is a description of the function of the Am2964B/65/66 for Dynamic Memory Control for 64K DRAMs. The Am2968 incorporates these features and more into a single IC for use with 256K DRAMs.
The Am2964B Dynamic Memory Controller is used to provide all address handling, as well as $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ decoding and control. A block diagram of the Am2964B Dynamic Memory Controller is shown in Figure 5. The device contains 18 input latches for capturing an 18-bit address for memory control; the two highest order addresses are decoded in the Am2964B to select one of four banks of RAM by selecting one of the four RAS outputs.

The Am2964B is designed to operate with either 16K Dynamic RAMs or 64K Dynamic RAMs. Thus, the designer either uses 14 of the multiplexer address inputs and 7 of the address outputs or all 16 of the multiplexer address inputs and all 8 of the address outputs as needed by the memory. In the case of 16K Dynamic RAMs, 7 address inputs are provided to the RAM during the $\overline{\text { RAS }}$ LOW signal, and then the 8 -bit multiplexer is switched so that 7 upper address bits are provided to the RAM for the CAS

LOW part of the cycle. The Am2964B Dynamic Memory Controller contains an 8-bit refresh counter that is used to supply the refresh address to the dynamic memory during the refresh cycle. This counter can be used in either the 128 or 256 line refresh mode. A $\overline{C A S}$ buffer is included in the dynamic memory controller so that the $\overline{\mathrm{CAS}}$ output can be inhibited during refresh.
Normal operation of the Dynamic Memory Controller is to provide the address, close the input address latches and kick off a normal memory cycle. This is accomplished by bringing the $\overline{\text { RASI }}$ input LOW, which will cause one of the RAS outputs to go LOW. After the required memory timing, the MSEL input will be used to switch the multiplexer to the other address latch, then, the $\overline{\text { CASI }}$ input will be driven LOW causing the CASO output to go LOW and execute the CAS part of the memory cycle. The refresh cycle is executed by driving the $\overline{\text { RFSH }}$ input LOW which causes the multiplexer to connect the refresh counter to its address outputs. Then, the RASI input is driven LOW which causes all four $\overline{\mathrm{RAS}}$ outputs to go LOW. This will simultaneously refresh all four banks of dynamic RAMs controlled by the Am2964B Dynamic Memory Controller. When either the RFSH or RASI input is brought HIGH, the refresh counter is advanced so it will be ready for the next refresh cycle.
As can be seen in Figure 1, Dynamic RAM Drivers can be used in large memory systems to buffer the Address, RAS, CAS and WRITE ENABLE signals to the RAMs. The Am2965 and Am2966 are pin compatible devices with the Am74S240 and Am74S244. These RAM drivers are specifically designed for driving dynamic RAMs and feature high capacitance drive, guaranteed maximum undershoot of less than -0.5 volts and high $V_{O H}$ of greater than $V_{C C}-1.15$ volts. The Am2965 is inverting and the Am2966 is noninverting. The devices feature symmetrical rise and fall times and have guaranteed minimum and maximum tPD specifications for both 50 pF and 500 pF loads.

Figure 5. Am2964B Dynamic Memory Controller

Amz260/70
MELORY
SUPPORT

> DYNAMIC MEMORY CONTROL
> MEMORY TMMNG/CONTROL UNITS ERROR DETECTION AND CORRECTION

Am2900 EIT-SLICEPROCESSORS
PROCESSORS MCROCODESEQUENCERS
ANDPERIPHERALS

Am29100
CONTROLLER
FAMLY

> 16-BIT MICROPROCESSOR INTERRUPTIBLE SEOUENCERS LSI PERIPHERALS

MCROCODE SEOUENCERS LSI PERIPHERALS

Am29500
ARRAY AND DICITAL
SIGNAL PROCESSNG
16×16 PARALLEL MULTIPLIERS
MULTIPORT PIPELINED PROCESSORS
FFTADDRESS SEQUENCERS


```
Am29800 8, 8,9, AND 10-BIT IMOX BUS INTERFACE
HICH PERFORMANCE
BUSINTERFACE DIAGGOSTIC REGISTERS imox comparators
```


HICH PERFORMANCE SCHOTTKY LOGIC LOW-POWER SCHOTTKY LOGIC

 8×8 PARALLEL MULTIPLIERS

> HICH PERFORMANCE SCHOTTKY BUS INTERFACE DATA COMMUNICATIONS INTERFACE

$\begin{aligned} & 8100 \\ & 8200 \end{aligned}$	MOS MICROPROCESSOR SUPPORT PRODUCTS FOR 8-EIT AND 16-BIT MICROPROCESSORS

MEMORIES,
PALS,
MOS PERIPHERALS,
ANALOG

```
PROMs, BIPOLAR RAMS, MOS STATIC RAMS 20-PIN AND 24-PIN PALs, MOS LSI PERIPHERALS VERY HICH SPEED DATA ACQUISITION
```


> PACKAGING, ORDERING INFORMATION TESTING, QUALITY ASSURANCE/GUARANTEES GATE COUNTS, DIE SIZES, RELIABILITY

Am2900 Family Design Aids Index

Am2900 Family Applications Literature 3-1
Am2900 Evaluation and Learning Kit 3-2
Am29203 Evaluation Board 3-4
School of Advanced Engineering 3-6
System 29 Development System 3-7
Microtec Assembler 3-8
Videotape Seminar Kits 3-10

Am2900 Family Applications Literature

Available from AMD's Customer Education Center

Bit-Slice Design: Controllers	This book provides the inexperienced bit-slice design engineer
and ALUs, White D.E.,	with an easily understood description of how a computer control
Garland STPM Press, N.Y. © 1981	unit and ALU is built with the fundamental Am2900 devices
Price: $\$ 34.50+$ Tax + Shipping	(Am2901B, Am2909/11, Am2903, Am2910 and Am2914).
ISBN 0-8240-7103-4	This book forms the basis of the introductory bit-slice design
	course (ED2900A) at the AMD Customer Education Center.
Bit-Slice Microprocessor	This comprehensive book discusses in detail the design of a
Design, Mick and Brick,	microprogrammed computer using the Am2900 Family for the
McGraw-Hill Publishing Co.	more experienced bit-slice designer. The book also includes
1221 Avenue of the Americas	sections on DMA design with the Am2940/Am2942
New York, N.Y. 10020	and Program Control Unit design with the Am2930/Am2932.
Price: $\$ 18.50+$ Tax + Shipping	The book's chapters are:
ISBN 0-07-041781-4	I - Computer Architecture
	II - Microprogrammed Design
	III - The Data Path
	IV - The Data Path, Part Two
	V - Program Control Unit
	VI - Interrupt
	VII - Direct Memory Access
	VIII - The Hex 29
	IX - The Super Sixteen

Ordering Information
The above literature may be ordered directly from:
Customer Education Center
Advanced Micro Devices, Inc.
490-A Lakeside Drive, MS: 71
Sunnyvale, CA 94086

The Am2900

Evaluation and Learning Kit

The Am2900 Evaluation Kit system consists of a microprogrammed control unit which controls all the inputs to an Am2901 microprocessor slice. Thirty-two bit microinstructions are entered into a RAM in the control unit using the switch register. Each microinstruction contains bit to control the Am2901A's A and B addresses, instruction, carry in, and data input. Additional bits in the microinstruction control an Am2909 sequencer which generates the addresses for the microprogram memory. Once entered, microinstructions may be executed using a single step clock or using a pulse generator. The LED display provides access to nearly every signal path in the system.

Sixteen "sequence control" instructions are available, including execute, branch conditional, jump-to-subroutine, return, and
loop. Because the set of sequence instructions is implemented in a PROM, the user can devise his own set of operations by programming a new PROM.

The kit is supplied as a preassembled board with a manual containing theory and a set of exercises. The user need only attach a 5 V power supply (2.0 ampere rating).
Working with the kit, the user will gain familiarity with a high performance pipelined microprogrammed architecture, and with the operation of the Am2909 and Am2901A. By driving the kit from a pulse generator, the user can observe the operation of the components in real time, executing real instructions.
The part number for this kit is Am2900K1.

Figure 1. Block Diagram of the Am2900 Evaluation and Learning Kit

Am29203 Evaluation Board

Microprogramming Evaluation System

DISTINCTIVE CHARACTERISTICS

- 16-bit word size -

System based around four Am29203 bipolar microprocessor slices

- Structured system approach -

Integrated system features Am29203, Am2910, Am2904, Am2902, and Am2925 functional modules

- Monitor interface -

Allows user to develop and analyze microprograms through an external screen oriented terminal

- I/O capability -

Memory mapped I/O serial port via microprogram controllable UART. Additional RS-232 serial port dedicated for use by monitor terminal

- Sequence control -

Monitor allows Halt, Single Step, and Run control as well as breakpoints and escapes from program flow

- On-board memory -

1024 word by 48 -bit Writeable Control Store and 1 K by 16-bit RAM macro-memory on-board

- Complete user's manual

FUNCTIONAL DESCRIPTION

The Am29203 Evaluation Board is a complete 16-bit microprogrammable computer system based on the Am29203 bit-slice microprocessor. This single board computer is designed to demonstrate comprehensively the execution of a microprogrammed bit-slice system.
The Am29203 Evaluation Board consists of two logical parts, the primary system and the monitor as shown in Figure 1. The primary system contains a microprogram controller, the Am2910, an arithmetic section centered around the Am29203 and Am2904, and a macro-memory module which includes an I/O controller. This portion of the system is designed for user control and interaction (Figure 2).
The monitor functional unit provides the user interface for control of the primary system from an external terminal or computer.
It allows the user to examine and load various memory, register, and ALU bus contents. Additional features include run/halt/single-step control modes, breakpoint and escape capability, and bulk I/O transfer.
The system comes completely assembled on a single circuit board. Two serial I/O ports allow the monitor to interface with an external terminal while leaving one port free for user applications. On-board memory includes a 1 K word Writeable Control Store for microcode and a 1 K word macro memory. All control signals are available at an edge connector for support of up to 32 K words of external memory.
The Am29203 Evaluation Board is intended to familiarize the user with a high-performance pipelined microprogrammed architecture. To that end, the board can execute preprogrammed microcode routine examples as well as user programs. The board supports more than nineteen different macroinstruction's in six different formats (including indexed addressing).
A complete user's manual covers architecture, microprogramming; I/O control, monitor operation, and interface to external devices. It includes definition files, schematics, and timing diagrams.

Figure 1. Evaluation Board Organization

Figure 2. Primary System Architecture

School of Advanced Engineering

BIPOLAR APPLICATION DESIGN COURSES

AMD's School of Advanced Engineering offers graduate-level instruction in designing with the newest technologies. Bipolar design courses take you from the basics of bit-slice architecture through basic design with the 2900 Family on to the microprogram development system and its application to your design and finally to emulation and CPU architecture where students create microcode to drive an actual system, using the writable control store of the AmSYS29 development system.

For More Information:
Contact your AMD Sales Representative or write to:
Advanced Micro Devices
School of Advanced Engineering
Customer Education Center
490-A Lakeside Drive
P.O. Box 453

Sunnyvale, California 94086 U.S.A.

AmSYS ${ }^{\circledR} 29$
 Microprogram Development System

AmSYS29, from Advanced Micro Computers, is the proven system for developing microprogrammed machines. It greatly simplifies the speed of developing and integrating software and hardware for Am2900 based microprogrammed machines. AmSYS29 supports 2901/03 based CPU designs, 29116 based controller designs and 295XX based signal processing designs.
A microcode assembly language of your specifications is implemented through AMDASM ${ }^{\text {™ }}$. You can then write the microprogram in your symbolic language and assemble the source file with AMDASM.
The Control Store Emulator contains a high-speed Writable Control Store to replace microprogram PROM during development. Your microsequencer address accesses a block of microcode in WCS RAM that can be mapped anywhere in your target system memory.

Emulator Control Logic controls the target system clock providing single-step and full speed control with multiple breakpoints. Monitor points provide measurements of the target system logic state during hardware debug.
Microprogram support software moves microcode object files out to Writable Control Store and saves working programs on to disk. DDT29 procedure interfaces the system console to the Control Store Emulator providing clock control, breakpoint setting, microprogram address control, logic state tracing and microcode editing.
AmSYS29 provides complete software and hardware support for the development of any microprogrammed system.

Macro Meta Assembler from Microtec*

The Macro Meta Assember is a valuable programming tool for those faced with the problem of writing micro-programs for bit slice processors such as the AMD 2901 and other similar microprogrammable microprocessors. It is a necessity for anyone faced with the problem of micro-programming any wide-word driven micro-sequencer system.
The Macro Meta Assembler is an enhanced version of Microtec's Meta Assembler. It is totally upward compatible, yet can perform many functions that are difficult or impossible with more basic packages.
The principal new feature of the Macro Meta Assembler is a powerful macro facility that enables the user to define variable length microinstructions using a single mnemonic; to encode complex overlayed instructions, and to encode non-contiguous fields. Macros may be passed a variety of parameter types: Symbols, Numbers, Opcodes, and Character Strings. Within the Macro-expansion parameters may be dynamically concatenated to existing text or other parameters, Symbols may be declared Local to the current Macro or be defined globally, and a wide variety of operators have been implemented for use with conditional Macro expansion. Macro calls may be nested and may be recursive.
Other features that have been added to the language include the availability of boolean and relational operators in expressions, automatic generation of parity bits and entry point PROMs.

The Meta Assembler consists of three separate programs: the Definition Program, the Assembly Program, and the PROM Formatter Program. These programs allow the user to define a unique assembly language, assemble a program written in the user-defined language, and organize the resulting object module into arrays that are compatible with the target ROM/PROM memories.
The Definition Program allows the user to define instruction mnemonics and their associated formats. Instruction lengths may vary from 1 to 128 bits. An instruction format is defined by breaking the microword into fields as variables, constants, or "don't care" bits. The variable fields are filled in at Assembly time. Default values and certain permanent attributes may also be assigned to variable fields at Definition time. The Definition Program produces an output listing and a disk file which contains the symbols and instruction mnemonics. This Definition file is used by the Assembly program as a reference when assembling a program.
The Assembly Program is similar to a traditional two-pass assembler. A symbolic source program utilizing the mnemonics and symbols defined in the Definition Program is read as input; a program listing and object module are generated as output. The Assembler provides symbolic addressing, relative addressing, paged addressing, and other features found in typical assembly programs. The instruction syntax and assembler directives are compatible with those utilized by AMD in its literature and software products. Additional directives have been implemented for versatile listing and output controls.

Both the Definition Program and the Assembly Program are implemented with Conditional Assembly Operators. Conditional
statements may be nested up to 16 levels and can be made dependent on general expressions, character string equality, and symbol definition status. A full cross reference table is provided in both programs.

The following directives are included in Microtec's Macro Meta Assembler Program:

MACRO	- Define a Macro
ENDM	-- End a Macro Definition
EXITM	- Alternate Macro Exit
LOCAL	- Define a Macro Local Symbol
IF	- Conditional Assembly if Expression is Non-Zero
ELSE	- Conditional Assembly Statement Converse
ENDIF	- Conditional Assembly Statement End
IFC	- Conditional Assembly if Character Strings Compare
IFNC	- Conditional Assembly if Character Strings Don't Compare
IFD	- Conditional Assembly if Symbol Defined
IFND	- Conditional Assembly if Symbol Not Defined
MAP	- Generate Entry Point Table
DUP	- Duplicate a Line (in timesharing version of AMDASM)
DATA	- Define Data Word (in timesharing version of AMDASM)

The PROM Formatter Program reads the object module produced by the Assembly Program and translates the format into one that can be read by a PROM programmer. BNPF, Data I/O ASCII hexadecimal, and the Step Engineering format are supported. Microwords in the object module can be divided into organizations that are compatible with the target PROM/ROM array. The length and width of PROMS may be specified as well as the value of "don't care" bits. The PROM Formatter has three new features that add to the versatility of the program: single bit parity generation; column switching; and column overlaying.
The Macro Meta Assembler is written in ANSI Fortran and will run on any general purpose digital computer that has a Fortran IV compiler, a word length of at least 16 bits, a disk or magnetic tape facility and $20-24 \mathrm{~K}$ words of program memory. In most systems these programs can be run in an overlayed mode if the required memory is not available.
The programs are well commented and modular. A detailed manual, source listing, test programs, and test program output listings accompany each software order. The test programs allow the operation of the software to be verified quickly and easily. A manual is available for a small fee, if further information is desired.

For additional information, contact Microtec, P.O. Box 60337, Sunnyvale, California 94088. Telephone (408) 733-2919.

Meta Assembler Program from Microtec*

Microtec has available a Meta Assembler program for the AMD 2900 microprocessor and other similar microprogrammable microprocessors. The Assembler is compatible with AMD's AMDASM program, but is written in ANSI standard Fortran IV and will run on any machine that has:

1. A Fortran IV compiler
2. A word length of at least 16 bits
3. A disc or magnetic tape facility
4. 18 K words of Random Access Memory (in most systems these programs can be run in an overlayed mode if the required memory is not available)
The Meta Assembler Software Package actually consists of three separate programs, a Definition Program, an Assembly Program, and a PROM Formatter Program.
The Definition Program allows the user to define instruction mnemonics and their associated formats. Instruction lengths may vary from 1 to 128 bits. Symbolic Constants and reserved words may also be defined in the Definition Program. An instruction format is defined by breaking the microword into fields and defining the fields as constants, don't care bits, or variables which are filled in at assembly time. Default values and certain permanent attributes may also be assigned to variable fields at Definition time. The Definition Program produces an output listing and a disk file consisting of the defined symbols and instruction mnemonics. This Definition file is used by the Assembly program as a reference when assembling a program.
The Assembly program operates like a traditional assembler. A symbolic source program utilizing the mnemonics and symbols defined in the Definition Program is read as input, and a listing and object module are generated as output. The Assembler provides symbolic addressing, relative addressing, paged addressing, and other features found in typical assembly programs. The instruction syntax and assembler directives are compatible with those utilized by AMD in its literature and software products. Additional directives have been implemented to provide for versatile listing and output controls.

Conditional Assembly statements are provided in both the Definition and Assembly programs. These statements may be nested up to 16 levels and can be made dependent on general expression. A full cross reference table is also provided in both programs.
Some features of Microtec's Meta Assembler are particularly helpful when assembling code for microprogrammable machines. The existence of don't care bits and instruction overlaying are included among these features. Bits of a microword which are not relevant to a particular instruction format may be defined as don't care bits. Don't care bits are printed as X's on the listing and do not have to be defined until the PROM Formatter program is executed. An instruction format with don't care bits can be overlayed with other instruction formats. Therefore when useful, an instruction format can be used to define only part of the microword, padding out the word with don't care bits.
The PROM Formatter Program reads the object module file produced by the Assembly program and translates the format into one that can be read by a PROM programmer. Both BNPF and Data I/O's ASCII hexadecimal format are supported. Microwords in the object module can be broken up into organizations that are compatible with the target PROM/ROM array. Users may specify PROMs of any width and length, as well as the value of don't care bits. Any or all PROMs may be listed and/or punched.
The programs are well commented and modular. A detailed manual, source listing, test programs, and test program output listings accompany each software order. The test programs allow the operation of the software to be verified quickly and easily. If the information given here is not sufficient, a manual is available for a small fee.

For additional information, contact Microtec, P.O. Box 60337 Sunnyvale, Ca. 94088 (408) 733-2919

Videotape Seminar Kits

Advanced Micro Devices regularly prepares and presents seminars worldwide that describe the function and application of its Am2900 Family products. These seminars may also be presented at local factory or design centers through arrangement with the Field Applications Engineer located at the local AMD Sales Office.
It is now also possible to order the following seminars in videotape form with literature kits.

> - Am29116 Sixteen-Eit Bipolar Microprocessor and Peripherals
> - Am29500 Array Processing/Digital Signal Processing Family

The videotape is a 2-3 hour seminar covering the products function in detail and demonstrating aspects of system integration using the products. The literature kit includes a slide booklet, data sheets of all products covered in the seminar, and other relevant material.

These kits may be ordered from AMD's Customer Education Center. Contact your AMD Sales Representative for more information.

Order Code	Price (USA)	
Am29116 Sixteen-Bit Bipolar Microprocessor and Peripherals - Videotape (includes one set of literature)		
- Literature Kit (each additional set)	Am29116-VIDEO	$\$ 99 /$ Videotape
Am29500 Array Processing (Digital Signal Processing Family) - Videotape (includes one set of literature)	Am29116-LIT	$\$ 5 /$ set
- Literature Kit (each additional set)		

INDEX
SECTION NUMERIC DEVICENDEX
FUNCTIONINDEX.
SYSTEMS BIPOLAR LSYYLSITECHNOLOCIES
DESIGN
CONSIDERATIONS An290OSYSTEMS SOLUTIONS

$$
\begin{aligned}
& \text { DESIGN } \text { DEVELOPMENT SYSTEMS AND SOFTVARE } \\
& \text { EVDS } \text { EVAUYATIONEOARDS ANO KIS } \\
& \text { TRANIGGANDAPRLCATIONS MATERMAL }
\end{aligned}
$$

Am2960/70
 MEMORY

DYNAMIC MEMORY CONTROL MEMORY TIMING/CONTROL UNITS ERROR DETECTION AND CORRECTION

Am2900 EIT-SLICEPROCESSORS
PROCESSORS MICROCODESEGUENCERS
ANDPERIPHERALS


```
Am29100
CONTROLLER
FAMILY
```

16-BIT MICROPROCESSOR
INTERRUPTIBLE SEQUENCERS
LSI PERIPHERALS

Am29500

ARRAY AND DICITAL
SIGNAL PROCESSING
16×16 PARALLEL MULTIPLIERS MULTIPORTPIPELNED PROCESSORS FFT ADDRESS SEOUENCERS

Am29800
HICH PERFORMANCE BUSINTERFACE
8, 9, AND 10-BIT MOX BUS INTERFACE DIAGNOSTIC REGISTERS mox comparators

HIGHPERFORMANCESCHOTTKYLOGIC
Am25S
LOW-POWER SCHOTTKYLOGIC
Am25LS
8×8 PARALLELMULTIPLIERS

Am26S
Am26LS

HIGH PERFORMANCE SCHOTTKY BUS INTERFACE
Am26LS DATA COMMUNICATIONS INTERFACE

8100
 8200
 MOS MICROPROCESSOR SUPPORT PRODUCTS FOR 8-BIT AND 16-BIT MICROPROCESSORS

MEMORIES,
PALS,
MOSPERIPHERALS,
ANALOG

PROMS, BIPOLAR RAMS, MOS STATIC RAMS 20-PIN ANO 24-PIN PALS, MOS LSIPERIPHERALS VERY HIGH SPEED DATA ACQUISITION


```
pAt
MOSPERIPHERALS,
```

GENERAL
INFORMATION
PACKAGING, ORDERING INFORMATION
TESTING, QUALITY ASSURANCE/GUARANTEES GATE COUNTS, DIE SIZES, RELIABILITY

Am2960-2970 Dynamic Memory Support Index

Am2960/70 Family Overview 4-1
Am2960/-1/A Cascadable 16-Bit Error Detection and Correction Unit (EDC) 4-5
Technical Report Am2960 Boosts Memory Reliability 4-46
Am2961/2962 4-Bit Error Correction Multiple Bus Buffers 4-53
Am2964B Dynamic Memory Controller for 64K DRAMs 4-61
Am2965/2966 Octal Dynamic Memory Driver with 3-State Outputs 4-73
RAM Drivers Maximize Performance without Undershoot 4-79
Am2968 Dynamic Memory Controller for 256K DRAMs 4-87
Am2969/70 Memory Timing Controllers 4-88
Am8163 Memory Timing, Refresh, and EDC Controller 4-89
Am8167 Memory Timing, Refresh, and EDC Controller 4-89
8086 Systems Design Using Am2960 Family 4-109
68000 Systems Design Using Am2960 Family 4-109
Z8000 Systems Design Using Am2960 Family 4-109
Multibus Systems Design Using Am2960 Family 4-109

A New Generation of Am2960 Family Memory Support Products

Advanced Micro Devices and Motorola have agreed to cooperate on the development of the next generation of the Am2960 Family of Memory Support products. These devices are designed to maximize the speed and minimize the cost of memory systems based on the new generation of high performance 64K and 256 K MOS Dynamic RAMs (DRAMs).

The products included in this joint development and alternate sourcing agreement are a Dynamic Memory Controller (DMC), the Am2968, and two Memory Timing Controllers (MTC), the Am2969 and Am2970. These functions are partitioned such that address generation and refresh are provided by the Am2968. Memory timing and control is achieved with either the Am2969 or Am2970. This partitioning allows greater design flexibility and higher system performance than would be possible by combining the DMC and MTC functions on a single chip. All three devices will be fabricated using the high performance, oxide-isolated bipolar technologies with TTL compatible I/O levels.
The Dynamic Memory Controller, Am2968, will provide complete address multiplexing, refreshing, and output drive for up to 88 Dynamic Random Access Memories (DRAMs). The Am2968 will be packaged in a 48 -pin DIP and will interface with $16 \mathrm{~K}, 64 \mathrm{~K}$ or 256 K DRAMs.

The memory timing controller will be available in two versions. The Am2969, a 48 -pin version, will provide all control signals for both the Am2968 Memory Controller and the existing Am2960 Error Detection and Correction circuit (EDC). The Am2969 Timing Controller will support error logging and also handle memory initialization, refresh timing, and memory cycle arbitration. The general purpose microprocessor interface on the Am2969 will facilitate its use with most microprocessors with minimal external logic. The AMD/Intel iAPX86, MC68000 and AMD 2900 bit-slice and 29116 devices are notable examples. System timing for all memory functions is derived from an external delay line to provide maximum performance and flexibility.
For systems not utilizing the Am2960 Error Detection and Correction circuit (EDC), a second version of the timing controller, the Am2970, will be available without EDC interface/functions. The Am2970 will save on IC cost and board space as it will be packaged in 24-pin, 300 -mil wide DIP.
Sample quantities on the Am2968 and the Am2970 are expected in the fourth quarter 1983, with production commencing early in 1984.

The Next Generation of Dynamic Memory Support Products

HIGH PERFORMANCE COMPUTER MEMORY

The Am2960 Family Dynamic Memory Support Products

[^0]
Key System Level Features

Maximum Memory Performance

- Schottky performance with matched TPD paths and skew limit guarantees.
- Optimized interface devices for maximum speed.
- Hamming code EDC with internal ECL circuitry for maximum speed combined with maximum memory reliability.

Lowest Package Count Plus Maximum Flexibility

- LSI DMC Controller is designed for up to 64 K RAMs.
- EDC is 16 -bit expandable slice with byte I / O controls.
- Flexible interface for speed or minimum parts count.

Operation in Any Timing Environment

- Synchronous Clock Timing (AmZ8000 systems).
- Delay-line timing for maximum performance.

Operation with Any RAM Refresh Mode

- 128 of 256 Line Refresh

All Refresh Modes

- Burst Refresh
- Hidden (transparent) Refresh
- Cycle Steal Refresh

Am2960 Family Product Summary

Am2960 • AmZ8160 Error Detection and Correction (EDC)

- High-speed 16-bit slice expandable to 64 bits
- Byte-op controls
- Single-bit correction/double-bit detection

Am2961/62•AmZ8161/62 EDC Data Bus Buffer

- EDC interface between RAM, EDC and data bus - Separated RAM I/O with undershoot protection
- 24 mA bus drive with three-state control
- Bus latches for byte-op or multiplexed buses

AmZ8163 EDC and Refresh Control for AmZ8000 Systems

- RAS/MUX/CAS timing control for AmZ8164
- Memory/refresh request arbitration
- EDC control for word or byte read and write
- Refresh timer and control independent of CPU

Am2964 • AmZ8164 Dynamic Memory Control (DMC)

- 16 -bit address for up to 64 K RAMs
- 3-port 8 -bit Schottky speed address MUX
- Refresh Counter for 128 - or 256 -line refresh - RAS and CAS paths on-chip for minimum skew

Am2965/66•AmZ8165/66 Octal Dynamic RAM Drivers

- -0.5 V maximum undershoot
- $\mathrm{V}_{\mathrm{OH}} / \mathrm{IOH}$ specs for MOS with no external resistors
- tple $/$ tphl min and max specs for 50 pF and 500 pF
- Pin-compatible with 'S240/244

Am2960•Am2960-1•Am2960A Fast Error Detection and Correction for Memories

Corrects All Single-Bit Errors

Corrects all single bit errors. Detects all double and some triple bit errors.

Expandable

One Am2960 provides Error Detection and Correction for 16-bits. Two Am2960s handle 32 bits; four Am2960s handle 64 bits.

Fast

Worst case 32 nanoseconds for error detect and 65 nanoseconds for error correct (16 bits).

Latches Built-In

Check Bit, Data, and Diagnostic latches are built-in to save MSI.

Flexible

Can be used with Am2900-based designs, the AmZ8000 or other processors.

Diagnostics Built-In

Logic on-chip for device test and softwarecontrolled diagnostics.

Increases Memory Reliability

And can significantly reduce field maintenance costs.

A Must for 64K RAMs

Alpha error rates are several times higher for 64K RAMs than 16Ks.

Also available as the AmZ8160 for AmZ8000 Systems

Am2960 • Am2960-1 Am2960A

Cascadable 16-Bit Error Detection and Correction Unit

DISTINCTIVE CHARACTERISTICS

- Boosts Memory Reliability

Corrects all single-bit errors. Detects all double and some triple-bit errors. Reliability of dynamic RAM systems is increased more than 60 -fold.

- Very High Speed

Perfect for MOS microprocessor, minicomputer, and mainframe systems.

- Data in to error detect: 32 ns worst case.
- Data in to corrected data out: 65 ns worst case.

High performance systems can use the Am2960 EDC in check-only mode to avoid memory system slowdown.

- Replaces $\mathbf{2 5}$ to $\mathbf{5 0}$ MSI chips

All necessary features are built-in to the Am2960 EDC, including diagnostics, data in, data out, and check bit latches.

- Handles Data Words From 8 to 64 Bits

The Am2960 EDC cascades: 1 EDC for 8 or 16 bits, 2 for 32 bits, 4 for 64 bits.

- Easy Byte Operations

Separate byte enables on the data out latch simplify the steps and cuts the time required for byte writes.

- Diagnostics Built-In

The processor may completely exercise the EDC under software control to check for proper operation of the EDC.

TABLE OF CONTENTS

FUNCTIONAL DESCRIPTION
Block Diagram $4-6$
Block Diagram . 4-6 4 4-7
Architecture
Pin Definitions 4-8
16-Bit Configuration4-11
32-Bit Configuration4-14
64-Bit Configuration 4-17
ELECTRICAL SPECIFICATIONS

APPLICATIONS

Byte Write . 4-36
Diagnostics . 4-36
Eight-Bit Data Word . 4-36
Other Word Widths . 4-36
Single Error Correction Only 4-36
Check Bit Correction . 4-37
Multiple Errors 4-37
SYSTEM DESIGN CONSIDERATIONS
High Performance Parallel Operation 4-39
EDC in the Data Path 4-39
Scrubbing Avoids Memory Errors 4-39
Correction of Double Bit Errors 4-39
Error Logging and Preventative Maintenance 4-40
Reducing Check Bit Overhead 4-41
EDC Per Board vs. EDC Per System 4-41
FUNCTIONAL EQUATIONS 4-42.
Am2960 BOOSTS MEMORY RELIABILITY 4-46

GENERAL DESCRIPTION

The Am2960 Error Detection and Correction Unit (EDC) contains the logic necessary to generate check bits on a 16 -bit data field according to a modified Hamming Code, and to correct the data word when check bits are supplied. Operating on data read from memory, the Am2960 will correct any single bit error and will detect all double and some triple bit errors. For 16-bit words, 6 check bits are used. The Am2960 is expandable to operate on 32 -bit words (7 check bits) and 64 -bit words (8 check bits). In all configurations, the device makes the error syndrome available on separate outputs for data logging.
The Am2960 also features two diagnostic modes, in which diagnostic data can be forced into portions of the chip to simplify device testing and to execute system diagnostic functions. The product is supplied in a 48 lead hermetic DIP package.

EDC Architecture

The EDC Unit is a powerful 16 -bit cascadable slice used for check bit generation, error detection, error correction and diagnostics.

As shown in the block diagram, the device consists of the following:

- Data Input Latch
- Check Bit Input Latch
- Check Bit Generation Logic
- Syndrome Generation Logic
- Error Detection Logic
- Error Correction Logic
- Data Output Latch
- Diagnostic Latch
- Control Logic

Data Input Latch

16 bits of data are loaded from the bidirectional DATA lines under control of the Latch Enable input, LE IN. Depending on the control mode the input data is either used for check bit generation or error detection/correction.

Check Bit Input Latch

Seven check bits are loaded under control of LE IN. Check bits are used in the Error Detection and Error Correction modes.

Check Bit Generation Logic

This block generates the appropriate check bits for the 16 bits of data in the Data Input Latch. The check bits are generated according to a modified Hamming code.

Syndrome Generation Logic

In both Error Detection and Error Correction modes, this logic block compares the check bits read from memory against a newly generated set of check bits produced for the data read in from memory. If both sets of check bits match, then there are no errors. If there is a mismatch, then one or more of the data or check bits is in error.
The syndrome bits are produced by an exclusive-OR of the two sets of check bits. If the two sets of check bits are identical
(meaning there are no errors) the syndrome bits will be all zeroes. If there are errors, the syndrome bits can be decoded to determine the number of errors and the bit-in-error.

Error Detection Logic

This section decodes the syndrome bits generated by the Syndrome Generation Logic. If there are no errors in either the input data or check bits, the ERROR and MULT ERROR outputs remain HIGH. If one or more errors are detected, ERROR goes LOW. If two or more errors are detected, both ERROR and MULT ERROR go LOW.

Error Correction Logic

For single errors, the Error Correction Logic complements (corrects) the single data bit in error. This corrected data is loadable into the Data Output Latch, which can then be read onto the bidirectional data lines. If the single error is one of the check bits, the correction logic does not place corrected check bits on the syndrome/check bit outputs. If the corrected check bits are needed the EDC must be switched to Generate Mode.

Data Output Latch

The Data Output Latch is used for storing the result of an error correction operation. The latch is loaded from the correction logic under control of the Data Output Latch Enable, LE OUT. The Data Output Latch may also be loaded directly from the Data Input Latch under control of the PASS THRU control input.
The Data Output Latch is split into two 8 -bit (byte) latches which may be enabled independently for reading onto the bidirectional data lines.

Diagnostic Latch

This is a 16 -bit latch loadable from the bidirectional data lines under control of the Diagnostic Latch Enable, LE DIAG. The Diagnostic Latch contains check bit information in one byte and control information in the other byte. The Diagnostic Latch is used for driving the device when in Internal Control Mode, or for supplying check bits when in one of the Diagnostic Modes.

Control Logic

The control logic determines the specific mode the device operates in. Normally the control logic is driven by external control inputs. However, in Internal Control Mode, the control signals are instead read from the Diagnostic Latch.

PIN DEFINITIONS

DATA $_{0-15}$
16 bidirectional data lines. They provide input to the Data Input Latch and Diagnostic Latch, and receive output from the Data Output Latch. DATA $_{0}$ is the least significant bit; DATA $_{15}$ the most significant
$\mathbf{C B}_{0-6} \quad$ Seven Check Bit input lines. The check bit lines are used to input check bits for error detection. Also used to input syndrome bits for error correction in 32 and 64-bit configurations.
LE IN Latch Enable - Data Input Latch. Controls latching of the input data. When HIGH the Data Input Latch and Check Bit Input Latch follow the input data and input check bits. When LOW, the Data Input Latch and Check Bit Input Latch are latched to their previous state.
GENERATE Generate Check Bits input. When this input is LOW the EDC is in the Check Bit Generate Mode. When HIGH the EDC is in the Detect Mode or Correct Mode.

In the Generate Mode the circuit generates the check bits or partial check bits specific to the data in the Data Input Latch. The generated check bits are placed on the SC outputs.
In the Detect or Correct Modes the EDC detects single and multiple errors, and generates syndrome bits based upon the contents of the Data Input Latch and Check Bit Input Latch. In Correct Mode, single-bit errors are also automatically corrected - corrected data is placed at the inputs of the Data Output Latch. The syndrome result is placed on the SC outputs and indicates in a coded form the number of errors and the bit-in-error.
SC $_{0-6} \quad$ Syndrome/Check Bit outputs. These seven lines hold the check/partial-check bits when the EDC is in Generate Mode, and will hold the syndrome/ partial syndrome bits when the device is in Detect or Correct Modes. These are 3-state outputs.
$\overline{\text { OE SC }} \quad$ Output Enable - Syndrome/Check Bits. When LOW, the 3-state output lines SC_{0-6} are enabled. When HIGH, the SC outputs are in the high impedance state.
ERROR Error Detected output. When the EDC is in Detect or Correct Mode, this output will go LOW if one or more syndrome bits are asserted, meaning there are one or more bit errors in the data or check bits. If no syndrome bits are asserted, there are no errors detected and the output will be HIGH. In Generate Mode, ERROR is forced HIGH. (In a 64-bit configuration, $\overline{E R R O R}$ must be externally implemented.)
MULT ERROR

Multiple Errors Detected output. When the EDC is in Detect or Correct Mode, this output if LOW indi- cates that there are two or more bit errors that have been detected. If HIGH this indicates that either one or no errors have been detected. In

Generate mode, $\overline{\text { MULT ERROR }}$ is forced HIGH. (In a 64-bit configuration, MULT ERROR must be externally implemented.)
CORRECT Correct input. When HIGH this signal allows the correction network to correct any single-bit error in the Data Input Latch (by complementing the bit-in-error) before putting it onto the Data Output Latch. When LOW the EDC will drive data directly from the Data Input Latch to the Data Output Latch without correction.
LE OUT Latch Enable - Data Output Latch. Controls the latching of the Data Output Latch. When LOW the Data Output Latch is latched to its previous state. When HIGH the Data Output Latch follows the output of the Data Input Latch as modified by the correction logic network. In Correct Mode, singlebit errors are corrected by the network before loading into the Data Output Latch. In Detect Mode, the contents of the Data Input Latch are passed through the correction network unchanged into the Data Output Latch. The inputs to the Data Output Latch are unspecified if the EDC is in Generate Mode.
$\overline{\text { OE BYTE O, Output Enable - Bytes } 0 \text { and 1, Data Output }}$ OE BYTE 1 Latch. These lines control the 3-state outputs for each of the two bytes of the Data Output Latch. When LOW these lines enable the Data Output Latch and when HIGH these lines force the Data Output Latch into the high impedance state. The two enable lines can be separately activated to enable only one byte of the Data Output Latch at a time.

PASS Pass Thru input. This line when HIGH forces the THRU contents of the Check Bit Input Latch onto the Syndrome/Check Bit outputs (SC_{0-6}) and the unmodified contents of the Data Input Latch onto the inputs of the Data Output Latch.
DIAG Diagnostic Mode Select. These two lines control MODE $_{0-1}$ the initialization and diagnostic operation of the EDC.
CODE ID $0-2$ Code Identification inputs. These three bits identify the size of the total data word to be processed and which 16-bit slice of larger data words a particular EDC is processing. The three allowable data word sizes are 16, 32 and 64 bits and their respective modified Hamming codes are designated $16 / 22,32 / 39$ and 64/72. Special CODE ID input $001\left(\mathrm{ID}_{2}, I \mathrm{ID}_{1}, I \mathrm{I}_{0}\right)$ is also used to instruct the EDC that the signals CODE I_{0-2}, DIAG MODE $_{0-1}$, CORRECT and PASS THRU are to be taken from the Diagnostic Latch, rather than from the input control lines.
LE DIAG Latch Enable - Diagnostic Latch. When HIGH the Diagnostic Latch follows the 16-bit data on the input lines. When LOW the outputs of the Diagnostic Latch are latched to their previous states. The Diagnostic Latch holds diagnostic check bits, and internal control signals for CODE ID $0-2$, DIAG MODE $_{0-1}$, CORRECT and PASS THRU.

FUNCTIONAL DESCRIPTION

The EDC contains the logic necessary to generate check bits on a 16 -bit data field according to a modified Hamming code. Operating on data read from memory; the EDC will correct any single-bit error, and will detect all double and some triple-bit errors. The Am2960 may be configured to operate on 16 -bit data words (with 6 check bits), 32 -bit data words (with 7 check bits) and 64 -bit data words (with 8 check bits). In fact the EDC can be configured to work on data words from 8 to 64 bits. In all configurations, the device makes the error syndrome bits available on separate outputs for error data logging.

Code and Byte Specification

The EDC may be configured in several different ways and operates differently in each configuration. It is necessary to indicate to the device what size data word is involved and which bytes of the data word it is processing. This is done with input lines CODE ID_{0-2}, as shown in Table I. The three modified Hamming codes referred to in Table I are:

- 16/22 - 16 data bits
- 6 check bits
- 22 bits in total.
- 32/39 code - 32 data bits
- 7 check bits
- 39 bits in total.
- 64/72 code - 64 data bits
- 8 check bits
- 72 bits in total.

CODE ID input $001\left(\mathrm{ID}_{2}, I \mathrm{ID}_{1}, I \mathrm{ID}_{0}\right)$ is a special code used to operate the device in Internal Control Mode (described later in this section).

Control Mode Selection

The device control lines are GENERATE, CORRECT, PASS THRU, DIAG MODE $00-1$ and CODE ID_{0-2}. Table III indicates the operating modes selected by various combinations of the control line inputs.

Diagnostics

Table Il shows specifically how DIAG MODE M-1 select between normal operation, initialization and one of two diagnostic modes.
The Diagnostic Modes allow the user to operate the EDC under software control in order to verify proper functioning of the device.

Check and Syndrome Bit Labeling
The check bits generated in the EDC are designated as follows:

- 16-bit configuration - CX C0, C1, C2, C4, C8;
- 32-bit configuration - CX, C0, C1, C2, C4, C8, C16;
- 64-bit configuration - CX, C0, C1, C2, C4, C8, C16, C32.

Syndrome bits are similarly labeled SX through S32. There are only 6 syndrome bits in the 16 -bit configuration, 7 for 32 bits and 8 syndrome bits in the 64 -bit configuration.

Initialize Mode

The inputs of the Data Output Latch are forced to zeroes. The check bit outputs (SC) are generated to correspond to the all-zero data. ERROR and MULT ERROR are forced HIGH in the Initialize Mode.
Initialize Mode is usfful after power up when RAM contents are random. The EDC may be placed in initialize mode and its' outputs written in to all memory locations by the processor.
table i. hamming code and slice identification.

CODE $1 \mathbf{D}_{2}$	CODE $1 \mathbf{D}_{1}$	CODE $1 \mathbf{I D}_{0}$	Hamming Code and Slice Selected
0	0	0	Code 16/22
0	0	1	Internal Control Mode
0	1	0	Code 32/39, Bytes 0 and 1
0	1	1	Code 32/39, Bytes 2 and 3
1	0	0	Code 64/72, Bytes 0 and 1
1	0	1	Code 64/72, Bytes 2 and 3
1	1	0	Code 64/72, Bytes 4 and 5
1	1	1	Code 64/72, Bytés 6 and 7

TABLE II. DIAGNOSTIC MODE CONTROL.

| DIAG
 MODE $_{1}$ | DIAG
 MODE $_{0}$ | Diagnostic Mode Selected |
| :---: | :---: | :--- |$|$| 0 | 0 | Non-diagnostic mode. The EDC functions normally in all modes. |
| :---: | :---: | :--- |
| 0 | 1 | Diagnostic Generate. The contents of the Diagnostic Latch are substi-
 tuted for the normally generated check bits when in the Generate Mode.
 The EDC functions normally in the Detect or Correct modes. |
| 1 | 0 | Diagnostic Detect/Correct. In the Detect or Correct Mode, the contents
 of the Diagnostic Latch are substituted for the check bits normally read
 from the Check Bit Input Latch. The EDC functions normally in the
 Generate Mode. |
| 1 | 1 | Initialize. The outputs of the Data Input Latch are forced to zeroes (and
 latched upon removal of the Initialize Mode) and the check bits
 generated correspond to the all-zero data. |

HAMMING CODE SELECTION

The Am2960 EDC uses a modified Hamming Code that allows 1) the EDC to be cascaded, 2) all double errors to be detected, 3) the gross error conditions of all 0 s or 1 s to be detected.
The error correction code can be selected independent of the processor with the exception of diagnostics software.
Diagnostic software run by a processor to checkout the EDC system must know specifically which code is being used. This is only a problem when the EDC replaces an existing MSI im-
plementation on an existing computer. In this case, the computer's software must first determine which of two codes (the old one used by the MSI implementation or the new one used by the EDC) is used by the computer's memory system.

This is easily determined by writing a test data word into memory and then examining whether the generated check bits are typical of the old or the new code. From then on the software runs only the diagnostic appropriate for the code used on that particular computer's memory system.

TABLE III. Am2960 OPERATING MODES

Operating Mode	Diagnostic Mode**		$\overline{\text { GENERATE }}$	
	$\mathbf{D M}_{\mathbf{1}}$	$\mathbf{D M}_{\mathbf{0}}$	$\mathbf{0}$	$\mathbf{1}$
Normal	0	0	Generate	Correct* *
Diagnostic Generate	0	1	Diagnostic Generate	Correct* *
Diagnostic Correct	1	0	Generate	Diagnostic Correct*
Initialize	1	1	Initialize	Initialize
Pass Thru	When PASS THRU is asserted the Operating Mode is defaulted to the Pass Thru Mode.			

[^1]
FUNCTIONAL DESCRIPTION -16-BIT DATA WORD CONFIGURATION

The 16 -bit format consists of 16 data bits, 6 check bits and is referred to as 16/22 code (see Figure 5.)
The 16 -bit configuration is shown in Figure 6.

Generate Mode

In this mode check bits will be generated that correspond to the contents of the Data Input Latch. The check bits generated are placed on the outputs $\mathrm{SC}_{0-5}\left(\mathrm{SC}_{6}\right.$ is a logical one, or high).
Check bits are generated according to a modified Hamming code. Details of the code for check bit generation are contained in Table IV. Each check bit is generated as either an XOR or XNOR of eight of the 16 data bits as indicated in the table. The XOR function results in an even parity check bit, the XNOR is an odd parity check bit.
Figure 1 shows the data flow in the Generate Mode.

Detect Mode

In this mode the device examines the contents of the Data Input Latch against the Check Bit Input Latch, and will detect all single-bit errors, all double-bit errors and some triple-bit errors. If one or more errors are detected, ERROR goes LOW. If two or more errors are detected, MULT ERROR goes LOW. Both error indicators are HIGH if there are no errors.
Also available on device outputs SC_{0-5} are the syndrome bits generated by the error detection step. The syndrome bits may be decoded to determine if a bit error was detected and, for single-bit errors, which of the data or check bits is in error. Table V gives the chart for decoding the syndrome bits generated by the 16-bit configuration (as an example, if the syndrome bits SX/S0/S1/ S2/S4/S8 were 101001 this would be decoded to indicate that there is a single-bit error at data bit 9). If no error is detected the syndrome bits will all be zeroes.
In Detect Mode, the contents of the Data Input Latch are driven directly to the inputs of the Data Output Latch without correction.

Correct Mode

In this mode, the EDC functions the same as in Detect Mode except that the correction network is allowed to correct (complement) any single-bit error of the Data Input Latch before putting it onto the inputs of the Data Output Latch. (see Figure 2.) If multiple errors are detected, the output of the correction network is unspecified. If the single-bit error is a check bit there is no automatic correction. If check bit correction is desired, this can be done by placing the device in Generate Mode to produce a correct check bit sequence for the data in the Data Input Latch.

Pass Thru Mode

In this mode, the unmodified contents of the Data Input Latch are placed on the inputs of the Data Output Latch and the contents of the Check Bit Input Latch are placed on outputs SC_{0-5}. $\overline{\text { ERROR }}$ and MULT ERROR are forced HIGH in this mode.

Diagnostic Latch

The Diagnostic Latch serves both for diagnostic uses and internal control uses. It is loaded from the DATA lines under the control of LE DIAG. Table VI shows the loading definitions for the DATA lines.

Diagnostic Generate
 Diagnostic Detect
 Diagnostic Correct

These are special diagnostic modes selected by DIAG MODE 0 0-1 where either normal check bit inputs or outputs are substituted for by check bits loaded into the Diagnostic Latch. See Table III for details. Figures 3 and 4 illustrate the flow of data during the two diagnostic modes.

Internal Control Mode

This mode is selected by CODE $I D_{0-2}$ input $001\left(\mathrm{ID}_{2}, I D_{1}, I D_{0}\right)$. When in Internal Control Mode, the EDC takes the CODE ID ${ }_{0-2}$, DIAG MODE ${ }_{0-1}$, CORRECT and PASS THRU control signals from the internal Diagnostic Latch rather than from the external input lines.

Table VI gives the format for loading the Diagnostic Latch.

Figure 1. Check Bit Generation

Uses Modified Hamming Code 16/22

- 16 data bits
- 6 check bits
- 22 bits in total

Figure 5. 16-Bit Data Format

Figure 6. 16-Bit Configuration

TABLE IV. 16-BIT MODIFIED HAMMING CODE - CHECK BIT ENCODE CHART.

Generated Check Bits	Parity	Participating Data Bits															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CX	Even (XOR)		X	X	X		X			X	X		X			X	
C0	Even (XOR)	X	X	X		X		X		X		X		X			
C1	+ Odd (XNOR)	x			X	X			X		X	X			x		X
C2	Odd (XNOR)	X	X				x	X	X				X	X	X		
C4	Even (XOR)			X	X		X	X	X							X	x
C8	Even (XOR)									X	X	X	x	$X_{\text {c }}$	X	X	X

The check bit is generated as either an XOR or XNOR of the eight data bits noted by an " X " in the table.

TABLE V. SYNDROME DECODE TO BIT-IN-ERROR.

Syndrome Bits			$\begin{aligned} & \text { S8 } \\ & \text { S4 } \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	0	0 0 1	0	0 1 1	1 1 1
0	0	0		*	C8	C4	T	C2	T	T	M
0	0	1		C1	T	T	15	T	13	7	T
0	1	0		C0	T	T	M	T	12	6	T
0	1	1		T	10	4	T	0	T	T	M
1	0	0		CX	T	T	14	T	11	5	T
1	0	1		T	9	3	T	M	T	T	M
1	1	0		T	8	2	T	1	T	T	M
1	1	1		M	T ${ }^{\text {c }}$	T	M	T	M	M	T

table VI. diagnostic latch loading -16-BIT FORMAT.

Data Bit	Internal Function
0	Diagnostic Check Bit X
1	Diagnostic Check Bit 0
2	Diagnostic Check Bit 1
3	Diagnostic Check Bit 2
4	Diagnostic Check Bit 4
5	Diagnostic Check Bit 8
6,7	Don't Care
8	CODE ID 0
9	CODE ID 1
10	CODE ID 2
11	DIAG MODE 0
12	DIAG MODE 1
13	CORRECT
14	PASS THRU
15	Don't Care

* - no errors detected

Number - the location of the single bit-in-error
T - two errors detected
M - three or more errors detected

FUNCTIONAL DESCRIPTION -
 32-BIT DATA WORD CONFIGURATION

The 32-bit format consists of 32 data bits, 7 check bits and is referred to as $32 / 39$ code (see Figure 7).
The 32-bit configuration is shown in Figure 8.
The upper EDC (Slice 0/1) handles the least significant bytes 0 and 1 - the external DATA lines 0 to 15 are connected to the same numbered inputs of the upper device. The lower EDC (Slice $2 / 3$) handles the most significant bytes 2 and 3 - the external DATA lines for bits 16 to 31 are connected to inputs DATA $_{0}$ through DATA A_{15} respectively.
The valid syndrome and check bit outputs are those of Slice $2 / 3$ as shown in the diagram. In Correct Mode these must be read into Slice $0 / 1$ via the CB inputs and are selected by the MUX as inputs to the bit-in-error decoder (see block diagram), thus requiring external buffering and output enabling of the check bit lines as shown. The $\overline{O E}$ SC signal can be used to control enabling of check bit inputs - when syndrome outputs are enabled, the external check bit inputs will be disabled.
The valid ERROR and MULT ERROR outputs are those of the Slice $2 / 3$. The ERROR and MULT ERROR outputs of Slice $0 / 1$ are unspecified. All of the latch enables and control signals must be input to both of the devices.

Generate Mode

In this mode check bits will be generated that correspond to the contents of the Data Input Latch. The check bits generated are placed on the outputs SC_{0-6} of Slice $2 / 3$.

Check bits are generated according to a modified Hamming code. Details of the code for check bit generation are contained in Table X. Check bits are generated as either an XOR or XNOR of 16 of the 32 data bits as indicated in the table. The XOR function results in an even parity check bit, the XNOR in an odd parity check bit.

Detect Mode

In this mode the device examines the contents of the Data Input Latch against the Check Bit Input Latch, and will detect all single-bit errors, all double-bit errors and some triple-bit errors. If one or more errors are detected, ERROR goes LOW. If two or more errors are detected, MULT ERROR goes LOW. Both error indicators are HIGH if there are no errors. The valid ERROR and MULT ERROR signals are those of Slice $2 / 3$ - those of Slice $0 / 1$ are undefined.
Also available on Slice $2 / 3$ outputs $S C_{0-6}$ are the syndrome bits generated by the error detection step. The syndrome bits may be decoded to determine if a bit error was detected and, for single-bit errors, which of the data or check bits is in error. Table VII gives the chart for decoding the syndrome bits generated for the 32 -bit configuration (as an example, if the syndrome bits SX/S0/S1/S2/S4/S8/S16 were 0010011 this would be decoded to indicate that there is a single-bit error at data bit 25). If no error is detected the syndrome bits will be all zeroes.
In Detect Mode, the contents of the Data Input Latch are driven directly to the inputs of the Data Output Latch without corrections.

Correct Mode

In this mode, the EDC functions the same as in Detect Mode except that the correction network is allowed to correct (complement) any single-bit error of the Data Input Latch before putting it onto the inputs of the Data Output Latch. If multiple errors are detected, the output of the correction network is unspecified. If the single-bit error is a check bit there is no automatic correction - if desired this would be done by placing the device in Generate Mode to produce a correct check bit sequence for the data in the Data Input Latch.
For data correction, both Slices $0 / 1$ and $2 / 3$ require access to the syndrome bits on Slice $2 / 3$'s outputs SC_{0-6}. Slice $2 / 3$ has access to these syndrome bits through internal data paths, but for Slice $0 / 1$ they must be read through the inputs CB_{0-6}. The device connections for this are shown in Figure 8. When in Correct Mode the SC outputs must be enabled so that they are available for reading in through the CB inputs.

Pass Thru Mode

In this mode, the unmodified contents of the Data Input Latch are placed on the inputs of the Data Output Latch and the contents of the Check Bit Input Latch are placed on outputs SC_{0-6} of Slice $2 / 3$. ERROR and MULT ERROR are forced HIGH in this mode.

TABLE VII. SYNDROME DECODE TO BIT-IN-ERROR.

Syndrome Bits				$\begin{aligned} & \mathrm{S} 16 \\ & \mathrm{~S} 8 \\ & \mathrm{~S} 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	0	0	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	1
0	0	0	0		*	C16	C8	T	C4	T	T	30
0	0	0	1		C2	T	T	27	T	5	M	T
0	0	1	0		C1	T	T	25	T	3	15	T
0	0	1	1		T	M	13	T	23	T	T	M
0	1	0	0		C0	T	T	24	T	2	M	T
0	1.	0	1		T	1	12	T	22	T	T	M
0	1	1	0		T	M	10	T	20	T	T	M
0	1	1	1		16	T	T	M	T	M	M	T
1	0	0	0		cx	T	T	M	T	M	14	T
1	0	0	1		T	M	11	T	21	T	T	M
1	0	1	0		T	M	9	T	19	T	T	31
1	0	1	1		M	T	T	29	T	7	M	T
1	1	0	0		T	M	8	T	18	T	T	M
1	1	0	1		17	T	T	28	T	6	M	T
1	1	1	0		M	T	T	26	T	4	M	T
1	1	1	1		T	0	M	T	M	T	T	M

* - no errors detected

Numbers - number of the single bit-in-error
T - two errors detected
M - three or more errors detected

Uses Modified Hamming Code 32/39

- 32 data bits
-7 check bits
-39 bits in total

Figure 7. 32-Bit Data Format

*Check Bit Latch is Forced Transparent in this
Code ID Combination for this Slice.

Figure 8. 32-Bit Configuration

TABLE VIII. KEY AC CALCULATIONS FOR THE 32-BIT CONFIGURATION

$32-\mathrm{Bit}$ Propagation Delay		Component Delay from Am2960 AC Specifications, Table C
From	To	
DATA	Check Bits Out	(DATA to SC) + (CB to SC, CODE ID 011)
DATA In	Corrected DATA Out	(DATA to SC) + (CB to SC, CODE ID 011) + (CB to DATA, CODE ID 010)
DATA	Syndromes Out	(DATA to SC) $+(\mathrm{CB}$ to SC, CODE ID 011)
DATA	$\begin{aligned} & \overline{\text { ERROR }} \text { for } \\ & 32 \text { Bits } \end{aligned}$	(DATA to SC) + (CB to ERROR, CODE ID 011)
DATA	$\overline{\text { MULT ERROR }}$ for 32 Bits	(DATA to SC) + (CB to MULT ERROR, CODE ID 011)

TABLE IX. DIAGNOSTIC LATCH LOADING -32-BIT FORMAT.

Data Bit	Internal Function
0	Diagnostic Check Bit X
1	Diagnostic Check Bit 0
2	Diagnostic Check Bit 1
3	Diagnostic Check Bit 2
4	Diagnostic Check Bit 4
5	Diagnostic Check Bit 8
6	Diagnostic Check Bit 16
7	Don't Care
8	Slice 0/1-CODE ID 0
9	Slice 0/1-CODE ID 1
10	Slice 0/1-CODE ID 2
11	Slice 0/1 - DIAG MODE 0
12	Slice 0/1 - DIAG MODE 1
13	Slice 0/1 - CORRECT
14	Slice 0/1 - PASS THRU
15	Don't Care
16-23	Don't Care
24	Slice 2/3-CODE ID 0
25	Slice 2/3-CODE ID 1
26	Slice 2/3-CODE ID 2
27	Slice 2/3-DIAG MODE 0
28	Slice $2 / 3$ - DIAG MODE 1
29	Slice $2 / 3$ - CORRECT
30	Slice 2/3-PASS THRU
31	Don't Care

TABLE X. 32-BIT MODIFIED HAMMING CODE - CHECK BIT ENCODE CHART.

Generated Check Bits	Parity	Participating Data Bits															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CX	Even (XOR)	X				X		X	X	X	X		X			X	
C0	Even (XOR)	X	X	X		X		X		X		x		X			
C1	Odd (XNOR)	X			X	X			x		X	X			x		x
C2	Odd (XNOR)	X	X				X	x	x				X	X	X		
C4	Even (XOR)			X	X	X	X	X	x							X	x
C8	Even (XOR)									X	X	X	x	X	X	X	X
C16	Even (XOR)	X	X	X	x	X	X	X	X								

Generated Check Bits	Parity	Participating Data Bits															
		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
CX	Even (XOR)		x	X	X		X					X		X	X		X
CO	Even (XOR)	x	X	X		x		X		X		X		X			
C1	Odd (XNOR)	X			X	X			X		X	X			X		X
C2	Odd (XNOR)	X	X				X	x	x				X	X	X		
C4	Even (XOR)			X	X	X	X	X	X							X	x
C8	Even (XOR)									X	x	X	x	x	x	X	x
C16	Even (XOR)				\checkmark					x	x	X	X	X	X	X	x

The check bit is generated as either an XOR or XNOR of the sixteen data bits noted by an " X " in the table.

FUNCTIONAL DESCRIPTION -

64-BIT DATA WORD CONFIGURATION

The 64-bit format consists of 64 data bits, 8 check bits and is referred to as $64 / 72$ code (see Figure 9.).
The configuration to process 64 -bit format is shown in Figure 6. In this configuration a portion of the syndrome generation and error detection is implemented externally of the EDCs in MSI. For error correction the syndrome bits generated must be read back into all four EDCs through the CB inputs. This necessitates the check bit buffering shown in the connection diagram of Figure 10. The $\overline{\mathrm{OE}} \mathrm{SC}$ signal can control the check bit enabling - when syndrome bit outputs are enabled the external check bit lines will be disabled so that the syndrome bits may be read onto the CB inputs.
The error detection signals for the 64-bit configuration differ from the 16 and 32 -bit configurations. The ERROR signal functions the same: it is LOW if one or more errors are detected, and HIGH if no errors are detected. The DOUBLE ERROR signal is HIGH if and only if a double-bit error is detected - it is LOW otherwise. All of the MULT ERROR outputs of the four devices are valid. MULT $\overline{E R R O R}$ is LOW for all three ERROR cases and some DOUBLE ERROR combinations. (See TOME definition in Functional Equations section.) It is HIGH if either zero or one errors are detected.
This is a different meaning for MULT ERROR than in other configurations.

Generate Mode

In this mode check bits will be generated that correspond to the contents of the Data Input Latch. The check bits generated appear at the outputs of the XOR gates as indicated in Figure 10.
Check bits are generated according to a modified Hamming code. Details of the code for check bit generation are contained in Table XII. Check bits are generated as either an XOR or XNOR of 32 of the 64 bits as indicated in the table. The XOR function results in an even parity check bit, the XNOR in an odd parity check bit.

Detect Mode

In this mode the device examines the contents of the Data Input Latch against the Check Bit Input Latch, and will detect all single-bit errors, all double-bit errors and some triple-bit errors. If one or more errors are detected, ERROR goes LOW. If exactly two errors are detected, DOUBLE ERROR goes HIGH. If three or more errors are detected, $\overline{M U L T E R R O R}$ goes LOW - the MULT ERROR output of any of the four EDCs may be used.
Available as XOR gate outputs are the generated syndrome bits (see Figure 10). The syndrome bits may be decoded to determine if a bit error was detected and, for single-bit errors, which of the data or check bits is in error. Table XIII gives the chart for encoding the syndrome bits generated for the 64-bit configuration (as an example, if the syndrome bits $\mathrm{SX} / \mathrm{S} 1 / \mathrm{S} 2 / \mathrm{S} 4 / \mathrm{S} 8 /$

S16/S32 were 00100101 this would be decoded to indicate that there is a single-bit error at data bit 41). If'no error is detected the syndrome bits will all be zeroes.
In Detect Mode the contents of the Data Input Latch are driven directly to the inputs of the Data Output Latch without corrections.

Correct Mode

In this mode, the EDC functions the same as in Detect Mode except that the correction network is allowed to correct (complement) any single-bit error of the Data Input Latch before putting it onto the inputs of the Data Output Latch. If multiple errors are detected, the output of the correction network is unspecified. If the single bit error is a check bit there is no automatic correction. Check bit correction can be done by placing the device in generate mode to produce a correct check bit sequence for the data in the Data Input Latch.
To perform the correction step, all four slices require access to the syndrome bits which are generated externally of the devices. This access is provided by reading the syndrome bits in through the CB inputs where they are selected as inputs to the bit-inerror decoder by the multiplexer (see block diagram). The device connections for this are shown in Figure 10. When in Correct Mode the SC outputs must be enabled so that the syndrome bits are available at the CB inputs.

Pass Thru Mode

In this mode, the unmodified contents of the Data Input Latch are placed on the inputs of the Data Output Latch, and the contentsof the Check Bit Input Latch are passed through the external XOR network and appear inverted at the XOR gate outputs labeled CX to C32 (see Figure 10).

Diagnostic Latch

The Diagnostic Latch serves both for diagnostic uses and internal control uses. It is loaded from the DATA lines under the control of LE DIAG. Table XIV shows the loading definitions for the DATA lines.

Diagnostic Generate

Diagnostic Detect
Diagnostic Correct
These are special diagnostic modes selected by DIAG $M_{O D E}{ }_{0-1}$ where either normal check bit inputs or outputs are substituted for by check bits from the Diagnostic Latch. See Tabte II for details.

Internal Control Mode

This mode is selected by CODE $I D_{0-2}$, input $001\left(\mathrm{ID}_{2}, I \mathrm{D}_{1}, I \mathrm{ID}_{0}\right)$. When in Internal Control Mode the EDC takes the CODE I_{0-2}, DIAG MODE ${ }_{0-1}$, CORRECT and PASS THRU signals from the internal Diagnostic Latch rather than from the external control lines. Table XIV gives format for loading the Diagnostic Latch.

Figure 9. 64-Bit Data Format

TABLE XI. KEY AC CALCULATIONS FOR THE 64-BIT CONFIGURATION

64-Bit Propagation Delay		Component Delays from Am2960 AC Specifications, Table C (plus MSI)
From	To	
DATA	Check Bits Out	(DATA to SC) + (XOR Delay)
DATA In	Corrected DATA Out	(DATA to SC) + (XOR Delay) $+($ Buffer Delay $)+$ (CB to DATA, CODE ID 1xx)
DATA	Syndromes	(DATA to SC) + (XOR Delay)
DATA	$\overline{\text { ERROR }}$ for 64 Bits	$($ DATA to SC) $+($ (XOR Delay $)+($ NOR Delay $)$
DATA	$\overline{\text { MULT ERROR }}$ for 64 Bits	(DATA to SC) $+($ XOR Delay $)+($ Buffer Delay $)+$ (CB to MULT ERROR, CODE ID 1xx)
DATA	DOUBLE ERROR for 64 Bits	(DATA to SC) $+($ XOR Delay $)+($ XOR/NOR Delay $)$

TABLE XII. 64-BIT MODIFIED HAMMING CODE - CHECK BIT ENCODE

Generated Check Bits	Parity	Participating Data Bits															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\begin{aligned} & C X \\ & C O \end{aligned}$	Even (XOR) Even (XOR)	X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	X	X	X	X			x	x	x	X		X	
$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	Odd (XNOR) Odd (XNOR)	$\begin{aligned} & x \\ & x \end{aligned}$	x		x	x	x	x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		X	x	X	X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		x
$\begin{aligned} & \mathrm{C} 4 \\ & \mathrm{C} 8 \end{aligned}$	Even (XOR) Even (XOR)			X	X	X	X	X	x	X	X	X	X	X	X	X	X X
$\begin{aligned} & \text { C16 } \\ & \text { C32 } \end{aligned}$	Even (XOR) Even (XOR)	X X	X \times	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	X X								

Generated Check Bits	Parity	Participating Data Bits															
		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\begin{aligned} & C X \\ & C O \end{aligned}$	Even (XOR) Even (XOR)	x	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	x	x	x	X		$\begin{aligned} & x \\ & x \end{aligned}$	x	x	X	X		X	
$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	Odd (XNOR) Odd (XNOR)	x \times \times	x		X	X	x	x	$\begin{aligned} & x \\ & x \end{aligned}$		X	X	X	X	X X		X
$\begin{aligned} & \mathrm{C4} \\ & \mathrm{C} 8 \end{aligned}$	Even (XOR) Even (XOR)			X	x	X	X	x	X	X	X	X	x	X	X	X X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$
$\begin{aligned} & \mathrm{C} 16 \\ & \mathrm{C} 32 \end{aligned}$	Even (XOR) Even (XOR)									X X	X X	X \times \times	X	X X X	X X	X X X	X X

Generated Check Bits	Parity	Participating Data Bits															
		32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
$\begin{aligned} & \mathrm{CX} \\ & \mathrm{CO} \end{aligned}$	Even (XOR) Even (XOR)	$\begin{aligned} & x \\ & x \end{aligned}$	X	X		$\begin{aligned} & x \\ & x \end{aligned}$		$\begin{aligned} & x \\ & x \end{aligned}$	x	X		$\begin{aligned} & x \\ & x \end{aligned}$		$\begin{aligned} & x \\ & x \end{aligned}$	X		X
$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	Odd (XNOR) Odd (XNOR)	$\begin{aligned} & x \\ & x \end{aligned}$	x		x	X	X	x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		X	X	X	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$		X
$\begin{aligned} & \mathrm{C} 4 \\ & \mathrm{C} 8 \end{aligned}$	Even (XOR) Even (XOR)		:	X	x	x	X	X	x	X	X	X	X	X	X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	X X
$\begin{aligned} & \text { C16 } \\ & \text { C32 } \end{aligned}$	Even (XOR) Even (XOR)	X	X	X	X	X	X	X	x	X	X	X	X	X	X	X	X

Generated Check Bits	Parity	Participating Data Bits															
		48	49	50	51	52	53	54	55	58	57	58	59	60	61	62	63
$\begin{aligned} & c X \\ & c 0 \end{aligned}$	Even (XOR) Even (XOR)	$\begin{aligned} & x \\ & x \end{aligned}$	X	x		$\begin{aligned} & x \\ & x \end{aligned}$		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	X	X		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		$\begin{aligned} & x \\ & x \end{aligned}$	X		X
$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	Odd (XNOR) Odd (XNOR)	$\begin{aligned} & x \\ & x \end{aligned}$	x		x	X	x	x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		X	X	X	X	$\begin{aligned} & x \\ & x \end{aligned}$		X
$\begin{aligned} & \mathrm{C} 4 \\ & \mathrm{C} 8 \end{aligned}$	Even (XOR) Even (XOR)			X	\times	X	x	X	x	X	X	X	X	X	X		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$
$\begin{aligned} & \mathrm{C} 16 \\ & \mathrm{C} 32 \end{aligned}$	Even (XOR) Even (XOR)	x	X	X	X	X	X	X	X	X	X	X	x	x	X	X	x

The check bit is generated as either an XOR or XNOR of the 32 data bits noted by an " X " in the table.

TABLE XIII. SYNDROME DECODE TO BIT-IN-ERROR.

Syndrome Bits				$\begin{gathered} \mathbf{S 3 2} \\ \mathrm{S} 16 \\ \mathrm{~S} 8 \\ \mathrm{~S} 4 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 1 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 1 1 1
0	0	0	0		*	C32	C16	T	C8	T	T	M	C4	T	T	M	T	46	62	T
0	0	0	1		C2	T	T	M	T	43	59	T	T	53	37	T	M	T	T	M
0	0	1	0		C1	T	T	M	T	41	57	T	T	51	35	T	15	T	T	31
0	0	1	1		T	M	M	T	13	T	T	29	23	T	T	7	T	M	M	T
0	1	0	0		CO	T	T	M	T	40	56	T	T	50	34	T	M	T	T	M
0	1	0	1		T	49	33	T	12	T	T	28	22	T	T	6	T	M	M	T
0	1	1	0		T	M	M	T	10	T	T	26	20	T	T	4	T	M	M	T
0	1	1	1		16	T	T	0	T	M	M	T	T	M	M	T	M	T	T	M
1	0	0	0		cx	T	T	M	T	M	M	T	T	M	M	T	14	T	T	30
1	0	0	1		T	M	M	T	11	T	T	27	21	T	T	5	T	M	M	T
1	0	1	0		T	M	M	T	9	T	T	25	19	T	T	3	T	47	63	T
1	0	1	1		M	T	T	M	T	45	61	T	T	55	39	T	M	T	T	M
1	1	0	0		T	M	M	T	8	T	T	24	18	T	T	2	T	M	M	T
1	1	0	1		17	T	T	1	T	44	60	T	T	54	38	T	M	T	T	M
1	1	1	0		M	T	T	M	T	42	58	T	T	52	36	T	M	T	T	M
1	1	1	1		T	48	32	T	M	T	T	M	M	T	T	M	T	M	M	T

* - no errors detected

Number - the number of the single bit-in-error

T- two errors detected
M - more than two errors detected

TABLE XIV. DIAGNOSTIC LATCH LOADING - 64-BIT FORMAT.

Data Bit	Internal Function
0	Diagnostic Check Bit X
1	Diagnostic Check Bit 0
2	Diagnostic Check Bit 1
3	Diagnostic Check Bit 2
4	Diagnostic Check Bit 4
5	Diagnostic Check Bit 8
6,7	Don't Care
8	Slice $0 / 1-$ CODE ID 0
9	Slice $0 / 1-$ CODE ID 1
10	Slice $0 / 1-$ CODE ID 2
11	Slice $0 / 1-$ DIAG MODE 0
12	Slice $0 / 1-$ DIAG MODE 1
13	Slice $0 / 1-$ CORRECT
14	Slice $0 / 1-$ PASS THRU
15	Don't Care
$16-23$	Don't Care
24	Slice $2 / 3-$ CODE ID 0
25	Slice $2 / 3-$ CODE ID 1
26	Slice $2 / 3-$ CODE ID 2
27	Slice $2 / 3-$ DIAG MODE 0
28	Slice $2 / 3-$ DIAG MODE 1
29	Slice $2 / 3-$ CORRECT
30	Slice $2 / 3-$ PASS THRU

Data Bit	Internal Function
31	Don't Care
32-37	Don't Care
38	Diagnostic Check Bit 16
39	Don't Care
40	Slice 4/5-CODE ID 0
41	Slice 4/5-CODE ID 1
42	Slice 4/5-CODE ID 2
43	Slice 4/5- DIAG MODE 0
44	Slice 4/5- DIAG MODE 1
45	Slice 4/5-CORRECT
46	Slice 4/5-PASS THRU
47	Don't Care
48-54	Don't Care
55	Diagnostic Check Bit 32
56	Slice 6/7-CODE ID 0
57	Slice 6/7-CODE ID 1
58	Slice 6/7-CODE ID 2
59	Slice 6/7- DIAG MODE 0
60	Slice 6/7- DIAG MODE 1
61.	Slice 6/7-CORRECT
62	Slice 6/7-PASS THRU
63	Don't Care

MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Case) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for high Output State	-0.5 V to V_{CC} max.
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

P/N	Range		Temperature	VCC
Am2960DC, XC	COM'L	$T_{A}=0$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%$	$(\mathrm{MIN}=4.75 \mathrm{~V}, \mathrm{MAX}=5.25 \mathrm{~V})$
Am2960DM, FM, XM	MIL	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MIN}=4.50 \mathrm{~V}, \mathrm{MAX}=5.50 \mathrm{~V})$

DC CHARACTERISTICS

Parameters	Description	Test Conditions (Note 1)				Min	Typ (Note 2)	Max	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-0.8 \mathrm{~mA}$		COM'L	2.7			Volts
					MIL	2.4			
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}^{\mathrm{OL}}=8 \mathrm{~mA}$					0.5	Volts
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 7)				2.0	-		Volts
V_{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 7)						0.8	Volts
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN, $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$						-1.5	Volts
ILL	Input LOW Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\mathbb{N}}=0.5 V \end{aligned}$	DATA $_{0-15}$					-410	$\mu \mathrm{A}$
			All Other Inputs					-360	
$I_{\text {IH }}$	Input HIGH Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \end{aligned}$	DATA $_{0-15}$					70	$\mu \mathrm{A}$
			All Other Inputs				.	50	
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathbb{I}}=5.5 \mathrm{~V}$						1.0	mA
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & \mathrm{I}_{\mathrm{OZL}} \end{aligned}$	Off State (High Impedance) Output Current	$V_{C C}$ MAX	DATA $_{0-15}$	$V_{0}=2.4$				70	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.5$				-410	
			SC_{0-6}		2.4			50	
					0.5			-50	
Ios	Output Short Circuit Current (Note 3)	$V_{C C}=V_{C C} M A X+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-25		-85	mA
${ }^{\prime} \mathrm{Cc}$	Power Supply Current (Note 6)	$V_{C C}=\mathrm{MAX}$	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$				275	390	mA
			${ }^{\prime} \mathrm{T}_{\mathbf{A}}=0$	+7				400	
			- $\mathrm{T}_{\mathrm{A}}=$	$0^{\circ} \mathrm{C}$				365	
			$\mathrm{T}_{\mathrm{C}}=$	5 to	$125^{\circ} \mathrm{C}$			400	
			$\mathrm{T}_{\mathrm{C}}=$	$25^{\circ} \mathrm{C}$				345	

[^2]
Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the complexity and power levels of the part. The following notes may be useful.

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to V_{CC} changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable
may allow the ground pin at the device to rise by 100 's of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach $V_{I L}$ or V_{IH} until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant$ 0.4 V and $\mathrm{V}_{1 H} \leqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

1. Am2960 Guaranteed Commercial Range Performance

The tables below specify the guaranteed performance of the Am2960 over the commercial operating range of 0 to $+70^{\circ} \mathrm{C}$, with
V_{CC} from 4.75 V to 5.25 V . All data are in ns , with inputs switching between OV and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have maximum DC load.
This data applies to the following part numbers: Am2960DC, XC.
A. Combinational Propagation Delays
$C_{L}=50 \mathrm{pF}$

To Output From Input	$\mathbf{S C}_{0-6}$	DATA $^{\mathbf{0 1 5}}$	$\overline{\text { ERROR }}$	$\overline{\text { MULT ERROR }}$
DATA ${ }_{0-15}$	32	65*	32	50
$\begin{aligned} & C B_{0 j-6} \\ & \left(C O D E I_{2-0} 000,011\right) \end{aligned}$	28	56	29	47
$\begin{aligned} & \mathrm{CB}_{0-6} \\ & \left(\mathrm{CODE} \mathrm{ID}_{2-0} 010,100,\right. \\ & 101,110,111) \end{aligned}$	28	45	29	34
GENERATE	35	63	36	55
CORRECT (Not Internal Control Mode)	-	45	-	-
DIAG MODE (Not Internal Control Mode)	50	78	59	75
PASS THRU (Not Internal Control Mode)	36	44	29	46
CODE ID_{2-0}	61	90	60	80
LE IN (From latched to transparent)	39	72*	39	59
LE OUT (From latched to transparent)	-	31	-	-
LE DIAG (From latched to transparent; Not Internal Control Mode)	45	78	45	65
Internal Control Mode: LE DIAG (From latched to transparent)	67	96	66	86
Internal Control Mode: DATA $_{0-15}$ (Via Diagnostic Latch)	67	96	66	86

*Data $\ln ($ or $L E \ln$) to Correct Data Out measurement requires timing as shown in Figure D opposite.

B. Set-up and Hold Times Relative to Latch Enables

From Input	To (Latching Up Data)	Set-up Time	Hold Time
DATA $_{0-15}$	LE IN	6	7
CB_{0-6}	LE IN	5	6
DATA $_{0-15}$	LE OUT	44	5
$\begin{aligned} & \mathrm{CB}_{0-6} \\ & (C O D E \text { ID } \\ & 000,011) \end{aligned}$	LE OUT	35	0
$\begin{aligned} & \mathrm{CB}_{0-6} \\ & (C O D E \text { ID 010, } \\ & 100,101,110,111) \end{aligned}$	LE OUT	27	0
GENERATE	LE OUT	42	0
CORRECT	LE OUT	26	1
DIAG MODE	LE OUT	69	0
PASS THRU	LE OUT	26	0
CODE ID_{2-0}	LE OUT	81	0
LE IN	LE OUT	51	5
DATA $_{0-15}$	LE DIAG	6	8

C. Output Enable/Disable Times

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Input	Output	Enable	Disable
$\overline{\mathrm{OE}}$ BYTE 0,	DATA $_{0-15}$	30	30
$\overline{\mathrm{OE}}$ BYTE 1	DC_{0-6}	30	30

D. Minimum Pulse Widths

LE IN, LE OUT, LE DIAG
15

Figure D.

1. Am2960 Guaranteed Military

Range Performance

The tables below specify the guaranteed performance of the Am2960 over the military operating range of -55 to $+125^{\circ} \mathrm{C}$ case temperature, with V_{CC} from 4.5 V to 5.5 V . All data are in
ns, with inputs switching between OV and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have maximum DC load.
This data applies to the following part numbers: Am2960DM, FM, XM.
A. Combinational Propagation Delays

[^3]
B. Set-up and Hold Times Relative to Latch Enables

From Input	To (Latching Up Data)	Set-up Time	Hold Time
DATA $_{0-15}$	LE IN	7	7
CB_{0-6}	LE IN	5	7
DATA $_{0-15}$	LE OUT	50	5
CB_{0-6} (CODE ID 000, 011)	LE OUT	38	0
CB_{0-6} (CODE ID 010, 100, 101, 110, 111)	LE OUT	30	0
$\overline{\text { GENERATE }}$	le OUT	46	0
CORRECT	LE OUT	28	1
DIAG MODE	LE OUT	84	0
PASS THRU	LE OUT	30	0
CODE ID_{2-0}	LE OUT	89	0
LE IN	LE OUT	59	5
DATA $_{0-15}$	LE DIAG	7	9

C. Output Enable/Disable Times

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Input	Output	Enable	Disable
$\overline{\mathrm{OE}}$ BYTE 0	DATA $_{0-15}$	35	35
$\overline{\mathrm{OE}}$ BYTE 1			
$\overline{\mathrm{OE} ~ S C}$	SC_{0-6}	35	35

D. Minimum Pulse Widths

LE IN, LE OUT, LE DIAG	15

Figure D.

Am2960-1 Guaranteed Commercial Range Performance
The tables below specify the guaranteed performance of the Am2960-1 over the commercial operating range of 0 to $+70^{\circ} \mathrm{C}$, with V_{CC} from 4.75 to 5.25 V . All data are in ns, with inputs
switching between 0 and 3 V at V / ns and measurements made at 1.5 V . All outputs have maximum DC load.
This data applies to the following part numbers: Am2960-1DC, XC.
A. Combinational Propagation Delays $C_{L}=50 \mathrm{pF}$

To Output From Input	SC_{0-6}	DATA $_{0-15}$	ERROR	$\overline{M U L T ~ E R R O R ~}$
DATA ${ }_{0-15}$	28	52	25	50
$\begin{aligned} & \mathrm{CB}_{0-6} \\ & \left(\mathrm{CODE} \mathrm{ID}_{2-0} 000,011\right) \end{aligned}$	23	50	23	47
$\begin{aligned} & \mathrm{CB}_{0-6} \\ & \left(\mathrm{CODE} \mathrm{ID}_{2-0} 010,100,\right. \\ & 101,110,111) \end{aligned}$	28	34	29	$\begin{gathered} 34 \\ (100,101,110,111) \end{gathered}$
GENERATE	35	63	36	55
CORRECT (Not Internal Control Mode)	-	45	-	-
DIAG MODE (Not Internal Control Mode)	50	78	59	75
PASS THRU (Not Internal Control Mode)	36	44	29	46
CODE ID_{2-0}	61	90	60	80
LE IN (From latched to transparent)	39	72*	39	59
LE OUT (From latched to transparent)	-	31	-	-
LE DIAG (From latched to transparent; Not Internal Control Mode)	45	78	45	65
Internal Control Mode: LE DIAG (From latched to transparent)	67	96	66	86
Internal Code Mode: DATA $_{0-15}$ (Via Diagnostic Latch)	67	96	66	86

*Data In (or LE In) to Correct Data Out measurement requires timing as shown in Figure D opposite.

B. Set-up and Hold Times Relative to Latch Enables

From Input	To (Latching Up Data)	Set-up Time	Hold Time
DATA $_{0-15}$	LE IN	6	7
CB $_{0-6}$	LE IN	5	6
DATA $_{0-15}$	LE OUT	34	5
CB $_{0-6}$ (CODE ID 000, 011)	LE OUT	35	0
CB $_{0-6}$ (CODE ID 010, $100,101,110,111)$	LE OUT	27	0
GENERATE	LE OUT	42	0
CORRECT	LE OUT	26	1
DIAG MODE	LE OUT	69	0
PASS THRU	LE OUT	26	0
CODE ID $2-0$	LE OUT	81	0
LE IN	LE OUT	51	5
DATA 0_{0-15}	LE DIAG	6	8

C. Output Enable/Disable Times

Output disable tests performed with $C_{L}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Input	Output	Enable	Disable
$\overline{\mathrm{OE}}$ BYTE 0	DATA $_{0-15}$	30	30
$\overline{\mathrm{OE}}$ BYTE 1			
$\overline{\mathrm{OE} ~ S C}$	SC_{0-6}	30	30

D. Minimum Pulse Widths

LE IN, LE OUT, LE DIAG	15

Figure D .

Am2960A Guaranteed Commercial Range Performance

The tables below specify the guaranteed performance of the Am2960A over the commercial operating range of 0 to $+70^{\circ} \mathrm{C}$, with V_{CC} from 4.75 to 5.25 V . All data are in ns, with inputs
switching between 0 and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have maximum DC load.
This data applies to the following part numbers: Am2960ADC, XC.
A. Combinational Propagation Delays
$C_{L}=50 \mathrm{pF}$

To Output From Input	$\mathbf{S C}_{0-6}$	DATA ${ }_{0-15}$	ERROR	MULT ERROR
DATA $_{0-15}$				
CB_{0-6} (CODE ID ${ }_{2-0} 000,011$)				
CB_{0-6} (CODE ID ${ }_{2-0} 010,100$, 101, 110, 111)				
GENERATE				
CORRECT (Not Internal Control Mode)				
DIAG MODE (Not Internal Control Mode)				
PASS THRU (Not Internal Control Mode)				
CODE ID_{2-0}				
LE IN (From latched to transparent)				
LE OUT (From latched to transparent)				
LE DIAG (From latched to transparent; Not Internal Control Mode)	,			
Internal Control Mode: LE DIAG (From latched to transparent)				
Internal Control Mode: DATA $_{0-15}$ (Via Diagnostic Latch)			\cdots	

*Data $\ln ($ or $L E \ln$) to Correct Data Out measurement requires timing as shown in Figure D opposite.

Figure \mathbf{D}.

Am2960A Guaranteed Military Range Performance

The tables below specify the guaranteed performance of the Am2960A over the military operating range of -55 to $+125^{\circ} \mathrm{C}$ case temperature, with V_{CC} from 4.5 to 5.5 V . All data are in ns,
with inputs switching between 0 and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have the maximum DC load.

This data applies to the following part numbers: Am2960ADM, FM, XM.
A. Combinational Propagation Delays
$C_{L}=50 \mathrm{pF}$

To Output From Input	$\mathbf{S C}_{0-6}$	DATA ${ }_{\mathbf{0 - 1 5}}$	$\overline{\text { ERROR }}$	$\overline{\text { MULT ERROR }}$
DATA $_{0-15}$				
$\left.\begin{array}{l} \mathrm{CB}_{0-6} \\ (\mathrm{CODE} \mathrm{ID} 2-0 \end{array} 000,011\right)$,
$\begin{aligned} & \mathrm{CB}_{0-6} \\ & \left(\mathrm{CODE} \mathrm{ID}_{2-0} 010,100,\right. \\ & 101,110,111) \end{aligned}$				
GENERATE				
CORRECT (Not Internal Control Mode)			-	
DIAG MODE (Not Internal Control Mode)				
PASS THRU (Not Internal Control Mode)				
CODE ID_{2-0}				
LE IN (From latched to transparent)				
LE OUT (From latched to transparent)				
LE DIAG (From latched to transparent; Not Internal Control Mode)				
Internal Control Mode: LE DIAG (From latched to transparent)				
Internal Control Mode: DATA $_{0-15}$ (Via Diagnostic Latch)		\cdots		

*Data $\ln ($ (or LE \ln) to Correct Data Out measurement requires timing as shown in Figure D opposite.

B. Set-up and Hold Times Relative to Latch Enables

From Input	To (Latching Up Data)	Set-up Time	Hold Time
DATA $_{0-15}$	LE IN		
CB_{0-6}	LE IN		
DATA $_{0-15}$	LE OUT		
$\begin{aligned} & \mathrm{CB}_{0-6} \\ & (\mathrm{CODE} \text { ID } \\ & 000,011) \end{aligned}$	LE OUT		
$\mathrm{CB}_{0.6}$ (CODE ID 010, 100, 101, 110, 111)	LE OUT		
$\overline{\text { GENERATE }}$	le out		
CORRECT	LE OUT		
DIAG MODE	LE OUT		
PASS THRU	LE OUT		
CODE ID ${ }_{2-0}$	LE OUT		
LEIN	LE OUT		
DATA $_{0-15}$	LE DIAG		

C. Output Enable/Disable Times

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Input	Output	Enable	Disable
$\overline{\mathrm{OE}}$ BYTE 0.	DATA $_{0-15}$		
$\overline{\mathrm{OE}}$ BYTE 1			
$\overline{\mathrm{OE} ~ S C}$	SC_{0-6}		

D. Minimum Pulse Widths

LE IN, LE OUT, LE DIAG

Figure D.

Am2960/60-1/60A

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am2960 Order Number (Note 3)	Package Type Order Number	Operating Range (Note 1)	Screening Level (Note 2)
AM2960DC	D-48	C	C-1
AM2960DC-B	D-48	C	B-2 (Note 4)
AM2960DM	D-48	M	C-3
AM2960DM-B	D-48	M	B-3
AM2960FM	F-48	M	C-3
AM2960FM-B	F-48	M	B-3
AM2960XC	Dice	C	Visual inspection
AM2960XM	Dice	M	to MIL-STD-883
Method 2010B.			

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

TEST OUTPUT LOAD CONFIGURATION FOR Am2960

Figure 11. Three-State Outputs

Figure 12. Normal Outputs

Notes: 1. $C_{L}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. S_{1}, S_{2}, S_{3} are closed during function test and all A.C. tests, except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open for $t_{P Z H}$ test.
S_{1} and S_{2} are closed while S_{3} is open for $t_{P Z L}$ test.
4. $R_{2}=1 \mathrm{~K}$ for three-state output.
R_{2} is determined by the I_{OH} at $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ for non-three-state outputs.
5. R_{1} is determined by I_{OL} (MIL) with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ minus the current to ground through R_{2}.
6. $C_{L}=5.0 \mathrm{pF}$ for output disable tests.

TEST OUTPUT LOADS

Pin \#	Pin Label	Test Circuit	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
-	$\mathrm{D}_{0}-\mathrm{D}_{15}$	Fig. 11	430Ω	$1 \mathrm{k} \Omega$
$24-30$	$\mathrm{SC}_{0}-\mathrm{SC}_{6}$	Fig. 11	430Ω	$1 \mathrm{k} \Omega$
32	$\overline{\text { ERROR }}$	Fig. 12	470Ω	$3 \mathrm{k} \Omega$
33	$\overline{\text { MULTERROR }}$	Fig. 12	470Ω	$3 \mathrm{k} \Omega$

APPLICATIONS

Byte Write

Byte operations are increasingly common for 16 and 32 -bit processors. These complicate memory operations because check bits are generated for a complete 16 or 32 or 64-bit memory word, not for a single byte.

To write a byte into memory with EDC requires the following steps:

- Latch the byte into the Am2961/62 bus buffers (Figure 13)
- Read the complete data word from memory (Figure 13)
- Correct the complete data word if necessary (Figure 13)
- Insert the byte to be written into the data word (Figure 14)
- Generate new check bits for the entire data word (Figure 14)
- Store the data word back into memory (Figure 14)
(In fact these steps must be taken for any piece of data being written into memory that is not as wide as a full memory word).
The Am2960 EDC is designed with the intent of keeping byte operations simple in EDC systems. The EDC has separate output enables for each byte in the Data Output Latch. As shown in figures 13 and 14, this allows the data word to be read from memory, the new byte to be inserted among the old, and new check bits to be generated using less time and less hardware than if separate byte enables were not available.

Figure 13. Byte Write, Phase 1: Read Out the Old Word and Correct

Figure 14. Byte Write, Phase 2: Insert the New Byte, Generate Checks and Write Into Memory

Diagnostics

EDC is used to boost the reliability of the overall system. It is necessary to also be able to check the operation of the EDC itself. For this reason the EDC has an internal control mode, a diagnostic latch, and two diagnostic modes.

To check that the EDC is functioning properly, the processor can put the EDC under software control by setting CODE ID D_{2-0} to 001. This puts the EDC into Internal Control Mode. In Internal Control Mode the EDC is controlled by the contents of the Diagnostic Latch which is loaded from the DATA inputs under processor control.

The EDC is set into CORRECT Mode. The processor loads in a known set of check bits into the Diagnostic Latch, a known set of data bits into the Data In Latch, and forces data errors. The output of the EDC (syndromes, error flags, corrected data) is then compared against the expected responses. By exercising the EDC with a string of data/check combinations and comparing the output against the expected responses, the EDC can be fully checked out.

Eight Bit Data Word

Eight bit MOS microprocessors can use EDC too. Only five check bits are required. The EDC configuration for eight bits is shown in Figure 15. It operates as does the normal 16 -bit configuration with the upper byte fixed at 0 .
Check bit overhead for 8 -bit data words can be reduced two ways. See the sections "Single Error Correction Only" and "Reducing Check Bit Overhead."

Figure 15. 8-Bit Configuration

Other Word Widths

EDC on data words other than $8,16,32$, of 64 bits can be accomplished with the Am2960. In most cases the extra data bits can be forced to a constant, and EDC will procede as normal. For example a 24 -bit data word is shown in Figure 16.

Single Error Correction Only

The EDC normally corrects all single bit errors and detects all double bit and some triple bit errors. To save one check bit per word the ability to detect double bit errors can be sacrificed single errors are still detected and corrected.

Data Bits	Check Bits Required	
	Single Error Correction Only	Single Error Correct \& Double Error Detect
	4	5
16	5	6
32	6	7
64	7	8

Figure 16. 24-Bit Configuration

Figure 17. 8-Bit Single Error Correction Only

Figure 18. 16-Bit Single Error Correction Only

*The Code ID Combination for this Slice Forces the Check Bit Latch Transparent.

Figure 19. 32-Bit Single Correct Only

Figures $17,18,19,20$ show single error correction only configurations for $8,16,32$, and 64-bit data words respectively.

Check Bit Correction

The EDC detects single bit errors whether the error is a data bit or a check bit. Data bit errors are automatically corrected by the EDC. To generate corrected check bits once a single check bit error is detected, the EDC need only be switched to GENERATE mode (data in the DATA INPUT LATCH is valid).
The syndromes generated by the EDC may be decoded to determine whether the single bit error is a check bit.
In many memory systems, a check bit error will be ignored on the memory read and corrected during a periodic "scrubbing" of memory (see section in System Design Considerations).

Multiple Errors

The bit-in-error decode logic uses syndrome bits S0 through S32 to correct errors, SX is only used in developing the multiple error signal. This means that some multiple errors will cause a data bit to be inverted.

For example, in the 16 -bit mode if data bits 8 and 13 are in error the syndrome 111100 (SX, S0, S1, S2, S4, S8) is produced. This is flagged a double error by the error detection logic, but the bit-in-error decoder only receives syndrome 11100 (S0, S1, S2, S4, S8) which it decodes as a single error in data bit 0 and inverts that bit. If it is desired to inhibit this inversion, the multiple error output may be connected to the correct input as in Figure 21. This will inhibit correction when a multiple error occurs. Extra time delay may be introduced in the data to correct data path when this is done.

Notes: 1. In Pass Thru Mode the Contents of the Check Latch Appear on the XOR Outputs Inverted.
2. In Diagnostic Generate Mode the Contents of the Diagnostic Latch appear on the XOR Outputs Inverted.

Figure 20. 64-Bit Single Correct Only

Figure 21. Inhibition of Data Modification

SYSTEM DESIGN CONSIDERATIONS

High Performance Parallel Operation

For maximum memory system performance the EDC should be used in the Check-Only configuration shown in Figure 22. With this configuration the memory system operates as fast with EDC as it would without.

On reads from memory, data is read out from the RAMs directly to the data bus (same as in a non-EDC system). At the same time, the data is read into the EDC to check for errors. If an error exists the EDC's error flags are used to interrupt the CPU and/or to stretch the memory cycle. If no error is detected, no slowdown is required.
If an error is detected, the EDC generates corrected data for the processor. At the designer's option the correct data may be written back into memory; error logging and diagnostic routines may also be run under processor control.

The Check-Only configuration allows data reads to proceed as fast with EDC as without. Only if an error is detected is there any slowdown. But even if the memory system had an error every hour this would mean only one error every $3-4$ billion memory cycles. So even with a very high error rate, EDC in a Check-Only configuration has essentially zero impact on memory system speed.
On writes to memory, check bits must be generated before the full memory word can be written into memory. But using the Am2961/62 Data Bus Buffers allows the data word to be buffered on the memory board while check bits are generated. This makes the check bit generate time transparent to the processor.

EDC in the Data Path

The simplest configuration for EDC is to have the EDC directly in the data path as shown in Figure 23 (Correct-Always Configuration). In this configuration data read from memory is always corrected prior to putting the data on the data bus. The advantages are simpler operation and no need for mid-cycle interrupts. The disadvantage is that memory system speed is slowed by the amount of time it takes for error correction on ever cycle.

Usually the Correct-Always Configuration will be used with MOS microprocessors which have ample memory timing budgets. Most high performance processors will use the high performance parallel configuration shown in Figure 22. (Check-Only Configuration).

Scrubbing Avoids Double Errors

Single-bit errors are by far the most common in a memory system and are always correctable by the EDC.
Double bit memory errors are far less frequent than single bit (50 to 1 , or 100 to 1) and are always detected by the EDC but not corrected.

In a memory system, soft errors occur only one at a time. A double bit error in a data word occurs when a single soft error is left uncorrected and is followed by another error in the data word hours, days, or weeks after the first.
"Scrubbing" memory periodically avoids almost all double-bit errors. In the scrubbing operation, every data word in memory is periodically checked by the EDC for single-bit errors. If one is found, it is corrected and the data word written back into memory. Errors are not allowed to pile up, and most double-bit errors are avoided.

The scrubbing operation is generally done as a background routine when the memory is not being used by the processor. If memory is scrubbed frequently, errors that are detected and corrected during processor accesses need not be immediately written back into memory. Instead the error will be corrected in memory during scrubbing. This reduces the time delay involved in a processor access of an incorrect memory word.

Correction of Double-Bit Errors

In some cases, double-bit memory errors can be corrected! This is possible when one of the two bit errors is a hard error.
When a double bit error is detected the data word should be checked to determine if one of the errors is a hard error. If so the

Figure 22. Check-Only Configuration

Figure 23. Correct-Always Configuration
hard error bit may be corrected by inverting it leaving only a single, correctable error. The time for this operation is negligible since it will occur infrequently.
The procedure after detection of a double error is as follows:

- Invert the data bits read from memory.
- Write the inverted data back into the same memory word.
- Re-read the memory location and XOR the newly read out value with the old. If there is no hard error then the XOR result will be all 1's. If there is a hard error, it will have the same bit value regardless of what was written in. So it will show as a 0 after the XOR operation
- Invert the hard error bit (this will "correct" it) leaving only one error in the data.
- The EDC can then correct the single bit error.
- Rewrite the correct data word into memory. This does not change the hard error but does eliminate the soft error. So the next memory access will find only a single-bit, correctable error.

An example helps to illustrate the procedure:

Example of Double Bit Error Correction When One is a Hard Error

1)Data Read from Memory $\left(D_{1}\right)$	16 data bits	6 check bits
2)EDC detects a multiple error.		011111100000011
Syndromes:		011000

3) Syndrome decode indicates a double bit error.
4) Invert the bits read from memory $\left(D_{1}\right) \quad 0000000011111100100101$
5) Write D_{1} back to the same memory location
6) Read back the memory location $\left(D_{2}\right) \quad 0000000011111101 \quad 100101$
7) $X O R D_{1}$ and D_{2}

111111111111111011111
8) So the last data bit is the hard error. Use this to modify $D_{1} \quad 1111111100000010 \quad 011010$
9) Pass the modified D_{1} through the EDC. The EDC detects a single bit correctable error and outputs corrected data: 1111111100000000 011010
10) Write the corrected data back to memory to fix the soft error.

Error Logging and Preventative Maintenance

The effectiveness of preventative maintenance can be increased by logging information on errors detected by the EDC. This is called error logging.

The EDC provides syndromes when errors are detected. The syndromes indicate which bit is in error. In most memory systems, each individual RAM supplies only one bit of the memory word. So the syndrome and data word address specify which RAM was in error.
Typically a permanent/hard RAM failure is preceded by a period of time where the RAM displays an increasing frequency of intermittent, soft errors. Error logging statistic can be used to detect an increasing intermittent error frequency so that the RAM can be replaced before a permanent failure occurs.
Error logging also records the location of already hard failed RAMs. With EDC a hard failure will not halt system operation. EDC always can correct single bit errors even if it is a hard error. EDC can also correct double bit errors where one is hard and one soft (see "Correction of Double Bit Errors" Section). The ability to continue operation despite hard errors can greatly reduce the need for emergency field maintenance. The hard-failed RAMs can be instead replaced at low cost during a regularly scheduled preventative maintenance session.

Reducing Check Bit Overhead

Memory word widths need not be the same as the data word width of the processor. There is a substantial reduction in check bit overhead if wider memory words are used:

Memory Word		Check
\# Data Bits	\# Check Bits	
8	5	38%
16	6	27%
32	7	14%
64	8	11%

This reduction in check bit overhead lowers cost and increases the amount of data that can be packed on to each board.
The trade off is that when writing data pieces into memory that are narrower than the memory word width, more steps are required. These steps are exactly the same as those described in Byte Write in the Applications section. No penalty exists for reads from memory.

EDC Per Board vs EDC Per System ,

The choice of an EDC per system or per board depends on the economics and the architecture of the system.
Certainly the cheaper approach is to have only one EDC per system and this is a viable solution if only one memory location is accessed at at time.
This solution does require that the system has both data and check bit lines (see Figure 25). This makes retrofitting a system difficult and creates complications if static or ROM memory, which do not require check bits, are mixed in with dynamic RAM.
If the system has an advanced architecture it is quite likely that it is necessary to simultaneously access memory locations on different memory boards (see Figure 24). Architectural features that require this are interleaved memory, cache memory, and DMA that is done simultaneously with processor memory accesses. EDC per board is a simpler system from a design standpoint.
The EDC is designed to work efficiently in either the per system or per board configurations.

Figure 24. EDC Per Board

FUNCTIONAL EQUATIONS

The following equations and tables describe in detail how the output values of the Am2960 EDC are determined as a function of the value of the inputs and the internal states. Be sure to carefully read the following definitions of symbols before examining the tables.

Definitions

$\mathrm{D}_{\mathrm{i}} \leftarrow\left(\right.$ DATA $_{i}$ if LE IN is HIGH or the output of bit i of the Data Input Latch if LE IN is LOW)
$\mathrm{C}_{\mathrm{i}} \leftarrow\left(\mathrm{CB}_{\mathrm{i}}\right.$ if LE IN is HIGH or the output of bit i of the Check Bit Latch if LE IN is LOW)
$D L_{i} \leftarrow$ Output of bit i of the Diagnostic Latch
$\mathrm{S}_{\mathrm{i}} \quad \leftarrow$ Internally generated syndromes (same as outputs of SC_{i} if outputs enabled)
$\mathrm{PA} \leftarrow \mathrm{D} 0 \oplus \mathrm{D} 1 \oplus \mathrm{D} 2 \oplus \mathrm{D} 4 \oplus \mathrm{D} 6 \oplus \mathrm{D} 8 \oplus \mathrm{D} 10 \oplus \mathrm{D} 12$
$\mathrm{PB} \leftarrow \mathrm{D} 0 \oplus \mathrm{D} 1 \oplus \mathrm{D} 2 \oplus \mathrm{D} 3 \oplus \mathrm{D} 4 \oplus \mathrm{D} 5 \oplus \mathrm{D} 6 \oplus \mathrm{D} 7$
$\mathrm{PC} \leftarrow \mathrm{D} 8 \oplus \mathrm{D} 9 \oplus \mathrm{D} 10 \oplus \mathrm{D} 11 \oplus \mathrm{D} 12 \oplus \mathrm{D} 13 \oplus \mathrm{D} 14 \oplus \mathrm{D} 15$
$\mathrm{PD} \leftarrow \mathrm{D} 0 \oplus \mathrm{D} 3 \oplus \mathrm{D} 4 \oplus \mathrm{D} 7 \oplus \mathrm{D} 9 \oplus \mathrm{D} 10 \oplus \mathrm{D} 13 \oplus \mathrm{D} 15$
$\mathrm{PE} \leftarrow \mathrm{D} 0 \oplus \mathrm{D} 1 \oplus \mathrm{D} 5 \oplus \mathrm{D} 6 \oplus \mathrm{D} 7 \oplus \mathrm{D} 11 \oplus \mathrm{D} 12 \oplus \mathrm{D} 13$
$\mathrm{PF} \leftarrow \mathrm{D} 2 \oplus \mathrm{D} 3 \oplus \mathrm{D} 4 \oplus \mathrm{D} 5 \oplus \mathrm{D} 6 \oplus \mathrm{D} 7 \oplus \mathrm{D} 14 \oplus \mathrm{D} 15$
$\mathrm{PG}_{1} \leftarrow \mathrm{D} 0 \oplus \mathrm{D} 4 \oplus \mathrm{D} 6 \oplus \mathrm{D} 7$
$\mathrm{PG}_{2} \leftarrow \mathrm{D} 1 \oplus \mathrm{D} 2 \oplus \mathrm{D} 3 \oplus \mathrm{D} 5$
$\mathrm{PG}_{3} \leftarrow \mathrm{D} 8 \oplus \mathrm{D} 9 \oplus \mathrm{D} 11 \oplus \mathrm{D} 14$
$\mathrm{PG}_{4} \leftarrow \mathrm{D} 10 \oplus \mathrm{D} 12 \oplus \mathrm{D} 13 \oplus \mathrm{D} 15$

Error Signals

$\overline{\text { ERROR }} \leftarrow\left(\overline{\mathrm{S} 6 \cdot\left(\mathrm{ID}_{1}+\mathrm{ID} 2\right)}\right) \cdot \overline{\mathrm{S} 5} \cdot \overline{\mathrm{~S} 4} \cdot \overline{\mathrm{~S} 3} \cdot \overline{\mathrm{~S} 2} \cdot \overline{\mathrm{~S} 1} \cdot \overline{\mathrm{~S} 0}+$ GENERATE + INITIALIZE + PASSTHRU $\overline{\text { MULT ERROR }}$ (16 and 32 -Bit Modes) $\leftarrow \overline{\left(\overline{\left.\mathrm{S} 6 \cdot \mathrm{D}_{1}\right) \oplus \mathrm{S} 5 \oplus \mathrm{~S} 4 \oplus \mathrm{~S} 3 \oplus \mathrm{~S} 2 \oplus \mathrm{~S} 1 \oplus \mathrm{~S} 0}\right)(\overline{\mathrm{ERROR}})+\mathrm{TOME}}$ + GENERATE + PASSTHRU + INITIALIZE
$\overline{\text { MULT ERROR }}$ (64-Bit Modes) \leftarrow TOME + GENERATE + PASSTHRU + INITIALIZE

TOME (Three or More Errors)*

*S6, S5, . . S0 are internal syndromes except in Modes 010, 100, 101, 110, 111 (CODE ID ${ }_{2}, I D_{1}, I D_{0}$). In these modes the syndromes are input over the Check-Bit lines. $\mathrm{S} 6 \leftarrow \mathrm{C} 6, \mathrm{~S} 5 \leftarrow \mathrm{C} 5, \ldots \mathrm{~S} 1 \leftarrow \mathrm{C} 1$, SO \leftarrow C0.
**The S6 internal syndrome is always forced to 0 in CODE ID 000.

SC Outputs

Tables XV, XVI, XVII, XVIII, XIX show how outputs SC_{0-6} are generated in each control mode for various CODE IDs (internal control mode not applicable).

TABLE XV.

	000	010	011	100	101	110	111
$\mathrm{SC}_{0} \leftarrow$	$\mathrm{PG}_{2} \oplus \mathrm{PG}_{3}$	$\mathrm{PG}_{1} \oplus \mathrm{PG}_{3}$	$\mathrm{PG}_{2} \oplus \mathrm{PG}_{4} \oplus \mathrm{CB}_{0}$	$\mathrm{PG}_{2} \oplus \mathrm{PG}_{3}$	$\mathrm{PG}_{2} \oplus \mathrm{PG}_{3}$	$\mathrm{PG}_{1} \oplus \mathrm{PG}_{4}$	$P G_{1} \oplus \mathrm{PG}_{4}$
$\mathrm{SC}_{1} \leftarrow$	PA	PA	$\mathrm{PA} \oplus \mathrm{CB}_{1}$	PA	PA	PA	PA
$\mathrm{SC}_{2} \leftarrow$	$\overline{P D}$	$\overline{P D}$	$\mathrm{PD} \oplus \mathrm{CB}_{2}$	$\overline{P D}$	PD	PD	PD
$\mathrm{SC}_{3} \leftarrow$	$\overline{P E}$	$\overline{P E}$	$\mathrm{PE} \oplus \mathrm{CB}_{3}$	$\overline{P E}$	PE	PE	PE
$\mathrm{SC}_{4} \leftarrow$	PF	PF	$\mathrm{PF} \oplus \mathrm{CB}_{4}$	PF	PF	PF	PF
$\mathrm{SC}_{5} \leftarrow$	PC	PC	$\mathrm{PC} \oplus \mathrm{CB}_{5}$	PC	PC	PC	PC
$\mathrm{SC}_{6} \leftarrow$	1	PB	$\mathrm{PC} \oplus \mathrm{CB}_{6}$	PB	PB	PB	PB

TABLE XVI.

CODE ID_{2-0} Detect and Correct Modes (Syndromes)	000	010	011*	100	101	110	111
$\mathrm{SC}_{0} \leftarrow$	$\begin{gathered} \mathrm{PG}_{2} \oplus \mathrm{PG}_{3} \\ \oplus \mathrm{C} 0 \end{gathered}$	$\begin{gathered} \mathrm{PG}_{1} \oplus \mathrm{PG}_{3} \\ \oplus \mathrm{CO} \end{gathered}$	$\begin{gathered} \mathrm{PG}_{2} \oplus \mathrm{PG}_{4} \\ \oplus \mathrm{CB}_{0} \end{gathered}$	$\begin{aligned} & \mathrm{PG}_{2} \oplus \mathrm{PG}_{3} \\ & \oplus \mathrm{C} 0 \end{aligned}$	$\mathrm{PG}_{2} \oplus \mathrm{PG}_{3}$	$\mathrm{PG}_{1} \oplus \mathrm{PG}_{4}$	$\mathrm{PG}_{1} \oplus \mathrm{PG}_{4}$
$\mathrm{SC}_{1} \leftarrow$	$\mathrm{PA} \oplus \mathrm{C} 1$	$\mathrm{PA} \oplus \mathrm{C} 1$	$\mathrm{PA} \oplus \mathrm{CB}_{1}$	$\mathrm{PA} \oplus \mathrm{C} 1$	PA	PA	PA
$\mathrm{SC}_{2} \leftarrow$	$\overline{\mathrm{PD}} \oplus \mathrm{C} 2$	$\overline{\mathrm{PD}} \oplus \mathrm{C} 2$	$\mathrm{PD} \oplus \mathrm{CB}_{2}$	$\overline{P D} \oplus C 2$	PD	PD	PD
$\mathrm{SC}_{3} \leftarrow$	$\overline{\mathrm{PE}} \oplus \mathrm{C} 3$	$\overline{\mathrm{PE}} \oplus \mathrm{C} 3$	$\mathrm{PE} \oplus \mathrm{CB}_{3}$	$\overline{\mathrm{PE}} \oplus \mathrm{C} 3$	PE	PE	PE
$\mathrm{SC}_{4} \leftarrow$	$\mathrm{PF} \oplus \mathrm{C} 4$	$\mathrm{PF} \oplus \mathrm{C} 4$	$\mathrm{PF} \oplus \mathrm{CB}_{4}$	$\mathrm{PF} \oplus \mathrm{C} 4$	PF	PF	PF
$\cdots \mathrm{SC}_{5} \leftarrow$	$\mathrm{PC} \oplus \mathrm{C} 5$	$\mathrm{PC} \oplus \mathrm{C} 5$	$\mathrm{PC} \oplus \mathrm{CB}_{5}$	$\mathrm{PC} \oplus \mathrm{C} 5$	PC	PC	PC
$\mathrm{SC}_{6} \leftarrow$	1	$\mathrm{PB} \oplus \mathrm{C} 6$	$\mathrm{PC} \oplus \mathrm{CB}_{6}$	PB	PB	$\mathrm{PB} \oplus \mathrm{C} 6$	$\mathrm{PB} \oplus \mathrm{C} 6$

*In CODE ID ${ }_{2-0} 011$ the Check-Bit Latch is forced transparent, the Data Latch operates normally.

TABLE XVII.

	000	010	011*	100	101	110	111
$\mathrm{SC}_{0} \leftarrow$	$\begin{gathered} \mathrm{PG}_{2} \oplus \mathrm{PG}_{3} \\ \oplus \mathrm{DL}_{0} \end{gathered}$	$\begin{gathered} \mathrm{PG}_{1} \oplus \mathrm{PG}_{3} \\ \oplus \mathrm{DL}_{0} \end{gathered}$	$\begin{gathered} \mathrm{PG}_{2} \oplus \mathrm{PG}_{4} \\ \oplus \mathrm{CB}_{0} \end{gathered}$	$\begin{gathered} P \mathrm{G}_{2} \oplus P \mathrm{PG}_{3} \\ \oplus \mathrm{DL}_{0} \end{gathered}$	$P G_{2} \oplus P G_{3}$	$\mathrm{PG}_{1} \oplus \mathrm{PG}_{4}$	$\mathrm{PG}_{1} \oplus \mathrm{PG}_{4}$
$\mathrm{SC}_{1} \leftarrow$	$\mathrm{PA} \oplus \mathrm{DL}_{1}$	$\mathrm{PA} \oplus \mathrm{DL}_{1}$	$\mathrm{PA} \oplus \mathrm{CB}_{1}$	$\mathrm{PA} \oplus \mathrm{DL}_{1}$	PA	PA	PA
$\mathrm{SC}_{2} \leftarrow$	$\overline{\mathrm{PD}} \oplus \mathrm{LL}_{2}$	$\overline{\mathrm{PD}} \oplus \mathrm{DL}_{2}$	$\mathrm{PD} \oplus \mathrm{CB}_{2}$	$\overline{\mathrm{PD}} \oplus \mathrm{DL}_{2}$	PD	PD	PD
$\mathrm{SC}_{3} \leftarrow$	$\overline{\mathrm{PE}} \oplus \mathrm{DL}_{3}$	$\overline{\mathrm{PE}} \oplus \mathrm{DL}_{3}$	$\mathrm{PE} \oplus \mathrm{CB}_{3}$	$\overline{\mathrm{PE}} \oplus \mathrm{DL}_{3}$	PE	PE	PE
$\mathrm{SC}_{4} \leftarrow$	$\mathrm{PF} \oplus \mathrm{DL}_{4}$	$\mathrm{PF} \oplus \mathrm{DL}_{4}$	$\mathrm{PF} \oplus \mathrm{CB}_{4}$	$\mathrm{PF} \oplus \mathrm{DL}_{4}$	PF	PF	PF
$\mathrm{SC}_{5} \leftarrow$	$\mathrm{PC} \oplus \mathrm{DL}_{5}$	$\mathrm{PC} \oplus \mathrm{DL}_{5}$	$\mathrm{PC} \oplus \mathrm{CB}_{5}$	$\mathrm{PC} \oplus \mathrm{DL}_{5}$	PC	PC	PC
$\mathrm{SC}_{6} \leftarrow$	1	$\mathrm{PB} \oplus \mathrm{DL}_{6}$	$\mathrm{PC} \oplus \mathrm{CB}_{6}$	PB	PB	$\mathrm{PB} \oplus \mathrm{DL}_{6}$	$\mathrm{PB} \oplus \mathrm{DL}_{7}$

${ }^{*}$ In CODE $\mathrm{ID}_{2-0} 011$ the Check-Bit Latch is forced transparent, the Data Latch operates normally.

TABLE XVIII.

	000	010	011*	100	101	110	111
$\mathrm{SC}_{0} \leftarrow$	DL	DLo	CB_{0}	DLo	1	1	1
$\mathrm{SC}_{1} \leftarrow$	DL_{1}	DL_{1}	CB_{1}	DL	1	1	1
$\mathrm{SC}_{2} \leftarrow$	DL_{2}	DL_{2}	CB_{2}	DL_{2}	1	1	1
$\mathrm{SC}_{3} \leftarrow$	DL_{3}	DL_{3}	CB_{3}	DL_{3}	1	1	1
$\mathrm{SC}_{4} \leftarrow$	DL	DL_{4}	CB_{4}	DL_{4}	1	1	1
$\mathrm{SC}_{5} \leftarrow$	DL	DL5	CB_{5}	DL5	1	1	1
$\mathrm{SC}_{6} \leftarrow$	1	DL L_{6}	CB_{6}	1	1	DL6	DL7

${ }^{*}$ In CODE $\mathrm{ID}_{2-0} 011$ the Check-Bit Latch is forced transparent; the Data Input Latch operates normally.

TABLE XIX.

	000	010	011*	100	101	110	111
$\mathrm{SC}_{0} \leftarrow$	C0	CO	CB_{0}	CO	1	1	1
$\mathrm{SC}_{1} \leftarrow$	C1	C1	CB_{1}	C1	1	1	1
$\mathrm{SC}_{2} \leftarrow$	C2	C2	CB_{2}	C 2	1	1	1
$\mathrm{SC}_{3} \leftarrow$	C3	C3	CB_{3}	C_{3}	1	1	1
$\mathrm{SC}_{4} \leftarrow$	C4	C4	CB_{4}	C4	1	1	1
$\mathrm{SC}_{5} \leftarrow$	C5	C5	CB_{5}	C5	1	1	1
$\mathrm{SC}_{6} \leftarrow$	1	C6	CB_{6}	1	1	C6	C6

*In CODE ID ${ }_{2-0} 011$ the Check-Bit Latch is forced transparent; the Data Input Latch operates normally.

Data Correction

Tables XX to XXVI shows which data output bits are corrected (inverted) depending upon the syndromes and the CODE ID position. Note that the syndromes that determine data correction are in some cases syndromes input externally via the CB
inputs and in some cases syndromes generated internally by that EDC (S ; are the internal syndromes and are the same as the value of the $S C_{i}$ output of that EDC if enabled).

The tables show the number of data bit inverted (corrected) if any for the CODE ID and syndrome combination.

TABLE XX. CODE $\mathrm{ID}_{2-0}=\mathbf{0 0 0}^{*}$

		S5	0	0	0	0	1	1	1	1
S4	0	0	1	1	0	0	1	1		
S3	0	1	0	1	0	1	0	1		
S2	S1									
0	0	-	-	-	5	-	11	14	-	
0	1	-	1	2	6	8	12	-	-	
1	0	-	-	3	7	9	13	15	-	
1	1	-	0	4	-	10	-	-	-	

*Unlisted S combinations are no correction.

TABLE XXI. CODE $\mathrm{ID}_{2-0}=\mathbf{0 1 0}$ *

$\mathbf{C B}_{\mathbf{6}}$	0	0	0	0	1	1	1	1	
$\mathbf{C B}_{5}$	1	1	1	1	0	0	0	0	
$\mathbf{C B}_{\mathbf{4}}$	0	0	1	1	0	0	1	1	
$\mathbf{C B}_{\mathbf{2}} \mathbf{C B}_{\mathbf{1}}$	0	1	0	1	0	1	0	1	
0	0								
0	1	8	12	-	-	-	1	2	6
1	0	9	13	15	-	-	-	3	7
1	1	10	-	-	-	-	0	4	-

[^4]TABLE XXII. CODE ID $\mathbf{2 - 0}=\mathbf{0 1 1}^{*}$

$\mathbf{S 6}$	0	0	0	0	1	1	1	1	
	S5	0	0	0	0	1	1	1	1
	S4	0	0	1	1	0	0	1	1
$\mathbf{S 2}$	$\mathbf{S 1}$	0	1	0	1	0	1	0	1
0	0		-	-	-	5	-	11	14
0	1		-	1	2	6	8	12	-
1	0	-	-	3	7	9	13	15	-
1	1	-	0	4	-	10	-	-	-

*Unlisted S combinations are no correction.

*Unlisted CB combinations are no correction

		$\begin{aligned} & \hline \mathrm{CB}_{0} \\ & \mathrm{CB}_{6} \\ & \mathrm{CB}_{5} \\ & \mathrm{CB}_{4} \\ & \mathrm{CB} \end{aligned}$	0	0	0	0	1	1	1	1	
		0	0	0	0	1	1	1	1		
		0	0	0	0	1	1	1	1		
		0	0	1	1	0	0	1	1		
		0	1	0	1	0	1	0	1		
$\mathrm{CB}_{2} \mathrm{CB}_{1}$											
0	0			-	-	-	5	-	11	14	-
0	1			-	1	2	6	8	12	-	-
1	0			-	-	3	7	9	13	15	-
1	1			-	0	4	-	10	-	-	-

*Unlisted CB combinations are no correction.

TABLE XXV. CODE $1 D_{2-0}=110^{*}$

$\mathbf{C B}_{\mathbf{0}}$	0	0	0	0	1	1	1	1	
$\mathbf{C B}_{\mathbf{6}}$	1	1	1	1	0	0	0	0	
$\mathbf{C B}_{\mathbf{5}}$	0	0	0	0	1	1	1	1	
$\mathbf{C B}_{\mathbf{4}}$	0	0	1	1	0	0	1	1	
$\mathbf{C B}_{\mathbf{3}}$	0	1	0	1	0	1	0	1	
$\mathbf{C B}_{\mathbf{2}}$	$\mathbf{C B}_{\mathbf{1}}$								
0	0	-	-	-	5	-	11	14	-
0	1	-	1	2	6	8	12	-	-
1	0	-	-	3	7	9	13	15	-
1	1	-	0	4	-	10	-	-	-

*Unlisted CB combinations are no correction.

TABLE XXVI. CODE $I D_{2-0}=111^{*}$

		CB_{0} CB_{6} CB_{5} CB_{4} CB_{3}	0	0	0	0	1	1	1		
		1	1	1	1	0	0	0	0		
		1	1	1	1	0	0	0	0		
		0	0	1	1	0	0	1	1		
		0	1	0	1	0	1	0	1		
$\mathrm{CB}_{2} \mathrm{CB}_{1}$											
0	0			-	11	14	-	-	-	-	5
0	1			8	12	-	-	-	1	2	6
1	0			9	13	15	-	-	-	3	7
1	1			10	-	-	-	-	0	4	-

*Unlisted CB combinations are no correction.

Am2960 Boosts Memory Reliability Technical Report Advanced Micro Devices

Abstract

Memory error frequency will increase due to the use of larger memory systems and the use of 16 K and 64 K RAMs, which are more susceptible to soft errors because of their smaller memory cell geometry. At the same time, the need for reliability is increasing, both for the user and the system manufacturer. EDC (Error Detection and Correction) can reduce system downtime, can reduce field maintenance expenses and can provide manufacturers a marketing advantage due to increased reliability. The Am2960 implements EDC using a modified Hamming code, and so boosts memory reliability by a factor of 60 or better. It slashes package count and adds initialization, byte-write and diagnostic features. It is fast and flexible enough to handle word widths from 8 to 64 bits. The Am2960 is one of a series of Memory Support devices designed for use with dynamic MOS RAM memory systems.

Prepared by: Advanced Micro Devices, Bipolar Microprocessor.

NOVEMBER 1980

Am2960 BOOSTS MEMORY RELIABILITY

The Am2960 is a 16-bit, expandable Error Detection and Correction (EDC) unit. It is used in conjunction with system main memories to boost memory reliability.
The Am2960 can correct all single-bit memory errors in a data word. It detects all double-bit errors and even some triple-bit errors. The gross error conditions of all 0 s or all 1 s are always detected.
Memory error and detection using the Am2960 boosts system reliability by a factor of 60 or better. System crashes will occur far less frequently and maintenance costs can be slashed.

MEMORY ERRORS

Memory Error Frequency

Memory errors are becoming more frequent due to two general trends:

1. Total system memory size is growing, and,
2. The geometry of individual memory cells in dynamic RAMs is shrinking, making them more susceptible to "soft" errors.
There are two basic types of memory errors. Hard errors are permanent physical failures of either the whole RAM, a row, a column, or a single bit. Hard errors are caused by power shorts, open leads, and various other factors. Initial testing and burn-in will reduce but not eliminate hard error failures in RAMs during system operation.
Soft errors are non-repeating, single-bit errors where there is no permanent damage. A soft error occurs when the charge state of a bit incorrectly shifts from 0 to 1 or from 1 to 0 . This can be caused by system noise, pattern sensitivity, power surges ${ }^{6}$ or alpha particles. The new 16 K and 64 K dynamic RAMs, with their smaller memory cell geometries are especially susceptible to soft errors induced by alpha particles. (The smaller the memory cell geometry, the less energy is required to cause the cell to change state.)
A paper given at Wescon, 1979^{1} presented these failure rates for dynamic RAMs of increasing size (see Table 1). This table reflects only soft errors due to alpha particles.

Undetected Memory Failures are Expensive

Memory failures will occur in a system. When they do they will result either in a system crash or in loss of data integrity, unless memory error detection schemes are used. Either situation is expensive and inconvenient for the system users. Either situation can result in maintenance calls to the system manufacturer.

If the memory error occurs in an instruction word and the instruction is executed without being corrected, then a system crash will almost certainly occur. For example, an "Add" instruction could be changed to a "Jump" instruction with only a one-bit change - if the error is undetected, the jump would take place to essentially a random location.

If the error occurs in a word that is used for storing data, then data integrity is lost. In typical applications this could mean that bank account balances would be altered, blood diagnosis would be incorrect, or cooling water valves could be closed instead of opened.

System failures of any kind will often result in unscheduled maintenance requests to the system manufacturers. Maintenance calls are expensive for the system manufacturer and are to be avoided by preventative means if at all possible.

Strategies for Memory Errors

For reliability and maintenance cost reduction, memory errors must be dealt with by the system designer.
A common scheme is to use parity. But parity schemes cannot correct errors and can detect only single-bit errors. If a double-bit error occurs in a word, the parity is unchanged and so the error goes undetected. Parity cannot correct errors.
Error detection and correction (EDC) is implemented by the Am2960 using a modified Hamming code. The Hamming code scheme involves generating several check bits that contain enough redundant information to correct all single-bit errors and to detect all double-bit errors and some triple-bit errors. Also, the EDC modified Hamming code detects the gross error conditions of all 0 s and all 1s.

Table 2 demonstrates that EDC is the superior strategy for both the system user and the system manufacturer.

TABLE 1. ERRORS ARE INCREASING.

Density Bits/Chip	Typical Error Rate (\% per 1,000 Hours)	
	Hard** *	.001
	.02	.0001
4 K	.10	.002
16 K	$.5^{* * *}$.011
${ }^{*} 64 \mathrm{~K}$		

*Reflects alpha particles only. Does not include errors due to noise, power, patterns.
**After infant mortality.
***Based on initial customer evaluation.
Note: 0.1% per 1000 hours equals 1 failure in 10^{6} hours.

TABLE 2. COMPARISON OF ERROR STRATEGIES.

Error Type	No Checking	Parity	EDC Using Am2960
Single-Bit Error	System crash.	System halt.	Correctable. System runs.
Double-Bit Error	System crash.	System crash.	System halt.
Entire RAM Failure	System crash.	System halt.	Correctable. System runs.

With EDC, the incidence of maintenance calls is significantly reduced. Even the failure of an entire RAM chip will not necessarily result in a system failure. Double-bit errors are not corrected but are detected so that the system may be halted and the user informed of a memory error and the exact location of it. A controlled system halt is far more desirable than an uncontrolled system crash.

EDC Improves MTTF

Error detection and correction as implemented on the Am2960 significantly improves the MTTF (mean time to failure) of memory systems.
A paper presented at Wescon, $1979{ }^{1}$ used the dynamic RAM error rates shown previously to calculate the following MTTFs for a 16 Megabyte system using 64K RAMs (see Table 3).

TABLE 3.

Error Type	MTTF*
Correctable Soft Error (Single-Bit)	13 days
Correctable Hard Error (Single-Bit)	110 days
Non-Correctable Soft Error (Double-Bit)	864 days
Non-Correctable Hard Error (Double-Bit)	7,021 days

*Based on 64K RAM alpha error rate of 0.13% per 1000 hours.

The MTTF improves by a factor of at least 60 with EDC. This improvement factor has been noted by others ${ }^{2}$.
Another paper ${ }^{3,4}$ calculated that with EDC, RAM errors would become a small factor in memory based failures relative to failures of other board components such as MSI, capacitors and resistors. The same paper ${ }^{4}$ discusses how frequently preventative maintenance should be done so that a hardfailed RAM is replaced prior to a second RAM experiencing a hard-failure. The Am2960 has features that allow easy logging of data errors - this aids the maintenance engineer in quickly pinpointing hard-failed RAMs and RAMs displaying excessive soft error rates.

Memory Reliability is a Competitive Edge

EDC boosts memory reliability and gives you two competitive advantages:

1. Your system is more reliable.
2. Your field maintenance costs are reduced.

The demand for reliable system performance is increasing steadily. Reliability is a must for applications in aerospace, medical, banking, process control and on-line systems. Applications such as word-processors, small business systems and telecommunications also need memory reliability, as their users do not have the technical staff to handle system failures and are willing to pay for the convenience of smooth, error-free operation.

Figure 1. Block Diagram.

Am2960 ERROR DETECTION AND CORRECTION

Figure 1 shows the block diagram of the Am2960 EDC unit. The following is intended only to summarize Am2960 operation. A complete data sheet on the Am2960 EDC unit is available.

Write to Memory

On a write to memory, the Am2960 generates check bits according to a modified Hamming code. The check bits generated are stored in memory along with the data bits.
The Am2960 is a 16 -bit slice and can handle all common word widths. The number of check bits required depends on the word width (see Table 4).

TABLE 4.

Number of Data Bits	Number of Check Bits Required	Number of Am2960 Required
8	5	1
16	6	1
32	7	2
48	8	3
64	8	4

Read from Memory

On a read from memory, the EDC reads in both the data and the check bits. The EDC uses the data bits to generate a second set of check bits. If the new check bits match the old, there is no error. If the check bits do not match, an exclusive-or of the two sets of check bits produce "syndrome bits," which are decoded to determine the type of error. For single-bit errors, $\overline{\text { ERROR }}$ is asserted. For multiple-bit errors, $\overline{\text { MULT ERROR }}$ is asserted. Errors are detected for data bits and check bits.

Two Operating Modes

The Am2960 can be used in two ways to protect systems from memory errors.
High-performance systems (Figure 2) may use the Am2960 in a check-only mode without slowing system operation. The Am2960 will monitor the data path and will generate a CPU interrupt if an error is detected. This error interrupt typically occurs just 25 ns after data appears on the bus. The CPU then takes the corrective action chosen by the designer: automatic correction, write-back to memory, error logging, or diagnostics.
A simpler mode is to have the Am2960 in the data path (Figure 3), always correcting data on every read from memory. This simplifies CPU design and adds typically 40 ns which is well within the memory cycle timing budget of most MOS microprocessor systems.

Am2960 Technical Report

Figure 2. Check-Only Configuration.

Figure 3. Correct-Always Configuration.

Byte Operations

The Am2960 has byte-wide enables on the output latch. This greatly simplifies byte-write operations. The steps for a byte-write are: 1) read the full word from memory into the EDC input latch, 2) correct the full data word and latch into the EDC output latch, 3) enable the outputs of byte 0 (or byte 1) of the EDC output latch and enable the data line inputs for byte 1 (or byte 0) to read in the new byte, 4) latch the new word into the EDC input latch, then 5) generate new check bits and write both check and data bits into memory.
Without the byte-wide enables on output, the byte-write operation would require extra steps, extra time and extra hardware.

Initialization

After power-up, system memory will contain random bit patterns with check bits that do not match the data bits. So system memory must be initialized. The Am2960 has a built-in initialization feature that forces the Data Output latch to all zeros and generates the correct corresponding check bits for writing into all system memory at power-up.

Diagnostics are Key

Since memory errors occur only every million or billion of cycles, a diagnostic feature has been built into the Am2960 that allows the device to be checked out under software control. In diagnostic mode the user may load predetermined check bits into the diagnostic latch. These check bits are then used to do a diagnostic write or a diagnostic read. The write allows diagnostic check bits to be written into memory. The read substitutes diagnostic check bits for those normally read from memory. Either operation can then be followed by bit test instructions to evaluate the EDC's response to the fictitious check bits.

A Family of Memory Support Devices

The Am2960 EDC is one of a family of memory support devices that includes:

$$
\begin{aligned}
& \text { Am2961/62 - EDC Bus Buffers } \\
& \text { Am2964 - Dynamic Memory Controller } \\
& \text { Am2965/66 - Memory Bus Drivers }
\end{aligned}
$$

Figure 4 shows a typical high-performance memory configuration using Am2960 Series Memory Support Devices.

Figure 4. Dynamic Memory Control with Error Detection and Correction.

Am2960 Technical Report

REFERENCES

1. Eric C. Westerfield, Four-Phase Systems, "Memory System Strategies for Soft and Hard Errors," Wescon, September, 1979.
2. "As Memory Density Quadruples Again, Designers Focus on Reliability," Electronic Design, January 18, 1979.
3. Robert Koppel, "RAM Reliability in Large Memory Systems - Significance of Predicting MTBF," Computer Design, February, 1979.
4. Robert Koppel, "RAM Reliability in Large Memory Systems - Improving MTBF with ECC," Computer Design, March, 1979.
5. A.V. Ferris-Prabhu, IBM General Technology Division, "Improving Memory Reliability Through Error Correction," Computer Design, July, 1979.
6. "Power-Line Disturbances Scorecard," Electronic Design, February 15, 1979.
7. "Alphas Stymie Statics," Electronics, March 15, 1979.
8. "Analyzing Computer Technology Costs," Computer Design, October, 1978.
9. "Alphas Cause Rift at ECC," Electronic Engineering Times, May 28, 1979.
10. Ernst L. Wall, ITT, "Applying the Hamming Code to Microprocessor-Based Systems," Electronics, November $22,1979$.

For further information, contact Advanced Micro Devices Bipolar Microprocessor Applications (408) 732-2400

These devices are also characterized as:
AmZ8161 AmZ8162

Am2961•Am2962

4-Bit Error Correction Multiple Bus Buffers

DISTINCTIVE CHARACTERISTICS

- Quad high-speed LSI bus-transceiver
- Provides complete data path interface between the Am2960 Error Detection and Correction Unit, the system data bus and dynamic RAM memory
- Three-state 24 mA output to data bus
- Three-state data output to memory
- Inverting data bus for Am2961 and noninverting for Am2962
- Data bus latches allow operation with multiplexed buses
- Space saving 24 -pin 0.3 " package

FUNCTIONAL DESCRIPTION

The Am2961 and Am2962 are high-performance, low-power Schottky multiple bus buffers that provide the complete data path interface between the Am2960 Error Detection and Correction Unit, dynamic RAM memory and the system data bus. The Am2961 provides an inverting data path between the data bus $\left(B_{i}\right)$ and the Am2960 error correction data input $\left(Y_{i}\right)$ and the Ami2962 provides a noninverting configuration (B_{i} to Y_{i}). Both devices provide inverting data paths between the Am2960 and memory data bus thereby optimizing internal data path speeds.
The Am2961 and Am2962 are 4-bit devices. Four devices are used to interface each 16-bit Am2960 Error Detection and Correction Unit with dynamic memory. The system can easily be expanded to 32 or more bits for wider memory applications. The 4-bit configuration allows enabling the appropriate devices two-at-a-time for intermixed word or byte, read and write in 16-bit systems with error correction.
Data latches between the error correction data bus and the system data bus facilitate byte writing in memory systems wider than 8 -bits. They also provide a data holding capability during singlestep system operation.

Am2961 • Am2962

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L'
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \quad(\mathrm{MIN}=4.75 \mathrm{~V} \quad \mathrm{MAX}=5.25 \mathrm{~V})$
MIL
$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$
$(\mathrm{MIN}=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.50 \mathrm{~V})$

DC CHARACTERISTICS OVER OPERATING RANGE - Y BUS

Parameters	Description	Test Conditions (Note 1)			Min	Typ. (Note 2)	Max	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}^{\mathrm{OH}}=-3.0 \mathrm{~mA}$		2.4	3.4		Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.3	0.45	Volts
			$\mathrm{IOL}=16 \mathrm{~mA}$			0.35	0.5	
V_{H}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.4 V$		OEY = LOW			-2.0	mA
${ }_{1 H}$	Input HIGH Current	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$		OEY = LOW			100	$\mu \mathrm{A}$
I	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		OEY = LOW			1.0	mA
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$			-30		-130	mA

DC CHARACTERISTICS OVER OPERATING RANGE - B BUS

Parameters	Description	Test Conditions (Note 1)			Min	Typ. (Note 2)	Max	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA}$		2.4			Volts
			$\mathrm{l}^{\mathrm{OH}}=$	mA	2.0			
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$			0.3	0.45	Volts
			$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.35	0.50	
V_{iH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$		$\overline{\mathrm{OEB}}=\mathrm{HIGH}$			-1.0	mA
IIH^{\prime}	Input HIGH Current	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$		$\overline{\mathrm{OEB}}=\mathrm{HIGH}$			100	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		$\overline{\mathrm{OEB}}=\mathrm{HIGH}$			1.0	mA
${ }^{\text {ISC }}$	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX			-50		-150	-mA

Notes: 1. For conditions as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

DC CHARACTERISTICS OVER OPERATING RANGE - DO OUTPUTS
Typ.

Param	Description	Test Conditions (Note 1)		Min	(Note 2)	Max	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	MIL $\mathrm{IOH}=-50 \mu \mathrm{~A}$	2.5			Volts
			COM'L $\mathrm{IOH}=-100 \mu \mathrm{~A}$	2.7			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}=1 \mathrm{~mA}$			0.4	Volts
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$		-50		-150	mA
lo	Off-State Out Current	$V_{C C}=M A X$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-100	
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			+100	

DC CHARACTERISTICS OVER OPERATING RANGE - DI INPUTS AND CONTROLS

Para	Description	Test Conditions (Note 1)		Min	Typ. (Note 2)	Max	Units
V_{iH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs	MIL			0.7	Volts
			COM'L			0.8	
v_{c}	Input Clamp Voltage	$V_{C C}=M I N, l_{\text {IN }}=-18 \mathrm{~mA}$				-1.5	Volts
IL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	DI Inputs			-1.0	mA
			Controls			-1.6	mA
$I_{1 H}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA

DC CHARACTERISTICS OVER OPERATING RANGE - POWER SUPPLY

Parameters	Description	Test Conditions (Note 1)	Min	(Note 2)	Max	Units
Icc	Power Supply Current (Note 4)	$V_{C C}=M A X$		110	155	mA

Note 4:

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{MAX}$
DC Input Voltage	5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

Am2961 • Am2962
Am2961
SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters Description

tPLH	Propagation Delay LEY to Y
tphL	($\mathrm{OEY}=\mathrm{S}=\mathrm{HIGH}$)
tpzH	Y Bus Output Enable Time

tpzH	Y Bus Output Enable Time
tPZL	OEY to Y

tPHZ	Y Bus Output Disable Time OEY to Y
tPLZ	
OEH	

tPLH	Propagation Delay LEB to $\overline{\mathrm{B}}$
tPHL	($\overline{O E B}=$ LOW $)$

tPLH.	Propagation Delay Y to $\bar{B}($ Latch Transparent, LEB $=$ HIGH, $\overline{O E B}=$ LOW, OEY $=$ LOW $)$		18		21	ns
tPHL			20		23	ns

tple	Propagation Delay Y to $\overline{\mathrm{B}}$ (Latch Transparent,$\text { LEB }=\text { HIGH, } \overline{O E B}=\text { LOW }, \text { OEY }=\text { LOW }$	26	30	ns	
tpHL		31	35	ns	
tpz	B	18	21	ns	

tpzH	$\overline{\mathrm{B}}$ Bus Output Enable Time $\overline{O E B}$ to \bar{B}	18	21	ns	Figure 1$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=270 \Omega \\ & \mathrm{R}_{2}=1 \mathrm{k} \Omega \end{aligned}$
tpzL		18	21	ns	
tplz	\bar{B} Bus Output Disable Time $\overline{\mathrm{OEB}}$ to $\overline{\mathrm{B}}$	18	21	ns	
tphz		18	21	ns	

tPLH	Propagation Delay Y to $\overline{\mathrm{DO}}$$(\overline{O E D}=O E Y=\text { LOW })$		15		18	ns	Figure 2$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}=2 \mathrm{k} \Omega \end{aligned}$		
tpHL			20		23	ns			
tpzH	$\overline{\text { DO Output Enable Time }}$ $\overline{\mathrm{OED}}$ to $\overline{\mathrm{DO}}$		28		30	ns	$\mathrm{S}=2$	Figure 3$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}=680 \Omega \end{aligned}$	
tpzL			28		30	ns	$\mathrm{S}=1$		
tphz	$\overline{\mathrm{DO}}$ Output Disable Time $\overline{\mathrm{OED}}$ to $\overline{\mathrm{DO}}$		16		18	ns	$\mathrm{S}=2$		
tplz			24		28	ns	$\mathrm{S}=1$		
ts	$\overline{\mathrm{B}}$ to LEY Set-up Time ($\overline{\mathrm{OEB}}=\mathrm{HIGH}$)	6		6		ns	Figure 1$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=390 \Omega \\ & \mathrm{R}_{2}=1 \mathrm{k} \Omega \end{aligned}$		
${ }_{\text {th }}$	$\overline{\mathrm{B}}$ to LEY Hold Time $(\overline{\mathrm{OEB}}=\mathrm{HIGH})$	9		10		ns			
ts	Y to LEB Set-up Time (OEY = LOW)	6		6		ns		$\begin{aligned} & \text { ure } 1 \\ & =50 \mathrm{pF} \end{aligned}$	
${ }_{\text {th }}$	Y to LEB Hold Time (OEY = LOW)	9		10		ns			

*AC perfomance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

SWITCHING TEST CIRCUITS

Figure 1.

Figure 2.

Figure 3.

Am2961•Am2962
Am2962
SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description	Min	Max	Min	Max	Units	Test Conditions
$t_{\text {PLH }}$	Propagation Delay B to Y (Latch		27		28	ns	Figure 1$\begin{aligned} & C_{L}=5 p F \\ & R_{L}=390 \Omega \\ & R_{2}=1 \mathrm{k} \Omega \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Transparent, OEY = LEY = HIGH)		27		28	ns	
tPLH	Propagation Delay $\overline{\mathrm{DI}}$ to Y (OEY = HIGH, S = LOW)		15		18	ns	
$\mathrm{t}_{\text {PHL }}$			15		18	ns	
${ }^{\text {tPLH }}$	Propagation Delay S to Y (OEY = HIGH)		25		28	ns	
$\mathrm{t}_{\text {PHL }}$			25		28	ns	
tPLH	Propagation Delay LEY to Y ($O E Y=S=H I G H$)		25		30	ns	
$\mathrm{t}_{\text {PHL }}$			35		40	ns	
$\mathrm{t}_{\mathrm{PZH}}$	Y Bus Output Enable Time OEY to Y		18		21	ns	
$\mathrm{t}_{\text {PZL }}$			18		21	ns	
tphz	Y Bus Output Disable Time OEY to Y	.	18		21	ns	
$t_{\text {PLZ }}$			18		21	ns	
$t_{\text {PLH }}$	Propagation Delay LEB to B ($\overline{\mathrm{OEB}}=\mathrm{LOW}$)		25		30	ns	Figure 1$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=270 \Omega 2 \\ & R_{2}=1 \mathrm{k} \Omega \end{aligned}$
$\mathrm{t}_{\text {PHL }}$			35		40	ns	
${ }^{\text {t }}$ PLH	Propagation Delay Y to B (Latch Transparent, LEB $=$ HIGH, $\overline{O E B}=$ LOW, OEY = LOW)		20		23	ns	
${ }^{\text {tPHL }}$			21		24	ns	
${ }^{\text {tPLH }}$	Propagation Delay Y to B (Latch Transparent,$\text { LEB }=\mathrm{HIGH}, \overline{\mathrm{OEB}}=\mathrm{LOW}, \mathrm{OEY}=\mathrm{LOW})$		28		32	ns	Figure 1$\begin{aligned} & C_{L}=300 \mathrm{pF} \\ & R_{\mathrm{L}}=270 \Omega \\ & R_{2}=1 \mathrm{k} \Omega \end{aligned}$
tPHL			32		36	ns	
$\mathrm{t}_{\mathrm{PZ}} \mathrm{H}$	B Bus Output Enable Time $\overline{O E B}$ to B		18		21	ns	Figure 1$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=270 \Omega \\ & R_{2}=1 \mathrm{k} \Omega \end{aligned}$
tPZL			18		21	ns	
${ }_{\text {tPLZ }}$	B Bus Output Disable Time $\overline{O E B}$ to B		18		21	ns	
tPhZ			18		21	ns	
$t_{\text {PLH }}$	Propagation Delay Y to $\overline{D O}$ ($\overline{\mathrm{OED}}=\mathrm{OEY}=\mathrm{LOW}$)		15		18	ns	Figure 2$\begin{aligned} & C_{L}=50 p F \\ & R=2 k \Omega \end{aligned}$
tPHL			20		23	ns	
${ }^{\text {tPZ }}$ H	$\overline{\mathrm{DO}}$ Output Enable Time $\overline{O E D}$ to $\overline{D O}$		28		30	ns	Figure 3$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}=680 \Omega \end{aligned}$
${ }_{\text {tPZL }}$			28		30	ns	
$t_{\text {PHZ }}$	$\overline{\mathrm{DO}}$ Output Disable Time $\overline{\mathrm{OED}}$ to $\overline{\mathrm{DO}}$		16		18	ns	
${ }_{\text {tPLZ }}$			24		28	ns	
ts	B to LEY Set-up Time ($\overline{\mathrm{OEB}}=\mathrm{HIGH}$)	8		8		ns	Figure 1$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=390 \Omega \\ & \mathrm{R}_{2}=1 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {th }}$	B to LEY Hold Time ($\overline{\mathrm{OEB}}=\mathrm{HIGH}$)	8		9		ns	
${ }^{\text {t }}$	Y to LEB Set-up Time ($O E Y=$ LOW $)$	8		8		ns	Figure 1 $C_{L}=50 \mathrm{pF}$
t_{H}	Y to LEB Hold Time (OEY = LOW)	8		9		ns	$\begin{aligned} & R_{\mathrm{L}}=270 \Omega 2 \\ & R_{2}=1 \mathrm{k} \Omega \end{aligned}$

[^5]
DEFINITION OF FUNCTIONAL TERMS

$\mathbf{B}_{\mathbf{0}}, \mathbf{B}_{\mathbf{1}}$. The four bidirectional system data bus inputs/ $\mathbf{B}_{2}, \mathbf{B}_{3}$ outputs. The $\mathrm{B}-\mathrm{to}-\mathrm{Y}$ path is inverting for the Am2961 ($\overline{\mathrm{B}}_{\mathrm{i}}$) and noninverting for the Am2962 (B_{i}).
$\overline{\text { OEB }}$ The three-state Output Enable for the system data bus output drivers. When $\overline{\mathrm{OEB}}$ is LOW data from the Data Output Latch is output to the system data bus. When $\overline{O E B}$ is HIGH the bus drivers are in the high-impedance state and the Data Input Latch can receive input data from the system data bus.
LEB Latch Enable for the Data Output Latch. When LEB is HIGH the latch is transparent and Y-Bus data is output to the B-Bus. When LEB goes LOW, Y-Bus data meeting the latch set-up and hold time requirements is latched for output to the B-Bus.
$\mathbf{Y}_{0}, \mathbf{Y}_{1}$, The four bidirectional EDC data inputs/outputs for Y_{2}, Y_{3} connection to the EDC data I/O port.
LEY The Latch Enable control for the Data Input Latch for the data input from the system data bus (B). When LEY is HIGH the latch is transparent and B input data is available at the MUX input for selection to the Y outputs. When LEY goes LOW, B input data meeting the latch set-up and hold time requirements is latched for subsequent selection to the Y outputs.

OEY

Output Enable for the Y (EDC) Bus outputs. When OEY is HIGH data selected by the input data multiplexer is output to the Y-bus. When OEY is LOW the MUX output is in the high-impedance state and the Y-Bus can receive input data from the EDC Unit.
$\mathbf{S} \quad$ The Select input for the input data multiplexer. A LOW input selects data from the memory data input, DI, for output to the EDC bus (Y). A HIGH input selects data from the system data bus Data Input Latch (B or $\overline{\mathrm{B}}$).
$\overline{\mathrm{DO}}_{\mathbf{0}}, \overline{\mathrm{DO}}_{\mathbf{1}}$, The Data Outputs to the memory data inputs. The $\overline{\mathrm{DO}}_{2}, \overline{\mathrm{DO}}_{3} \overline{\mathrm{DO}}$ outputs are inverted with respect to the EDC Bus (Y). These outputs are "RAM Driver" outputs with a collector resistor in the lower output driver to protect against undershoot on the HIGH-to-LOW transition.
$\overline{\text { OED }} \quad$ Output Enable for the $\overline{\mathrm{DO}}$ outputs. An active LOW input causes the $\overline{\mathrm{DO}}$ outputs to output inverted data from the EDC (Y) Bus and a HIGH input puts the $\overline{\mathrm{DO}}$ outputs in the high-impedance state.
$\overline{\mathrm{DI}}_{0}, \overline{\mathrm{D}}_{1}$, The Data inputs from memory. $\overline{\mathrm{D}}$ inputs are selected $\overline{\mathrm{D}}_{2}, \overline{\mathrm{D}}_{3}$ by the data input MUX for output to the EDC (Y) Bus (controlled by S and OEY) and/or output to the system data bus (B) (controlled by LEB and $\overline{\mathrm{OEB}}$).

FUNCTION TABLES

Y-BUS OUTPUT

LEY	$\overline{\mathrm{D}}_{\mathbf{i}}$	$\bar{B}_{\mathbf{i}}{ }^{*}$ Am2961	$\mathbf{B}_{\mathbf{i}}{ }^{*}$ Am2962	\mathbf{S}	OEY	\mathbf{Y}
X	X	X	X	X	L	Z
X	L	X	X	L	H	H
X	H	X	X	L	H	L
H	X	L	H	H	H	H
H	X	H	L	H	H	L
L	X	X	X	H	H	NC

* $\overline{O E B}=$ HIGH for B data input

B-BUS OUTPUT

\mathbf{Y}^{*} Input	LEB	OEB	\bar{B} Am2961	B Am2962
X	X	H	Z	Z
L	H	L	H	L
H	H	L	L	H
X	L	L	NC	NC

*OEY = LOW for B data input
$\overline{\text { DO }}$ PORT OUTPUT

\mathbf{Y}	$\overline{\text { OED }}$	$\overline{\mathbf{D O}}$
\mathbf{X}	H	\mathbf{Z}
L	L	H
H	L	L

*Since the EDC Data Bus Buffers are four-bit wide devices, controls can be paired to device inputs to provide byte level controls (for any data width).

METALLIZATION AND PAD LAYOUTS

Am2961

Am2962

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

$\begin{gathered} \text { Am2961 } \\ \text { Order Number } \end{gathered}$	$\begin{gathered} \text { Am2962 } \\ \text { Order Number } \end{gathered}$	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2961DC	AM2962DC	D-24-SLIM	C	C-1
AM2961DC-B	AM2962DC-B	D-24-SLIM	C	B-2 (Note 4)
AM2961DM	AM2962DM	D-24-SLIM	M	C-3
AM2961DM-B	AM2962DM-B	D-24-SLIM	M	B-3
AM2961FM	AM2962FM	F-24	M	C-3
AM2961FM-B	AM2962FM-B	F-24	M	B-3
AM2961LC	AM2962LC	L-20	C	C-1
AM2961LCB	AM2962LCB	L-20	C	B-2
AM2961LM	AM2962LM	L-20	M	C-3
AM2961LMB	AM2962LMB	L-20	M	B-3
AM2961XC	AM2962XC	Dice	C	Visual inspection to MIL -STD-883
AM2961XM	AM2962XM	Dice	M	method 2010B

Notes: 1. $D=$ Hermetic DIP, F = Flat Pak, L = Chip-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

Am2964B
 Dynamic Memory Controller

DISTINCTIVE CHARACTERISTICS

- Dynamic Memory Controller for 16 K and 64 K MOS dynamic RAMs
- 8-Bit Refresh Counter for refresh address generation, has clear input and terminal count output
- Refresh Counter terminal count selectable at 256 or 128
- Latch input $\overline{\text { RAS }}$ Decoder provides $4 \overline{\text { RAS }}$ outputs, all active during refresh
- Dual 8-Bit Address Latches plus separate $\overline{\text { RAS }}$ Decoder Latches
- Grouping functions on a common chip minimizes speed differential or skew between address, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ outputs
- 3-Port, 8-Bit Address Multiplexer with Schottky speed
- Burst mode, distributed refresh or transparent refresh mode determined by user
- Noninverting address, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ paths

FUNCTIONAL DESCRIPTION

The Am2964B Dynamic Memory Controller (DMC) replaces a dozen MSI devices by grouping several unique functions. Two 8 -bit latches capture and hold the memory address. These latches and a clearable, 8 -bit refresh counter feed into an 8-bit, 3-input, Schottky speed MUX, for output to the dynamic RAM address lines.
The same silicon chip also includes a special $\overline{\mathrm{RAS}}$ decoder and $\overline{C A S}$ buffer. Placing these functions on the same chip minimizes the time skew between output functions which would otherwise be separate MSI chips, and therefore, allows a faster memory cycle time by the amount of skew eliminated.
The $\overline{\mathrm{RAS}}$ Decoder allows upper addresses to select one-of-four banks of RAM by determining which bank receives a $\overline{\mathrm{RAS}}$ input. During refresh ($\overline{\mathrm{RFSH}}=\mathrm{LOW}$) the decoder mode is changed to four-of-four and all banks of memory receive a $\overline{\text { RAS }}$ input for refresh in response to a $\overline{\text { RASI }}$ active LOW input. CAS is inhibited during refresh.
Burst mode refresh is accomplished by holding $\overline{\text { RFSH }}$ LOW and toggling $\overline{\text { RASI. }}$
A_{15} is a dual function input which controls the refresh counter's range. For 64 K RAMs it is an address input. For 16K RAMs it can be pulled to +12 V through $1 \mathrm{~K} \Omega$ to terminate the refresh count at 128 instead of 256.

Am2964B
MAXIMUM RATINGS (Above which useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 to $+\mathbf{7 . 0 \mathrm { V }}$
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{MAX}$
DC Input Voltage	-0.5 to 5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless otherwise noted)
(Group A, Subgroups 1, 2 and 3)

Am2964XC	$=0$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$		$\mathrm{MIN}=4.75 \mathrm{~V}$	MAX $=$		
Am2964XM	-55 to $+125^{\circ} \mathrm{C}$	$V_{\text {CC }}=5.0 \mathrm{~V} \pm 10 \%$		$\mathrm{MIN}=4.50 \mathrm{~V}$	MAX $=$		
Parameters	Description	Test Co	ions (Note 1)	Min	TYP (Note 2)	Max	Units
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\overline{\text { TC }}$	2.5			Volts
		$\mathrm{O}_{\mathrm{OH}}=-1 \mathrm{~mA}$	Others	3.0			Volts
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$	All outputs except TC	2.0			Volts
V_{0}	Output LOW Voltage	$V_{C C}=M I N$	All outputs except $\overline{\mathrm{TC}}, \mathrm{IOL}=16 \mathrm{~mA}$			0.5	Volts
			$\overline{\mathrm{TC},} \mathrm{IOL}=8 \mathrm{~mA}$			0.5	Volts
V_{IH}	Input HIGH level	Guaranteed input voltage for all inp	al HIGH	2.0			Volts
VIL	Input LOW level	Guaranteed input voltage for all inp	cal LOW			0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=$	mA			-1.5	Volts
			RASI			-3.2	mA
ILL	Input LOW Current	$V_{C C}=M A X$	$\overline{\text { CASI, MSEL, }} \overline{\text { RFSH }}$			-1.6	mA
			$\begin{aligned} & A_{0}-A_{15}, \overline{C L R} \\ & \text { RSEL }_{0,1}, \overline{L E} \\ & \hline \end{aligned}$			-0.4	mA
			$\overline{\text { RASI }}$			100	$\mu \mathrm{A}$
IH	Input HIGH Current	$V_{C C}=$ MAX	$\overline{\mathrm{CASI}}, \mathrm{MSEL}, \overline{\mathrm{RFSH}}$			50	$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{A}_{0}-\mathrm{A}_{15}, \overline{\mathrm{CLR}} \\ & \mathrm{RSEL}_{0,1}, \mathrm{LE} \\ & \hline \end{aligned}$			20	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=\mathrm{MAX}$	RASI			2.0	mA
1	Input HIGH Current	$\mathrm{V}_{1 \mathrm{IN}}=5.5 \mathrm{~V}$	$\overline{\text { CASI, MSEL, }} \overline{\text { RFSH }}$			1.0	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{0}-\mathrm{A}_{15}, \overline{\mathrm{CLR}} \\ & \mathrm{RSEL}_{0,1}, \mathrm{LE} \\ & \hline \end{aligned}$			0.1	mA
Isc	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ MAX (Note		-40		-100	mA
		$25^{\circ} \mathrm{C}, 5 \mathrm{~V}$			122		mA
		0 to $70^{\circ} \mathrm{C}$				173	mA
${ }^{\text {ICC }}$	Power Supply Current	$70^{\circ} \mathrm{C}$	COML			165	mA
	(Note 4)	-55 to $+125^{\circ} \mathrm{C}$	MIL			165	mA
		$+125^{\circ} \mathrm{C}$				150	mA
$1 T$	A_{15} Enable Current	A_{15} connected to	V through 1K $\mathrm{K} \pm 10 \%$			5	mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. $I_{C C}$ is worst case when the Address inputs are latched HIGH, the refresh counter is at terminal count (255), $\overline{\mathrm{RASI}}$ and $\overline{\mathrm{CASI}}$ are HIGH and all other inputs are LOW.

Notes: 5. Minimum spec limits for $t_{p w}, t_{s}$ and t_{H} are minimum system operating requirements. Limits for $t_{S K E W}$ and $t_{p D}$ are guaranteed test limits for the device.
6. All AC parameters are specified at the 1.5 V level.
7. $\overline{\text { RFSH }}$ inhibits $\overline{\text { CASO }}$ during refresh. Specification is for $\overline{\text { CASO }}$ inhibit time.
8. O_{i} to $\overline{\text { RAS }}_{i}$ ($\overline{\mathrm{RFSH}}=\mathrm{HIGH}$) skew is guaranteed maximum difference between fastest $\overline{\text { RASI to } \overline{R A S}}$ delay and slowest A_{i} to O_{i} delay within a single device. O_{i} to CASO skew is maximum difference between fastest $\overline{\text { CASI }}$ to $\overline{\text { CASO }}$ delay and slowest MSEL to O_{i} delay within a single device. See application section entitled Memory Cycle Timing for correlation to System Timing requirements.
9. O_{i} to $\overline{\mathrm{RAS}}_{\mathrm{i}}$ ($\overline{\mathrm{RFSH}}=\mathrm{LOW}$) skew is guaranteed maximum difference between fastest $\overline{\mathrm{RASI}}$ to $\overline{\mathrm{RAS}}_{i}$ delay and slowest $\overline{\mathrm{RFSH}}$ to O_{i} delay within a single device. See application section on Refresh Timing for correlation to system refresh timing requirements.
10. O_{i} to $\overline{R A S}_{i}\left(M S E L=Z\right.$) skew is guaranteed maximum difference between fastest MSEL Z to O_{i} delay and slowest $\overline{\operatorname{RASI}}$ to $\overline{\operatorname{RAS}}{ }_{i}$ delay within a single device.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE FOR $C_{L}=150 \mathrm{pF}$
(Notes 5, 6)

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful.

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to V_{CC} changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable
may allow the ground pin at the device to rise by 100's of millivolts momentarily.
4. Use extreme care in defining input levels for $A C$ tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or $\mathrm{V}_{\mathbb{I}}$ until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

DEFINITION OF FUNCTIONAL TERMS

$\mathbf{A}_{0}-\mathbf{A}_{7}$. The low order Address inputs are used to latch eight Row Address inputs for the RAM. These inputs drive the outputs $0_{0}-0_{7}$ when MSEL is HIGH.
$\mathbf{A}_{8}-\mathbf{A}_{15} \quad$ The high order Address inputs are used to latch eight Column Address inputs for the RAM. These inputs drive the outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ when MSEL is LOW.
$A_{15} \quad A_{15}$ is a dual input. With normal TTL level inputs A_{15} acts as address input A_{15} for 64 K RAMs. If A_{15} is pulled up to +12 V through a $1 \mathrm{~K} \Omega$ resistor, the terminal count output, $\overline{\mathrm{TC}}$, will go LOW every 128 counts (for 16K RAMs) instead of every 256 counts.
$\mathbf{O}_{0}-\mathbf{O}_{7} \quad$ The RAM address outputs. The eight-bit width is designed for dynamic RAMs up to 64 K .
MSEL The Multiplexer-SELect input determines whether low order or high order address inputs appear at the multiplexer outputs $0_{0}-0_{7}$. When MSEL is HIGH the low order address latches ($\mathrm{A}_{0}-\mathrm{A}_{7}$) are connected to the outputs. When MSEL is LOW the high order address latches are connected to the outputs.
$\overline{\text { RFSH }} \quad$ The Refresh control input. When active LOW the $\overline{\text { RFSH }}$ input switches the address output multiplexer to output the inverted contents of the 8 -bit refresh counter. $\overline{\text { RFSH }}$ LOW also inhibits the CAS buffer and changes the mode of the RAS decoder from one-of-four to four-of-four so that all four $\overline{\text { RAS }}$ decoder outputs, $\overline{\mathrm{RAS}}_{0}, \overline{\mathrm{RAS}}_{1}, \overline{\mathrm{RAS}}_{2}$ and $\overline{\mathrm{RAS}}_{3}$, go LOW in response to a LOW input at RASI. This action refreshes one row address in each of the four RAS decoded memory banks. The refresh counter is advanced at the end of each refresh cycle by the LOW-to-HIGH transition of $\overline{\text { RFSH }}$ or RASI (whichever occurs first). In burst mode refresh, $\overline{\text { RFSH }}$ may be held LOW and refresh accomplished by toggling RASI.
$\overline{\text { TC }} \quad$ The Terminal Count output. A LOW output at $\overline{T C}$ indicates that the refresh counter has been se-
quenced through either 128 or 256 refresh addres ses depending on A_{15}. The TC output remains active LOW until the refresh counter is advanced by the rising edge of RASI or RFSH.
The refresh counter Clear input. An active LOW input at CLR resets the refresh counter to all LOW (refresh address output to all HIGH).

The address latch enable input. An active HIGH input at LE causes the two 8 -bit address latches and the 2 -bit RAS Select input latch to go transparent, accepting new input data. A LOW input on LE latches the input data which meets set-up and hold time requirements.
RSEL 0 and RSEL ${ }_{1}$

The RAS decoder Select inputs. Data (latched) at these inputs (normally higher order addresses) is decoded by the RAS Decoder to "RAS Select" one of four banks of memory with $\overline{\mathrm{RAS}}_{0}, \overline{\mathrm{RAS}}_{1}, \overline{\mathrm{RAS}}_{2}$ or $\overline{\operatorname{RAS}}_{3}$.
The Row Address Strobe Input. During normal memory cycles the selected RAS Decoder output $\overline{\mathrm{RAS}}_{0}, \overline{\mathrm{RAS}}_{1}, \overline{\mathrm{RAS}}_{2}$ or $\overline{\mathrm{RAS}}_{3}$ will go active LOW in response to an active LOW input at RASI. During refresh $(\overline{\mathrm{RFSH}}=\mathrm{LOW})$, all $\overline{\text { RAS }}$ outputs go LOW in response to $\overline{\text { RASI }}=$ LOW .
$\overline{\mathrm{RAS}}_{\mathbf{0}}, \overline{\mathrm{RAS}}_{1}$ Row Address Strobe outputs ($\left.\overline{\mathrm{RAS}} \mathrm{S}_{\mathrm{i}}\right)$. Each pro$\mathbf{R A S}_{\mathbf{2}}, \overline{\mathbf{R A S}}_{\mathbf{3}}$ vides a Row Address Strobe for one of the four banks of memory. Each will go active LOW only when selected by RSEL 0 and RSEL 1 and only when $\overline{\text { RASI }}$ goes active LOW. All $\overline{\operatorname{RAS}}_{0-3}$ outputs go active low in response $\overline{\text { RASI }}$ when $\overline{\text { RFSH }}$ goes LOW.
$\overline{\text { CASI }} \quad$ The Column Address Strobe. An active LOW input at CASI will result in an active LOW output at CASO, unless a refresh cycle is in progress (RFSH = LOW)
$\overline{\text { CASO }} \quad$ The Column Address Strobe output. The active LOW CASO output strobes the Column Address into the dynamic RAM. CASO is inhibited during refresh $\overline{(\mathrm{RFSH}}=\mathrm{LOW})$.

$\overline{\text { RAS OUTPUT FUNCTION TABLE }}$

$\overline{\text { RFSH }}$	RASI	RSEL_{1}	RSELo	$\overline{\text { RAS }}_{0}$	$\overline{\mathrm{RAS}}_{1}$	$\overline{\mathrm{RAS}}_{2}$	$\overline{\mathrm{RAS}}_{3}$
L	H	X	X	H	H	H	H
L	L	X	x	L	L	L	L
H	H	X	X	H	H	H	H
H	L	L	L	L	H	H	H
H	L	L	H	H	L	H	H
H	L	H	L	H	H	L	H
H	L	H	H	H	H	H	L

CASO FUNCTION TABLE

$\overline{\text { RFSH }}$	$\overline{\text { CASI }}$	$\overline{\text { CASO }}$
H	L	L
H	H	H
L	X	H

ADDRESS OUTPUT FUNCTION TABLE

MSEL	$\overline{\text { RFSH }}$	$\mathbf{0}_{\mathbf{0}}-\mathbf{0}_{\mathbf{7}}$
H	H	$A_{0}-A_{7}$
L	H	$A_{8}-A_{15}$
X	L	Refresh Address

REFRESH ADDRESS COUNTER FUNCTION TABLE						
A_{15}	$\overline{\text { CLR }}$	$\overline{\text { RFSH }}$	$\overline{\text { RASI }}$	$\overline{\text { TC }}$	REFRESH COUNT	FUNCTION
X	L	X	X	X	FF_{H}	Clear Counter
X	H	T	X	X	NC	Output Refresh Address No Change for Counter
X	H	5	L	X	Count - 1	Return to Memory Cycle Mode and Decrement Counter
X	H	L	L	X	NC	Output all RAS ${ }_{i}$ to RAM No Change for Counter
X	H	L	F	X	Count - 1	Return RAS; to HIGH and Decrement Counter
Lor H	H	X	X	L	$0^{00} \mathrm{H}$	Terminal Count for 256 Line Refresh
+12V*	H	X	X	L	$0^{0} \mathrm{H}$ and $80 \mathrm{H}^{\text {r }}$	Terminal Count for 128 Line Refresh

*Through $1 \mathrm{k} \Omega$ resistor.

BURST REFRESH TIMING

The timing shown assumes that burst mode applications may power-down the Am2964B with the RAM. Therefore the counter is cleared prior to executing the refresh sequence.

APPLICATION

ARCHITECTURE

The Dynamic Memory Controller (DMC) provides address multiplexing, refresh address generation and $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ control for the MOS dynamic RAM memories of any data width. The eight bit address path is designed for 64K RAMs and can be used with 16 K RAMs.
Sixteen address input latches and two $\overline{\text { RAS }}$ Select latches (for higher order addresses) allow the DMC to control up to 256 K words of memory (with 64K RAMs) by using the internal RAS decoder to select from one-of-four banks of RAMs.

SPEED WITH MINIMUM SKEW

The DMC provides Schottky speed in all of the critical paths. In addition, time skew between the Address, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ paths is minimized (and specified) by placing these functions on the same chip. The inclusion of the CAS buffer allows matching of its propagation delay, plus provides the $\overline{\mathrm{CAS}}$ inhibit function during $\overline{\mathrm{RAS}}$ - only refresh.

INPUT LATCHES

The eighteen input latches are transparent when LE is HIGH and latch the input data meeting set-up and hold time requirements when LE goes LOW. In systems with separate address and data buses, LE may be permanently enabled HIGH.

REFRESH COUNTER

The 8-bit refresh counter provides both 128 and 256 line refresh capability. Refresh control is external to allow maximum user flexibility. Transparent (hidden), burst, synchronous or asynchronous refresh modes are all possible.
The refresh counter is advanced at the LOW-to-HIGH transition of $\overline{\text { RFSH }}$ (or $\overline{\text { RASII }}$. This assures a stable counter output for the next refresh cycle. The counter will continue to cycle through 256 addresses unless reset to zero by CLR. This actually causes all outputs to go HIGH since the output MUX is inverting. (Address inputs to outputs are non-inverting since both the input latches and output MUX are inverting).

*Address and $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ drivers each drive 22 RAM inputs at each output. Timing skew is minimized by using one device for address lines and one device for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$, spreading the $\overline{\mathrm{CAS}}$ loading over four drivers to equalize the capacitive load on each driver.

Figure 1. Dynamic Memory Control with Error Detection and Correction

Am2964B

REFRESH TERMINAL COUNT

The refresh counter also provides a Terminal Count output for burst mode refresh applications. $\overline{\text { TC }}$ normally occurs at count 255 (0_{0} to 0_{7} all LOW when $\overline{\text { RFSH }}$ is LOW). $\overline{\text { TC }}$ can be made to occur at count 127 for 128 line burst mode refresh by pulling A_{15} up to +12 V through a $1 \mathrm{~K} \Omega \pm 10 \%$ resistor. The counter actually cycles through 256 with TC determined by A_{15}. Otherwise A_{15} functions as an address input when driven at normal TTL levels.

THREE INPUT 8-BIT ADDRESS MULTIPLEXER

The address MUX is 8 -bits wide (for 64 K RAMs) and has three data sources, the lower address input latch (A_{0} to A_{7}), the upper address input latch (A_{8} to A_{15}) and the internal refresh counter. The lower address latch is selected when MSEL is HIGH. This is normally the Row address. The upper address latch is selected when MSEL is LOW. This is normally the Column address. The third source - the refresh counter is selected when RFSH is LOW and overrides MSEL.
When $\overline{\mathrm{RFSH}}$ goes LOW, the MUX selects the refresh counter address and $\overline{\text { CASO }}$ is inhibited. Also, the $\overline{\text { RAS }}$ Decoder function
is changed from one-of-four to four-of-four so all $\overline{\mathrm{RAS}}$ outputs $\overline{\operatorname{RAS}}_{0}-\overline{R A S}_{3}$ go LOW to refresh all banks of memory when $\overline{\mathrm{RASI}}$ goes LOW. When RFSH is HIGH only one RAS output goes low, determined by the $\overline{\text { RAS }}$ Select inputs, RSEL $_{0}$ and RSEL 1 . In either case the $\overline{\mathrm{RAS}}$ Decoder output timing is controlled by $\overline{\mathrm{RASI}}$ to make sure the refresh count appears at $0_{0}-0_{7}$ before $\overline{R A S}_{0^{-}}$ $\overline{R A S}_{3}$ go LOW. This assures meeting Row address Set-up time requirement of the RAM ($t_{A S R}$).

MAXIMUM PERFORMANCE SYSTEM

The typical organization of a maximum performance 16 -bit system including Error Detection and Correction is shown in Figure 1. Delay lines provide the most accurate timing and are recommended for $\overline{\mathrm{RAS}} / \mathrm{MSEL} / \overline{\mathrm{CAS}}$ timing in this type of system.

CONTROLLING 16K RAMS OR SMALLER SYSTEMS

16K RAMs require seven address inputs and 128 line refresh. Also, A_{0} is often used to designate upper or lower byte trans actions in 16-bit systems. These modifications are shown in Figure 2.

[^6]Figure 2. Word Organized Memory Using 16K RAMs

MEMORY CYCLE TIMING

The relationship between DMC specifications and system timing requirements are shown in Figure 3. T_{1}, T_{2} and T_{3} represent the minimum timing requirements at the DMC inputs to guarantee that RAM timing requirements are met and that maximum system performance is achieved.

The minimum requirement for T_{1}, T_{2}, and T_{3} are as follows:
$T_{1} M I N=t_{R A H}+t_{28}$
$\mathrm{T}_{2} \mathrm{MIN}=\mathrm{T}_{1}+\mathrm{t}_{26}+\mathrm{t}_{\text {ASC }}$
$T_{3} M I N=t_{A S R}+t_{25}$
See RAM data sheet for apolicable values for $\mathrm{t}_{\text {RAH, }} \mathrm{t}_{\mathrm{ASC}}$ and $t_{\text {ASR }}$.

(28) $=$ GUARANTEED MAX DIFFERENCE BETWEEN FASTEST MSEL AND O D DELAY AND THE SLOWEST RASI TO RAS DELAY ON ANY SINGLE DEVICE.
a) Specifications Applicable to Memory Cycle Timing

b) Desired System Timing

Figure 3. Memory Cycle Timing

REFRESH CYCLE TIMING

The timing relationships for refresh are shown in Figure 4.
T_{4} minimum is calculated as follows:
$T_{4}=t_{A S R}+t_{27}$

27) = GUARANTEED MAX DIFFERENCE BETWEEN FASTEST RASI TO $\overline{R A S}_{i}$ DELAY AND SLOWEST $\overline{R F S H}$ TO O O_{i} DELAY ON ANY SINGLE DEVICE.
b) Desired System Timing

Figure 4. Refresh Timing

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am2964B Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2964BPC	$\mathrm{P}-40$	C	$\mathrm{C}-1$
AM2964BDC	$\mathrm{D}-40$	C	$\mathrm{C}-1$
AM2964BDC-B	$\mathrm{D}-40$	C	$\mathrm{B}-2($ Note 4)
AM2964BDM	$\mathrm{D}-40$	M	$\mathrm{C}-3$
AM2964BDM-B	$\mathrm{D}-40$	M	$\mathrm{B}-3$
AM2964BLC	$\mathrm{L}-44$	C	$\mathrm{C}-1$
AM2964BLM	$\mathrm{L}-44$	M	$\mathrm{C}-1$
AM2964BLM-B	$\mathrm{L}-44$	M	$\mathrm{B}-3$
AM2964BXC	Dice	C	Visual inspection
AM2964BXM	Dice	M	to MIL-STD-883
			Method 2010B.

Notes: 1. $P=$ Molded DIP,$D=$ Hermetic DIP,$L=$ Chip-Pak. Number following letter is number of leads. See Appendix
B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

This device is also characterized as: AmZ8165 AmZ8166

Am2965 • Am2966
 Octal Dynamic Memory Drivers with Three-State Outputs

DISTINCTIVE CHARACTERISTICS

- Controlled rise and fall characteristics

Internal resistors provide symmetrical drive to HIGH and LOW states, eliminating need for external series resistor.

- Output swings designed to drive 16K and 64K RAMs V_{OH} guaranteed at $\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V}$. Undershoot going LOW guaranteed at less than 0.5 V .
- Large capacitive drive capability 35 mA min source or sink current at 2.0 V . Propagation delays specified for 50 pF and 500 pF loads.
- Pin-compatible with 'S240 and 'S244

Non-inverting Am2966 replaces 74S244; inverting Am2965 replaces 74S240. Faster than 'S240/244 under equivalent load.

- No-glitch outputs

Outputs forced into OFF state during power up and down. No glitch coming out of three-state.

CONNECTION DIAGRAM

Top View

Note: Pin 1 is marked for orientation.
BLI-125

FUNCTIONAL DESCRIPTION

The Am2965 and Am2966 are designed and specified to drive the capacitive input characteristics of the address and control lines of MOS dynamic RAMs. The unique design of the lower output driver includes a collector resistor to control undershoot on the HIGH-to-LOW transition. The upper output driver pulls up to V_{CC} -1.15 V to be compatible with MOS memory and is designed to have a rise time symmetrical with the lower output's controlled fall time. This allows optimization of Dynamic RAM performance.
The Am2965 and Am2966 are pin-compatible with the popular 'S240 and 'S244 with identical 3-state output enable controls. The Am2965 has inverting drivers and the Am2966 has non-inverting drivers.
The inclusion of an internal resistor in the lower output driver eliminates the requirement for an external series resistor, therefore reducing package count and the board area required. The internal resistor controls the output fall and undershoot without slowing the output rise.
These devices are designed for use with the Am2964 Dynamic Memory Controller where large dynamic memories with highly capacitive input lines require additional buffering. Driving eight address lines or four $\overline{\mathrm{RAS}}$ and four $\overline{\mathrm{CAS}}$ lines with drivers on the same silicon chip also provides a significant performance advantage by minimizing skew between drivers. Each device has specified skew between drivers to improve the memory access worst case timing over the min and max $t_{P D}$ difference of unspecified devices.
LOGIC DIAGRAMS

Am2965 • Am2966
MAXIMUM RATINGS
(Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\text {cC }} \mathrm{max}$
DC Input Voltage	-0.5 to +7.0 V
DC Output Current, into Outputs	200 mA
DC Input Current	-30 to +5.0 mA

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

Am2965/66XC, DC, PC	$T_{A}=0$ to $70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MIN}=4.50 \mathrm{~V}$	$\mathrm{MAX}=5.50 \mathrm{~V})$
Am2965/66XM, DM	$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MN}=4.50 \mathrm{~V}$	$\mathrm{MAX}=5.50 \mathrm{~V})$
Am2965/66FM	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MIN}=4.50 \mathrm{~V}$	$\mathrm{MAX}=5.50 \mathrm{~V})$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description		Test Conditions (Note 1)			Min	(Note 2)	Max	Units		
V_{OH}	Output High Voltage		$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOH}_{\mathrm{O}}=-1 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{CC}}-1.15$	$\mathrm{V}_{\mathrm{cc}}-0.7 \mathrm{~V}$		Volts		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$				0.5	Voits		
			IOL	$=12 \mathrm{~mA}$			0.8				
$\mathrm{V}_{\text {IH }}$	Input HIGH Level			Guaranteed input logical HIGH voltage for all inputs			2.0			Volts	
$\mathrm{V}_{\text {IL }}$	Input LOW Level		Guaranteed input logical LOW voltage for all inputs					0.8	Volts		
v_{1}	Input Clamp Voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.2	Volts		
IIL	Input LOW Current		$V_{C C}=M A X, V_{1 N}=0.4 V$		DATA			-200	μ		
			$\overline{1 / G, \overline{2 G}}$			-400	$\mu \mathrm{A}$				
I_{IH}	Input HIGH Current				$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
I_{1}	Input HIGH Current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA		
Iozh	Off-State Current		$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					100	$\mu \mathrm{A}$		
lozl	Off-State Current		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$					-200	$\mu \mathrm{A}$		
l OL	Output Sink Current		$\mathrm{V}_{\mathrm{OL}}=2.0 \mathrm{~V}$			50			mA		
${ }^{1} \mathrm{OH}$	Output Source Current		$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$			-35			mA		
Isc	Output Short Circuit Current (Note 3)		$V_{C C}=\mathrm{MAX}$			$\begin{gathered} -60 \\ \left(\text { see } \mathrm{I}_{\mathrm{OH}}\right) \end{gathered}$		-200	mA		
$I_{\text {cc }}$	Supply Current	Am2965	All Outputs HIGH	$V_{C C}=M A X$ Outputs Open			24	50	mA		
			All Outputs LOW				86	125			
			All Outputs Hi-Z				86	125			
		Am2966	All Outputs HIGH	$V_{C C}=\operatorname{MAX}$Outputs Open			53	75			
			All Outputs LOW				92	130			
			All Outputs Hi-Z				116	150			

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Am2965 • Am2966
SWITCHING CHARACTERISTICS
($T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parameters	Description	Test Conditions		Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time from LOW-to-HIGH Output	Figure 1 Test Circuit Figure 3 Voltage Levels and Waveforms	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		6	(Note 4)	
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	9	15	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	18	22	30	
${ }^{\text {tPHL }}$	Propagation Delay Time from HIGH-to-LOW Output		$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		4	(Note 4)	ns
			$C_{L}=50 \mathrm{pF}$	5	7	15	
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	18	22	30	
$t_{\text {PLZ }}$	Output Disable Time from LOW, HIGH	Figures 2 and 4, $\mathrm{S}=1$			11	20	ns
$\mathrm{t}_{\mathrm{PHZ}}$		Figures 2 and 4, $S=2$			6.5	12	
$t_{\text {PZL }}$	Output Enable Time from LOW, HIGH	Figures 2 and 4, $S=1$			12	20	ns
${ }_{\text {tPZ }}$		Figures 2 and 4, $S=2$			12	20	
${ }^{\text {t SKEW }}$	Output-to-Output Skew	Figures 1 and $3, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			± 0.5	$\begin{gathered} \pm 3.0 \\ (\text { Note 5) } \end{gathered}$	ns
$V_{\text {ONP }}$	Output Voltage Undershoot	Figures 1 and $3, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			0	-0.5	Volts

SWITCHING CHARACTERISTICS

OVER OPERATING RANGE (Note 6)

Notes: 4. Typical time shown for reference only - not tested.
5. Time Skew specification is guaranteed by design but not tested.
6. AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.
7. $T_{C}=-55$ to $+125^{\circ} \mathrm{C}$ for Flatpak versions.

SWITCHING TEST CIRCUITS

BLI-130
${ }^{*} t_{\mathrm{pd}}$ specified at $\mathrm{C}=50$ and 500 pF .
Figure 1. Capacitive Load Switching.
Figure 2. Three-State Enable/Disable.

TYPICAL SWITCHING CHARACTERISTICS

VOLTAGE WAVEFORMS

Figure 3. Output Drive Levels.

The RAM Driver symmetrical output design offers significant improvement over a standard Schottky output by providing a balanced drive output impedance ($\approx 25 \Omega$ both HIGH and LOW), and by pulling up to MOS V_{OH} levels ($\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$). External resistors, not required with the RAM Driver, protect standard Schottky drivers from error causing undershoot but also slow the output rise by adding to the internal R .
The RAM Driver is optimized to drive LOW at maximum speed based on safe undershoot control and to drive HIGH with a symmetrical speed characteristic. This is an optimum approach because the dominant RAM loading characteristic is input capacitance.
The curves shown below provide performance characteristics typical of both the inverting (Am2965) and non-inverting (Am2966) RAM Drivers.

Figure 5. $\mathbf{t}_{\mathrm{PLH}}$ for $\mathbf{V}_{\mathrm{OH}}=\mathbf{2 . 7}$ Volts vs. \mathbf{C}_{L}.

Figure 6. $\mathbf{t}_{\mathrm{PHL}}$ for $\mathrm{V}_{\mathrm{OL}}=\mathbf{0 . 8}$ Volts vs. C_{L}.

The curves above depict the typical tPLH and IPHL for the RAM Driver outputs as a function of load capacitance. The minimums and maximums are shown for worst case design. The typical band is provided as a guide for intermediate capacitive loads.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am2965 Order Number	Am2966 Order Number	Package Type	Temperature Range	Screening Level
AM2965PC	AM2966PC	P-20	C	C-1
AM2965DC	AM2966DC	D-20	C	C-1
AM2965DCB	AM2966DCB	D-20	C	B-1
AM2965DM	AM2966DM	D-20	M	C-3
AM2965DMB	AM2966DMB	D-20	M	B-3
AM2965FM	AM2966FM	F-20	M	C-3
AM2965FMB	AM2966FMB	F-20	M	B-3
AM2965XC	AM2966XC	Dice	C	Visual inspection
AM2965XM	AM2966XM	Dice	M	to MIL-STD-883
				Method 2010B.

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $F=$ Flatpak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless othewise specified.
2. $\mathrm{C}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to $5.50 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Am2965 • Am2966 Dynamic Memory Drivers Improve Memory Performance

By John Mick and Roy Levy

Abstract

OVERVIEW The Am2965 and Am2966 are bipolar octal drivers for 16K and 64 K dynamic RAMs. The devices offer a guaranteed maximum undershoot of -0.5 V without requiring external resistors. The Am2965 and Am2966 feature a tPD minimum and maximum specified at 50 pF and 500 pF . The V_{OH} is guaranteed at V_{CC} -1.15 V minimum, and I_{OH} and I_{OL} are specified at +2.0 V for minimum guarantee of charging capacitance. There are glitchfree three-state outputs during power-up and power-down as well as symmetrical, controlled rise time and fall time.

While the Am2965 and Am2966 have low-power Schottky input characteristics and are pin-compatible replacement for design using the 'S240 and 'S244 (plus external resistors), the Am2965/2966 offer improved performance. The cost of the components is also comparable to Schottky buffer/external resistor systems.

To assure product quality, the Am2965 and Am2966 are specified for COM'L and MIL-STD-883.

INTRODUCTION

In the past, memory system designers have used Schottky devices such as the Am74S240 or Am74S244 to drive the highly capacitive inputs of MOS Dynamic RAMs. However, because of the distributed inductance and distributed capacitance associated with many dynamic RAMs on printed circuit board, resistors are usually placed in series with the Schottky TTL outputs to minimize undershoot and dampen the ringing that occurs when driving the inductive/capacitive load.
To achieve maximum performance in today's memory systems, the designer should use the Am2965 or the Am2966 to drive large arrays of MOS Dynamic RAMs. These devices increase system speed by providing high-capacity drive and optimizing the drive characteristic time constant. They provide a new system solution for solving these problems that eliminates the external resistor and guarantees the maximum undershoot will not exceed -0.5 V .

The address lines on most dynamic RAMs are specified at 5 pF maximum while the $\overline{\mathrm{RAS}}$, write enable ($\overline{\mathrm{WE}}$) and $\overline{\mathrm{CAS}}$ inputs can be as high as 10 pF . Thus the RAM driver's output must drive extremely high capacitive levels with good speed and without undershoot. When several dynamic RAMs are put onto a printed circuit board, the traces look inductive, so the result resembles a transmission line with distributed inductance and capacitance.
More than 0.5 V of undershoot at the RAM inputs can create serious memory system problems by causing internal breakdown and loss of data in RAM chips and possibly damaging the RAM.

System designers must also maintain voltage levels at the RAM inputs. Specifications require the data lines to exceed 2.4 V , and the $\overline{R A S}$ and $\overline{C A S}$ lines actually have to exceed 2.7 V . Speed must then be maintained while driving all of that capacity.

THE RAM DRIVING PROBLEM

The situation can be pinpointed to an inductor/capacitance driving problem (Figure 1a). There is some inductance in series with the capacitance associated with each RAM input. In a simplified circuit, the inductance is being driven from a voltage having source impedance marked as R_{S} on Figure 1b. If the transition is LOW-to-HIGH, the voltage goes from LOW-to-HIGH with ringing at the HIGH state (Figure 2). Only above the 2.7 V or 2.4 V levels, depending upon the type of input, can a steady-state HIGH level be guaranteed on the RAM input. The rise time of the signal is a design consideration, recognizing the amount of capacitance being driven.

Conversely, when the signal drops from HIGH-to-LOW again, ringing can occur. If the ringing causes the voltage to go below ground, it is called undershoot. Figure 3 a shows the signal falling to zero volts more quickly than the signal in Fig. 3b, resulting in a severe undershoot that takes longer to settle at the LOW steady state voltage. This delay time associated with the RC time constant is independent of the specification for the HIGH-to-LOW propagation delay time, $\mathrm{t}_{\mathrm{PHL}}$. It is a hidden delay that must be compensated for.

VOLTAGE SWING CONSIDERATIONS

Recognizing that some ringing will occur, the system designer must determine how quickly the signal can be stabilized within the threshold limits of 0.5 V below ground and 0.8 V above ground. The best way to predict what happens with overshoot and undershoot is to examine the method of driving RAMs. Typically, it is done using one of several Schottky TTL devices connected directly to the RAM. Figure 4a shows an output transistor/resistor structure of a Schottky TTL device. When Q_{1} is off and Q_{2} is on, the LOW source impedance is about 3 ohms. When Q_{2} is off and Q_{1} is on, the HIGH impedance is that of the Q_{1} transistor and the short circuit R_{1}. R_{1} typically represents about 30 -ohm source impedance, so that the source impedance HIGH and source impedance LOW represent a 10-to-1 difference with respect to each other (Figure 4b).

Other TTL devices can be driven in this way, but it is unacceptable for driving RAMs with this type of source impedance for several reasons. First, low source impedance in the LOW states causes ringing by turning on so fast that undershoot results at the RAM inputs. The impedance, however, drives well in the HIGH state. However, to solve the HIGH-to-LOW transition and undershoot problems a resistor is usually placed in series externally between the Schottky TTL gate and the RAM (Figure 4c). The resistor, of about 30 ohms, virtually eliminates undershoot by raising the source impedance in the LOW state to 33 ohms $\left(Q_{1}\right.$ plus $\left.R_{2}\right)$.

Am2965 • Am2966 Application Note

a) The RAM Driver Interface

$V_{S}=$ the signal driving the chip
$R_{S}=$ the output resistance of the driving source
$\mathrm{L}_{\mathrm{W}}=$ the inductance of the circuit wiring between driving source and memory
$\mathrm{C}_{\mathrm{M}}=$ input capacitance of memory chip
$\mathrm{V}_{\mathrm{M}}=$ input signal to memory and voltage developed across capacitor
b) Model of Circuit Driving a Memory Chip

Figure 1.

Figure 2. Overshoot in a Rising Signal

Figure 3. Undershoot in Falling Signals

When the HIGH state is turned on, the 30 -ohm external resistor added to the 30 -ohm terminal resistor in series totals 60 ohms of source impedance - an amount double of what is needed. While adding the external resistor in series solves undershoot, it causes the rise time (i.e., LOW-to-HIGH transition) to be slowed considerably - probably by a factor of two because resistance is doubled, so the RC time constant is doubled.

The ideal RAM driver source impedance is about 30 ohms in the HIGH state and 20 to 30 ohms in the LOW state (Figure 4d). The Am2965/2966 achieves the ideal RAM driver configuration by having approximately a 20 - to 25 -ohm source impedance in the LOW state and 25 - to 30 -ohm source impedance in the HIGH state. This ideal configuration is achieved by including a resistor $\left(R_{2}\right)$ inside the Am2965/66 in series with the collector of $Q_{2} . R_{2}$ adds approximately a 15 - to 20 -ohm series resistance that has a source impedance in the LOW state of about 20 to 25 ohms and a source impedance in the HIGH state of about 25 to 30 ohms.

Remember, these figures are very nearly what was previously defined as the ideal RAM driver. What results is $R_{1}+Q_{1}$ equivalent resistance in the $H I G H$ state and $R_{2}+Q_{2}$ resistance in the LOW state. The AMD family of RAM driver parts places the resistor inside and only increases the source impedance in the LOW state to achieve the ideal RAM driver configuration shown in Figures 4 d and 4 e . Now no resistor is needed outside the RAM driver as is typically used with today's Schottky devices.

APPLICATION

Figures 5 a and 5 b show typical overall memory subsystems for AmZ8000 and 2900 Family CPUs. The subsystems consist of the RAM drivers surrounding the RAMs almost directly; a dynamic memory controller; and interface, timing and controls required to drive the RAMS. There may also be an error detection and correction device as the figure shows.

Am2965 • Am2966 Application Note

The objective of the memory subsystem is to drive the capacitive RAM inputs as rapidly as possible while meeting all the requirements for the undershoot and threshold levels. Figure 6 shows typical locations for RAM drivers to achieve this goal. Since a majority of the propagation delay times is an RC consideration, design flexibility allows the number of RAM input loads to be chosen for each RAM driver output. The best tradeoff includes fan-out choice and skew consideration. The skew specification for the Am2965 and Am2966 applies across the eight driver outputs but not between different devices.

The memory configuration of Figure 6 consists of an array of four rows by 16 columns of dynamic RAM chips for a total of 64 devices (Figure 7). The address drivers in Figure 6 have $16 \times 4 \times$ 5 pF maximum $=320 \mathrm{pF}$ (ignoring board capacitance) loading if one RAM driver drives all 64 RAM address inputs. Splitting this load with two RAM drivers reduces the capacitive load for each to 160 pF and typically reduces the tpD by 6 to 8 nsec .
One of the unique aspects of the design in Figure 7 is the balanced number of loads on the $\overline{\text { RAS }}$ outputs of the RAM drivers and the number on loads of the $\overline{\mathrm{CAS}}$ outputs of the RAM drivers.

Each driver drives the same number of RAMs. To balance the $\overline{\mathrm{CAS}}$ line, the $\overline{\mathrm{CAS}}$ inputs of four of the eight buffers are tied together on the RAM driver. Each RAM $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ input is 10 pF maximum, so the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ loading is 160 pF at each RAM driver. The $\overline{C A S}$ inputs of each row are spread across four outputs to match the RAS loading and are shown using the same driver to reduce skew between the $\overline{\mathrm{RAS}}$ and the $\overline{\mathrm{CAS}}$ signals. The $\overline{W E}$ inputs are organized into upper and lower byte $\overline{W E}$ drive for each of the four rows. This amounts to 8 inputs $\times 10 \mathrm{pF}$ maximum $=80 \mathrm{pF}$ loading. By fanning out a full driver to the $\overline{\mathrm{WE}}$ lines, four inputs are tied in parallel, balanced loading on the outputs are maintained.

If a full error detection and correction scheme shown in Figure 5 is used, all 22 bits in the row must be written simultaneously so a slightly different $\overline{W E}$ configuration would be used.

a) Schottky Output

b) Source Impedance for Schottky Output

c) Am74S240 Common Approach

d) Ideal RAM Driver

e) Ideal RAM Driver Output

a) High Performance Computer Memory

b) MOS Microcomputer Memory System

Figure 5. Overall Memory Subsystems for the Am2900 and AmZ8000 Family CPUs

Figure 6. Typical Locations for RAM Drivers

Figure 7. Typical 64K Word by $\mathbf{1 6 - B i t}$ Memory System

DESIGN ADVANTAGES OF THE Am2965/2966

Compared with Schottky parts such as the Am74S240 or Am74S244, which are used as RAM drivers today, the Am2965/66 RAM drivers offer more advantages than just a RAM driver having no external source resistor.
First, as Figure 8a shows, propagation delays for the Schottky Am74S240 or Am74S244 are measured at 1.5 V , which is not where the RAM thresholds are. They are at $0.8 \mathrm{~V}, 2.4 \mathrm{~V}$ and 2.7 V as shown in Figure 8b.
On the Am2965 and Am2966, the LOW-to-HIGH transition voltage propagation delay speeds are measured at 2.7 V . Going from

HIGH-to-LOW, speed is measured at 0.8 V , which is where the actual RAM thresholds are.
Propagation delays are specified differently, which also makes the Am2965/66 unique (Figure 9). Both minimum and maximum propagation delays are specified at $25^{\circ} \mathrm{C}$ and 5 V . This enables the design engineer to do a worst-case design using both minimum and maximum numbers for the drivers to determine the skew between various drivers. A specified tPD minimum of 50 pF and an unusual maximum of 500 pF provide a full range of capacitance specifications for both LOW-to-HIGH and HIGH-toLOW transitions.

a) $\mathbf{t}_{\mathrm{PLH}}$ for $\mathrm{V}_{\mathrm{OH}}=2.7$ Volts vs. C_{L}

b) $\mathrm{t}_{\mathrm{PHL}}$ for $\mathrm{V}_{\mathrm{OL}}=\mathbf{0 . 8}$ Volts vs. C_{L}

c) Output Drive Levels

Figure 9. RAM Driver Propagation Delays

Am2968
 Dynamic Memory Controller

DISTINCTIVE CHARACTERISTICS

- Provides control for $16 \mathrm{~K}, 64 \mathrm{~K}$, and 256 K DRAMs
- Directly drives up to 88 DRAMs
- Highest-order two address bits select one of four banks of RAMs
- Separate output enable for multi-channel access to memory
- Chip select for easy expansion
- Burst, distributed, or transparent refresh mode determined by user
- Supports scrubbing operations and nibble-mode access
- IMOX ${ }^{\text {TM }}$ processing
- 48-pin dual in-line package
- 100% product assurance testing to MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am2968 Dynamic Memory Controller is intended to be used with today's high performance memory systems. It has two 9 -bit address latches which allow the chip to be used with $16 \mathrm{~K}, 64 \mathrm{~K}$, or 256 K dynamic RAMs. A two-bit bank select latch for the two high-order address bits is provided to select one each of the four $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ outputs.
In refresh mode, two counters cycle through the refresh addresses. Only the ROW counter is used for refresh without scrubbing, generating up to 512 addresses to refresh a 512 -cycle-refresh 256K DRAM. The column counter is used only in refresh with scrubbing. In this mode all RAS outputs are generated with only one $\overline{\mathrm{CAS}}$ output.

Am2969•Am2970
 Memory Timing Controllers

DISTINCTIVE CHARACTERISTICS

Am2969

- Provides complete timing control for Dynamic Memory Controllers
- Complete timing control for the Am2960, Am2961/2962 Error Correction Circuits including scrubbing
- Delay-line-controlled timing
- Arbitrates between refresh and memory requests
- Supports 128-, 256-, 512-cycle burst refresh
- Initializes memory on power-up
- Provides WE drive for memory array (up to 88 DRAMs)
- IMOX ${ }^{\text {™ }}$ processing
- 48-pin DIP package
- 100% MIL-STD- 883 reliability assurance testing

Am2970

- Provides timing control for Dynamic Memory Controllers
- Delay-line timing reference
- Supports 128-, 256-, 512-cycle burst refresh
- Arbitrates refresh and memory cycle requests
- Performs memory initialization
- Provides WE drive for memory array (up to 88 DRAMs)
- IMOX processing
- 24-pin $0.3^{\prime \prime}$ space-saving package

FUNCTIONAL DESCRIPTION

The Am2969/2970 are high performance memory timing controllers. The Am2969 is designed to provide all the control signals for the Am2968 Dynamic Memory Controller and the existing Am2960 error detection and correction (EDC) unit. For memory systems not utilizing the Am2960 EDC unit, the Am2970 will provide all the control signals for the Am2968 Dynamic Memory Controller. It will also reduce IC cost and board space. The use of a delay line with both the Am2969 and Am2970 provides maximum flexibility to the system designer as well as allowing him to achieve maximum performance.
The Am2970 supports functions which are a subset of the Am2969. By choosing not to utilize the EDC functions, the Am2970 can be packaged into a 24 -pin DIP.
The Am2969 timing controller may be segregtied into seven functional parts:
CPU status decode - Latches status of the CPU and decodes the control bits to define the type of cyole. Configuration and timing control - Recelves control bits which define the type of refrestricycle.
Refresh timer - Determines hen refresh cycle is needed.
Arbiter - Determines whether a fitiesh or a read/write cycle should 1
DMC eomithler Cenerates the interface control signals to be sent to ine a mamice Memory Controller.
ta muitipie:sus controlier - Generates the inter face ootiol signals to the EDC units and the Multiple Bus Buffe
Errol and interrupt control - Controls the timing of sig(1) the EDC unit to allow it time to correct bits in error.

IMOX is a trademark of Advanced Micro Devices, Inc.

Am8163•Am8167
 Dynamic Memory Timing, Refresh and EDC Controllers

DISTINCTIVE CHARACTERISTICS

- Complete CPU to dynamic RAM control interface
- $\overline{R A S} / M S E L / \overline{C A S}$ Sequencer to eliminate delay lines
- Memory request/refresh arbitration
- Complete EDC/data path controls for Word/Byte read or write
- Automatic write-back of corrected data and check bits when single errors are detected on any read cycle
- Refresh interval timer independent of CPU
- Refresh control during Single-Step or Halt modes
- EDC error flag latches for error logging under software control
- Two timing configurations support a broad range of processors (Z80, Z8000, 8086, 8088, MC68000)

TABLE OF CONTENTS

Functional Description 4-90
Pin Description . 4-92
Pin Connections 4-92
Electrical Characteristics 4-95
Timing Waveforms . 4-96/98/99/100
Switching Characteristics . 4-97
Application Diagrams 4-104
Ordering Information . 4-108

GENERAL DESCRIPTION

The Am8163 and Am8167 are high speed bus interface controllers forming an integral part of the 8086 and AmZ8000* memory support chip set using dynamic MOS RAMs with Error Detection and Correction (EDC). The complete chip set includes the Am8284A and AmZ8127 Clock Generators, the Am2964B Dynamic Memory Controller, the Am2961/62 EDC Bus Buffers, the Am2960 EDC Unit and Am2965/66 RAM Drivers.
The Am8163 and Am8167 provide all of the control interface functions including $\overline{\text { RAS/Address-MUX/CAS }}$ timing (without delay lines), refresh timing, memory request/ refresh arbitration and all EDC enables and controls. The enable controls are configured for both word and byte operations including the data controls for byte write with error correction. The Am8163/7 generates bus and operating mode controls for the Am8160 EDC Unit.
The Am8163/7 uses the AmZ8127 oscillator output to generate $\overline{R A S} /$ Address MUX/CAS timing. An internal refresh interval timer generates the memory refresh request independent of the CPU to guarantee the proper refresh timing under all combinations of CPU and DMA memory requests.

Am8163/67 FUNCTIONAL DESCRIPTION

The Am8163/67 provides timing and control for Error Detection and Correction (EDC) using dynamic Random Access Memories (RAM) together with the Am2960 family of EDC devices. See Table 1 to determine which device (Am8163/67) is best suited to which processor.

The Am2960 family provides an optimized, but also flexible solution to the interface between MOS microprocessors and dynamic MOS RAMs.
The Am2960 performs the function of error detection and correction, using a modification of the well-known Hamming Code algorithm.
The Am2961 and Am2962 are bus buffers optimized for operation with the Am2960

TABLE 1.

Processor	Am8163	Am8167
Z80A	X	
Z80B	A X	
Z8000 - 4MHz	X	
- 6MHz		X
- 8 MHz	X	X
$8086-5 \mathrm{MHz}$	X	
- 10MHz		X
$8088-5 \mathrm{MHz}$	X	
- 10 MHz		X
$68000-4 \mathrm{MHz}$	X	
- 6 MHz		X
- 8 MHz	X	X
- 10 MHz	X	X
- 12 MHz	X	X

Note: Where X 's appear in both columns either device may be used.

The Am2964B performs address latching and multiplexing for the RAS/CAS sequence. It also contains a refresh counter that can be multiplexed onto the address outputs.
The Am2965 and Am2966 are octal memory address bus drivers, similar and pin compatible to the popular 74LS240 and 74LS244, but with on-chip resistors that reduce the problem of undershoot on unterminated address lines.
None of the above mentioned circuits contain timing elements. To achieve the greatest versatility, this function is concentrated in the Am8163.

The Am8163/67 performs two independent functions:

1. It provides timing and control to the Am2964B Dynamic Memory Controller, i.e. the RAS/CAS Refresh address multiplexer.
2. It provides timing and control for the 2960, 2961, or 2962 EDC circuits and interfaces with the microprocessor's interrupt lines and WAIT input.

RAS/CAS and Refresh

The Am8163/67 accepts several control signals from the microprocessor (BYTE/WORD, READ/WRITE, Address Strobe, Data Strobe, Memory/IO) and a Refresh clock signal from the clock generator.

From these inputs the Am8163/67 generates control signals for the 2964B RAS/CAS and Refresh multiplexer.
The LE output, when HIGH, makes the 2964B input latches transparent. The HIGH-to-LOW transition of LE latches address information into the 2964B.
The $\overline{R A S}$ output is activated when the appropriate combination of $\overline{S T R}, M / \overline{\mathrm{O}}$, and $\overline{\mathrm{CS}}$ occur or when a refresh operation is to be performed. MSEL goes LOW one clock period after RAS went LOW.
$\overline{\text { CAS }}$ goes LOW a short specified delay after MSEL went LOW. $\overline{R A S}$, MSEL and CAS go HIGH together, eight clock periods after RAS went LOW. The RAS/CAS timing is thus derived from a high frequency (16 MHz clock) without any monostables or delay lines.
The Am8163 and Am8167 are comparable except for the CAS timing sequence.
The Am8163 timing is optimized for operation with a 4 MHz microprocessor clock, derived from a 16 MHz oscillator. The $\overline{\text { RAS }}$ to MS delay is one oscillator period (62 ns) and the MS to $\overline{\mathrm{CAS}}$ delay is combinatorial, 16 ns minimum.
The Am8167 timing is optimized for operation with a 5.5 MHz microprocessor clock, derived from a 22 MHz oscillator. The $\overline{\text { RAS }}$ to MS delay is one oscillator period (47ns) and the MS to $\overline{\mathrm{CAS}}$ delay is also one oscillator period (47ns).

Dynamic Memory Refresh

The proper sequencing of refresh operations can be performed either by the CPU (transparent refresh) or by the memory controller (stand-alone refresh).
Transparent refresh, as implemented in the Z80 and Z8000 microprocessors is simple and avoids all memory contention, but it wastes processor time and is not fully compatible with DMA operation.
"Stand-alone" refresh puts the responsibility of refresh address generation and timing on the memory controller. The Am8163/67 performs the necessary timing and access arbitration. The internal refresh interval timer generates a refresh request after every 16 clock pulses on the RCLK refresh clock input (typically 1 MHz). When FR (force refresh) goes LOW, the $\div 16$ counter is cleared and the internal refresh request is generated.
Refresh requests and memory requests are synchronized inside the Am8163/67 where the arbiter circuit resolves potential conflicts. If a refresh request occurs after a memory request or during a memory operation, this refresh request will be honored after the memory transaction is complete and the necessary additional precharge time has elapsed.
Similarly, if a memory request occurs after a refresh request or during a refresh operation, this memory request will not be acknowledged until the refresh operation is completed and the necessary precharge time has elapsed. When memory and refresh requests occur simultaneously, the arbiter favors the memory request.

Error Detection/Correction

The other function of the Am8163/67 is timing and control for Error Detection and Correction using the 2960, 2961 or 2962 circuits.
The Am8163/67 drives the ECC Control Bus and receives ERROR or MULTIPLE ERROR inputs from the 2960 Error Detection and Correction Unit. The Am8163/67 also interfaces with the microcomputer interrupt structure and with the error logging circuitry.
The 2960 can support two methods of error correction, "Correct Only On Error" and "Correct Always".
"Correct Only On Error" relies on the fact that error detection is faster than correction. Data read from the memory is fed directly to the processor. A read error will insert a wait state while the error is being corrected and data is also being written back into the memory. At reasonably low error rates this scheme achieves the highest possible throughput, but it is incompatible with all
present microprocessors, since they sample their WAIT input too early in the cycle.
The Am8163/67 implements the other scheme, "Correct Always," which is compatible with all modern microprocessors.
This scheme allocates enough time to insure corrected data is sent to the CPU. Additionally the Am8163/67 allows time after each memory read operation, to write the corrected result back into the memory. This write operation, however, is executed only if there was a single error: There is no need to write correct data back, and it is undesireable to write the wrong result of a double error.
The Am8163/67 also provides the proper control signals to allow byte write operation in 16-bit memory systems with Error Correction: The Am8163/67 automatically first performs a word read operation, retains the corrected unused byte in the 2960, and then writes the composite word and check bits into the memory: Outputs LEO, LEI, $\overline{\mathrm{OEH}}, \overline{\mathrm{OEL}}$ and S, are responsible for this.
$\overline{\mathrm{OEL}}$ is pulsed LOW during every read operation (byte or word) and during a byte write operation with $\mathrm{AO}=0$ (even address)
$\overline{\mathbf{O E H}}$ is pulsed LOW during every read operation (byte or word) and during a byte write operation with $\mathrm{AO}=1$ (odd address)
$\overline{\text { OEBW }}$ is pulsed LOW during every read operation
$\overline{O E B L}$ is pulsed LOW during every read operation with $A O=1$ (odd address)
$\overline{\text { OEBH }}$ is pulsed LOW during every read operation with AO $=0$ (even address)
Note: The $\overline{O E}$ and $\overline{O E B}$ outputs interpret $A O$ in opposite ways. This is consistent with 2960/61 operation.

R/W	B / \bar{W}	A0	$\overline{\text { OEH }}$	$\overline{O E L}$	OEBW	$\overline{\text { OEBH }}$	$\overline{\text { OEBL }}$
L	L	L	H	H	H	H	H
L	L	H	H	H	H	H	H
L	H	L	H	L	H	H	H
L	H	H	L	H	H	H	H
H	L	L	L	L	L	L	H
H	L	H	L	L	L	H	L
H	H	L	L	L	L	L	H
H	H	H	L	L	L	H	,

$\overline{\mathrm{OEBW}}, \overline{\mathrm{OEBH}}$, and $\overline{\mathrm{OEBL}}$ can be active (LOW) only if: $\overline{\mathrm{DS}}=\overline{\mathrm{CS}}=$ LAND $\overline{\text { SUP }}=\mathrm{H}$
Note that 16 -bit memory with EDC must always be initialized with word write operations in order to allow a later byte write operation. (An uninitialized memory would most likely read multiple errors and would then not allow byte write operation).

Error Interrupt Control

The Am8163/67 clocks in the ERROR and MULTIPLE ERROR signals coming from the 2960 and stores them in both the Interrupt Logic and in the Error Control Logic.
Interrupt Acknowledge clears both $\overline{\text { NTERR }}$ and $\overline{\text { INTMERR }}$. The latter must therefore always be the higher priority interrupt.
The Error Logic Control circuit latches up the two bits in the Error Interrupt Control circuit. The LERR and LMERR outputs are cleared by ERRACK, provided that the interrupts have been cleared first. These signals are normally used to control updating of the syndrome latch or other diagnostic circuitry.

CONNECTION DIAGRAM Top View

ABI-057

Note: Pin 1 is marked for orientation.

FUNCTIONAL PIN DESCRIPTION

BUS CONTROL

CLK CLOCK (input)
The CLK input determines memory cycle timing via the internal state machine from which the control outputs are derived. It is normally 16 MHz for the Am8163 and 22MHz for the Am8167. The clock can run at lower frequencies but not higher because of other memory timing constraints.

RCLK REFRESH CLOCK (input)

This input determines the period of the internal refresh interval $\div 16$ timer and is normally 1 MHz . This results in a refresh cycle every 16 microseconds. This provides an internal refresh request to guarantee valid memory data independent of other system operating modes, (memory request, DMA, etc.).
$\overline{\text { FR }} \quad \overline{\text { FORCE REFRESH }}$ (input)
FR is used to force a refresh cycle at user designated times. One example is transparent refresh during I/O operations. The refresh interval timer is reset so the next refresh occurs 16 RCLK cycles later if no other $\overline{\mathrm{FR}}$ pulses occur. $\overline{F R}$ can be used to minimize collisions with memory requests, thereby reducing the amount of time the CPU waits for refresh.
$\overline{\text { XACK }} \quad \overline{\text { TRANSFER ACKNOWLEDGE }}$ (output, open collector)
This active LOW output indicates that corrected data has been latched in the Am8160 EDC output latch (as opposed to indicating data is valid on the system bus).
$\overline{\text { AACK }}$

ADDRESS BIT 0 (input)

AO data input is latched internally on the LOW-toHIGH transition of $\overline{\mathrm{AS}}$. It is used during byte operations to designate whether high byte or low byte data is being accessed.
$A O=$ LOW for high byte operations and AO $=\mathrm{HIGH}$ for low byte operations with the AmZ8000 Family CPU's. AO phasing is opposite for 8086 and inversion can be avoided by interchanging the roles of $\overline{\mathrm{OEL}}$ and $\overline{\mathrm{OEH}}$ (and $\overline{\mathrm{OEBL}}$ and $\overline{\mathrm{OEBH}}$).

ADDRESS STROBE (input)

The $\overline{A S}$ input is used to control the AO latch. When HIGH, AO data is latched. For non-multiplexed buses, the $\overline{\mathrm{AS}}$ input is tied LOW to make the latch transparent.
$B / \bar{W} \quad B Y T E / \overline{\text { WORD }}$ (input)
This input designates a byte operation if HIGH and a word operation if LOW. It must be valid throughout the memory transaction. The Am8163/7 uses this input to determine $\overline{\mathrm{OEH}}$ and $\overline{\mathrm{OEL}}$.
READ/WRITE (input)
This input indicates a read operation when HIGH and a write operation when LOW. It must be valid throughout the memory transaction. The Am8163/7 uses this input to determine the outputs $\overline{\mathrm{OEH}}, \overline{\mathrm{OEL}}$, $\overline{O E B H}, \overline{O E B L}$, and $\overline{O E B W}$.
MEMORY/INPUT-OUTPUT (input)
This signal serves as an active HIGH chip select for memory operations. It is used in conjunction with $\overline{\mathrm{CS}}$ to determine if STR is valid. It must be HIGH before the LOW-to-HIGH transition of STR if the $\overline{\mathrm{STR}}$ input command is a pulse (AmZ8000). When using a level input (multibus) to start the cycle, $M / \overline{\mathrm{O}}$ must become valid no later than one clock period after the HIGH-to-LOW transition of STR.

CHIP SELECT (input)

This active LOW input is one of the enables for the Am8163/7. It must be LOW before the LOW-toHIGH transition of STR when using a pulse to start a memory access. When using a level input to start
the cycle, $\overline{\mathrm{CS}}$ must become valid no later than one clock period after the HIGH-to-LOW transition of STR.
$\overline{S T R}$
START (input)
This active LOW input can be a pulse or a level. It is used to indicate when memory access is requested. It must not extend past the LOW-to-HIGH transition of $\overline{\mathrm{DS}}$.

ADDRESS CONTROL

LE LATCH ENABLE (output)

This output controls the LATCH ENABLE input of the Dynamic Memory Controller. When LE is HIGH the DMC address input latch is transparent. When LE is LOW the address is latched. This signal is $\overline{A S}$ inverted.
$\overline{\text { RFSH }} \overline{\text { REFRESH }}$ (output)
This active LOW output indicates a refresh operation is to be done. The Dynamic Memory Controller uses this signal to select the refresh address output.
$\overline{\text { RAS }} \overline{\text { ROW ADDRESS STROBE (output) }}$
This active LOW output strobes the row address into memory. The $\overline{\text { RAS }}$ HIGH-to-LOW transition occurs during t_{0} if $\overline{S T R}, \mathrm{M} / \overline{\mathrm{IO}}$ and $\overline{\mathrm{CS}}$ have selected a memory cycle. Additionally, $\overline{\mathrm{RAS}}$ will be active one t-state after the $\overline{\text { RFSH }}$ HIGH-to-LOW transition occurs during refresh. The $\overline{R A S}$ LOW-to-HIGH transition at the end of each cycle starts an internally timed $\overline{\mathrm{RAS}}$ precharge time consisting of three t-states.
MSEL MULTIPLEXER SELECT (output)
This output controls the row and column address selection in the DMC. When MSEL is HIGH, the row address is selected and when LOW, the column address is selected. MSEL is normally HIGH and goes LOW only during memory accesses.

CAS COLUMN ADDRESS STROBE (output)

This active LOW output strobes the column address into memory. It is generated only during memory accesses.

ERROR LOGGING AND CONTROL

ERR ERROR (input)

This active LOW signal from the Am8160 EDC indicates when an error has occurred. The Am8163 samples this input just before the HIGH-to-LOW transition of $\overline{L E O}$. Single errors cause an automatic write-back of corrected data.

MERR $\overline{\text { MULTIPLE ERROR (input) }}$

This active LOW signal from the EDC indicates when a multiple error has occurred. Write back to memory is inhibited if a $\overline{M U L T I P L E ~ E R R O R ~ o c c u r s ~}$ on a read cycle.
LERR LATCHED ERROR (output)
This active HIGH output is set HIGH as a result of the ERR input becoming active. LERR HIGH indicates an error has occurred. LERR is normally used to control error logging. It is reset when ERRACK goes LOW.

LMERR LATCHED MULTIPLE ERROR (output)

This active HIGH output is set HIGH as a result of the MERR input. When HIGH, it indicates a multi-
ple error has occurred. It is reset when ERRACK goes low.
INTERR INTERRUPT ERROR (output, open collector)
This active LOW output is used to interrupt the CPU when an error occurs. This can be used for diagnostics or error logging. INTERR has high output drive capability in order to drive system buses.
INTMERR INTERRUPT MULTIPLE ERROR (output, open collector)
This active LOW output is used to interrupt the CPU when a multiple error occurs. This can be used for diagnostics or error logging. INTMERR has high output drive capability in order to drive system buses.
INTACK INTERRUPT ACKNOWLEDGE (input)
This active LOW input resets both the $\overline{\text { INTERR }}$ and INTMERR signals.
ERRACK ERROR ACKNOWLEDGE (input)
This active LOW input resets the error logging flags, LERR and LMERR. It is only effective when INTACK has previously cleared the interrupt flags, $\overline{\text { INTERR }}$ and INTMERR.

EDC CONTROL

LEB LATCH ENABLE BUS (output)
LEB is used to latch corrected data in the external Am8161/2 EDC Data Bus Buffers. By latching data output to the system data bus, the CPU can be operated in a single-step mode. The data latch is required to capture data so the memory can be released for refresh immediately after a read (or write) cycle.
LEO LATCH ENABLE OUTPUT (output)
LEO is used to latch corrected data in the Am8160 EDC data output latch. Correct data is then available to regenerate correct check bits for the write portion of the read-modify-write cycle. LEO can also control LEY of the Am8161/2 EDC Data Bus Buffers (the input latch from the system data bus). This is required in systems where the CPU removes data from the system data bus before the Am8163/7 has completed a write cycle.
LEI LATCH ENABLE INPUT (output)
LEI is used to control the Am8160 EDC's input latch. It is normally LOW when a memory cycle is not in progress. This prevents transitions on the bus from toggling the EDC logic, thereby reducing power dissipation and system noise. LEI latches the input data so the EDC data bus (Y bus) can be TURNED AROUND WHILE the EDC is correcting the data. Cycle time is reduced by doing these functions in parallel.
S

SELECT (output)

This output controls the multiplexer that selects EDC input data. It is normally HIGH to select data from the system bus. When LOW it selects data from memory. Since all cycles are a read-modifywrites, S switches every cycle. All memory operations take the same number of internal t-states. There is no difference in the length of a cycle on read or write, error or no error.

$\overline{\text { OEBH }}$ OUTPUT ENABLE BUS HIGH (output)

$\overline{O E B H}$ output enables the high byte data onto the system data bus during byte read operations. It is used when interfacing to 8 -bit data buses or the Multibus.*
OEBL OUTPUT ENABLE BUS LOW (output)
$\overline{O E B L}$ output enables the low byte of data onto the system data bus during Byte Read operations. It is used when interfacing to 8 -bit data buses or the Multibus.
OEBW OUTPUT ENABLE BUS WORD (output)
OEBW output enables data onto the system data bus. It occurs on every read cycle independent of B / \bar{W}. It is used for 16 -bit systems or Multibus systems.
OUTPUT ENABLE HIGH (output)
$\overline{\mathrm{OEH}}$ controls the high byte of the EDC data bus (Y bus). When $\overline{\mathrm{OEH}}$ is HIGH the Am2961/62 are driving the bus. When $\overline{O E H}$ is LOW, the Am8160 EDC is driving the bus. $\overline{\mathrm{OEH}}$ is HIGH during word writes and goes low on reads and byte writes.
OEL OUTPUT ENABLE LOW (output)
OEL controls the low byte of the EDC data bus (Y bus). When HIGH, the Am2961/62's are driving the bus. When LOW, the Am2960 is driving the bus.
$\overline{\text { OEL }}$ is HIGH during word writes and goes LOW on reads and byte writes.

OTHER CONTROLS

$\overline{\text { WE }} \quad \overline{\text { WRITE ENABLE (output) }}$
$\overline{\text { WE }}$ controls the memory during a write operation. It is generated during a byte or word write and also during a read if a single error has occurred. $\overline{W E}$ always occurs at the end of the memory cycle. Thus, the RAM is always doing a late write.
MEMORY CYCLE EXTEND (input)
This input is normally not used and is pulled up internally to produce "normal" timing. When tied LOW it extends the memory cycle (adds $5 \mathrm{t}_{2}$ states for Am8163 and adds $4 \mathrm{t}_{3}$ states for Am8167). This allows use of slower RAMs. Note that $\overline{M C E}$ affects the refresh cycle as well as the normal cycle. By adding external logic the user may extend the cycle by 1,2 or 3 t -states instead. This is done by keeping MCE low until 2, 3, or 4 clocks after MS for the 8163 or 2,3 , or 4 clocks after $\overline{\text { CAS }}$ for the 8167.
*Multibus is a registered trademark of Intel Corporation.

FUNCTION TABLES

Am8163/8167

R/W	B/W	AO	$\overline{\mathrm{OEH}}$	$\overline{\text { OEL }}$
L	L	L	H	H
L	L	H	H	H
L	H	L	H	L
L	H	H	L	H
H	L	L	L	L
H	L	H	L	L
H	H	L	L	L
H	H	H	L	L

OEH and OEL are enabled by appropriate sequencer " T " states. (See Timing diagram),

$\overline{\text { DS }}$	R/W	B/W	A0	$\overline{\text { OEBH }}$	OEBL	OEBW
x	L	L	L	H	H	H
x	L	L	H	H	H	H
x	L	H	L	H	H	H
x	L	H	H	H	H	H
L	H	L	L	L	H	L
L	H	L	H	H	L	L
L	H	H	L	L	H	L
L	H	H	H	H	L	L
H	X	X	X	H	H	H

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+V_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless otherwise noted)
MIL
$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V
COM'L
$T_{C}=0$ to $70^{\circ} \mathrm{C}$
$V_{C C}=4.75$ to 5.25 V
(Group A, Subgroups 1, 2 and 3)

Parameters	Description		Test Conditions		Min	(Note 2)	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	Output(s): All except open collectors	MIL, $\mathrm{IOH}^{\text {O }}=-1.0 \mathrm{~mA}$	2.4			Volts
				$\mathrm{COM}^{\prime} \mathrm{L}$, $\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$	2.4			
Vol	Output LOW Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	Output(s): LERR, LMERR	$\mathrm{lOL}=8 \mathrm{~mA}$			0.50	Volts
			$\overline{\mathrm{CAS}}, \overline{\mathrm{RAS}}, \overline{\text { OEBH}}, \overline{\text { OEBL }}$	$\mathrm{OLL}=12 \mathrm{~mA}$			0.50	
			$\overline{\text { OEH, }}$ OEL, $\overline{\text { OEBW }}$, $\overline{\mathrm{RFSH}}$	$\mathrm{loL}=12 \mathrm{~mA}$			0.50	
			LEO, LEI, $\overline{\mathrm{WE}}$	$\mathrm{CLL}=12 \mathrm{~mA}$			0.50	
			LEB, LE, S, MSEL	$\mathrm{OLL}=12 \mathrm{~mA}$			0.50	
			$\overline{\text { INTMERR, }}$, $\overline{\text { NTERR }}$	$\mathrm{OLL}=16 \mathrm{~mA}$			0.50	
			$\overline{\text { XACK, }}$ A $\overline{\text { ACK }}$	$\mathrm{OL}=32 \mathrm{~mA}$			0.50	
V_{IH}	Guaranteed Input Logical HIGH Voltage		Input(s): All		2.0			Volts
VIL	Guaranteed Input Logical LOW Voltage		Input(s): All	MIL			0.7	Volts
				COM'L			0.8	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ Min	Input(s): All	$\mathrm{lin}=-18 \mathrm{~mA}$			-1.5	Volts
ILL	Input LOW Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{\text {IN }}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Input(s): } \\ & \mathrm{AD}, \mathrm{M} / \overline{\mathrm{O}}, \mathrm{RCLK}, \mathrm{~B} / \overline{\mathrm{W}}, \mathrm{R} / \overline{\mathrm{W}} \text {, } \\ & \overline{\mathrm{STR}}, \overline{\mathrm{AS}}, \overline{\mathrm{NTACK}} \end{aligned}$	MIL			-0.42	mA
				COM'L			-0.40	
			$\overline{\text { FR, }}$, $\overline{S U P}, \overline{\text { ERRACK }}, \overline{\text { MCE }}$	MIL			-0.82	mA
				COM'L			-0.8	
			$\overline{\text { CLK }}$, $\overline{C S}, \overline{\text { DS }}$, ERR	MIL			-2.1	mA
				COM'L			-2.0	
			$\overline{M E R R}$	MIL			-2.6	mA
				COM'L			-2.4	
liH	Input HIGH Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=2.7 \mathrm{~V} \end{aligned}$	$\frac{\operatorname{lnput(s)}}{\operatorname{MERR}}$	MIL			100	$\mu \mathrm{A}$
				COM'L			70	
			CLK, $\overline{C S}, \overline{D S}, \overline{E R R}$	MIL			70	$\mu \mathrm{A}$
				COM'L			50	
			$\overline{\mathrm{FR}}, \overline{\text { SUP }}, \overline{\text { MCE }}$, $\overline{\text { ERRACK }}$				40	$\mu \mathrm{A}$
							20	
			$\overline{\text { AS, }}$, STR, $\overline{\text { INTACK }}$				20	
I	Input HIGH Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Input(s): } \\ & \text { CLK, } \overline{C S}, \overline{D S}, \overline{\text { ERR }}, \overline{\text { MERR }} \end{aligned}$				1.0	mA
			$\overline{\text { SUP, }}, \overline{\text { MCE }}$, $\overline{F R}$				1.0	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V} \end{aligned}$	$\mathrm{M} / \overline{\mathrm{IO}}, \mathrm{A} 0, \mathrm{RCLK}, \mathrm{B} / \overline{\mathrm{W}}, \mathrm{R} / \overline{\mathrm{W}}$ $\overline{\text { INTACK, }} \overline{\text { AS }}, \overline{\text { STR }}$				0.10	
			ERRACK				0.20	
IOH	Output HIGH Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$	Output(s): INTMERR, INTERR				100	$\mu \mathrm{A}$
			$\overline{\text { XACK, }} \overline{\text { AACK }}$				150	
los	Output Short Circuit Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x+0.5 \mathrm{~V} \\ & V_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$	Output(s): All (Note 3)		-15		-85	mA
Icc	Power Supply Current		$25^{\circ} \mathrm{C}, 5 \mathrm{~V}$			280		mA
		8163	0 to $70^{\circ} \mathrm{C}$	COML			365	mA
		8167	0 to $70^{\circ} \mathrm{C}$				390	mA
		8163	-55 to $+125^{\circ} \mathrm{C}$	MIL			385	mA
		8167	-55 to $+125^{\circ} \mathrm{C}$				420	mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Am8163 • Am8167

Parameters		Description	Min	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{Typ} \end{gathered}$	Max	Units
1	t_{s}	$\mathrm{M} / \overline{\mathrm{IO}} \uparrow$ or $\overline{\mathrm{CS}} \downarrow$ to CLK Setup Time	0	-4		ns
2	t_{H}	$\mathrm{M} / \overline{\mathrm{IO}} \downarrow$ or $\overline{\mathrm{CS}} \uparrow$ to $\overline{\mathrm{RAS}} \uparrow$ Hold Time	0	-10		ns
3	t_{s}	$\overline{\mathrm{FR}} \downarrow$ to CLK Setup Time	5	2		ns
4	tpWL	$\overline{\text { FR L LOW Pulse Width }}$	tp + 5	tp +2		ns
5	$t_{\text {PLH }}$	$\overline{\mathrm{AS}} \downarrow$ to LE \uparrow Propagation Delay		12	18	ns
6	$\mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{AS}} \uparrow$ to LE \downarrow Propagation Delay		12	18	ns
7	t_{S}	AO to $\overline{\text { AS }} \uparrow$ Setup Time	1	0		ns
8	t_{H}	A0 to $\overline{\mathrm{AS}} \uparrow$ Hold Time	9	5		ns
9	$t_{\text {PWL }}$	$\overline{\text { AS, }} \overline{\text { STR }}$ LOW Pulse Width	20	9		ns
10	t_{s}	$\mathrm{M} / \overline{\mathrm{OO}} \uparrow$ or $\overline{\mathrm{CS}} \downarrow$ to $\overline{\mathrm{STR}} \uparrow$ Setup Time	2	0		ns
11	${ }_{t}$	$\overline{\mathrm{CS}} \downarrow$ to $\overline{\text { STR }} \downarrow$ Setup Time	-tp	$-(t p+10)$		ns
12	t_{5}	$\overline{\text { STR }} \downarrow$ to CLK Setup Time	10	6		ns
13	$\mathrm{t}_{\mathrm{PHL}}$	CLK to $\overline{\mathrm{RAS}} \downarrow$ Propagation Delay		36	41	ns
14	$t_{\text {PLH }}$	CLK to $\overline{\mathrm{RAS}} \uparrow$ Propagation Delay		26	34	ns
15	$\mathrm{t}_{\text {PHL }}$	CLK to MSEL \downarrow Propagation Delay		17	22	ns
16	$t_{\text {PLH }}$	CLK to MSEL \uparrow Propagation Delay		21	26	ns
17a	$\mathrm{t}_{\text {PHL }}$	$\overline{\text { MSEL }} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$ Propagation Delay - 8163	18	23		ns
17b	${ }^{\text {tPHL }}$	CLK to $\overline{\mathrm{CAS}} \downarrow$ Propagation Delay - 8167		17	22	ns
18a	$t_{\text {PLH }}$	CLK to $\overline{\mathrm{CAS}} \uparrow$ Propagation Delay - 8163		34	43	ns
18b	$t_{\text {PLH }}$	CLK to $\overline{\mathrm{CAS}} \uparrow$ Propagation Delay - 8167		21	26	ns
19	$t_{\text {PLH }}$			30	35	ns
20	$\mathrm{t}_{\text {PHL }}$	CLK to $\overline{\text { AACK }} \downarrow$ Propagation Delay		33	41	ns
21	$t_{\text {PHL }}$	CLK to $\overline{W E} \downarrow$ Propagation Delay		17	22	ns
22	$t_{\text {PLH }}$	CLK to $\overline{W E} \uparrow$ Propagation Delay		20	26	ns
23	$t_{\text {PHL }}$	CLK to $\mathrm{S} \downarrow$ Propagation Delay		16	22	ns
24a	$t_{\text {PLH }}$	LEI \downarrow to $\mathrm{S} \uparrow$ Propagation Delay - 8163	1.0	3.0		ns
24b	$t_{\text {PLH }}$	CLK to S \uparrow Propagation Delay - 8167		21	26	ns
25	$\mathrm{t}_{\text {PLH }}$	CLK to LEI \uparrow Propagation Delay		20	26	ns
26	$t_{\text {PHL }}$	CLK to LEI \downarrow Propagation Delay		17	22	ns
27	$t_{\text {PLH }}$	LEO \downarrow to LEI¢ Propagation Delay	15	20		ns
28a	$\mathrm{t}_{\text {PHL }}$	LEI \downarrow to $\overline{\mathrm{OEH}} \downarrow$, $\overline{\mathrm{OEL}} \downarrow$ Propagation Delay - 8163	4.5	7.0		ns
28b	$\mathrm{t}_{\text {PHL }}$	CLK to $\overline{\mathrm{OEH}} \downarrow, \overline{\mathrm{OEL}} \downarrow$ Propagation Delay - 8167		24	30	ns
29	$t_{\text {PLH }}$	CLK to $\overline{\mathrm{OEH}} \uparrow$, $\overline{\mathrm{OEL}} \uparrow$ Propagation Delay		24	30	ns
30	${ }^{\text {ts }}$	$\mathrm{R} / \overline{\mathrm{W}}, \mathrm{B} / \overline{\mathrm{W}}$ to $\overline{\mathrm{DS}} \downarrow$ Setup Time	0	-1.5		ns
31	t_{H}	$\mathrm{R} / \overline{\mathrm{W}}, \mathrm{B} / \overline{\mathrm{W}}$ to $\overline{\mathrm{WE}} \uparrow$ Hold Time	0	-10		ns
32	$t_{\text {PHL }}$	CLK to LEO \downarrow Propagation Delay		15	21	ns
33	$t_{\text {PLL }}$	CLK to LEO \uparrow Propagation Delay		21	26	ns
34	$t_{\text {PLH }}$	CLK to LEB \uparrow Propagation Delay		21	26	ns
35	$t_{\text {PHL }}$	CLK to LEB \downarrow Propagation Delay		24	30	ns
36	$t_{\text {PHL }}$	CLK to $\overline{\mathrm{XACK}} \uparrow$ Propagation Delay		29	36	ns
37	$\mathrm{t}_{\text {PLH }}$	DS \uparrow to $\overline{\mathrm{XACK}} \uparrow$ Propagation Delay		24	30	ns
38	$\mathrm{t}_{\text {PHL }}$	DS \downarrow to $\overline{\mathrm{OEBL}} \downarrow, \overline{\mathrm{OEBH}} \downarrow, \overline{\mathrm{OEBW}} \downarrow$ Propagation Delay		13	18	ns
39	$\mathrm{t}_{\text {PLH }}$	DS \uparrow to $\overline{\mathrm{OEBL}} \uparrow, \overline{\mathrm{OEBH}} \uparrow, \overline{\mathrm{OEBW}} \uparrow$ Propagation Delay		13	18	ns
40	${ }^{\text {t }}$ S	$\overline{\text { ERR, }} \overline{\text { MERR }}$ to LEO \downarrow Setup Time	1.5	0		ns
41	t_{H}	$\overline{\text { ERR, }}$ MERR to LEO \downarrow Hold Time	6.5	4		ns
42	$\mathrm{t}_{\mathrm{PHL}}$	LEO \downarrow to $\overline{\text { INTERR }} \downarrow$, $\overline{\text { INTMERR }} \downarrow$ Propagation Delay		19	24	ns
43	${ }_{\text {tPLH }}$			23	30	ns

Am8163 - Am8167
Am8163/67 SWITCHING CHARACTERISTICS (Cont.)

TIMING WAVEFORMS (Cont.)
 Am8163 REFRESH TIMING

Am8163/67 SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Am8163-Am8167

Am8163/67 SWITCHING CHARACTERISTICS (Cont.)

Parameters		Description	COM'L		MIL		Units	
		$\begin{aligned} & T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V} \pm 5 \% \\ & \text { Min } \quad \text { Max } \end{aligned}$	$\begin{aligned} & T_{A}=-55 \text { to }+125^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V} \pm 10 \% \\ & \text { Min } \quad \text { Max } \end{aligned}$					
40	${ }_{\text {ts }}$		$\overline{\text { ERR}, ~} \overline{\text { MERR }}$ to LEO \downarrow Setup Time	2.0		3.0		ns
41	t_{H}	$\overline{\text { ERR, }}$, MERR to LEO\ Hold Time	8.0		8.0		ns	
42	$\mathrm{t}_{\text {PHL }}$	LEO \downarrow to $\overline{\text { NTERR }} \downarrow$, $\overline{\text { NTMERR }} \downarrow$ Propagation Delay		28		28	ns	
43	tPLH	$\overline{\operatorname{INTACK}} \downarrow$ to $\overline{\text { NTERR }} \uparrow$, $\overline{\text { INTMERR }} \uparrow$ Propagation Delay		38		38	ns	
44	$\mathrm{tplH}^{\text {P }}$	LEO to LERR \uparrow, LMERR \uparrow Propagation Delay		46		46	ns	
45	$t_{\text {PHL }}$	ERRACK \downarrow to LERR \downarrow, LMERR \downarrow Propagation Delay		20		20	ns	
46	${ }^{\text {t }}$ PWL	$\overline{\text { INTACK }}$ LOW Puise Width	20		20		ns	
47	tpWL	ERRACK LOW Pulse Width	20		20		ns	
48	t_{S}	$\overline{\text { SUP }} \downarrow$ to $\overline{\text { S }} \downarrow \downarrow$ Setup Time	5		5		ns	
49	t_{H}	$\overline{\text { WE }} \uparrow$ to $\overline{\text { SUP }} \uparrow$ Hold Time	5		5		ns	
50	$\mathrm{t}_{\text {PHL }}$	CLK to $\overline{\text { RFSH }} \downarrow$ Propagation Delay		25		25	ns	
51a	${ }^{\text {tPWL }}$	$\overline{\text { RFSH LOW Pulse Width }}$ $(\overline{\text { MCE }}=\mathrm{HIGH})-8163$	4tp-3ns		$4 \mathrm{tp}-3 \mathrm{~ns}$			
51b	${ }^{\text {tpWL }}$	$\overline{\text { RFSH LOW Pulse Width }}$ $(\overline{\mathrm{MCE}}=\mathrm{HIGH})-8167$	5tp-3ns		5tp-3ns			
52a	$t_{\text {PWL }}$	$\overline{\text { RAS }}$ LOW Pulse Width During Refresh $(\overline{M C E}=H I G H)-8163$	3tp-3ns		3tp-3ns			
52b	tpWL	$\overline{\text { RAS }}$ LOW Pulse Width During Refresh $(\overline{\text { MCE }}=\mathrm{HIGH})-8167$	4tp-3ns		4tp-3ns			
53a	$t_{\text {PWL }}$	$\overline{\text { RFSH }}$ LOW Pulse Width (MCE $=$ LOW $)-8163$	7tp-3ns		7tp-3ns			
53b	$t_{\text {tpw }}$	$\overline{\text { RFSH }}$ LOW Pulse Width ($\overline{\text { MCE }}=$ LOW $)-8167$	9tp-3ns		9tp-3ns			
54a	$t_{\text {tpWL }}$	$\overline{\text { RAS }}$ LOW Pulse Width During Refresh (MCE = LOW) - 8163	6tp-3ns		6tp-3ns			
54b	$t_{\text {tPWL }}$	$\widehat{\text { RAS LOW Pulse Width During Refresh }}$ ($\overline{\text { MCE }}=$ LOW) -8167	8tp-3ns		8tp-3ns			
55a	fosc	CLK Frequency - 8163		16		16	MHz	
55b	fosc	CLK Frequency - 8167		22		22	MHz	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

Am8163/67 APPLICATION WITH MC68000

ABI-068

ABI-069
*Timing refers to 10 MHz MC68000.

- Note 1: $M / \overline{I O}$ may be tied HIGH or connected to an address pin. It may also be connected to an I/O port. The main consideration is not to start the 8163/67 when communicating with the 2960 Diagnostic Latch.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM8163/67DC	D-40-1	c	C-1
AM8163/67DCB	D-40-1	C	B-2 (Note 4)
AM8163/67DM	D-40-1	M	C-3
AM8163/67DMB	D-40-1	M	B-3
AM8163/67LC	L-28-1	c	C-1
AM8163/67LCB	L-28-1	C	B-2 (Note 4)
AM8163/67LM	L-28-1	M	C-3
AM8163/67LMB	L-28-1	M	B-3
AM8163/67XC	Dice	C	Visual inspection
AM8163/67XM	Dice	M	$\left\{\begin{array}{l}\text { to MIL-STD-883 } \\ \text { Method 2010B. }\end{array}\right.$

Notes: 1. $\mathrm{D}=$ hermetic DIP, $\mathrm{L}=$ Chip-Pak. Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels C-1 and C-3 conform to

MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 160 hour burn-in.

Typical Systems Utilizing the Am2960 Memory Support Products

Typical Systems

Am8163/67 APPLICATION WITH MC68000

*Timing refers to 10 MHz MC68000 (2 wait states with 8 MHz 68000).

Note 1: $\mathrm{M} / \overline{\mathrm{IO}}$ may be tied HIGH or connected to an address pin. It may also be connected to an I/O port. The main consideration is not to start the 8163/67 when communicating with the 2960 Diagnostic Latch.

Am2900 Processors and Peripherals Family Index

Am2901B/C/C-1
Am2900 Processors and Peripherals Family Overview 5-1
Am2001B/C/C-1
Bipolar Microprocessor Slice 5-5
Using the Am2901 5-20
Am2902A High-Speed Look-Ahead Carry Generator 5-28
Am2903/A The Superslice ${ }^{*}$ (Advanced 4-Bit Bipolar Microprocessor Slice) 5-32
Using the Am2903 5-57
Am2904 Status and Shift Control Unit 5-72
Am2905 Quad 2-Input OC Bus Transceiver with 3-State Receiver 5-87
Am2906 Quad 2-Input OC Bus Transceiver with Parity 5-93
Am2907/2908 Quad Bus Transceiver with Interface Logic 5-99
Am2909/2909AAm2910/-1/A
Microprogram Sequencer 5-108
Microprogram Controller 5-123
Am2911/2911A Microprogram Sequencer 5-108
Am2912 Quad Bus Transceiver 5-140
Am2913 Priority Interrupt Expander 5-145
Am2914 5-150
A Microprogrammable Interrupt Structure 5-159
Priority Interrupt Encoder Logic Description 5-176
Am2915A Quad 3-State Bus Transceiver with Interface Logic 5-182
Am2916A
Am2917A
Am2918
Am29LS18
Am2919Am2920
Quad 3-State Bus Transceiver with Interface Logic 5-188
Quad 3-State Bus Transceiver with Interface Logic 5-194
Quad D-Register with Standard and 3-State Outputs 5-200
Quad D-Register with Standard and 3-State Outputs 5-204
Quad D-Register with Dual 3-State Outputs 5-209
Octal D-Type Flip-Flop with Clear, Clock Enable and 3-State Control 5-214
Am2921 One-of-Eight Decoder with 3-State Outputs and Polarity Control 5-220
Am2922 8 -Input Multiplexer with Control Register 5-225
8 -Input Multiplexer 5-230
Am2923
Three-Line to Eight-Line Decoder/Demultiplexer 5-234
Am2925 System Clock Generator and Driver 5-238
Am2925 Application Note 5-246
Schottky 3-State Quad Bus Driver/Receiver 5-252
Am2926
Quad 3-State Bus Transceivers with Clock Enable 5-257
Schottky 3-State Quad Bus Driver/Receiver 5-252
Am2929
Am2930 Program Control Unit 5-264
Program Control Unit/Push-Pop Stack 5-275
Am2932
DMA Address Generator 5-285
Programmable Timer/Counter/DMA Address Generator 5-294
Am2942
Octal 3-State Bidirectional Bus Transceivers 5-305
Octal 3-State Bidirectional Bus Transceivers 5-313
Am2948/2949
Am2950/2951 8-Bit Bidirectional I/O Ports with Handshake 5-321Am2950A/2951A
High-Speed 8-Bit Bidirectional I/O Ports with Handshake 5-321
Am2952/2953 5-329Am2952A/2953AAm2954/2955
Am2956/2957Am2958/2959Am2960-70Am29112Am29116Am29118Am29203
Am29705/A8 -Bit Bidirectional I/O Ports
High Speed 8 -Bit Bidirectional I/O Ports
5-329
Octal Registers with 3-State Outputs 5-336
Octal Latches with 3-State Outputs 5-341
Octal Buffers/Line Drivers/Line Receivers with 3-State Outputs 5-347
Am2960/70 Memory Support Family See Section 4
Am29100 Controller Family See Section 6
Am29100 Controller Family See Section 6
Am29100 Controller Family See Section 6
Advanced 4-Bit Bipolar Microprocessor Slice with 3-Ports and BCD 5-352
Using the Am29203 "Bit-Slice Processor Speeds through BCD Math," reprinted from Electronic Design 5-371
Evaluation Board for the Am29203 See Section 3
Microprogrammed System Design reprinted from Computer Design 5-395
Bit-Slice Processor Speeds through BCD Math reprinted from Electronic Design 5-403
16-Word by 4-Bit Two-Port RAM (and Register File for Am2903/A) 5-413
Am29707
Am29803A
16-Word by 4 -Bit Two-Port RAM (and Register File for Am29203) 5-413
16-Way Branch Control Unit 5-425Am29800
Am29811A Next Address Control Unit 5-430
Bus Interface See Section 8
Bipolar PROMs See Section 12

Am2900 Components Continuously Become Faster and Faster

MORE SPEED: NO MORE POWER

There's a good old tried and proven way to make faster IC's burn more power. (That's the only real difference between "LS" and "S" devices). But that solution isn't satisfactory for LSI devices like the Am2900 Family. Power is constrained to existing levels for reliability reasons.
Am2900 parts are always designed to obtain the maximum speed at a power level which is safe for the package types and operating environment of the part. To increase speeds, new technologies must be used to build faster components at no increase in power.

NEW CIRCUIT DESIGN TECHNIQUES MAKE FASTER GATES

One way to make faster components is to use new circuit design techniques. The most obvious is internal ECL, which provides very fast gates at similar power levels to LS TTL. The Am29116 reaches microcycle times of 100 ns through the use of internal ECL. Other design techniques, such as low-level logic (with very small logic swings on-chip), can also provide higher speeds without introducing the time penalty of ECL to TTL conversion.
Finally, very low power gates used in non-critical speed paths make more power available for use in critical speed paths. As the 2900 Family develops, all these technologies will be used within a single component to achieve the highest speeds without increasing power. The Am2903A is one of the first products to take advantage of this mixed circuit technology.

IMPROVED PROCESS CONTROL ALLOWS TIGHTER SPECS

Today's 2900 parts are carefully characterized over a wide range of voltages, temperatures, and process parameters before an $A C$ specification is published. As manufacturing
technology improves, the process is subject to smaller run-torun variations, so that all of the product is closer to design nominal. This makes it possible to specify parameters more closely to typical without incurring large yield losses. The first product reflecting this is the Am2903.

WHAT'S GOOD FOR THE GOOSE IS GOOD FOR THE GANDER

Many new tools in production technology are emerging, primarily spurred by the emphasis on high-speed MOS memories. The same tools, such as projection masking, also provide for smaller geometries in bipolar circuits. As MOS gets faster, so does bipolar. The Am2901C obtains its speed improvement over the Am2901B through these tools.

PROCESS TECHNOLOGY TAKES A QUANTUM LEAP

Current generation LSI/VLSI bipolar devices call for state-of-the-art processing technologies. IMOX ${ }^{\text {TM }}$ ion-implanted micro-oxide technology gives the Am2901C its performance improvement over the Am2901B. IMOX also generates incredible packing densities - the Am29116 has 2500 gates on a single bipolar chip!

DESIGN FOR THE FUTURE

Every Am2900 part will undergo an evolution as new technologies become practical for production. Every part type will continuously become faster. The results are easy to observe - increases in performance at no additional cost (see Figure 1).
Most existing 2900 designs can be offered in higher performance versions simply by substitution of the 2901C for the 2901B, the 2909A for the 2909, the 2903A for the 2903, and so forth. Your 2900 design won't run out of speed in a few years. Advanced Micro Devices' 2900 Family will serve tomorrow's needs as well as today's.

Figure 1. Price/Performance Improvements

Figure 2. Bipolar Speed/Density Improvements

Am2901 FOUR-BIT MICROPROCESSOR SLICE				
540 GATES 800 mW 40-PIN DIP				
DIE SIZE	$\begin{gathered} \text { Am2901 } \\ 33,000 \text { MILS }^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Am2901A } \\ 20,000 \text { MILS }^{2} \end{gathered}$	$\begin{gathered} \text { Am2901B } \\ 15,000 \text { MiLS }^{2} \end{gathered}$	Am2901C 15,000 MILS 2
SPEED A, B G, P	80ns	65ns	50ns	37ns
TECHNOLOGY	LOW-POWER SCHOTTKY	DUAL LAYER METAL ION. IMPLANTATION	PROJECTION PRINTING	$\begin{aligned} & \text { ECL INTERNAL } \\ & \text { TTL I/O } \\ & \text { IMOX } \\ & \hline \end{aligned}$
	1975	1977	1978	1981

Introduction

THREE GENERATIONS OF TTL

Transistor-transistor logic has been the dominant technology for digital circuits since it was developed in the mid-1960's. It has proven itself to be manufacturable in high volume using an extremely reliable process technology. The processes used for TTL have evolved over the years, making components smaller, faster and less expensive. Relative to a TTL gate manufactured in 1966, a gate on a circuit manufactured today occupies $1 / 5$ the area, consumes $1 / 10$ the power, is twice as fast and costs less than $1 / 100$ the price.
The circuits built using TTL technology have gone through two generations; the Am2900 Family represents the beginning of the third. Each generation consists of circuits which are fundamental building blocks of systems - circuits which can be interconnected in many different ways to build many different systems. Only by producing such universal circuits can manufacturing volumes be high enough to generate the rapid cost reductions characteristic of the integrated circuit industry.

The quality which distinguishes one generation from another is the level of integration used, and, because of the level of integration, the philosophy behind the circuit.
If one draws a curve plotting the cost of an individual gate against the number of gates on a chip, Figure 1 results.

Figure 1.
MPR-001
At the left, cost per gate is inversely proportional to the number of gates on the chip. The chip is small enough that it does not represent a significant portion of the cost of the product - it is virtually free. The cost of the product is composed of labor in assembly and test, the cost of processing an order, shipping and fixed overhead. Doubling the number of gates on the chip doesn't materially affect the cost so the cost per gate halves. As the number of gates per chip increases, the die begins to cost more, reversing the downward trend. As die cost dominates, the cost per gate remains relatively flat until the yield of the die begins to decline markedly. The cost per gate then begins to rise again. The lowest cost per gate is achieved at a level of integration corresponding to the flat region. This is the optimum level of integration.
As technology improves, costs are constantly reduced and the optimum level of integration occurs at more and more gates per chip.

The three curves of Figure 2 are the reason for the three generations of TTL. Each generation has consisted of fundamental system building blocks designed to take advantage of the optimum level of integration at the time.

Figure 2.
MPR-002

GENERATION I - SSI, 1965

In 1965, the optimum level of integration was three-to-six gates per chip. Users were delighted to buy such chips at \$10-20 each. The circuits were useful in many systems. They consisted of gates - the $7400,7410,7420$ - and, pressing the state of the art, some flip-flops. They were fundamental building blocks.

GENERATION II - MSI, 1970

Beginning around 1968, it became economical to put more gates on a chip and the industry was faced with a problem: How does one put 20 gates on a chip and build a universal building block? Clearly, one answer was to bring the inputs and outputs off chip as had been done before. But that was the wrong answer. The right answer was to redefine fundamental building blocks. The new building blocks fell into seven categories:

- Counters
- Decoders
- Multiplexers
- Operators (adders, comparators)
- Encoders
- Registers
- Latches

All systems could be defined in terms of these seven functions, and integrated circuits could be defined at the 20-50 gate/ chip level which performed these functions efficiently. This, of course, is MSI. Over the last six or seven years, more and more circuits of this type have been introduced, utilizing standard gold-doped technology, low-power TTL, high-speed TTL, Schottky TTL, and now low-power Schottky TTL technology. Today, there are over 250 different MSI circuits and new ones appear every month. But in today's technology, many of these circuits are not particularly cost effective. They are too small for today's technology and their costs are labor intensive. (Labor costs do not follow traditional semiconductor pricing patterns.) In 1977, the optimum level of integration for bipolar logic was around 500 gates chip.

GENERATION III - The Am2900 Family, 1976

At a 500-gate-per-chip level of integration, one does not build counters, decoders, and multiplexers. A new definition of fundamental system functions was needed. Advanced Micro Devices has defined these eight categories:

- Data Manipulation
- Microprogram Control
- Macroprogram Control
- Priority Interrupt
- Direct Memory Access
- I/O Control
- Memory Control
- Front Panel Control

The Am2900 Family includes circuits designed to perform those functions efficiently. They are fundamental system building blocks; they contain hundreds of gates per chip; they are fast - utilizing Low-Power Schottky TTL technology and AMD's proprietary IMOX ${ }^{\text {TM }}$ technology; they are expandable; they are flexible - useful in emulation; and they are driven under microprogram control.

IMOX AND ECL - THE NEXT STEP

Ever increasing device complexity placed greater and greater demands on existing process technologies. Advanced Micro Devices responded to this challenge by introducing its revolutionary IMOX ion-implanted microoxide technology in 1980. Oxide isolation generated faster transistor switching and tighter packaging. Ionimplantation meant tighter parameter control and lower power consumption. The bottom line - an unequalled combination of speed and density culminating in the Am29116 with a staggering 2500 gates-per-chip. Figure 3 shows this climb in gate density.

Figure 3. Am2900 Bipolar LSI/VLSI
Future refinements of IMOX and new device technologies will keep AMD on the leading edge in bipolar LSI/ VLSI. Designed to take advantage of these improvements in process technology, a new family of microprogrammable 32-bit controller products will set the pace for bipolar VLSI in the mid-1980s.

THE Am2900 FAMILY

The Am2900 Family consists of a series of LSI building blocks designed for use in microprogrammed computers and controllers. Each device is designed to be expandable and sufficiently flexible to be suitable for emulation of many existing machines. It is the wide variety of machine architectures possible with the Am2900 Family which sets it apart from the fixed-instruction microprocessors such as the Am8086.
While an Am8086 can be used to build a microcomputer with only four or five packages, an Am2900 design will require 30 or 40 or more. The Am8086 design will, therefore, almost always be cheaper. But the Am8086, or any other fixedinstruction processor, can execute only one instruction set, so it is not really suitable for emulation of another machine.
Moreover, a fixed-instruction processor operates only on words of a single length, usually eight bits. An Am2900 design,
on the other hand, can be constructed for any word length which is a multiple of four bits.

Many applications require specialized operations to be performed at relatively high speed. Such functions as multiply and divide and special graphic control operations, can be done in microcode 10-100 times faster than in fixed-instruction MOS processors.

MICROPROGRAMMED ARCHITECTURE

Most small processors today are being designed using a technique called microprogramming. In microprogrammed systems, a large portion of the system's control is performed by a read only memory (usually PROM) rather than large arrays of gates and flip-flops. This technique frequently reduces the package count in the controller and provides a highly ordered structure in the controller, not present when random logic is used. Moreover, microprogramming makes changes in the machines' instruction set very simple to perform - reducing the postproduction engineering costs for the system substantially.
The Am2900 Family of Bipolar LSI devices has been designed for use in microprogrammed systems. Each device performs a basic system function and is driven by a set of control lines from a microinstruction.
Figure 4 illustrates a typical system architecture. There are two "sides" to the system. At the left is the control circuitry and on the right is the data manipulation circuitry. The block labeled "2901C array" consists of the ALU, scratchpad registers, data steering logic (all internal to the Am2901Cs), plus left/right shift control and carry lookahead circuit. Data is processed by moving it from main memory (not shown) into the 2901C registers, performing the required operations on it and returning the result to main memory. Memory addresses may also be generated in the 2901Cs and sent out to the memory address register (MAR). The four status bits from the 2901Cs ALU are captured in the status register after each operation.
The logic on the left side is the control section of the computer. This is where the Am2909A, 2910A, or 2911A is used. The entire system is controlled by a memory, usually PROM, which contains long words called microinstructions. Each microinstruction contains bits to control each of the data manipulation elements in the system. There are, for example, nine bits for the 2901C instruction lines, eight bits for the A and B register addresses, two or three bits to control the shifting multiplexers at the ends of the 2901C array (see Figure 19, 2901C data sheet), and bits to control the register enables on the MAR, instruction register, and various bus transceivers. When the bits in a microinstruction are applied to all the data elements and everything is clocked, then one small operation (such as a data transfer or a register-toregister add) will occur.
A "machine instruction" (such as a minicomputer instruction or an 8086 instruction) is performed by executing several microinstructions in sequence. Each microinstruction therefore contains not only bits to control the data hardware, but also bits to define the location in PROM of the next microinstruction to be executed. The fields are labeled in Figure 4 as I, CC, and BA. The I field controls the sequencer. It indicates where the next address is located - the $\mu \mathrm{PC}$, the stack, or the direct inputs - and whether the stack is to be pushed or popped.
The CC field contains bits indicating the conditions under which the I field applies. These are compared with the condition codes in the status register and may cause modification to the 1 field. The comparing and modification occurs in the
block labeled "control logic". Frequently this is a PROM or PLA. In the cas $\boldsymbol{\text { of }}$ the Am2910, it is built into the chip. The BA field is a branch address or the address of a subroutine.

PIPELINING

The address for the microinstructions is generated by the sequencer, starting from a clock edge. The address goes from the sequencer to the ROM and, an access time later, the microinstruction is at the ROM outputs.
A pipeline register is a register placed on the output of the microprogram memory to essentially split the system in two. The pipeline register contains the microinstruction currently being executed (1). (Refer to the circled numbers in Figure 4.) The data manipulation control bits go out to the system
elements and a portion of the microinstruction is returned to the sequencer (2) to determine the address of the next microinstruction to be executed. That address (3) is sent to the ROM and the next microinstruction (4) sits at the input of the pipeline register. So while the 2901Cs are executing one instruction, the next instruction is being fetched from ROM. Note that there is no sequential logic in the sequencer between the select lines and the output. This is important because the loop (1) to (2) to (3) to (4) must occur during a single clock cycle. During the same time, the loop from (1) to (5) must occur in the 2901 Cs. These two paths are roughly the same (around 200 ns worst case for a 16 -bit system). The presence of the pipeline register allows the microinstruction fetch to occur in parallel with the data operation rather than serially, allowing the clock frequency to be doubled.

Figure 4.

The system shown in Figure 4 works as follows. A sequence of microinstructions in the PROM is executed to fetch an instruction from main memory. This requires that the program counter, often in a 2901C working register, be sent to the memory address register and incremented. The data returned from memory is loaded into the instruction register. The contents of the instruction register is passed through a PROM or PLA to generate the address of the first microinstruction which must be executed to perform the required function. A branch to this address occurs through the sequencer. Several microinstructions may be executed to fetch data from memory, perform ALU operations, test for overflow, and so forth. Then a branch will be made back to the instruction fetch cycle. At this point, there may be branches to other sections of micro-
code. For example, the machine might test for an interrupt here and obtain an interrupt service routine address from another mapping ROM rather than start on the next machine instruction. There are obviously many possibilities. Throughout this data book, in application notes, and within data sheets, some suggested techniques will be found.

Additional application notes are in preparation and are planned for publication. Advanced Micro Devices' Applications' staff is available to answer questions and provide technical assistance as well. They may be reached by calling (408) $732-2400$, or, outside California (800) 538-8450. Ask for Am2900 Family Applications.

Am2901B•Am2901C • Am2901C-1

Four-Bit Bipolar Microprocessor Slice

DISTINCTIVE CHARACTERISTICS

- Two-address architecture Independent simultaneous access to two working registers saves machine cycles.
- Eight-function ALU -

Performs addition, two subtraction operations, and five logic functions on two source operands.

- Flexible data source selection -

ALU data is selected from five source ports for a total of 203 source operand pairs for every ALU function.

- Left/right shift independent of ALU -

Add and shift operations take only one cycle.

- Four status flags -

Carry, overflow, zero, and negative.

- Expandable -

Connect any number of Am2901s together for longer word lengths.

- Microprogrammable -

Three groups of three bits each for source operand, ALU function, and destination control.

- Fast -

Am2901C is up to 33% faster than Am2901B. The Am2901C meets or exceeds all of the specifications for the Am2901B.

- IMOX -

Am2901C is processed with AMD's proprietary IMOX ${ }^{\text {TM }}$ Process.

GENERAL DESCRIPTION

The Am2901 industry standard four-bit microprocessor slice is a high-speed cascadable ALU intended for use in CPUs, peripheral controllers, and programmable microprocessors. The microinstruction flexibility of the Am2901 permits efficient emulation of almost any digital computing machine.
The device, as shown in the block diagram below, consists of a 16 -word by 4-bit two-port RAM, a high-speed ALU, and the associated shifting, decoding and multiplexing circuitry. The nine-bit microinstruction word is organized into three groups of three bits each and selects the ALU source operands, the ALU function, and the ALU destination register. The microprocessor is cascadable with full look ahead or with ripple carry, has three-state outputs, and provides various status flag outputs from the ALU. AMD's ion-implanted micro-oxide (IMOX) processing is used to fabricate the 40-lead LSI chip.
The Am2901C is a plug-in replacement for the Am2901B, but is 33\% faster than the Am2901B. The Am2901C-1 is a speed selected version of the Am2901C offering a $20-30 \%$ speed improvement on critical paths.

RELATED DEVICES

Part No.	Description
Am2902A	Carry Look-Ahead Generator
Am2904	Status and Shift Control Unit
Am2910A	Microprogram Controller
Am2914	Vectored Priority Interrupt Controller
Am2917A	Bus Transceiver
Am2918	Pipeline Register
Am2920	Octal Register
Am2922	Condition Code MUX
Am2925	System Clock Generator
Am2940	DMA Address Generator
Am2952	Bidirectional I/O Port
Am27S35	Registered PROM

For applications information see the last part of this data sheet and chapters III and IV of Bit Slice Microprocessor Design, by Mick and Brick, McGraw Hill Publishers.

Figure 1.
MPR-005

PIN DEFINITIONS

\mathbf{A}_{0-3} The four address inputs to the register stack used to select one register whose contents are displayed through the A-port.
\mathbf{B}_{0-3} The four address inputs to the register stack used to select one register whose contents are displayed through the B-port and into which new data can be written when the clock goes LOW.
$\mathbf{I}_{0-8} \quad$ The nine instruction control lines. Used to determine what data sources will be applied to the ALU (l_{012}), what function the ALU will perform (1_{345}), and what data is to be deposited in the Q-register or the register stack (1_{678}).
$\mathbf{Q}_{3} \quad \mathrm{~A}$ shift line at the MSB of the Q register $\left(\mathrm{Q}_{3}\right)$ and the RAM $_{3}$ register stack (RAM_{3}). Electrically these lines are threestate outputs connected to TTL inputs internal to the device. When the destination code on I_{678} indicates an up shift (octal 6 or 7) the three-state outputs are enabled and the MSB of the Q register is available on the Q_{3} pin and the MSB of the ALU output is available on the RAM $_{3}$ pin. Otherwise, the three-state outputs are OFF (high-impedance) and the pins are electrically LS-TTL inputs. When the destination code calls for a down shift, the pins are used as the data inputs to the MSB of the Q register (octal 4) and RAM (octal 4 or 5).
$Q_{0} \quad$ Shift lines like Q_{3} and RAM $_{3}$, but at the LSB of the RAM $M_{0} Q$-register and RAM. These pins are tied to the Q_{3} and $R_{R M}$ pins of the adjacent device to transfer data between devices for up and down shifts of the Q register and ALU data.
D_{0-3} Direct data inputs. A four-bit data field which may be selected as one of the ALU data sources for entering data into the device. D_{0} is the LSB.
Y_{0-3} The four data outputs. These are three-state output lines. When enabled, they display either the four outputs of the ALU or the data on the A-port of the register stack, as determined by the destination code I_{678}.
$\overline{\mathbf{O E}}$ Output Enable. When $\overline{\mathrm{OE}}$ is HIGH, the Y outputs are OFF; when $\overline{O E}$ is LOW, the Y outputs are active (HIGH or LOW).
$\overline{\mathbf{G}}, \overline{\mathbf{P}}$ The carry generate and propagate outputs of the internal ALU. These signals are used with the Am2902 for carrylookahead.
OVR Overflow. This pin is logically the Exclusive-OR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the word, this pin indicates that the result of an arithmetic two's complement operation has overflowed into the sign-bit.
F = 0 This is an open collector output which goes HIGH (OFF) if the data on the four ALU outputs F_{0-3} are all LOW. In positive logic, it indicates the result of an ALU operation is zero.
$\mathrm{F}_{3} \quad$ The most significant ALU output bit.
$\mathrm{C}_{\mathrm{n}} \quad$ The carry-in to the internal ALU.
$\mathbf{C}_{\mathrm{n}+4}$ The carry-out of the internal ALU.
CP The clock input. The Q register and register stack outputs change on the clock LOW-to-HIGH transition. The clock LOW time is internally the write enable to the 16×4 RAM which compromises the "master" latches of the register stack. While the clock is LOW, the "slave" latches on the RAM outputs are closed, storing the data previously on the RAM outputs. This allows synchronous master-slave operation of the register stack.

ARCHITECTURE

A detailed block diagram of the bipolar microprogrammable microprocessor structure is shown in Figure 1. The circuit is a four-bit slice cascadable to any number of bits. Therefore, all data paths within the circuit are four bits wide. The two key elements in the Figure 1 block diagram are the 16 -word by 4 -bit 2-port RAM and the high-speed ALU.

Data in any of the 16 words of the Random Access Memory (RAM) can be read from the A-port of the RAM as controlled by the 4-bit A address field input. Likewise, data in any of the 16 words of the RAM as defined by the B address field input can be simultaneously read from the B-port of the RAM. The same code can be applied to the A select field and B select field in which case the identical file data will appear at both the RAM A-port and B-port outputs simultaneously.

When enabled by the RAM write enable (RAM EN), new data is always written into the file (word) defined by the B address field of the RAM. The RAM data input field is driven by a 3 -input multiplexer. This configuration is used to shift the ALU output data (F) if desired. This three-input multiplexer scheme allows the data to be shifted up one bit position, shifted down one bit position, or not shifted in either direction.

The RAM A-port data outputs and RAM B-port data outputs drive separate 4-bit latches. These latches hold the RAM data while the clock input is LOW. This eliminates any possible race conditions that could occur while new data is being written into the RAM.

The high-speed Arithmetic Logic Unit (ALU) can perform three binary arithmetic and five logic operations on the two 4-bit input words R and S. The R input field is driven from a 2 -input multiplexer, while the S input field is driven from a 3 -input multiplexer. Both multiplexers also have an inhibit capability; that is, no data is passed. This is equivalent to a "zero" source operand.
Referring to Figure 1, the ALU R-input multiplexer has the RAM A-port and the direct data inputs (D) connected as inputs. Likewise, the ALU S-input multiplexer has the RAM A-port, the RAM B-port and the \mathbf{Q} register connected aș inputs.
This multiplexer scheme gives the capability of selecting various pairs of the A, B, D, Q and " 0 " inputs as source operands to the ALU. These five inputs, when taken two at a time, result in ten possible combinations of source operand pairs. These combinations include $A B, A D, A Q, A O, B D, B Q, B O, D Q, D O$ and $Q 0$. It is apparent that $A D, A Q$ and $A O$ are somewhat redundant with $B D, B Q$ and $B O$ in that if the A address and B address are the same, the identical function results. Thus, there are only seven completely non-redundant source operand pairs for the ALU. The Am2901 microprocessor implements eight of these pairs. The microinstruction inputs used to select the ALU source operands are the I_{0}, I_{1}, and I_{2} inputs. The definition of I_{0}, I_{1}, and I_{2} for the eight source operand combinations are as shown in Figure 2. Also shown is the octal code for each selection.

The two source operands not fully described as yet are the D input and \mathbf{Q} input. The D input is the four-bit wide direct data field input. This port is used to insert all data into the working registers inside the device. Likewise, this input can be used in the ALU to modify any of the internal data files. The Q register is a separate 4-bit file intended primarily for multiplication and division routines but it can also be used as an accumulator or holding register for some applications.

The ALU itself is a high-speed arithmetic/logic operator capable of performing three binary arithmetic and five logic functions. The I_{3}, I_{4}, and I_{5} microinstruction inputs are used to select the

ALU function. The definition of these inputs is shown in Figure 3. The octal code is also shown for reference. The normal technique for cascading the ALU of several devices is in a look-ahead carry mode. Carry generate, \bar{G}, and carry propagate, $\overline{\mathrm{P}}$, are outputs of the device for use with a carry-look-ahead-generator such as the Am2902. A carry-out, C_{n+4}, is also generated and is available as an output for use as the carry flag in a status register. Both carry-in (C_{n}) and carry-out (C_{n+4}) are active HIGH.

The ALU has three other status-oriented outputs. These are F_{3}, $F=0$, and overflow (OVR). The F_{3} output is the most significant (sign) bit of the ALU and can be used to determine positive or negative results without enabling the three-state data outputs. F_{3} is non-inverted with respect to the sign bit output Y_{3}. The $F=0$ output is used for zero detect. It is an open-collector output and can be wire OR'ed between microprocessor slices. $F=0$ is HIGH when all F outputs are LOW. The overflow output (OVR) is used to flag arithmetic operations that exceed the available two's complement number range. The overflow output (OVR) is HIGH when overflow exists. That is, when C_{n+3} and C_{n+4} are not the same polarity.

The ALU data output is routed to several destinations. It can be a data output of the device and it can also be stored in the RAM or the Q register. Eight possible combinations of ALU destination functions are available as defined by the I_{6}, I_{7}, and I_{8} microinstruction inputs. These combinations are shown in Figure 4.
The four-bit data output field (Y) features three-state outputs and can be directly bus organized. An output control $(\overline{O E})$ is used to enable the three-state outputs. When $\overline{\mathrm{OE}}$ is HIGH, the Y outputs are in the high-impedance state.
A two-input multiplexer is also used at the data output such that either the A-port of the RAM or the ALU outputs (F) are selected at the device Y outputs. This selection is controlled by the I_{6}, I_{7}, and I_{8} microinstruction inputs. Refer to Figure 4 for the selected output for each microinstruction code combination.

As was discussed previously, the RAM inputs are driven from a three-input multiplexer. This allows the ALU outputs to be entered non-shifted, shifted up one position (X2) or shifted down one position ($\div 2$). The shifter has two ports; one is labeled RAM 0 and the other is labeled RAM $_{3}$. Both of these ports consist of a buffer-driver with a three-state output and an input to the multiplexer. Thus, in the shift up mode, the RAM ${ }_{3}$ buffer is enabled and the RAM M_{0} multiplexer input is enabled. Likewise, in the shift down mode, the RAM $_{0}$ buffer and RAM $_{3}$ input are enabled. In the no-shift mode, both buffers are in the high-impedance state and the multiplexer inputs are not selected. This shifter is controlled from the I_{6}, I_{7} and I_{8} microinstruction inputs as defined in Figure 4.

Similarly, the Q register is driven from. a 3 -input multiplexer. In the no-shift mode, the multiplexer enters the ALU data into the Q register. In either the shift-up or shift-down mode, the multiplexer selects the \mathbf{Q} register data appropriately shifted up or down. The Q shifter also has two ports; one is labeled Q_{0} and the other is Q_{3}. The operation of these two ports is similar to the RAM shifter and is also controlled from I_{6}, I_{7}, and I_{8} as shown in Figure 4.

The clock input to the Am2901 controls the RAM, the Q register, and the A and B data latches. When enabled, data is clocked into the Q register on the LOW-to-HIGH transition of the clock. When the clock input is HIGH, the A and B latches are open and will pass whatever data is present at the RAM outputs. When the clock input is LOW, the latches are closed and will retain the last data entered. If the RAM-EN is enabled, new data will be written into the RAM file (word) defined by the B address field when the clock input is LOW.

FUNCTIONAL TABLES

	MICRO CODE				ALU SOURCE OPERANDS	
Mnemonic	I	I $_{1}$	I O $^{\prime}$	Octal Code	R	S
AQ	L	L	L	0	A	O
AB	L	L	H	1	A	B
ZQ	L	H	L	2	O	Q
ZB	L	H	H	3	O	B
ZA	H	L	L	4	O	A
DA	H	L	H	5	D	A
DQ	H	H	L	6	D	O
DZ	H	H	H	7	D	O

Figure 2. ALU Source Operand Control.

Mnemonic	MICRO CODE				ALU Function	SYMBOL
	I_{5}	I_{4}	I_{3}	Octal Code		
ADD	L	L	L	0	R Plus S	$R+S$
SUBR	L	L	H	1	S Minus R	$S-R$
SUBS	L	H	L	2	R Minus S	R-S
OR	L	H	H	3	R OR S	$R \vee S$
AND	H	L	L	4	R AND S	$\mathrm{R} \wedge \mathrm{S}$
NOTRS	H	L	H	5	$\overline{\mathrm{R}}$ AND S	$\overline{\mathrm{R}} \wedge \mathrm{S}$
EXOR	H	H	L	6	R EX-OR S	$R \forall S$
EXNOR	H	H	H	7	R EX-NOR S	$\overline{R \forall S}$

Figure 3. ALU Function Control.

Mnemonic	MICRO CODE				RAM FUNCTION		Q-REG. FUNCTION		$\stackrel{\mathbf{Y}}{\text { OUTPUT }}$	RAM SHIFTER		a SHIFTER	
	18	17	I_{6}	Octal Code	Shift	Load	Shift	Load		RAM_{0}	RAM 3	\mathbf{Q}_{0}	\mathbf{Q}_{3}
QREG	L.	L	L	0	X	NONE	NONE	$\mathrm{F} \rightarrow \mathrm{Q}$	F	X	x	X	X
NOP	L	L	H	1	x	NONE	x	NONE	F	x	x	x	x
RAMA	L	H	L	2	NONE	$F \rightarrow B$	X	NONE	A	x	x	x	x
RAMF	L	H	H	3	NONE	$F \rightarrow B$	x	NONE	F	x	x	x	x
RAMQD	H	L	L	4	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	DOWN	$\mathrm{Q} / 2 \rightarrow \mathrm{Q}$	F	F_{0}	IN_{3}	Q_{0}	IN_{3}
RAMD	H	L	H	5	DOWN	$F / 2 \rightarrow B$	\times	NONE	F	F_{0}	IN_{3}	Q_{0}	\times
RAMQU	H	H	L	6	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	UP	$2 \mathrm{O} \rightarrow \mathrm{O}$	F	N_{0}	F_{3}	N_{0}	a_{3}
RAMU	H	H	H	7	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	X	NONE	F	IN_{0}	F_{3}	x	Q_{3}

$X=$ Don't care. Electrically, the shift pin is a TTL input internally connected to a three-state output which is in the high-impedance state $B=$ Register Addressed by B inputs.
UP is toward MSB, DOWN is toward LSB.
Figure 4. ALU Destination Control.

| 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \mathbf{I}_{210} OCTAL

$+=$ Plus; $-=$ Minus; $V=O R ; \wedge=A N D ; \forall=E X \cdot O R$
Figure 5. Source Operand and ALU Function Matrix.

SOURCE OPERANDS AND ALU FUNCTIONS

There are eight source operand pairs available to the ALU as selected by the I_{0}, I_{1}, and I_{2} instruction inputs. The ALU can perform eight functions; five logic and three arithmetic. The I_{3}, I_{4}, and I_{5} instruction inputs control this function selection. The carry input, C_{n}, also affects the ALU results when in the arithmetic mode. The C_{n} input has no effect in the logic mode. When I_{0} through I_{5} and C_{n} are viewed together, the matrix of

Figure 5 results. This matrix fully defines the ALU/source operand function for each state.

The ALU functions can also be examined on a "task" basis, i.e., add, subtract, AND, OR, etc. In the arithmetic mode, the carry will affect the function performed while in the logic mode, the carry will have no bearing on the ALU output. Figure 6 defines the various logic operations that the Am2901 can perform and Figure 7 shows the arithmetic functions of the device. Both carry-in LOW ($\mathrm{C}_{n}=0$) and carry-in HIGH $\left(C_{n}=1\right)$ are defined in these operations.

$\begin{gathered} \text { Octal } \\ I_{543}, I_{210} \end{gathered}$	Group	Function
40	AND	$A \wedge 0$
41		$A \wedge B$
45		$D \wedge A$
46		D^Q
30	OR	$A \vee O$
31		$A \vee B$
35		DVA
36		DVO
60	EX-OR	$A \forall Q$
6.1		$A \forall B$
65		$D \forall A$
66		$D \forall Q$
70	EX-NOR	$\overline{\mathrm{A}}+\mathrm{O}$
71		$\bar{A} \forall B$
75		$\overline{\text { D } \forall A}$
76		$\overline{D \forall Q}$
72	INVERT	$\overline{\mathrm{Q}}$
73		B
74		\bar{A}
77		$\overline{\mathrm{D}}$
62	PASS	Q
63		B
64		A
67		D
32	PASS	Q
33		B
34		A
37		D
42	"ZERO"	0
43		0
44		0
47		0
50	MASK	$\overline{\mathrm{A}} \wedge \mathrm{Q}$
51		$\overline{\mathrm{A}} \wedge \mathrm{B}$
55		$\overline{\text { D }} \wedge \mathrm{A}$
56		$\overline{\mathrm{D}} \wedge \mathrm{Q}$

$\begin{gathered} \text { Octal } \\ I_{543}, I_{210} \end{gathered}$	$\mathrm{C}_{\mathrm{n}}=0$ (Low)		$\mathrm{C}_{\mathrm{n}}=1$ (High)	
	Group	Function	Group	Function
00		A +O		A $+\mathrm{Q}+1$
01	ADD	A +B	ADD plus	A $+\mathrm{B}+1$
05		D+A	one	$D+A+1$
06		D+0		$D+Q+1$
02		Q		$\mathrm{Q}+1$
03	PASS	B	Increment	B+1
04		A		A+1
07		D		D+1
		Q-1		Q
13	Decrement	B-1	PASS	B
14		A-1		A
27		D-1		D
		-Q-1		-Q
23	1's Comp.	-B-1	2's Comp.	-B
24		-A-1	(Negate)	-A
17		-D-1		-D
10		Q-A-1		Q-A
11	Subtract	$B-A-1$	Subtract	$B-A$
15	(1's Comp)	A-D-1	(2's Comp)	A-D
16		Q-D-1		Q-D
20		A-Q-1		A-Q
21		A-B-1		A-B
25		D-A-1		D-A
26		D-Q-1		D-Q

Am2901B/2901C/2901C-1

LOGIC FUNCTIONS FOR $\mathbf{G}, \mathrm{P}, \mathbf{C}_{\mathrm{n}+4}$, AND OVR

The four signals G, P, C_{n+4}, and $O V R$ are designed to indicate carry and overflow conditions when the Am2901 is in the add or subtract mode. The table below indicates the logic equations for these four signals for each of the eight ALU functions. The R and S inputs are the two inputs selected according to Figure 2.

Definitions ($+=$ OR)
$P_{0}=R_{0}+S_{0}$

$$
G_{0}=R_{0} S_{0}
$$

$P_{1}=R_{1}+S_{1}$
$\mathrm{G}_{1}=\mathrm{R}_{1} \mathrm{~S}_{1}$
$P_{2}=R_{2}+S_{2}$
$\mathrm{G}_{2}=\mathrm{R}_{2} \mathrm{~S}_{2}$
$P_{3}=R_{3}+S_{3}$
$\mathrm{G}_{3}=\mathrm{R}_{3} \mathrm{~S}_{3}$
$C_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{n}$
$C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}$

I_{543}	Function	$\overline{\mathbf{p}}$	$\overline{\mathbf{G}}$	$\mathrm{C}_{\mathrm{n}+4}$	OVR
0	$R+S$	$\frac{1}{P_{3} P_{2} P_{1} P_{0}}$	$\overline{G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}}$	C_{4}	$C_{3} \forall C_{4}$
1	$S-R$	\longrightarrow Same as $R+S$ equations, but substitute $\overline{R_{i}}$ for R_{i} in definitions \longrightarrow			
2	R-S	Same as $R+S$ equations, but substitute $\overline{S_{i}}$ for S_{i} in definitions			
3	$R \vee S$	LOW	$P_{3} P_{2} P_{1} P_{0}$	$\overline{P_{3} P_{2} P_{1} P_{0}}+C_{n}$	$\overline{P_{3} P_{2} P_{1} P_{0}}+C_{n}$
4	$R \wedge S$	LOW	$\overline{G_{3}+G_{2}+G_{1}+G_{0}}$	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}+\mathrm{C}_{n}$
5	$\bar{R} \wedge S$	LOW	Same as $R \wedge S$ equations, but substitute $\overline{R_{i}}$ for R_{i} in definitions		
6	$R \forall S$	Same as $\overline{R \forall S}$, but substitute \bar{R}_{i} for R_{i} in definitions			
7	$\overline{R \forall S}$	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}$	$\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} P_{2} \mathrm{G}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$	$\frac{\overline{G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}}}{+P_{3} P_{2} P_{1} P_{0}\left(G_{0}+\bar{C}_{n}\right)}$	See note

Note: $\left[\overline{\mathrm{P}}_{2}+\overline{\mathrm{G}}_{2} \overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{2} \overline{\mathrm{G}}_{1} \overline{\mathrm{P}}_{0}+\overline{\mathrm{G}}_{2} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{0} \mathrm{C}_{n}\right] \forall\left[\overline{\mathrm{P}}_{3}+\overline{\mathrm{G}}_{3} \overline{\mathrm{P}}_{2}+\overline{\mathrm{G}}_{3} \overline{\mathrm{G}}_{2} \overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{3} \overline{\mathrm{G}}_{2} \overline{\mathrm{G}}_{1} \overline{\mathrm{P}}_{0}+\overline{\mathrm{G}}_{3} \overline{\mathrm{G}}_{2} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{0} \mathrm{C}_{n}\right]$
$+=O R$
Figure 8.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	$-0.5 \mathrm{~V} \mathrm{to}+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

OPERATING RANGE

Part Number Suffix
\mathbf{V}_{CC} Temperature DC, PCB, XC 4.75 V to 5.25 V $T_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ DM, DMB FM, FMB XM 4.50 V to 5.50 V $T_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Figure 9.

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
(Group A, Subgroups 1, 2, and 3)

Parameters	Description	Test Conditions (Note 1)			Min.	Typ. (Note 2)	Max.	Units
V_{OH}	Output HIGH Voitage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \\ & \mathrm{Y}_{0}, Y_{1}, Y_{2}, Y_{3} \end{aligned}$	2.4			Volts
				$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}, \mathrm{C}_{\mathrm{n}+4}$	2.4			
				$\mathrm{I}^{\text {OH }}=-800 \mu \mathrm{~A}, \mathrm{OVR}, \overline{\mathrm{P}}$	2.4			
				$\mathrm{I}_{\mathrm{OH}}=-600 \mu \mathrm{~A}, \mathrm{~F}_{3}$	2.4			
				$\begin{aligned} & \mathrm{IOH}=-600 \mu \mathrm{~A} \\ & \mathrm{RAM}_{0,3}, \mathrm{a}_{0,3} \end{aligned}$	2.4			
				$\mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA}, \overline{\mathrm{G}}$	2.4			
$I_{\text {CEX }}$	Output Leakage Current for $F=0$ Output	$\begin{aligned} & V_{C C}=M I N ., V_{O H}=5.5 \mathrm{~V} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					250	$\mu \mathrm{A}$
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I H} \\ & \text { or } V_{I L} \end{aligned}$	$Y_{0}, Y_{1}, Y_{2}, Y_{3}$	${ }^{1} \mathrm{OL}=20 \mathrm{~mA}\left(C O M^{\prime} \mathrm{L}\right)$			0.5	Volts
			$\gamma_{0}, Y_{1}, \gamma_{2}, \gamma_{3}$	$\mathrm{I}^{\mathrm{OL}}=16 \mathrm{~mA}$ (MIL)			0.5	
			$\overline{\mathrm{G}}, \mathrm{F}=0$	$1 \mathrm{OL}=16 \mathrm{~mA}$			0.5	
			$\mathrm{C}_{\mathrm{n}+4}$	$1 \mathrm{OL}=10 \mathrm{~mA}$			0.5	
			OVR, $\overline{\text { P }}$	$1 \mathrm{OL}=8.0 \mathrm{~mA}$			0.5	
			$\begin{aligned} & \mathrm{F}_{3}, \text { RAM }_{0,3}, \\ & Q_{0,3} \end{aligned}$	$1 \mathrm{OL}=6.0 \mathrm{~mA}$			0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed voltage for al	ut logical HIGH puts (Note 7)		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed voltage for al	t logical LOW puts (Note 7)				0.8	Volts
v_{1}	Input Clamp Voltage	$V_{C C}=$ MIN.,	$\mathrm{V}=-18 \mathrm{~mA}$				-1.5	Volts

v_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., IIN $=-18 \mathrm{~mA}$						-1.5	Volts		
I/L	Input LOW Current	$V_{C C}=M A X ., V_{I N}=0.5 \mathrm{~V}$		Clock, $A_{0}, A_{1}, A_{2}, A_{3}$				-0.36			
						-0.36	mA				
				$\mathrm{B}_{0}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$				-0.36			
				$\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$				-0.72			
				$1_{0}, I_{1}, I_{2}, I_{6}, 18$				-0.36			
				$13,14,15,17$				-0.72			
				$\mathrm{RAM}_{0,3}, \mathrm{Q}_{0,3}$ (Note 4)				-0.8			
				C_{n}				-3.6			
I_{IH}	Input HIGH Current	$V_{C C}=M A X ., V_{I N}=2.7 \mathrm{~V}$				Clock, $\overline{\mathrm{OE}}$				20	$\mu \mathrm{A}$
				$A_{0}, A_{1}, A_{2}, A_{3}$				20			
				$B_{0}, B_{1}, B_{2}, B_{3}$				20			
				$\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$				40			
				$1_{0}, 1_{1}, 1_{2}, 1_{6}, I_{8}$				20			
				$13,14,15,17$				40			
				$\mathrm{RAM}_{0,3}, \mathrm{Q}_{0,3}$ (Note 4)				100			
				C_{n}				200			
1	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$						1.0	mA		
$\begin{aligned} & \mathrm{IOZH} \\ & \mathrm{I} \mathrm{OZL} \end{aligned}$	Off State (High Impedance) Output Current	$V_{C C}=$ MAX .		$\begin{aligned} & Y_{0}, Y_{1} \\ & Y_{2}, Y_{3} \end{aligned}$	$\mathrm{v}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$		
				$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50				
				RAM $_{0,3}$ $Q_{0,3}$	$\mathrm{V}_{0}=2.4 \mathrm{~V}$ (Note 4)			100			
				$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & (\text { Note 4) } \end{aligned}$			-800				
'os	Output Short Circuit Current (Note 3)	$V_{C C}=M A X .+0.5 V, V_{O}=0.5 \mathrm{~V}$			$Y_{0}, Y_{1}, Y_{2}, Y_{3}, \bar{G}$		-30		-85	mA	
				$\mathrm{C}_{\mathrm{n}+4}$		-30		-85			
				OVR, $\overline{\mathrm{P}}$		-30		-85			
				F_{3}		-30		-85			
				$\mathrm{RAM}_{0,3}, \mathrm{Q}_{0,3}$		-30		-85			
I_{CC}	Power Supply Current (Note 6)	$V_{C C}=$ MAX	COM'L and MIL	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			160	250	mA		
				$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$			265			
			COM'L Only	$\mathrm{T}_{\text {A }}=+70^{\circ}$				220			
			MIL Only	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$				280			
				$\mathrm{T}^{\mathrm{T}} \mathrm{C}=+125^{\circ} \mathrm{C}$				198			

Notes: 1. $V_{C C}$ conditions shown as MIN. or MAX., refer to the military ($\pm 10 \%$) or commercial ($\pm 5 \%$) $V_{C C}$ limits.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be stored at a time. Duration of the short circuit test should not exceed one second.
4. These are three-state outputs internally connected to TTL inputs. Input characteristics are measured with I_{678} in a state such that the three-state output is OFF.
5. "MIL" = Am2901CXM, DM, FM, LM. "COM'L" = Am2901CXC, PC, DC, LC.
6. Worst case ICC is measured at the lowest temperature in the specified operating range.
7. These input levels provide zero noise immunity and should only be static tested in a noise-free environment, (not functionally tested).

Figure 10.

I. Am2901C Guaranteed Commercial Range Performance

The tables below specify the guaranteed performance of the Am2901C over the commercial operating range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, with V_{CC} from 4.75 V to 5.25 V . All data are in ns, with inputs switching between 0 V and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have maximum DC load.
This data applies to the following part numbers: Am2901CPC
Am2901CDC Am2901CLC

A. Cycle Time and Clock Characteristics.

Read-Modify-Write Cycle (from selection of A, B registers to end of cycle.)	31 ns
Maximum Clock Frequency to shift Q (50% duty cycle, $\mathrm{I}=432$ or 632$)$	32 MHz
Minimum Clock LOW Time	15 ns
Minimum Clock HIGH Time	15 ns
Minimum Clock Period	31 ns

B. Combinational Propagation Delays.
$C_{L}=50 \mathrm{pF}$

To Output From Input	Y	F3	Cn+4	$\overline{\mathbf{G}, ~ \overline{\mathbf{P}}}$	$F=0$	OVR	RAMO RAM3	$\begin{aligned} & \text { Q0 } \\ & \text { Q3 } \end{aligned}$
A, B Address	40	40	40	37	40	40	40	-
D	30	30	30	30	38	30	30	-
Cn	22	22	20	-	25	22	25	-
1012	35	35	35	37	37	35	35	-
1345	35	35	35	35	38	35	35	-
1678	25	-	-	-	-	-	26	26
$\begin{aligned} & \text { A Bypass ALU } \\ & (I=2 X X) \end{aligned}$	35	-	-	-	-	-	-	-
Clock 5	35	35	35	35	35	35	35	28

C. Set-up and Hold Times Relative to Clock (CP) Input.

Input	CP: Set-up Time Before H \rightarrow L	Hold Time After H \rightarrow L	Set-up Time Before L \rightarrow H	Hold Time After L \rightarrow H
A, B Source Address	15	1 (Note 3)	$\begin{gathered} \text { 30, } 15+T_{P W L} \\ (\text { Note } 4) \\ \hline \end{gathered}$	1
B Destination Address	15	Do Not	Change	1
D	-	-	25	0
Cn	-	-	20	0
1012	-	-	30	0
1345	-	-	30	0
1678	10	Do Not Change		0
RAMO, 3, Q0, 3	-	-	12	0

D. Output Enable/Disable Times.

Output disable tests performed with $C_{L}=5 p F$ and
measured to 0.5 V change of output voltage level.

Input	Output	Enable	Disable
$\overline{\mathrm{OE}}$	Y	23	23

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.

II. Am2901C Guaranteed Military Range Performance

The tables below specify the guaranteed performance of the Am2901B over the military operating range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, with V_{CC} from 4.5 V to 5.5 V . All data are in ns , with inputs switching between 0 V and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have maximum DC load.

This data applies to the following part numbers: Am2901CDM Am2901CFM Am2901CLM

A. Cycle Time and Clock Characteristics.

Read-Modify-Write Cycle (from selection of A, B registers to end of cycle.)	32 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, $\mathrm{I}=432$ or 632$)$	31 MHz
Minimum Clock LOW Time	15 ns
Minimum Clock HIGH Time	15 ns
Minimum Clock Period	32 ns

B. Combinational Propagation Delays.
$C_{L}=50 \mathrm{pF}$

To Output From Input	Y	F3	Cn+4	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	$F=0$	OVR	RAMO RAM3	$\begin{aligned} & \text { Q0 } \\ & \text { Q3 } \end{aligned}$
A, B Address	48	48	48	44	48	48	48	
D	37	. 37	37	34	40	37	37	
Cn	25	25	21		28	25	28	
1012	40	40	40	44	44	40	40	
1345	40	40	40	40	40	40	40	
1678	29						29	29
$\begin{aligned} & \text { A Bypass ALU } \\ & (1=2 X X) \end{aligned}$	40							
Clock F	40	40	40	40	40	40	40	33

C. Set-up and Hold Times Relative to Clock (CP) Input.

Input	CP: Set-up Time Before H $\rightarrow \mathbf{L}$	Hold Time After H \rightarrow L	Set-up Time Before L \rightarrow H	Hold Time After L \rightarrow H
A, B Source Address	15	2 (Note 3)	$\begin{gathered} \hline 30,15+T_{P W L} \\ \text { (Note 4) } \\ \hline \end{gathered}$	2
B Destination Address	15	Do Not Change		2
D			25	0
Cn			20	0
1012			30	0
1345			30	0
1678	10	Do Not Change		0
RAM0, 3, Q0, 3			12	0

D. Output Enable/Disable Times.

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Input	Output	Enable	Disable
$\overline{\mathrm{OE}}$	Y	25	25

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.

IV. Am2901B Guaranteed Commercial Range Performance

The Am2901C meets or exceeds all of the specifications for the earlier Am2901B and Am2901A. Parts may still be ordered and marked as Am2901B or Am2901A.

V. Am2901B Guaranteed Military Range Performance

The Am2901C meets or exceeds all of the specifications for the earlier Am2901B and Am2901A. Parts may still be ordered and marked as Am2901B or Am2901A.

TTL INPUT/OUTPUT CURRENT INTERFACES

MPR-013

Figure 11.

TEST OUTPUT LOAD CONFIGURATIONS FOR Am2901C

A. THREE-STATE OUTPUTS
B. NORMAL OUTPUTS
C. OPEN-COLLECTOR OUTPUTS

$$
\mathrm{R}_{2}=\frac{2.4 \mathrm{~V}}{\mathrm{I}_{\mathrm{OH}}}
$$

$$
\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}}
$$

$$
R_{1}=\frac{5.0-V_{B E}-V_{O L}}{I_{O L}+V_{O L} / R_{2}}
$$

Notes: 1. $C_{L}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. S_{1}, S_{2}, S_{3} are closed during function tests and all $A C$ tests except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open for $t_{P Z H}$ test.
S_{1} and S_{2} are closed while S_{3} is open for tPZL test.
4. $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests.

TEST OUTPUT LOADS FOR Am2901C (DIP)

Pin \#	Pin Label	Test Circuit	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
8	RAM $_{3}$	A	560	1 K
9	RAM $_{0}$	A	560	1 K
11	$\mathrm{~F}=0$	C	270	-
16	Q_{3}	A	560	1 K
21	Q_{0}	A	560	1 K
31	$\mathrm{~F}_{3}$	B	620	3.9 K
32	G	B	220	1.5 K
33	$\mathrm{C}_{\mathrm{n}+4}$	B	360	2.4 K
34	OVR	B	470	3 K
35	P	B	470	3 K
$36-39$	Y_{0-3}	A	220	1 K

LIFE TEST AND BURN-IN CIRCUIT FOR MILITARY CLASS B PARTS.

(Contact Factory for Commercial Burn-in Conditions)

Figure 12.

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful.

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to V_{CC} changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable may allow the ground pin at the device to rise by 100 's of millivolts momentarily.
4. Use extreme care in defining input levels for $A C$ tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach $V_{I L}$ or $V_{I H}$ until the noise has settled. AMD recommends using $V_{I L} \leqslant$ 0.4 V and $\mathrm{V}_{1 H} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

For additional information on testing, see section
"Guidelines on Testing Am2900 Family Devices"
in the Bipolar Microprocessor Logic and Interface Data Book.

MINIMUM CYCLE TIME CALCULATIONS FOR 16-BIT SYSTEMS

Speeds used in calculations for parts other than Am2901C are representative for available MSI parts.

Pipelined System. Simultaneous Add and Shift Down.

DATA LOOP

(1) Register	Clock to Output	9
+(2) 2901C	$\mathrm{A}_{1}, \mathrm{~B}$ to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	37
+ (3) 2902	$\mathrm{G}_{0}, \overline{P_{0}}$ to C_{n+z}	10
+ (4) 2901	C_{n} to $\mathrm{F}_{3}, \mathrm{OVR}$	25
+(5) XOR and MUX		21
+(6) 2901	RAM $_{3}$ Set-up	12

Figure 13.

III. Am2901C-1 Switching Characteristics

The Am2901C-1 is a speed selected version of the Am2901C offering a $20-30 \%$ speed improvement on critical paths.
A. Cycle Time and Clock Characteristics.

Read-Modify-Write Cycle (from selection of A, B registers to end of cycle.)	
Maximum Clock Frequency to shift Q (50\% duty cycle, $1=432$ or 632)	
Minimum Clock LOW Time	
Minimum Clock HIGH Time	
Minimum Clock Period	

B. Combinational Propagation Delays.
$C_{L}=50 \mathrm{pF}$

To Output From Input	Y	F3	Cn+4	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	$F=0$	OVR	RAMO RAM3	$\begin{aligned} & \text { Q0 } \\ & \text { Q3 } \end{aligned}$
A, B Address								
D								
Cn								
1012								
1345								
1678								
$\begin{aligned} & \text { A Bypass ALU } \\ & (1=2 X X) \end{aligned}$								
Clock 5								

D. Output Enable/Disable Times.

Output disable tests performed with $C_{L}=5 p F$ and measured to 0.5 V change of output voltage level.

Input	Output	Enable	Disable

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.

Using the Am2901

BASIC SYSTEM ARCHITECTURE

The Am2901 is designed to be used in microprogrammed systems. The nine instruction lines, the A and B addresses, and the D data inputs normally will all come from registers clocked at the same time as the Am2901. The register inputs come from a ROM or PROM - the "microprogram store." This memory contains sequences of microinstructions, typically 28 to 40 bits wide, which apply the proper control signals to the Am2901s and other circuits to execute the desired operation.

The address lines of the microprogram store are driven from the Am2901 microprogram sequencer. This device has facilities for storing an address, incrementing an address, jumping to any address, and linking subroutines. The Am2901 is controlled by some of the bits coming from the microprogram store. Essentially these bits are the "next instruction" control.

Note that with the microprogram register in-between the microprogram memory store and the Am2901s, an instruction accessed on one cycle is executed on the next cycle. As one instruction is executed, the next instruction is being read from microprogram memory. In this configuration, system speed is improved because the execution time in the Am2901s occurs in parallel with the access time of the microprogram store. Without the "pipeline register," these two functions must occur serially.

EXPANSION OF THE Am2901

The Am2901 is a four-bit CPU slice. Any number of Am2901s can be interconnected to form CPUs of 12, 16, 24, 36 or more bits, in four-bit increments. Figure 16 illustrates the interconnection of three Am2901s to form a 12-bit CPU, using ripple carry. Figure 17 illustrates a 16 -bit CPU using carry lookahead, and Figure 18 is the general carry lookahead scheme for long words.
With the exception of the carry interconnection, all expansion schemes are the same. Refer to Figure 16. The Q_{3} and RAM3 pins are bidirectional left/right shift lines at the MSB of the device. For all devices except the most significant, these lines are connected to the Q_{0} and RAM 0 pins of the adjacent more significant device. These connections allow the Q-registers of
all Am2901s to be shifted left or right as a contiguous n-bit register, and also allow the ALU output data to be shifted left or right as a contiguous n-bit word prior to storage in the RAM. At the LSB and MSB of the CPU, the shift pins should be connected to three-state multiplexers which can be controlled by the microcode to select the appropriate input signals to the shift inputs. (See Figure 19)
The open collector $\mathrm{F}=0$ outputs of all the Am2901s are connected together and to a pull-up resistor. This line will go HIGH if and only if the ouput of the ALU contains all zeroes. Most systems will use this line as the Z (zero) bit of the processor status word.

The overflow and F_{3} pins are generally used only at the most significant end of the array, and are meaningful only when two's complement signed arithmetic is used. The overflow pin is the

Figure 15. Microprogrammed Architecture Around Am2901s.

MPR-017

Figure 16. Three Am2901s Used to Construct 12-Bit CPU with Ripple Carry. Corresponding A, B and I Pins on all Devices are Connected together.

Exclusive-OR of the carry-in and carry-out of the sign bit (MSB). It will go HIGH when the result of an arithmetic operation is a number requiring more bits than are available, causing the sign bit to be erroneous. This is the overflow (V) bit of the processor status word. The F3 pin is the MSB of the ALU output. It is the sign of the result in two's complement notation, and should be used as the Negative (N) bit of the processor status word.
The carry-out from the most significant Am2901 (C_{n+4} pin) is the carry-out from the array, and is used as the carry (C) bit of the processor status word.

Carry interconnections between devices may use either ripple carry or carry lookahead. For ripple carry, the carry-out (C_{n+4}) of each device is connected to the carry-in (C_{n}) of the next more significant device. Carry lookahead uses the Am2902 lookahead carry generator. The scheme is identical to that used with the $74181 / 74182$. Users unfamiliar with this technique should refer to AMD's application note on Arithmetic Logic Units. Figure 17 and 18 illustrate single and multiple level lookahead.

MPR-018
Figure 17. Four Am2901s in a 16-Bit CPU Using the Am2902 for Carry Lookahead.

Figure 18. Carry Lookahead Scheme for 48-Bit CPU Using 12 Am2901s. The Carry-Out Flag (C48) should be taken from the Lower Am2902 Rather than the Right-Most Am2901 for Higher Speed.

MPR-020

Figure 19. Three-State Multiplexers Used on Shift I/O Lines.

SHIFT I/O LINES AT THE END OF THE ARRAY

The Q-register and RAM left/right shift data transfers occur between devices over bidirectional lines. At the ends of the array, three-state multiplexers are used to select what the new inputs to the registers should be during shifting. The Am2904 includes these multiplexers in a single LSI chip. Figure 19 shows two Am25LS253 dual four-input multiplexers connected to provide four shift modes. Instruction bit l_{7} (from the Am2901) is used to select whether the left-shift multiplexer or the right-shift multiplexer is active. The four shift modes in this example are: .

Zero A LOW is shifted into the MSB of the RAM on a down shift. If the Q-register is also shifted, then a LOW is deposited in the Q-register MSB. If the RAM or both registers are shifted up, LOWs are placed in the LSBs.

One Same as zero, but a HIGH level is deposited in the LSB or MSB.

Rotate A single precision rotate. The RAM MSB shifts into the LSB on a right shift and the LSB shifts into the MSB on a left shift. The Q-register, if shifted, will rotate in the same manner.

Arithmetic A double-length Arithmetic Shift if Q is also shifted. On an up shift a zero is loaded into the Q-register LSB and the Q-register MSB is loaded into the RAM LSB. On a down shift, the RAM LSB is loaded into the Q-register MSB and the ALU output MSB (F_{n}, the sign bit) is loaded into the RAM MSB. (This same bit will also be in the next less significant RAM bit.)

Code			Source of New Data				Shift	Type
17	S_{1}	S_{0}	O_{0}	O_{n}	RAM_{0}	RAM ${ }_{n}$		
H	L	L	0	Q_{n-1}	0	$\mathrm{F}_{\mathrm{n}-1}$	Up	Zero
H	L	H	1	a_{n-1}	1	$\mathrm{F}_{\mathrm{n}-1}$		One
H	H	L	a_{n}	a_{n-1}	F_{n}	F_{n-1}		Rotate
H	H	H	0	a_{n-1}	a_{n}	F_{n-1}		Arithmetic
L	L	L	a_{1}	0	F_{1}	0	Down	Zero
L	L	H	a_{1}	1	F_{1}	1		One
L	H	L	a_{1}	o_{0}	F_{1}	F_{0}		Rotate
L	H	H	a_{1}	F_{0}	F_{1}	$R A M_{n}=R A M_{n-1}=F_{n}$		Arithmetic

HARDWARE MULTIPLICATION

Figure 20 illustrates the interconnections for a hardware multiplication using the Am2901. The system shown uses two devices for 8×8 multiplication, but the expansion to more bits is simple - the significant connections are at the LSB and MSB only.

The basic technique used is the "add and shift" algorithm. One clock cycle is required for each bit of the multiplier. On each cycle, the LSB of the multiplier is examined; if it is a " 1 ", then
the multiplicand is added to the partial product to generate a new partial product. The partial product is then shifted one place toward the LSB, and the multiplier is also shifted one place toward the LSB. The old LSB of the multiplier is discarded. The cycle is then repeated on the new LSB of the multiplier available at Q_{0}.

The multiplier is in the Am2901 Q-register. The multiplicand is in one of the registers in the register stack, R_{a}. The product will be developed in another of the registers in the stack, R_{b}.

The A address inputs are used to address the multiplicand in R_{a}, and the B address inputs are used to address the partial product in R_{b}. On each cycle, R_{a} is conditionally added to R_{b}, depending on the LSB of Q as read from the Q_{0} output, and both Q and the ALU output are shifted down one place. The instruction lines to the Am2901 on every cycle will be:
$I_{876}=4 \quad$ (shift register stack input and Q register left)
$I_{543}=0 \quad$ (Add)
$I_{210}=1$ or 3 (select A, B or $0, B$ as ALU sources)

Figure 20 shows the connections for multiplication. The circled numbers refer to the paragraphs below.

1. The adjacent pins of the Q-register and RAM shifters are connected together so that the Q-registers of both (or all) Am2901s shift left or right as a unit. Similarly, the entire eight-bit (or more) ALU output can be shifted as a unit prior to storage in the register stack.

MPR-021

Figure 20. Interconnection for Dedicated Multiplication (8 by 8 bit) (Corresponding A, B and I Connected together).
2. The shift output at the LSB of the Q -register determines whether the ALU source operands will be A and B (add multiplicand to partial product) or 0 and B (add nothing to partial product. Instruction bit I_{1} can select between A, B or $0, B$ as the source operands; it can be driven directly from the complement of the LSB of the multiplier.
3. As the new partial product appears at the input to the register stack, it is shifted left by the RAM shifter. The new LSB of the partial product, which is complete and will not be affected by future operations, is available on the RAM $_{0}$ pin. This signal is returned to the MSB of the Q-register. On each cycle then, the just-completed LSB of the product is deposited in the MSB of the Q-register; the Q-register fills with the least significant half of the product.
4. As the ALU output is shifted down on each cycle, the sign bit of the new partial product should be inserted in the RAM MSB shift input. The F_{3} flag will be the correct sign of the partial product unless overflow has occurred. If overflow occurs during an addition or subtraction, the OVR flag will go HIGH and F_{3} is not the sign of the result. The sign of the result must then be the complement of F_{3}. The correct sign bit to shift into the MSB of the partial product is therefore $\mathrm{F} 3 \oplus$ OVR; that is, F_{3} if overflow has not occurred and \bar{F}_{3} if overflow has occurred. On the last cycle, when the MSB of the multiplier is examined, a conditional subtraction rather than addition should be performed, because the sign bit of the multiplier carries negative rather than positive arithmetic weight.

$$
Y=-Y_{i} 2^{i}+Y_{i-1} 2^{i-1}+\ldots+Y_{0} 2^{0}
$$

This scheme will produce a correct two's complement product for all multiplicands and multipliers in two's complement notation.

Figure 21 is a table showing the input states of the Am2901 for each step of a signed, two's complement multiplication. The Am2904 LSI chip conveniently implements the required shift linkages and the EX-OR function for this algorithm.

Figure 21.

HARDWARE DIVISION

Division, unlike multiplication, is much more difficult to realize. One of these difficulties can be easily understood by visualizing a $2 n$-bit Dividend (X) and an n-bit Divisor (Y). The Quotient (Q) can range from 1 bit (when $X<Y$) to $2 n$ bits (when $Y=1$), discarding the attempt to divide by 0 . In most of the divide functions, the Remainder (R) is as important to find as is the Quotient - there is no equivalent to it in multiplication. Division becomes even more complicated when negative numbers are represented in the 2 's complement notation. In the "everyday" decimal system, using Sign-and-Magnitude notation, dealing with negative numbers is relatively easy: The sign of the quotient is determined first and then a normal division is performed. Note that in this "normal" division we first "guess" the first digit of the quotient by comparing the most significant part of the dividend to the divisor. Then verify our guess by a multiplication (no "direct" division method is known), and continue to do so for all of the other digits, shifting the divisor to the right one place at a time.

The most straightforward division scheme (for unsigned numbers) is Subsequent Subtraction. The algorithm is as follows: Subtract divisor from dividend and increment a counter (initially reset to zero). Continue to do so as long as the Remainder is positive. When the Remainder becomes negative cancel the last step; i.e., add back divisor and decrement counter. The counter will contain the Quotient and the Remainder will be correct. The main drawback of this scheme is, of course, the great number of arithmetic operations needed. Again, when dealing with signed numbers, the subtraction should be substituted by addition and vice versa.
A more rapid division can be realized by calculating the Quotient digits instead of counting them. In this algorithm, the divisor is first subtracted from the most significant part of the dividend. If the remainder is positive, the quotient digit is " 1 ," otherwise the subtraction is cancelled (by adding the divisor to the remainder) and the quotient digit will be " 0 ." Now shift the remainder one place to the right (much like you do in a "paper and pencil" division) and repeat until all the quotient digits have been calculated. This algorithm is called "Restoring Division." When signed numbers are involved, inversion of the operations and the quotient digits will be necessary and correction should be performed in some cases. Some time is wasted in the Restoring Division because for every " 0 " digit in the quotient, two arithmetic operations are needed. This can be saved in the "Non-Restoring Division."

The basis of Non-Restoring Division is the same as in Restoring Division. Consider first unsigned (positive) numbers only. At the beginning, the divisor is subtracted from the most significant part of the dividend. If the result (first remainder) is positive (or zero), the first quotient digit is " 1 ." Otherwise, the quotient digit is " 0 ," but do not restore. Shift divisor one place to the right (or remainder to the left) and add if Tast quotient digit was " 0 ;" otherwise subtract. Determine quotient digit as before and continue until all quotient digits have been computed. The remainder will be correct if it is non-negative, otherwise correction is needed by a restoring operation (on the remainder only). Extreme care should be taken of the number of bits and the value of the divisor. Assuming the divisor has n bits and the dividend as $2 n$ bits, the above process develops $n+1$ bits of the quotient. This will not be sufficient if the divisor is a small number and more digits are needed in the quotient. This condition can be easily detected as the most significant half of the dividend will be greater than the divisor in this case and division can then be terminated after setting the overflow flag. The flow chart for unsigned nonrestoring division is shown in Figure 25.

The unsigned division scheme can be applied to signed positive numbers without any change. When negative numbers are encountered, however, changes in the algorithm are necessary. The straightforward method of signed division seems to be "division in the first quadrant." In that scheme, negative numbers are 2's complemented to obtain positive numbers, remembering the changes done. If overflow occurs when the dividend is complemented (i.e., dividend is $-2^{2 n-1}$, the least negative number), the overflow flag can be set and an exit from the routine taken. This is due to the fact that $\left(-2^{2 n}-1\right)$ divided by any number of n-bits cannot be represented in n bits. On the other hand, if overflow occurs when the divisor is complemented, a more complex action is needed. In this case, the dividend and the divisor should be shifted right by one place and the shifted out bit should be stored in a flag, say " Z." At the same time, a flag, "W" should also be set to indicate that division by -2^{n-1} is being attempted. These actions need to be taken since the quotient might be representable in n bits. (Here instead of dividend $=$ divisor quotient or remainder, we have dividend $/ 2=$ divisor $/ 2^{*}$ quotient + rem/2. The remainder obtained should be shifted left and the bit Z be added to give the correct remainder.) The division is performed on positive numbers, and finally 2 's complementing is done whenever necessary. Figure 22 is the flowchart for this algorithm.
Figure 23 is the Interconnection Diagram for Division Algorithm. It is assumed that the most significant half Dividend is in Register R_{X} (it will be lost during the division and replaced by the Remainder), the least significant half in the Q Register and that the Divisor is in Register R_{y}. The Quotient will be generated in the Q register.
After checking the signs of the Dividend and Divisor, setting the flags and negating (using 23 or 24 octal as I_{5} through $I_{0} A L U$ control bits) when necessary the overflow condition should be checked. If R_{x} is greater than, then R_{y}, overflow occurs, hence the division can be terminated by setting the overflow flag.
The first step in the Division routine is a subtract, then shift the R_{x} and Q registers up. I_{876} will be 6 in octal while $l_{210}=1$ in octal and $I_{5}=I_{4}=$ LOW. Pulling the CL bit in the microcode to HIGH, both I_{3} and C_{n} will be high and the ALU is performing a 2's complement subtract. The sign of the Remainder will be latched in the Status Register and the complement of it will be stored in the LSB of the Q register during the shift up operation, which also discards the sign bit of the Remainder.
Now repeating the same operation for all of the other bits of the Remainder with the CL bit in the microcode LOW will leave the control of I_{3} to the (complemented) previous sign bit. If it was " 0 " ($R<0$), I_{3} and C_{n} will be HIGH and the ALU will subtract; if it was $1(R>0), I_{3}$ and C_{n} will be LOW and the ALU will ADD, as required. In each up shift, the complement of the present sign bit will be placed at the right of the Quotient, again, as required.
At the end of the division, the sign bit of the Remainder should be examined and if it is HIGH, the Divisor should be added to it. This can be easily implemented (not depicted on Figure 23) by performing an unconditional ADD (with C_{n} LOW), letting l_{2} LOW, $I_{0} \mathrm{HIGH}$ and controlling I_{1} by the complement of the sign of the Remainder, thus adding to the $R X$ either RY (if $R_{S}=1$) or zero (if $R_{S}=0$). If the dividend and divisor were shifted right because the divisor was equal to -2^{n-1}, thetrueremainder is obtained by shifting the remainder left and adding the flag " Z." The above method generates $n+1$ bits of the quotient $\left(q_{n} \ldots q_{0}\right)$ of which q_{n} $=0$, since most significant half of dividend is less than the divisor. The overflow flag should be set if $q_{n-1}=1$ since $q_{n-1} \ldots q_{0}$ is an unsigned positive number.

Figure 22. Flowchart for Division with Signed Numbers (Quotient $=q_{n}, q_{n-1} \ldots q_{0}$ where $q_{n}=0$)

Figure 23. Interconnections for Dedicated Division

Initial Register Status
R

0	MSH Dividend
1	Divisor
Q	LSH Dividend

Am2901 Microcode

Program: 2's Complement Division

Final Register Status
R

0	Remainder
1	Divisor
Q	Quotient

S, F	D	Description	CL	Repeat	Pin Status (Octal)										Jump to if
					A	B	I_{876}	1543	I_{210}	C_{n}	\mathbf{Q}_{0}	\mathbf{Q}_{3}	RAM ${ }_{0}$	RAM 3	
(B-A) *2	B	First Subtract \& Shift	1	-	1	0	6	1	1	1	F_{3}	x	0	x	,
$(B \pm A) * 2$	B	Loop Subtract/Add \& Shift	0	N	1	0	6	1/0	1	1/0	F_{3}	x	0.	x	
$B+0$	B	Correct Remainder	X	-	1	0	3	0	1/3	0	X	X	X	X	

$k=$ Number of leading zeros of the Divisor
$N=$ Number of bits in the Divisor

Figure 24. Am2901 Microcode for Dedicated Division

Figure 25. Flowchart for Nonrestoring Division (Unsigned Numbers)

Finally, the Quotient and/or Remainder should be 2's complemented again according to the flags. Complementation of the remainder cannot generate an overflow - because the maximum remainder after divide (Figure 25) is $0011 \ldots 1$ and the remainder correction when $\mathrm{W}=1$ can make the remainder at most 0111 . . . 1.

EXAMPLES OF SOME OTHER OPERATIONS

1. Byte Swapping

Occasionally the two halves of a 16 -bit word must be swapped. D_{0-7} is interchanged with D_{8-15}. The quickest way to perform this operation is to rotate the word in RAM, shifting two bits at a time. Only four shift cycles are required. The same register is selected on both the A and B ports; the two are added together with carry-in connected to carry-out, producing a right shift of one place; then the ALU is shifted right one more place prior to storage.

Byte Swap of $\mathbf{R}_{\mathbf{0}}$

$A=B=0 I=701$ RAM $_{0}=$ RAM $_{15} C_{I N}=C_{\text {OUT }}$
Repeat 4 times.

2. Instruction Fetch Cycle

Execution of a macroinstruction generally begins with an instruction fetch cycle. The current contents of the PC (in one of the registers) is the address of the macroinstruction to be fetched, and must be read out to the memory address register. Then the PC is incremented to point to the next macroinstruction. The macroinstruction obtained from memory is then loaded into the microprogram sequencer to cause a jump to the microcodie for executing the instruction.
The PC can be read out and incremented in one cycle by using the Am2901 destination code 2, and addressing the PC with both the A and B addresses. The current value of PC will appear on the Y outputs, and $P C+1$ will be returned to the register. If the PC is in register 15, then:
$A=B=15, I=203$, Carry-in = 1
The PC will be on the Y outputs via the RAM A-port. On the clock LOW-to-HIGH transition, the program counter is incremented and the value on the Y outputs is loaded into the memory address register. During the following cycle, the memory is read and, on the next clock LOW-to-HIGH transition the instruction from the memory is dropped into the instruction register. The fetch operation requires only two microcycles.

Am2902A
 High-Speed Look - Ahead Carry Generator

DISTINCTIVE CHARACTERISTICS

- Provides look-ahead carries accross a group of four Am2901 or Am2903 microprocessor ALU's
- Capability of multi-level look-ahead for high-speed arithmetic operation over large word lengths
- Typical carry propagation delay of 4.5 ns

RELATED PRODUCTS

Part No.	Description
Am2901	4-Bit Microprocessor Slice
Am2903	4-Bit Microprocessor Slice
Am29203	Improved 2903
Am29501	Multiport Pipelined Processor

FUNCTIONAL DESCRIPTION

The Am2902A is a high-speed, look-ahead carry generator which accepts up to four pairs of carry propagate and carry generate signals and a carry input and provides anticipated carries across four groups of binary ALU's. The device also has carry propagate and carry generate outputs which may be used for further levels of look-ahead.

The Am2902A is generally used with the Am2901 bipolar microprocessor unit to provide look-ahead over word lengths of more than four bits. The look-ahead carry generator can be used with binary ALU's in an active LOW or active HIGH input operand mode by reinterpreting the carry functions. The connections to and from the ALU to the look-ahead carry generator are identical in both cases.
The logic equations provided at the outputs are:
$C_{n+x}=G_{0}+P_{0} C_{n}$
$C_{n+y}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n}$
$C_{n+z}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}$
$G=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}$
$\mathrm{P}=\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$

MAXIMUM RATINGS
(Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

SWITCHING CHARACTERISTICS

$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$)

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
$t_{\text {PLH }}$	C_{n} to C_{n+x}, C_{n+y}, or C_{n+z}		6.5	10	ns	
$\mathrm{t}_{\mathrm{PHL}}$			7	10.5		
$t_{\text {PLH }}$	\bar{P}_{i} or \bar{G}_{i} to C_{n+x}, C_{n+y}, or C_{n+z}		4.5	7	ns	
${ }_{\text {tPHL }}$			4.5	7		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$
$\mathrm{t}_{\text {PLH }}$	\bar{P}_{i} or \bar{G}_{i} to \bar{G}		5	7.5	ns	
$\mathrm{t}_{\text {PHL }}$			7	10.5		
$\mathrm{t}_{\text {PLH }}$	\bar{P}_{i} to \bar{P}		4.5	6.5	ns	
${ }^{\text {tPHL }}$			6.5	10		

Am2902A
SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

	Description	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \end{aligned}$		$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$		Units	Test Conditions
Parameters		Min.	Max.	Min.	Max.		
tPLH	C_{n} to C_{n+x}, C_{n+y}, or C_{n+z}		13		15	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$
tpHL			14		16.5	ns	
$t_{\text {PLL }}$	\bar{P}_{i} or \bar{G}_{i} to C_{n+x}, C_{n+y}, or C_{n+z}		8		9.5	ns	
$\mathrm{t}_{\text {PHL }}$			9		11.5	ns	
tpLH	\bar{P}_{i} or $\overline{\mathrm{G}}_{i}$ to $\overline{\mathrm{G}}$		12		16.5	ns	
$\mathrm{t}_{\text {PHL }}$			12		13.5	ns	
${ }_{\text {tPLH }}$	$\bar{P} \bar{p}_{\text {to }} \bar{P}$		9.5		11.5	ns	
$\mathrm{t}_{\text {PHL }}$			11		12	ns	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

DEFINITION OF FUNCTIONAL TERMS

C_{n} Carry-in. The carry-in input to the look-ahead generator. Also the carry-in input to the nth Am2901A microprocessor ALU input.
$\mathbf{C}_{\mathrm{n}+\mathrm{j}}$ Carry-out. $(\mathrm{j}=\mathrm{x}, \mathrm{y}, \mathrm{z})$. The carry-out output to be used at the carry-in inputs of the $n+1, n+2$ and $n+3$ microprocessor ALU slices.
$\mathbf{G}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}$ Generate and propagate inputs respectively $(\mathbf{i}=0,1,2$, 3). The carry generate and carry propagate inputs from the n, $n+1, n+2$ and $n+3$ microprocessor ALU slices.

G, P Generate and propagate outputs respectively. The carry generate and carry propagate outputs that can be used with the next higher level of carry look-ahead if used.

32-BIT ALU, THREE LEVEL CARRY LOOK-AHEAD.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2902APC	$\mathrm{P}-16$	C	$\mathrm{C}-1$
AM2902ADC	$\mathrm{D}-16$	C	$\mathrm{C}-1$
AM2902ADC-B	$\mathrm{D}-16$	C	$\mathrm{B}-1$
AM2902ADM	$\mathrm{D}-16$	M	$\mathrm{C}-3$
AM2902ADM-B	$\mathrm{D}-16$	M	$\mathrm{B}-3$
AM2902AFM	$\mathrm{F}-16$	M	C
AM2902AFM-B	$\mathrm{F}-16$	C	$\mathrm{B}-3$
AM2902ALC	$\mathrm{L}-20-1$	C	$\mathrm{C}-1$
AM2902ALC-B	$\mathrm{L}-20-1$	M	$\mathrm{B}-1$
AM2902ALM	$\mathrm{L}-20-1$	M	$\mathrm{C}-3$
AM2902ALM-B	$\mathrm{L}-20-1$	C	$\mathrm{B}-3$
AM2902AXC	Dice	M	Visual inspection
AM2902AXM	Dice		to MIL-STD-883.
		Method 2010B.	

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak, $F=$ Flat-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Am2903/2903A
 Four-Bit Bipolar Microprocessor Slice

DISTINCTIVE CHARACTERISTICS

- Expandable Register File -

Like the Am2901, the Am2903 contains 16 internal working registers arranged in a two-address architecture. But the Am2903 includes the necessary "hooks" to expand the register file externally to any number of registers.

- Built-in Multiplication Logic -

Performing multiplication with the Am2901 requires a few external gates - these gates are contained on-chip in the Am2903. Three special instructions are used for unsigned multiplication, two's complement multiplication and the last cycle of a two's complement multiplication.

- Built-in Division Logic -

The Am2903 contains all logic and interconnects for execution of a non-restoring, multiple-length division with correction of the quotient.

- Built-in Normalization Logic -
-The Am2903 can simultaneously shift the Q Register and count in a working register. Thus, the mantissa and exponent of a floating-point number can be developed using a single microcycle per shift. Status flags indicate when the operation is complete.
- Built-in Parity Generation Circuitry -

The Am2903 can supply parity across the entire ALU output for use in error detection.

- Built-in Sign Extension Circuitry -

To facilitate operation on different length two's complement numbers, the Am2903 provides the capability to extend the sign at any slice boundary.

- Fast -

The Am2903A is up to 30\% faster than the Am2903 and meets or exceeds all of the specifications for the Am2903.

- IMOX -

The Am2903A is processed with AMD's proprietary IMOX ${ }^{\text {TM }}$ technology.

RELATED PRODUCTS

Part No. Description Page
Am2902A Carry Look-Ahead Generator
Am2904 Status and Shift Control Unit
Am2910A Microprogram Controller
Am2914 Vectored Priority Interrupt Controller
Am2918 Pipeline Register
Am2920 Octal Register
Am2922 Condition Code MUX
Am2925 System Clock Generator
Am2940 DMA Address Generator
Am2952 Bidirectional I/O Port
Am29705A Two-Port RAM,
Am27S35 Registered.PROM

GENERAL DESCRIPTION

The Am2903 is a four-bit expandable bipolar microprocessor slice. The Am2903 performs all functions performed by the industry standard Am2901 and, in addition, provides a number of significant enhancements that are especially useful in arithmetic-oriented processors. Infinitely expandable memory and three-port, three-address architecture are provided by the Am2903. In addition to its complete arithmetic and logic instruction set, the Am2903 provides a special set of instructions which facilitate the implementation of multiplication, division, normalization, and other previously time-consuming operations. The Am2903A is identical to the Am2903 but up to 30\% faster.

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

$\begin{gathered} \text { Am2903 } \\ \text { Order Number } \end{gathered}$	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2903DC	D-48	C	C-1
AM2903DC-B	D-48	C	B-2 (Note 4)
AM2903DM	D-48	M	C-3
AM2903DM-B	D-48	M	B-3
AM2903FM	F-48	M	C-3
AM2903FM-B	F-48	M	B-3
AM2903LC	L-52	C	C-1
AM2903LM	L-52	M	C-3
AM2903LM-B	L-52	M	B-3
AM2903XC	Dice	C	Visual inspection to MIL-STD-883
AM2903XM	Dice	M	$\left\{\begin{array}{l} \text { to MIL-STD-883 } \\ \text { Method 2010B. } \end{array}\right.$

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{F}=$ Flat $\mathrm{Pak}, \mathrm{L}=$ Leadless Chip-Pak. Number following letter is number of leads. See Appendix B for detailed outline.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

PIN DEFINITIONS

A0-3. Four RAM address inputs which contain the address of the RAM word appearing at the RAM A output port.
$\mathrm{B}_{0-3} \quad$ Four RAM address inputs which contain the address of the RAM word appearing at the RAM B output port and into which new data is written when the $\overline{W E}$ input and the CP input are LOW.
$\overline{W E} \quad$ The RAM write enable input. If $\overline{W E}$ is LOW, data at the Y I/O port is written into the RAM when the CP input is LOW. When $\overline{W E}$ is HIGH, writing data into the RAM is inhibited.
DA $_{0-3}$ A four-bit external data input which can be selected as one of the Am2903 ALU operand sources; $D A_{0}$ is the least significant bit.
$\overline{E A}$ A control input which, when HIGH selects DA_{0-3} as the ALU R operand, and, when LOW, selects RAM output A as the ALU R operand and the DA_{0-3} output data.
$D_{0-3} \quad A$ four-bit external data input/output. Under control of the $\overline{\mathrm{OE}} \mathrm{B}_{\mathrm{B}}$ input, RAM output port B can be directly read on these lines, or input data on these lines can be selected as the ALU S operand.
$\overline{\mathbf{O E}_{\mathrm{B}}} \quad \mathrm{A}$ control input which, when LOW, enables RAM output B onto the DB_{0-3} lines and, when HIGH, disables the RAM output B tri-state buffers.
$C_{n} \quad$ The carry-in input to the Am2903 ALU.
$\mathrm{I}_{0-8} \quad$ The nine instruction inputs used to select the Am2903 operation to be performed.
IEN The instruction enable input which, when LOW, allows the Q Register and the Sign Compare flip-flop to be written. When IEN is HIGH, the Q Register and Sign Compare flip-flop are in the hold mode. On the Am2903, $\overline{\text { IEN }}$ also controls WRITE.
$\mathbf{C}_{\mathrm{n}+4}$ This output generally indicates the carry-out of the Am2903 ALU. Refer to Table 5 for an exact definition of this pin.
$\bar{G} / \mathbf{N} \quad$ A multi-purpose pin which indicates the carry generate, \bar{G}, function at the least significant and intermediate slices, and generally indicates the sign, N, of the ALU result at the most significant slice. Refer to Table 5 for an exact definition of this pin.
$\bar{P} /$ OVR A multi-purpose pin which indicates the carry propagate, \bar{P}, function at the least significant and intermediate slices, and indicates the conventional two's complement overflow, OVR, signal at the most significant slice. Refer to Table 5 for an exact definition of this pin.

Z An open-collector input/output pin which, when HIGH, generally indicates the outputs are all LOW. For some Special Functions, Z is used as an input pin. Refer to Table 5 for an exact definition of this pin.
$\mathbf{S I O}_{0}$, Bidirectional serial shift inputs/outputs for the SIO_{3}

ALU shifter. During a shift-up operation, SIO_{0} is an input and SIO_{3} an output. During a shift-down operation, SIO_{3} is an input and SIO_{0} is an output. Refer to Tables 3 and 4 for an exact definition of these pins.
QlO_{0},

An input pin which, when tied LOW, programs the chip to act as the least significant slice (LSS) of an Am2903 array and enables the WRITE output onto the $\overline{\text { WRITE }} / \overline{M S S}$ pin. When $\overline{\text { LSS }}$ is tied HIGH, the chip is programmed to operate as either an intermediate or most significant slice and the WRITE output buffer is disabled.
When $\overline{\text { LSS }}$ is tied LOW, the $\overline{\text { WRITE }}$ output signal appears at this pin; the WRITE signal is LOW when an instruction which writes data into the RAM is being executed. When $\overline{\mathrm{LSS}}$ is tied HIGH, WRITE/MSS is an input pin; tying it HIGH programs the chip to operate as an intermediate slice (IS) and tying it LOW programs the chip to operate as the most significant slice (MSS).
\mathbf{Y}_{0-3} Four data inputs/outputs of the Am2903. Under control of the $\overline{O E}$ Y input, the ALU shifter output data can be enabled onto these lines, or these lines can be used as data inputs when external data is written directly into the RAM.
$\overline{\mathbf{O E}_{Y}}$ A control input which, when LOW, enables the ALU shifter output data onto the Y_{0-3} lines and, when HIGH, disables the Y_{0-3} threestate output buffers.
CP The clock input to the Am2903. The Q Register and Sign Compare flip-flop are clocked on the LOW-toHIGH transition of the CP signal. When enabled by $\overline{W E}$, data is written in the RAM when CP is LOW.

METALLIZATION AND PAD LAYOUT

Am 2903

ARCHITECTURE OF THE Am2903

The Am2903 is a high-performance, cascadable, four-bit bipolar microprocessor slice designed for use in CPU's, peripheral controllers, microprogrammable machines, and numerous other applications. The microinstruction flexibility of the Am2903 allows the efficient emulation of almost any digital computing machine. The nine-bit microinstruction selects the ALU sources, function and destination. The Am2903 is cascadable with full lookahead or ripple carry, has three-state outputs, and provides various ALU status flag outputs. Advanced Low-Power Schottky processing is used to fabricate this 48 -pin LSI circuit.

All data paths within the device are four bits wide. As shown in the block diagram, the device consists of a 16 -word by 4 -bit, two-port RAM with latches on both output ports, a high-performance ALU and shifter, a multi-purpose Q Register with shifter input, and a nine-bit instruction decoder.

Two-Port RAM

Any two RAM words addressed at the A and B address ports can be read simultaneously at the respective RAM A and B output ports. Identical data appear at the two output ports when the same address is applied to both address ports. The latches at the RAM output ports are transparent when the clock input, CP, is HIGH and they hold the RAM output data when CP is LOW. Under control of the $\overline{\mathrm{OE}_{\mathrm{B}}}$ three-state output enable, RAM data can be read directly at the Am2903 DB I/O port.
External data at the Am2903 Y I/O port can be written directly into the RAM, or ALU shifter output data can be enabled onto the $\mathrm{Y} / / \mathrm{O}$ port and entered into the RAM. Data is written into the RAM at the B address when the write enable input, $\overline{W E}$, is LOW and the clock input, CP, is LOW.

Arithmetic Logic Unit

The Am2903 high-performance ALU can perform seven arithmetic and nine logic operations on two 4-bit operands. Multiplexers at the ALU inputs provide the capability to select various pairs of ALU source operands. The $\overline{E_{A}}$ input selects either the DA external data input or RAM output port A for use as one ALU operand and the $\overline{\mathrm{O}} \mathrm{E}_{\mathrm{B}}$ and I_{0} inputs select RAM output port B, DB external data input, or the Q Register content for use as the second ALU operand. Also, during some ALU operations, zeroes are forced at the ALU operand inputs. Thus, the Am2903 ALU can operate on data from two external sources, from an internal and external source, or from two internal sources. Table I shows all possible pairs of ALU source operands as a function of the $\overline{\mathrm{E}_{\mathrm{A}}}, \overline{\mathrm{OE}} \mathrm{E}_{\mathrm{B}}$, and I_{O} inputs.

When instruction bits $\mathrm{I}_{4}, \mathrm{I}_{3}, \mathrm{I}_{2}, \mathrm{I}_{1}$, and I_{0} are LOW, the Am2903 executes special functions. Table 4 defines these special functions and the operation which the ALU performs for each. When the Am2903 executes instructions other than the nine special

TABLE I. ALU OPERAND SOURCES

$\overline{E_{A}}$	I_{0}	$\overline{\mathrm{OE}_{\mathrm{B}}}$	ALU Operand R	ALU Operand S
L	L	L	RAM Output A	RAM Output B
L	L	H	RAM Output A	DB_{0-3}
L	H	X	RAM Output A	Q Register
H	L	L	DA_{0-3}	RAM Output B
H	L	H	DA_{0-3}	DB_{0-3}
H	H	X	DA_{0-3}	Q Register

functions, the ALU operation is determined by instruction bits I_{4}, I_{3}, l_{2}, and I_{1}. Table 2 defines the ALU operation as a function of these four instruction bits.

TABLE 2. Am2903 ALU FUNCTIONS

I_{4}	I_{3}	I_{2}	l_{1}	Hex Code	ALU Functions	
L	L	L	L.	0	$\mathrm{I}_{0}=\mathrm{L}$	Special Functions
					$\mathrm{I}_{0}=\mathrm{H}$	$\mathrm{F}_{\mathrm{i}}=\mathrm{HIGH}$
L	L	L	H	1	$F=S$ Minus R Minus 1 Plus C_{n}	
L	L	H	L	2	$F=R$ Minus S Minus 1 Plus C_{n}	
L	L	H	H	3	$F=R$ Plus S Plus C_{n}	
L	H	L	L	4	$F=S$ Plus C_{n}	
L	H	L	H	5	$F=\bar{S}$ Plus C_{n}	
L	H	H	L	6	$F=R$ Plus C_{n}	
L	H	H	H	7	$F=\overline{\mathrm{R}}$ Plus C_{n}	
H	L	L	L	8	$F_{i}=$ LOW	
H	L	L	H	9	$\mathrm{F}_{\mathrm{i}}=\overline{\mathrm{R}}_{\mathrm{i}}$ AND S_{i}	
H	L	H	L	A	$F_{i}=R_{i}$ EXCLUSIVE NOR S_{i}	
H	L	H	H	B	$F_{i}=R_{i}$ EXCLUSIVE OR S_{i}	
H	H	L	L	C	$F_{i}=R_{i}$ AND S_{i}	
H	H	L	H	D	$F_{i}=R_{i}$ NOR $^{\text {S }}$	
H	H	H	L	E	$F_{i}=R_{i}$ NAND S_{i}	
H	H	H	H	F	$F_{i}=R_{i} O R S_{i}$	

$L=$ LOW $\quad H=H I G H \quad i=0$ to 3
Am2903s may be cascaded in either a ripple carry or lookahead carry fashion. When a number of Am2903s are cascaded, each slice must be programmed to be a most significant slice (MSS), intermediate slice (IS), or least significant slice (LSS) of the array. The carry generate, G , and carry propagate, P, signals required for a lookahead carry scheme are generated by the Am2903 and are available as outputs of the least significant and intermediate slices.
The Am2903 also generates a carry-out signal, C_{n+4}, which is generally available as an output of each slice. Both the carry-in, C_{n}, and carry-out, $\mathrm{C}_{\mathrm{n}+4}$, signals are active HIGH. The ALU generates two other status outputs. These are negative, N , and overflow, OVR. The N output is generally the most significant (sign) bit of the ALU output and can be used to determine positive or negative results. The OVR output indicates that the arithmetic operation being performed exceeds the available two's complement number range. The N and OVR signals are available as outputs of the most significant slice. Thus, the multipurpose $\overline{\mathrm{G}} / \mathrm{N}$ and $\overline{\mathrm{P}} / \mathrm{OVR}$ outputs indicate $\overline{\mathrm{G}}$ and $\overline{\mathrm{P}}$ at the least significant and intermediate slices, and sign and overflow at the most significant slice. To some extent, the meaning of the $\mathrm{C}_{\mathrm{n}+4}, \overline{\mathrm{P}} / \mathrm{OVR}$, and $\overline{\mathrm{G}} / \mathrm{N}$ signals vary with the ALU function being performed. Refer to Table 5 for an exact definition of these four signals as a function of the Am2903 instruction.

ALU Shifter
 Under instruction control, the ALU shifter passes the ALU output (F) non-shifted, shifts it up one bit position (2F), or shifts it down one bit position (F/2). Both arithmetic and logical shift operations are possible. An arithmetic shift operation shifts data around the most significant (sign) bit position of the most significant slice,

and a logical shift operation shifts data through this bit position (see Figure A). SIO_{0} and SIO_{3} are bidirectional serial shift inputs/outputs. During a shift-up operation, SIO_{0} is generally a serial shift input and SIO_{3} a serial shift output. During a shift-down operation, SIO_{3} is generally a serial shift input and SIO_{0} a serial shift output.

To some extent, the meaning of the SIO_{0} and SIO_{3} signals is instruction dependent. Refer to Tables 3 and 4 for an exact definition of these pins.
The ALU shifter also provides the capability to sign extend at slice boundaries. Under instruction control, the SIO_{0} (sign) input can be extended through $\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}$ and propagated to the SIO_{3} output.
A cascadable, five-bit parity generator/checker is designed into the Am2903 ALU shifter and provides ALU error detection capability. Parity for the $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ ALU outputs and SIO_{3} input is generated and, under instruction control, is made available at the SIO_{0} output. Refer to the Am2903 applications section for a more detailed description of the Am2903 sign extension and parity generation/checking capability.

The instruction inputs determine the ALU shifter operation. Table 4 defines the special functions and the operation the ALU shifter performs for each. When the Am2903 executes instructions other than the special functions, the ALU shifter operation is determined by instruction bits $I_{8}, I_{7}, I_{6}, I_{5}$. Table 3 defines the ALU shifter operation as a function of these four bits.

Q Register

The Q Register is an auxiliary four-bit register which is clocked on the LOW-to-HIGH transition of the CP input. It is intended primarily for use in multiplication and division operations; however, it can also be used as an accumulator or holding register for some applications. The ALU output, F, can be loaded into the Q Register, and/or the Q Register can be selected as the source for the ALU S operand. The shifter at the input to the Q Register provides the capability to shift the Q Register contents up one bit position (2Q) or down one bit position (Q/2). Only logical shifts are performed. QIO_{0} and QIO_{3} are bidirectional shift serial inputs/ outputs. During a Q Register shift-up operation, QIO_{0} is a serial

Figure A.
Am2903 Arithmetic Shift Path

Am2903 Logical Shift Path

shift input and QlO_{3} is a serial shift output. During a shift-down operation, QIO_{3} is a serial shift input and QIO_{0} is a serial shift output.
Double-length arithmetic and logical shifting capability is provided by the Am2903. The double-length shift is performed by connecting QIO_{3} of the most significant slice to SIO_{0} of the least significant slice, and executing an instruction which shifts both the ALU output and the Q Register.
The Q Register and shifter are controlled by the instruction inputs. Table 4 defines the Am2903 special functions and the operations which the Q Register and shifter perform for each. When the Am2903 executes instructions other than the special functions, the Q Register and shifter operation is controlled by instruction bits $\mathrm{I}_{8}, \mathrm{I}_{7}, \mathrm{I}_{6}, \mathrm{I}_{5}$. Table 3 defines the,$Q$ Register and shifter operation as a function of these four bits.

Output Buffers

The DB and Y ports are bidirectional I / O ports driven by three-state output buffers with external output enable controls. The Y output buffers are enabled when the $\overline{O E_{Y}}$ input is LOW and are in the high impedance state when $\bar{O} E_{Y}$ is HIGH. The $D B$ output buffers are enabled when the $\overline{\mathrm{OE}} \mathrm{B}_{\mathrm{B}}$ input is LOW.

TABLE 3. ALU DESTINATION CONTROL FOR $I_{0} O R I_{1} O R I_{2} O R I_{3}=H I G H, \overline{I E N}=$ LOW.

				Hex Code	ALU Shifter Function	SIO_{3}		Y_{3}		Y_{2}		Y_{1}	Y_{0}	$\mathbf{S I O}_{0}$	$\overline{\text { Write }}$	Q Reg * Shifter Function	ClO_{3}	ClO_{0}
	17		I_{5}			Most Sig. Slice	Other Slices	Most Sig. Slice	Other Slices	Most Sig. Slice	Other Slices							
L	L	L	L	0	Arith. F/2 \rightarrow Y	Input	Input	F_{3}	SIO_{3}	SIO_{3}	F_{3}	F_{2}	F_{1}	F_{0}	L	Hold	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$
L	L	L	H	1	Log. F/2 \rightarrow Y	Input	Input	SIO_{3}	SIO_{3}	F_{3}	F_{3}	F_{2}	F_{1}	F_{0}	L	Hold	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$
L	L	H	L	2	Arith. F/2 \rightarrow Y	Input	Input	F_{3}	SiO_{3}	SiO_{3}	F_{3}.	F_{2}	F_{1}	F_{0}	L	Log. $\mathrm{Q} / 2 \rightarrow \mathrm{Q}$	Input	Q_{0}
L	L	H	H	3	Log. $F / 2 \rightarrow Y$	Input	Input	SIO_{3}	SiO_{3}	F_{3}	F_{3}	F_{2}	F_{1}	F_{0}	L	Log. $\mathrm{Q} / 2 \rightarrow \mathrm{Q}$	Input	Q_{0}
L	H	L	L	4	$F \rightarrow Y$	Input	Input	F_{3}	F_{3}	F_{2}	F_{2}	F_{1}	F_{0}	Parity	L	Hold	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
L	H	L	H	5	$F \rightarrow Y$	Input	Input	F_{3}	F_{3}	F_{2}	F_{2}	F_{1}	F_{0}	Parity	H	Log. $\mathrm{Q} / 2 \rightarrow \mathrm{Q}$	Input	Q_{0}
L	H	H	L	6	$F \rightarrow Y$	Input	Input	F_{3}	F_{3}	F_{2}	F_{2}	F_{1}	F_{0}	Parity	H	$\mathrm{F} \rightarrow \mathrm{Q}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
L	H	H	H	7	$F \rightarrow Y$	Input	Input	F_{3}	F_{3}	F_{2}	F_{2}	F_{1}	F_{0}	Parity	L	$\mathrm{F} \rightarrow \mathrm{Q}$	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$
H	L	L	L	8	Arith. 2F \rightarrow Y	F_{2}	F_{3}	F_{3}	F_{2}	F_{1}	F_{1}	F_{0}	SIO_{0}	Input	L	Hold	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H	L	L	H	9	Log. $2 \mathrm{~F} \rightarrow \mathrm{Y}$	F_{3}	F_{3}	F_{2}	F_{2}	F_{1}	F_{1}	F_{0}	SIO_{0}	Input	L	Hold	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H	L	H	L	A	Arith. $2 \mathrm{~F} \rightarrow \mathrm{Y}$	F_{2}	F_{3}	F_{3}	F_{2}	F_{1}	F_{1}	F_{0}	SIO_{0}	Input	L	Log. $2 Q \rightarrow Q$	Q_{3}	Input
H	L	H	H	B	Log. $2 \mathrm{~F} \rightarrow \mathrm{Y}$	F_{3}	F_{3}	F_{2}	F_{2}	F_{1}	F_{1}	F_{0}	SIO_{0}	Input	L	Log. $2 \mathrm{Q} \rightarrow \mathrm{Q}$	Q_{3}	Input
H	H,	L	L	C	$F \rightarrow Y$	F_{3}	F_{3}	F_{3}	F_{3}	F_{2}	F_{2}	F_{1}	F_{0}	Hi-Z	H	Hold	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H	H	L	H	D	$\mathrm{F} \rightarrow \mathrm{Y}$	F_{3}	F_{3}	F_{3}	F_{3}	F_{2}	F_{2}	F_{1}	F_{0}	Hi-Z	H	Log. $2 Q \rightarrow Q$	Q_{3}	input
H	H	H	L	E	$\mathrm{SiO}_{0} \rightarrow \mathrm{Y}_{0}, Y_{1}, Y_{2}, Y_{3}$	SIO_{0}	Input	L	Hold	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$							
H	H	H	H	F.	$\mathrm{F} \rightarrow \mathrm{Y}$	F_{3}	F_{3}	F_{3}	F_{3}	F_{2}	F_{2}	F_{1}	F_{0}	Hi-Z	L	Hold	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$

[^7]$L=L O W$
$\mathrm{Hi}-\mathrm{Z}=$ High Impedance
$$
H=H I G H
$$

TABLE 4. SPECIAL FUNCTIONS FOR $\mathbf{I}_{\mathbf{4}}=\mathbf{I}_{\mathbf{3}}=\mathbf{I}_{\mathbf{2}}=\mathrm{I}_{\mathbf{1}}=\mathrm{I}_{\mathbf{0}}=$ LOW (Note 4)

$\begin{aligned} & \text { (Hex) } \\ & I_{8} 1_{7} I_{6} I_{5} \end{aligned}$	Special Function	ALU Function	ALU Shifter Function	SIO_{3}		SIO_{0}	Q Reg \& Shifter Function	ClO_{3}	QlO_{0}	$\overline{\text { WRITE }}$
				Most Sig Slice	Other Slices					
0	Unsigned Multiply	$\begin{aligned} & F=S+C_{n} \text { if } Z=L \\ & F=R+S+C_{n} \text { if } Z=H \end{aligned}$	$\log F / 2 \rightarrow Y$ (Note 1)	Z	Input	F_{0}	$\underset{\rightarrow Q}{\log Q / 2}$	Input	Q_{0}	L
1	(Note 5)									
2	Two's Complement Multiply	$\begin{aligned} & F=S+C_{n} \text { if } Z=L \\ & F=R+S+C_{n} \text { if } Z=H \end{aligned}$	$\begin{gathered} \log F / 2 \rightarrow Y \\ (\text { Note } 2) \end{gathered}$	Z	Input	F_{0}	$\underset{\rightarrow Q}{\log Q / 2}$	Input	Q_{0}	L
3	(Note 5)									
4	Increment by One or Two	$F=S+1+C_{n}$	$F \rightarrow Y$	Input	Input	Parity	Hold	Z	Z	L
5	Sign/Magnitude Two's Complement	$\begin{aligned} & F=S+C_{n} \text { if } Z=L \\ & F=\bar{S}+C_{n} \text { if } Z=H \end{aligned}$	$\begin{gathered} \mathrm{F} \rightarrow \mathrm{Y} \\ \text { (Note 3) } \end{gathered}$	Input	Input	Parity	Hold	Z	Z	L
6	Two's Complement Multiply, Last Cycle	$\begin{aligned} & F=S+C_{n} \text { if } Z=L \\ & F=S-R-1+C_{n} \text { if } Z=H \end{aligned}$	$\log \mathrm{F} / 2 \rightarrow \mathrm{Y}$ (Note 2)	Z	Input	F_{0}	$\underset{\rightarrow Q}{\log Q / 2}$	Input	Q_{0}	L
7	(Note 5)									
8	Single Length Normalize	$F=S+C_{n}$	$F \rightarrow Y$	F_{3}	F_{3}	Z	$\underset{\rightarrow Q}{\log 2 Q}$	Q_{3}	Input	L
9	Binary to BCD Conversion	(Note 5)	$\log 2 \mathrm{~F} \rightarrow \mathrm{Y}$	F_{3}	F_{3}	Input	$\begin{gathered} \log 2 Q \\ \rightarrow Q \end{gathered}$	Q_{3}	Input	L
A	Double Length Normalize and First Divide Op	$F=S+C_{n}$	$\log 2 \mathrm{~F} \rightarrow \mathrm{Y}$	$R_{3} \forall F_{3}$	F_{3}	Input	$\underset{\rightarrow \mathbf{Q}}{\log 2 Q}$	Q_{3}	Input	L
B	(Note 5)									
C	Two's Complement Divide	$\begin{aligned} & F=S+R+C_{n} \text { if } Z=L \\ & F=S-R-1+C_{n} \text { if } Z=H \end{aligned}$	$\log 2 \mathrm{~F} \rightarrow \mathrm{Y}$	$\overline{R_{3} \forall F}$	F_{3}	Input	$\underset{\rightarrow Q}{\log 2 Q}$	Q_{3}	Input	L
D	(Note 5)									
E	Two's Complement Divide Correction and Remainder	$\begin{aligned} & F=S+R+C_{n} \text { if } Z=L \\ & F=S-R-1+C_{n} \text { if } Z=H \end{aligned}$	$F \rightarrow Y$	F_{3}	F_{3}	Z	$\underset{\rightarrow Q}{\log 2 Q}$	Q_{3}	Input	L
F	(Note 5)									

Notes: 1. At the most significant slice only, the C_{n+4} signal is internally gated to the Y_{3} output.
2. At the most significant slice only, $F_{3} \forall$ OVR is internally gated to the Y_{3} output.
3. At the most significant slice only, $\mathrm{S}_{3} \forall \mathrm{~F}_{3}$ is generated at the Y_{3} output.
4. The Q Register cannot be used explicitly as an operand for any Special Functions. It is defined implicitly within the functions.
5. Available on Am29203 only.

L = LOW
$\mathrm{Hi}-\mathrm{Z}=$ High Impedance
$\mathrm{H}=\mathrm{HIGH}$
$\forall \quad=$ Exclusive OR
$\mathrm{X}=$ Don't Care
Parity $=\mathrm{SIO}_{3} \forall \mathrm{~F}_{3} \forall \mathrm{~F}_{2} \forall \mathrm{~F}_{1} \forall \mathrm{~F}_{0}$

The zero, \mathbf{Z}, pin is an open collector input/output that can be wire-OR'ed between slices. As an output it can be used as a zero detect status flag and generally indicates that the Y_{0-3} pins are all LOW. To some extent the meaning of this signal varies with the instruction being performed. Refer to Table 5 for an exact definition of this signal as a function of the Am2903 instructions.

Instruction Decoder

The Instruction Decoder generates required internal control signals as a function of the nine Instruction inputs, I_{0-8}; the Instruction Enable input, $\overline{\operatorname{IEN}}$; the $\overline{\mathrm{LSS}}$ input; and the $\overline{\text { WRITE }} / \overline{\mathrm{MSS}}$ input/output.
The WRITE output is LOW when an instruction which writes data into the RAM is being executed. Refer to Tables 3 and 4 for a definition of the WRITE output as a function of the Am2903 instruction inputs.
On the Am2903, when $\overline{\mathrm{EN}}$ is HIGH, the $\overline{\text { WRITE }}$ output is forced HIGH and the Q Register and Sign Compare Flip-Flop contents
are preserved. When $\overline{I E N}$ is LOW, the WRITE output is enabled and the Q Register and Sign Compare Flip-Flop can be written according to the Am2903 instruction. The Sign Compare FlipFlop is an on-chip flip-flop which is used during an Am2903 divide operation (see Figure B). On the Am29203, IEN controls internal writing, but does not affect WRITE. The IEN signal can then be controlled separately at each chip to facilitate byte operations.

Programming the Am2903 Slice Position

Tying the $\overline{L S S}$ input LOW programs the slice to operate as a least significant slice (LSS) and enables the WRITE output signal onto the $\overline{W R I T E} / \overline{M S S}$ bidirectional I/O pin. When $\overline{\mathrm{LSS}}$ is tied HIGH, the $\overline{\text { WRITE }} / \overline{M S S}$ pin becomes an input pin; tying the $\overline{\text { WRITE }} \overline{M S S}$ pin HIGH programs the slice to operate as an intermediate slice (IS) and tying it LOW programs the slice to operate as a most significant slice (MSS). The $\bar{W} / \overline{M S S}$ pin must be tied HIGH through a resistor. $\bar{W} / \overline{\mathrm{MSS}}$ and $\overline{\mathrm{LSS}}$ should not be connected together. See Figure 2 of applications.

Am2903 SPECIAL FUNCTIONS

The Am2903 provides nine Special Functions which facilitate the implementation of the following operations:

- Single- and Double-Length Normalization
- Two's Complement Division
- Unsigned and Two's Complement Multiplication
- Conversion Between Two's Complement and Sign/Magnitude Representation
- Incrementation by One or Two

Table 4 defines these Special Functions.

The Single-Length and Double-Length Normalization functions can be used to adjust a single-precision or double-precision floating point number in order to bring its mantissa within a specified range.
Three Special Functions which can be used to perform a two's complement, non-restoring divide operation are provided by the Am2903. These functions provide both single- and doubleprecision divide operations and can be performed in " n " clock cycles, where " n " is the number of bits in the quotient.

The Unsigned Multiply Special Function and the two Two's Complement Muitiply Special Functions can be used to multiply two n-bit, unsigned or two's complement numbers, respectively, in n clock cycles. These functions utilize the conditional add and shift algorithm. During the last cycle of the two's complement multiplication, a conditional subtraction, rather than addition, is performed because the sign bit of the multiplier carries negative weight.
The Sign/Magnitude-Two's Complement Special Function can be used to convert number representation systems. A number expressed in Sign/Magnitude representation can be converted to the Two's Complement representation, and vice-versa, in one clock cycle.
The Increment by One or Two Special Function can be used to increment an unsigned or two's complement number by one or two. This is useful in 16 -bit word, byte-addressable machines, where the word addresses are multiples of two.

Refer to Am2903 applications section for a more detailed description of these Special Functions.

Figure B. Sign Compare Flip-Flop

The sign compare signal appears at the Z output of the most significant, slice during special functions C, D and E, F. Refer to Table 5.

TABLE 5. Am2903 StATUS OUTPUTS
Am2903/2903A

$\begin{gathered} \text { (Hex) } \\ \mathbf{I}_{8} 1_{7} 1_{6} 1_{5} \\ \hline \end{gathered}$	$\begin{aligned} & \text { (Hex) } \\ & I_{4} I_{3} I_{2} I_{1} \\ & \hline \end{aligned}$	I_{0}	$\begin{gathered} \text { GI } \\ (i=0 \text { to } 3) \end{gathered}$	$\begin{gathered} \mathrm{Pi} \\ (\mathrm{I}=0 \text { to } 3) \end{gathered}$	$\mathrm{C}_{\mathrm{n}+4}$	$\overline{\bar{P} / O V R}$		$\overline{\mathrm{G}} / \mathrm{N}$		$\mathbf{Z}\left(\overline{O E}_{Y}=\right.$ LOW $)$		
						Most Sig Slice	Other Slices	Most Sig Slice	Other Slices	Most Sig Silce	$\begin{array}{\|c\|} \hline \text { Intermediate } \\ \text { Slice } \end{array}$	$\begin{aligned} & \text { Least Sig } \\ & \text { Silices } \end{aligned}$ Slice
X	0	X	0	1	0	0	0	F_{3}	$\overline{\mathrm{G}}$	$\bar{Y}_{0} \overline{\bar{y}}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{y}_{0} \overline{\bar{y}}_{1} \bar{Y}_{2} \bar{y}_{3}$	$\bar{Y}_{0} \overline{\bar{y}}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	1	X	$R_{i} \wedge s_{i}$	$\overline{\overline{H_{i}}} \stackrel{\square}{ }$	$\mathrm{G} V \mathrm{PC}_{n}$	$c_{n+3} \forall c_{n+4}$	$\overline{\mathrm{P}}$	F_{3}	$\overline{\mathrm{G}}$	$\bar{Y}_{0} \bar{\gamma}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{\gamma}_{0} \bar{\gamma}_{1} \overline{\bar{r}}_{2} \bar{\gamma}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	2	x	$R_{i} \wedge S_{i}$	$R_{i} \vee S_{i}$	$G \vee P C_{n}$	$c_{n+3} \forall c_{n+4}$	\bar{p}	F_{3}	$\overline{\mathrm{G}}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{\gamma}_{0} \bar{\gamma}_{1} \bar{\gamma}_{2} \bar{\gamma}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	3	x	$R_{i} \wedge S_{i}$	$R_{i} \vee S_{i}$	$G \vee P C_{n}$	$c_{n+3} \forall c_{n+4}$	$\overline{\mathrm{P}}$	F_{3}	$\overline{\mathrm{G}}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	4	x	0	S_{i}	$G \vee P C_{n}$	$c_{n+3} \forall c_{n+4}$	$\overline{\mathrm{P}}$	F_{3}	$\overline{\mathrm{G}}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{\gamma}_{2} \bar{\gamma}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	5	x	0	$\overline{\bar{s}_{i}}$	$G \vee P C_{n}$	$c_{n+3} \forall c_{n+4}$	\bar{p}	F_{3}	$\overline{\mathrm{G}}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \overline{\bar{Y}}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	6	X	0	R_{i}	$G \vee P C_{n}$	$c_{n+3} \forall c_{n+4}$	$\overline{\mathrm{P}}$	F_{3}	$\overline{\mathrm{G}}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	7	x	0	$\overline{F_{i}}$	$\mathrm{G} \vee \mathrm{PC}_{n}$	$c_{n+3} \forall c_{n+4}$	$\overline{\mathrm{P}}$	F_{3}	$\overline{\mathrm{G}}$	$\bar{\gamma}_{0} \bar{\gamma}_{1} \bar{\gamma}_{2} \bar{Y}_{3}$	$\bar{\gamma}_{0} \bar{\gamma}_{1} \bar{\gamma}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	8	x	0	1	0	0	0	F_{3}	\bar{G}	$\bar{\gamma}_{0} \bar{\gamma}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
X	9	x	$\bar{R}_{i} \wedge S_{i}$	1	0	0	0	F_{3}	\bar{G}	$\bar{Y}_{0} \overline{\bar{Y}}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	A	x	$\mathrm{R}_{\mathrm{i}} \wedge \mathrm{S}_{\mathrm{i}}$	$\mathrm{R}_{\mathrm{i}} \vee \mathrm{S}_{\mathrm{i}}$	0	0	0	F_{3}	\bar{G}	$\bar{Y}_{0} \bar{\gamma}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	B	x	$\overline{\bar{R}_{i}} \wedge \mathrm{~s}_{\mathrm{i}}$	$\overline{\bar{R}}_{\mathrm{i}} \vee \mathrm{S}_{\mathrm{i}}$	0	0	0	F_{3}	$\overline{\mathrm{G}}$	$\bar{Y}_{0} \bar{\gamma}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	C	x	$\mathrm{R}_{\mathrm{i}} \wedge \mathrm{S}_{\mathrm{i}}$	1	0	0	0	F_{3}	$\overline{\mathrm{G}}$	$\bar{Y}_{0} \bar{\gamma}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	D	x	$\overline{\mathrm{n}}_{\mathrm{i}} \wedge \bar{s}_{\mathrm{i}}$	1	0	0	0	F_{3}	$\overline{\mathrm{G}}$	$\overline{\mathrm{Y}}_{0} \overline{\mathrm{Y}}_{1} \overline{\mathrm{Y}}_{2} \overline{\mathrm{Y}}_{3}$	$\bar{\gamma}_{0} \bar{\gamma}_{1} \overline{\bar{r}}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	E	x	$\mathrm{R}_{\mathrm{i}} \wedge \mathrm{S}_{\mathrm{i}}$	1	0	0	0	F_{3}	\bar{G}	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{\gamma}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \overline{\bar{y}}_{1} \bar{Y}_{2} \bar{Y}_{3}$
x	F	x	$\bar{R}_{i} \wedge \bar{s}_{i}$	1	0	0	0	F_{3}	\bar{G}	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$	$\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}$
0	0	L	$\begin{aligned} & 0 \text { if } Z=L \\ & R_{i} \wedge S_{i} \text { if } Z=H \end{aligned}$	$\begin{aligned} & S_{i} \text { if } Z=L \\ & R_{i} \vee S_{i} \text { if } Z=H \end{aligned}$	$G \vee P C_{n}$	$c_{n+3} \forall c_{n+4}$	$\overline{\text { P }}$	F_{3}	$\overline{\mathrm{G}}$	Input	Input	α_{0}
	0	L	(Note 6)									
1	8	L	(Note 6)			.						
2	0	L	$\begin{aligned} & 0 \text { if } Z=L \\ & R_{i} \wedge S_{i} \text { if } Z=H \end{aligned}$	$\begin{aligned} & S_{i} \text { if } Z=L \\ & R_{i} \vee S_{i} i f Z=H \end{aligned}$	$\mathrm{G} \vee \mathrm{PC}_{\mathrm{n}}$	$c_{n+3} \forall c_{n+4}$	\bar{p}	F_{3}	$\overline{\mathrm{G}}$	Input	Input	α_{0}
3	0	L	(Note 6)									
4	0	L	(Note 1)	(Note 2)	$G \vee P C_{n}$	$c_{n+3} \forall c_{n+4}$	\bar{p}	F_{3}	\bar{G}	$\bar{\gamma}_{0} \bar{\gamma}_{1} \bar{\gamma}_{2} \bar{\gamma}_{3}$	$\bar{\gamma}_{0} \bar{\gamma}_{1} \bar{\gamma}_{2} \bar{\gamma}_{3}$	$\bar{Y}_{0} \bar{y}_{1} \bar{Y}_{2} \bar{\gamma}_{3}$
5	0	L	0	$\begin{aligned} & S_{i} \text { if } Z=L \\ & S_{i} \text { i } Z=H \end{aligned}$	$\mathrm{G} \vee \mathrm{PC} \mathrm{n}_{\mathrm{n}}$	$c_{n+3} \forall c_{n+4}$	$\overline{\text { P }}$	$\begin{gathered} F_{3} \text { if } Z=L \\ F_{3} \forall S_{3} \text { if } Z=H \end{gathered}$	$\overline{\mathrm{G}}$	S_{3}	Input	Input
6	0	L	$\begin{aligned} & 0 \text { if } Z=L \\ & R_{i} \wedge S_{i} \text { if } Z=H \end{aligned}$	$\begin{aligned} & S_{i} \text { if } Z=L \\ & R_{i} \vee S_{i} \text { if } Z=H \end{aligned}$	$G \vee P C_{n}$	$c_{n+3} \forall c_{n+4}$	$\overline{\text { P }}$	F_{3}	$\overline{\mathrm{G}}$	Input	Input	0_{0}
7	0	L	(Note 6)									
8	0	L	0	S_{i}	(Note, 3)	$Q_{2} Q_{1}$	$\overline{\mathrm{P}}$	Q_{3}	$\overline{\mathrm{G}}$	$\overline{\mathrm{Q}}_{0} \overline{\mathrm{a}}_{1} \overline{\mathrm{Q}}_{2} \overline{\mathrm{a}}_{3}$	$\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{a}}_{2} \overline{\mathrm{a}}_{3}$	$\overline{\mathrm{a}}_{0} \overline{\mathrm{a}}_{1} \overline{\mathrm{Q}}_{2} \overline{\mathrm{a}}_{3}$
9	0	L	(Note 6)									
9	8	L	(Note 6)									
A	0	L	0	s_{i}	(Note 4)	$\mathrm{F}_{2} \mathrm{~F}_{1}$	$\overline{\mathrm{P}}$	F_{3}	\bar{G}	(Note 5)	(Note 5)	(Note 5)
B	0	L	(Note 6)									
c	0	L	$\begin{aligned} & R_{i} \wedge S_{i} \text { if } Z=L \\ & \bar{R}_{i} \wedge S_{i} \text { if } Z=H \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{i}} \vee \mathrm{~S}_{\mathrm{i}} \text { if } \mathrm{Z}=\mathrm{L} \\ & \overline{\mathrm{R}}_{\mathrm{i}} \vee \mathrm{~S}_{\mathrm{i}} \text { i } Z=\mathrm{H} \end{aligned}$	$\mathrm{G} \vee \mathrm{PC}_{\mathrm{n}}$	$c_{n+3} \forall c_{n+4}$	$\overline{\text { P }}$	F_{3}	\bar{G}	Sign Compare FF Output	Input	Input
D	0	L	(Note 6)									
E	0	L	$\begin{aligned} & \mathrm{B}_{\mathrm{i}} \wedge \mathrm{~S}_{\mathrm{i}} \text { it } \mathrm{Z}=\mathrm{L} \\ & \overrightarrow{\mathrm{~A}}_{\mathrm{i}} \wedge \mathrm{~S}_{\mathrm{i}} \text { if } \mathrm{Z}=\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{i}} \vee \mathrm{~S}_{\mathrm{i}} \text { i } \mathrm{Z}=\mathrm{L} \\ & \overline{\mathrm{R}}_{\mathrm{i}} \vee \mathrm{~S}_{\mathrm{i}} \mathrm{f} \mathrm{Z}=\mathrm{H} \\ & \hline \end{aligned}$	$G \vee P C_{n}$	$c_{n+3} \forall c_{n+4}$	$\overline{\mathrm{P}}$	F_{3}	$\overline{\mathrm{G}}$	Sign Compare FF Output	Input	Input
F	0	L	(Note 6)									

Notes: 1. If $\overline{\mathrm{LSS}}$ is LOW, $G_{0}=S_{0}$ and $G_{1,2,3}=0$. If $\overline{\mathrm{LSS}}$ is $\mathrm{HIGH}, G_{0,1,2,3}=0$.
2. If $\overline{L S S}$ is LOW, $P_{0}=1$ and $P_{1,2,3}=S_{1,2,3}$. If $\overline{L S S}$ is $\mathrm{HIGH}, \mathrm{P}_{\mathrm{i}}=\mathrm{S}_{\mathrm{i}}$.
3. At the most significant slice, $C_{n+4}=Q_{3} \forall Q_{2}$. At other slices, $C_{n+4}=G \vee P C_{n}$.
4. At the most significant slice, $C_{n+4}=F_{3} \forall F_{2}$. At other slices, $C_{n+4}=G \vee P C_{n}$.
5. $Z=\bar{Q}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{Q}}_{2} \overline{\mathrm{C}}_{3} \overline{\mathrm{~F}}_{0} \overline{\mathrm{~F}}_{1} \bar{F}_{2} \overline{\mathrm{~F}}_{3}$.
6. Am29203 only.

L \quad LOW $=0$
$\mathrm{H}=\mathrm{HIGH}=1$
= OR
= AND
= EXCLUSIVE OR
$\mathrm{P} \quad=\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$
$G \quad=G_{3} \vee G_{2} P_{3} \vee G_{1} P_{2} P_{3} \vee G_{0} P_{1} P_{2} P_{3}$
$C_{n+3}=G_{2} \vee G_{1} P_{2} \vee G_{0} P_{1} P_{2} \vee C_{n} P_{0} P_{1} P_{2}$

TEST OUTPUT LOAD CONFIGURATIONS FOR Am2903

A. THREE-STATE OUTPUTS
B. NORMAL OUTPUTS
C. OPEN-COLLECTOR OUTPUTS

$R_{1}=\frac{5.0-V_{B E}-V_{O L}}{\mathrm{l}_{\mathrm{OL}}+V_{\mathrm{OL}} / 1 \mathrm{~K}}$

$R_{2}=\frac{2.4 V}{\mathrm{IOH}}$
$R_{1}=\frac{5.0-V_{B E}-V_{O L}}{\mathrm{lOL}+V_{\mathrm{OL}} / R_{2}}$

$\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{OL}}}{\mathrm{lOL}^{\mathrm{OL}}}$

Notes: 1. $C_{L}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in hand in test fixture.
2. S_{1}, S_{2}, S_{3} are closed during function tests and all A.C. tests except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open for $t_{P Z H}$ test.
S_{1} and S_{2} are closed while S_{3} is open for tpZL test.
4. $C_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests.

TEST OUTPUT LOADS FOR Am2903

Pin\#	Pin Label	Test Circuit	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
1	QIO_{0}	A	458	1 K
11	$\mathrm{C}_{n}+4$	B	478	3 K
12	$\overline{\mathrm{P} / O V R}$	B	383	3 K
14	$\overline{\mathrm{G} / \mathrm{N}}$	B	212	1.5 K
$16-19$	Y_{0-3}	A	241	1 K
20	SIO_{0}	A	458	1 K
21	SIO_{3}	A	458	1 K
22	Z	C	281	-
$23-26$	DB	$\mathrm{A}-3$	A	458
40	$\overline{\mathrm{WRITE} / \overline{\mathrm{MSS}}}$	A	458	1 K
48	QIO_{3}	A	458	1 K

OPERATING RANGES (over which DC, switching, and functional specifications apply)

Range	Part Number Suffix	Temperature	Vcc
COM'L	$\begin{aligned} & \mathrm{PC}, \mathrm{PCB}, \\ & \mathrm{DC}, \mathrm{DCB}, \mathrm{XC} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$	4.75 to 5.25 V
MIL	DM, DMB, FM, FMB, XM	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$	4.50 to 5.50 V

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

Am2903 Burn-in and Life Test Circuit .

Am2903 - Am2903A
DC CHARACTERISTICS OVER OPERATING RANGE

Notes: 1. For conditions shown as MIN. or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second
4. $\mathrm{Y}_{0-3}, \mathrm{DB}_{0-3}, \mathrm{SIO}_{0,3}, \mathrm{QIO}_{0,3}$ and WRITE/MSS are three state outputs internally connected to TTL inputs. Z is an open-collector output internally connected to a TTL input. Input characteristics are measured under conditions such that the outputs are in the OFF state.
5. Worst case ICC is at minimum temperature.
6. These input levels provide zero noise immunity and should only be static tested in a noise-free environment (not functionally tested).
I. Am2903 Guaranteed Commercial Range Performance
The tables below specify the guaranteed performance of the Am2903 over the commercial operating range of 0 to $+70^{\circ} \mathrm{C}$, with V_{CC} from 4.75 to 5.25 V . All data are in ns, with inputs switching between 0 and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have maximum DC load.

Clock and Write Puise Characteristics All Functions

Minimum Clock LOW Time	30	ns
Minimum Clock HIGH Time	30	ns
Minimum Time CP and WE both LOW to Write	30	ns

Enable/Disable Times
All Functions

From	To	Enable	Disable	
OEY	Y_{i}	27	25	ns
OEB	DB_{i}	31	25	ns
I_{B}	$\mathrm{SIO}_{0}, \mathrm{SIO}_{3}$		25	ns
I_{8765}	$\mathrm{QiO}_{0}, \mathrm{QiO}_{3}$		60	ns
I_{43210}	$\mathrm{QiO}_{0}, \mathrm{QiO}_{3}$	65	60	ns
$\overline{\mathrm{LSS}}$	$\overline{\mathrm{WRITE}}$	31	25	ns

Note:

1. $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests. Measurement is made to a 0.5 V change on the output.

Combinational Delays
All Functions

To Output From Input	\boldsymbol{Y}	$\mathrm{C}_{\mathrm{n}+4}$	$\overline{\mathbf{G}, \overline{\mathbf{P}}}$	Z (s)	N	OVR	DB	WRITE	$\begin{aligned} & \mathrm{QIO}_{0} \\ & \mathrm{QiO}_{3} \\ & \hline \end{aligned}$	SIO_{0}	StO_{3}	SIO_{0} Parity
A Address (Arith. Mode) B Address	86	81	69	110	86	108	-	-	-	84	94	115
	99	88	81	123	99	112	49	-	-	94	104	140
A Address (Logic Mode) B Address	87	-	68	111	89	-	-	-	-	79	94	115
	84	-	73	108	84	-	49	-	-	84	90	120
DA Inputs (Arith. Mode) DB inputs	63	60	49	87	64	89	-	-	-	60	70	101
	61	59	47	85	62	84	-	-	-	62	68	98
DA Inputs (Logic Mode) DB Inputs	64	-	48	88	66	-	-	-	-	61	72	101
	55	-	32	79	57	--	-	-	-	52	61	93
$\overline{E A}$	59	53	42	83	59	83	-	-	-	57	64	98
C_{n}	40	30	-	64	40	58	-	-	-	38	46	67
10	52	48	36	76	52	63	-	49	*	50*	58*	93*
14321	71	65	72	95	69	84	-	49	*	66*	73*	105*
18765	42	-	-	66	-	-	-	50	60*	42*	45*	42*
IEN	-	-	-	-	-	-	-	22	-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	26	-	-	50	-	-	-	-	-	-	29	36
Clock	87	87	71	111	88	108	37	-	40	84	92	105
Y	-	-	-	24	-	-	-	-	-	-	-	\because
$\overline{\text { MSS }}$	44	-	44	68	44	44	-	-	-	44	46	44

Note: An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an *is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct the data is determined by something else.

Setup and Hold Times
 All Functions

CAUTION: READ NOTES. NA = Not Applicable; no timing constraint.

To Output From Input	With Respect to this Signal	HIGH-to-LOW		LOW-to-HIGH		Comment
		Set-up	Hold	Set-up	Hold	
Y	Clock	NA	NA	20	3	To store Y in RAM or Q
WE HIGH	Clock	25	Note 2	Note 2	0	To Prevent Writing
WE LOW	Clock	NA	NA	30	0	To Write into RAM
A, B as Sources	Clock	33	3	NA	NA	See Note 3
B as a Destination	Clock and WE both LOW	6	Note 4	Note 4	3	To Write Data only into the Correct B Address
$\mathrm{QlO}_{0}, \mathrm{QIO}_{3}$	Clock	NA	NA	21	3	To Shift Q
I_{8765}	Clock	24	Note 5	Note 5	0	
IEN HIGH	Clock	30	Note 2	Note 2	0	To Prevent Writing into Q
IEN LOW	Clock	NA	NA	30	0	To Write into Q
143210	Clock	24	-	68	0	See Note 6

Notes:

1. For setup times from all inputs not specified, the setup time is computed by calculating the delay to stable Y outputs and then allowing the Y setup time. Even if the RAM is not being loaded, the Y setup time is necessary to set up the Q register. All unspecified hold times are less than or equal to zero relative to the clock LOW-to-HIGH edge.
2. WE controls writing into the RAM. IEN controls writing into Q and, indirectly, controls $\overline{W E}$ through the write output. To prevent writing, IEN and $\overline{W E}$ must be HIGH during the entire clock LOW time. They may go LOW after the clock has gone LOW to cause a write provided the $\overline{W E}$ LOW and IEN LOW set-up times are met. Having gone LOW, they should not be returned HIGH until after the clock has gone HIGH.
3. A and B addresses must be set-up prior to clock LOW transition to capture data in latches at RAM output.
4. Writing occurs when CP and $\overline{W E}$ are both LOW. The B address should be stable during this entire period.
5. Because I_{8765} control the writing or not writing of data into RAM and Q, they should be stable during the entire clock LOW time unless IEN is HIGH, preventing writing.
6. The set-up time prior to the clock LOW-to-HIGH transition occurs in parallel with the set-up time prior to the clock HIGH-to-LOW transition and the clock LOW time. The actual set-up time requirement on I_{43210}, relative to the clock LOW-to-HIGH transition, is the longer of (1) the set-up time prior to clock $L \rightarrow H$, and (2) the sum of the set-up time prior to clock $H \rightarrow L$ and the clock LOW time.

Am2903/2903A

II. Am2903 Guaranteed Military Range Performance

The tables below specify the guaranteed performance of the Am2903 over the military operating range of -55 to $+125^{\circ} \mathrm{C}$, with V_{CC} from 4.5 to 5.5 V . All data are in ns, with inputs switching between 0 and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have maximum DC load.

Clock and Write Pulse Characteristics All Functions

Minimum Clock LOW Time	40	ns
Minimum Clock HIGH Time	40	ns
Minimum Time CP and WE both LOW to Write	40	ns

Enable/Disable Times
All Functions

From	To	Enable	Disable	
OEY	Y_{i}	27	25	ns
OEB	DB_{i}	34	25	ns
I_{8}	$\mathrm{SIO}_{0}, \mathrm{SIO}_{3}$		25	ns
I_{8765}	$\mathrm{QiO}_{0}, \mathrm{QiO}_{3}$		60	ns
I_{43210}	$\mathrm{QiO}_{0}, \mathrm{QiO}_{3}$	70	60	ns
$\overline{\text { ISS }}$	$\overline{\mathrm{WRITE}}$	34	25	ns

Note:

1. $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests. Measurement is made to a 0.5 V change on the output.

Combinational Delays
All Functions

To Output From Input	Y	$\mathrm{C}_{\mathrm{n}+4}$	$\overline{\mathbf{G}, \mathbf{P}}$	Z (s)	N	OVR	DB	WRITE	$\begin{aligned} & \mathrm{QIO}_{0} \\ & \mathrm{QIO}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	SIO_{0} Parity
A Address (Arith. Mode) B Address	91	85	72	116	92	115	-	-	-	89	98	120
	101	93	84	126	102	118	52	-	-	97	106	148
A Address (Logic Mode) B Address	92	-	72	117	93	-	-	-	-	84	98	120
	86	-	73	111	89	-	52	-	-	86	92	125
DA Inputs (Arith. Mode) DB Inputs	64	62	51	89	66	94	-	-	-	62	71	107
	63	60	48	88	63	89	-	-	-	64	68	100
DA Inputs (Logic Mode) DB Inputs	65	-	51	90	67	-	-	-	-	62	72	108
	56	-	32	81	57	-	-	-	-	52	63	100
$\overline{E A}$	60	56	43	85	60	87	-	-	-	58	64	103
C_{n}	40	30	-	65	40	59	-	-	-	38	46	69
10	52	50	36	77	52	66	-	53	*	51*	58 *	96 *
l_{4321}	72	69	73	97	71	88	-	53	*	66 *	75*	111*
${ }_{8} 8765$	44	-	-	69	-	-	-	50	65*	42*	45*	42 *
IEN	-	-	-	-	-	-	-	24	-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	26	-	-	51	-	-	-	-	-	-	29	36
Clock	89	90	74	114	89	116	39	-	42	91	96	110
Y	-	-	-	25	-	-	-	-	-	-	-	-
MSS	45	-	44	70	44	44	-	-	-	44	46	44

Note: An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an * is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct the data is determined by something else.

Setup and Hold Times
All Functions
CAUTION: READ NOTES. NA = Not Applicable; no timing constraint.

Input	With Respect to this Signal	HIGH-to-LOW		LOW-to-HIGH		Comment
		Set-up	Hold	Set-up	Hold	
Y	Clock	NA	NA	23	3	To store Y in RAM or Q
$\overline{\text { WE HIGH }}$	Clock	25	Note 2	Note 2	0	To Prevent Writing
$\overline{\text { WE LOW }}$	Clock	NA	NA	35	0	To Write into RAM
A, B as Sources	Clock	38	3	NA	NA	See Note 3
B as a Destination	Clock and WE both LOW	6	Note 4	Note 4	3	To Write Data only into the Correct B Address
$\mathrm{QlO}_{0}, \mathrm{QlO}_{3}$	Clock	NA	NA	23	3	To Shift Q
l_{8765}	Clock	24	Note 5	Note 5	0	
IEN HIGH	Clock	30	Note 2	Note 2	0	To Prevent Writing into Q
IENLOW	Clock	NA	NA	30	0	To Write into Q
143210	Clock	24	-	74	0	See Note 6

Notes:

1. For setup times from all inputs not specified, the setup time is computed by calculating the delay to stable Y outputs and then allowing the Y setup time. Even if the RAM is not being loaded, the Y setup time is necessary to set up the Q register. All unspecified hold times are less than or equal to zero relative to the clock LOW-to-HIGH edge.
2. $\overline{W E}$ controls writing into the RAM. IEN controls writing into Q and, indirectly, controls $\overline{W E}$ through the write output. To- prevent writing, IEN and $\overline{\mathrm{WE}}$ must be HIGH during the entire clock LOW time. They may go LOW after the clock has gone LOW to cause a write provided the $\overline{W E}$ LOW and IEN LOW set-up times are met. Having gone LOW, they should not be returned HIGH until after the clock has gone HIGH.
3. A and B addresses must be set-up prior to clock LOW transition to capture data in latches at RAM output.
4. Writing occurs when $C P$ and $\overline{W E}$ are both LOW. The B address should be stable during this entire period.
5. Because I_{8765} control the writing or not writing of data into RAM and Q, they should be stable during the entire clock LOW time unless IEN is HIGH, preventing writing
6. The set-up time prior to the clock LOW-to-HIGH transition occurs in parallel with the set-up time prior to the clock HIGH-to-LOW transition and the clock LOW time. The actual set-up time requirement on I_{43210}, relative to the clock LOW-to-HIGH transition, is the longer of (1) the set-up time prior to clock $L \rightarrow H$, and (2) the sum of the set-up time prior to clock $H \rightarrow L$ and the clock LOW time.

I. Am2903A Preliminary Commercial Range Performance

The tables below specify the preliminary performance of the Am2903 over the commercial operating range of 0 to $+70^{\circ} \mathrm{C}$, with V_{CC} from 4.75 to 5.25 V . All data are in ns, with inputs switching between 0 and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have maximum DC load

Clock and Write Pulse Characteristics All Functions

Minimum Clock LOW Time		ns
Minimum Clock HIGH Time		ns
Minimum Time CP and WE both LOW to Write		ns

Am2903/2903A
Enable/Disable Times
All Functions

From	To	Enable	Disable	
OEY	Y_{i}			ns
OEB	DB_{i}			ns
I_{8}	$\mathrm{SIO}_{0}, \mathrm{SIO}_{3}$			ns
I_{8765}	$\mathrm{QiO}_{0}, \mathrm{QiO}_{3}$			ns
I_{43210}.	$\mathrm{QiO}_{0}, \mathrm{QiO}_{3}$			ns
$\overline{\mathrm{LSS}}$	$\overline{\mathrm{WRITE}}$			ns

Note:

1. $C_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests. Measurement is made to a 0.5 V change on the output.
Combinational Delays
All Functions

To Output From Input	\mathbf{Y}	C_{n+4}	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (8)	N	OVR	DB	$\overline{\text { WRITE }}$	$\begin{aligned} & \mathrm{QIO}_{0} \\ & \mathrm{QIO}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	$\underset{\text { Parity }}{\mathrm{SIO}_{0}}$
A Address							-	-	-			
B Address						.		-	-			
A Address		-				-	-	-	-			
B Address		-				-		-	-			
DA Inputs							-	-	-			
DB Inputs							-	-	-			
DA Inputs		-				-	-	-	-			
DB inputs		-				-	-	-	-			
$\overline{E A}$							-	-	-			
C_{n}			-				-	, -	-			
10							-		*			
14321							-		*			
I_{8765}		-	-		-	-	-					
IEN	-	-	-	-	-	-	-		-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$		-	-		-	-	-	-	-	-		
Clock	.							-				
Y	-	-	-		-	-	-	-	-	-	-	-
$\overline{\text { MSS }}$		-					-	-	-			

Note: An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an *is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct the data is determined by something else.

Setup and Hold Times
All Functions
CAUTION: READ NOTES. NA = Not Applicable; no timing constraint.

To Output From Input	With Respect to this Signal	HIGH-to-LOW		LOW-to-HIGH		Comment
		Set-up	Hold	Set-up	Hold	
Y	Clock	NA	NA			To store Y in RAM or Q
$\overline{\text { WE HIGH }}$	Clock		Note 2	Note 2		To Prevent Writing
WE LOW	Clock	NA	NA			To Write into RAM
A, B as Sources	Clock			NA	NA	See Note 3
B as a Destination	Clock and WE both LOW		Note 4	Note 4		To Write Data only into the Correct B Address
$\mathrm{QlO}_{0}, \mathrm{QlO}_{3}$	Clock	NA	NA			To Shift Q
${ }_{8} 8765$	Clock		Note 5	Note 5		
IEN HIGH	Clock		Note 2	Note 2		To Prevent Writing into Q
IEN LOW	Clock	NA	NA			To Write into Q
143210	Clock		-			See Note 6

Notes

1. For setup times from all inputs not specified, the setup time is computed by calculating the delay to stable Y outputs and then allowing the Y setup time. Even if the RAM is not being loaded, the Y setup time is necessary to set up the Q register. All unspecified hold times are less than or equal to zero relative to the clock LOW-to-HIGH edge.
2. WE controls writing into the RAM. IEN controls writing into Q and, indirectly, controls $\overline{W E}$ through the write output. To prevent writing, IEN and $\overline{W E}$ must be HIGH during the entire clock LOW time. They may go LOW after the clock has gone LOW to cause a write provided the WE LOW and IEN LOW set-up times are met. Having gone LOW, they should not be returned HIGH until after the clock has gone HIGH.
3. A and B addresses must be set-up prior to clock LOW transition to capture data in latches at RAM output.
4. Writing occurs when CP and WE are both LOW. The B address should be stable during this entire period.
5. Because I_{8765} control the writing or not writing of data into RAM and Q, they should be stable during the entire clock LOW time unless IEN is HIGH, preventing writing
6. The set-up time prior to the clock LOW-to-HIGH transition occurs in parallel with the set-up time prior to the clock HIGH-to-LOW transition and the clock LOW time. The actual set-up time requirement on I_{43210}, relative to the clock LOW-to-HIGH transition, is the longer of (1) the set-up time prior to clock $L \rightarrow H$, and (2) the sum of the set-up time prior to clock $H \rightarrow L$ and the clock LOW time.

Am2903/2903A

II. Am2903A Preliminary Military

 Range PerformanceThe tables below specify the preliminary performance of the Am2903 over the military operating range of -55 to $+125^{\circ} \mathrm{C}$, with V_{CC} from 4.5 to 5.5 V . All data are in ns, with inputs switching between 0 and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . All outputs have maximum DC load.

Clock and Write Pulse Characteristics
All Functions

Minimum Clock LOW Time		ns
Minimum Clock HIGH Time		ns
Minimum Time CP and WE both LOW to Write		ns

Enable/Disable Times
All Functions

From	To	Enable	Disable	
OEY	Y_{i}			ns
OEB	DB_{i}			ns
I_{8}	$\mathrm{SiO}_{0} \cdot \mathrm{SiO}_{3}$			ns
I_{8765}	$\mathrm{QiO}_{0} \cdot \mathrm{QiO}_{3}$			ns
I_{43210}	$\mathrm{QiO}_{0} \cdot \mathrm{QiO}_{3}$			ns
$\overline{\mathrm{LSS}}$	$\overline{\mathrm{WRITE}}$			ns

1. $\mathrm{C}_{L}=5.0 \mathrm{pF}$ for output disable tests. Measurement is made to a 0.5 V change on the output

Combinational Delays All Functions

To Output From Input	\mathbf{Y}	C_{n+4}	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	WRITE	$\begin{aligned} & \mathrm{QiO}_{0} \\ & \mathbf{Q I O}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	SIO_{0} Parity
A Address							-	-	-			
(Arith. Mode) B Address								-	-			
A Address		-				-	-	-	-			
B Address	.	-				-		-	-			
DA inputs							-	-	-			
DB Inputs							-	-	-			
DA Inputs		--				-	-	-	-			
DB Inputs		-				-	-	-	-			
$\overline{E A}$							-	-	-			
C_{n}			-				-	-	-			
I_{0}							-		*			
I_{4321}					.		-		*			
l_{8765}		-	-		-	-	-					
IEN	-	-	-	-	-	-	-		-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$		-	-		-	-	-	-	-	-		
Clock								-				
Y	-	-	-		-	-	-.	-	-	-	-	-
$\overline{\mathrm{MSS}}$		-					-	-	-			

Note: An "*" means the outputt is enabled or disabled by the input. See enable and disable times. A number shown with an * is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct the data is determined by something else.

Setup and Hold Times
All Functions
CAUTION: READ NOTES. NA = Not Applicable; no timing constraint.

Input	With Respect to this Signal	HIGH-to-LOW		LOW-to-HIGH		Comment
		Set-up	Hold	Set-up	Hold	
Y	Clock	NA	NA			To store Y in RAM or Q
WE HIGH	Clock		Note 2	Note 2		To Prevent Writing
WE LOW	Clock	NA	NA			To Write into RAM
A, B as Sources	Clock			NA	NA	See Note 3
B as a Destination	Clock and WE both LOW		Note 4	Note 4		To Write Data only into the Correct B Address
$\mathrm{QlO}_{0}, \mathrm{QlO}_{3}$	Clock	NA	NA			To Shift Q
I_{8765}	Clock		Note 5	Note 5		
$\overline{\text { IEN HIGH }}$	Clock		Note 2	Note 2		To Prevent Writing into Q
IEN LOW	Clock	NA	NA			To Write into Q
l_{43210}	Clock		-			See Note 6

Notes

1. For setup times from all inputs not specified, the setup time is computed by calculating the delay to stable Y outputs and then allowing the Y setup time. Even if the RAM is not being loaded, the Y setup time is necessary to set up the Q register. All unspecified hold times are less than or equal to zero relative to the clock LOW-to-HIGH edge.
2. WE controis writing into the RAM. $\overline{E N N}$ controls writing into Q and, indirectly, controls $\overline{W E}$ through the write output. To prevent writing, IEN and WE must be HIGH during the entire clock LOW time. They may go LOW after the clock has gone LOW to cause a write provided the WE LOW and IEN LOW set-up times are met. Having gone LOW, they should not be returned HIGH until after the clock has gone HIGH.
3. A and B addresses must be set-up prior to clock LOW transition to capture data in latches at RAM output
4. Writing occurs when CP and $\overline{W E}$ are both LOW. The B address should be stable during this entire period.
5. Because I_{8765} control the writing or not writing of data into RAM and Q, they should be stable during the entire clock LOW time uniess $\overline{E N}$ is HIGH , preventing writing
6. The set-up time prior to the clock LOW-to-HIGH transition occurs in parallel with the set-up time prior to the clock HIGH-to-LOW transition and the clock LOW time. The actual set-up time requirement on I_{43210}, relative to the clock LOW-to-HIGH transition, is the longer of (1) the set-up time prior to clock $L \rightarrow H$, and (2) the sum of the set-up time prior to clock $H \rightarrow L$ and the clock LOW time.

III. Am2903 Guaranteed Combinational Delays for Special Functions.

The switching characteristics of the Am2903 are a function of power supply voltage, temperature, and the operating mode of the device. The following tables define the speeds of the combinational paths for each of the special functions. Setup and hold times do not change for the special functions. Data is shown in boldface where different from the standard function tables.

Except where otherwise noted, data is taken with inputs switching between 0 and 3.0 V at $1 \mathrm{~V} / \mathrm{ns}$; with the measurement point at 1.5 V . Outputs are measured at 1.5 V and are loaded with $C_{L}=50 \mathrm{pF}$ and maximum $D C$ load.
Times are specified as Commercial Range/Military Range where the commercial operating range is 0 to $+70^{\circ} \mathrm{C}$, and the military range is -55 to $+125^{\circ} \mathrm{C}$.

INDEX TO SWITCHING TABLES

Table	Applicable to
A	Increment by One or Two Instruction
B	Two's Complement Multiply Instruction
C	Unsigned Multiply Instruction
D	Two's Complement Multiply, Last Cycle
E	Sign Magnitude/Two's Complement Conversion
F	Single Length Normalize Instruction
G	First Divide Operation (double length norm)
H	Two's Complement Divide Operation
I	Two's Complement Divide, Correction

COMMERCIAL RANGE/MILITARY RANGE

A. Combinational Delays

Increment by One or Two Instruction
($\mathbf{l}_{8765}=\mathbf{4}_{\mathrm{H}}, l_{4321}=\mathbf{O}_{\mathrm{H}}, \mathrm{l}_{\mathrm{O}}=0$)

To Output From Input	Slice Position	\mathbf{Y}	C_{n+4}	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	WRITE	$\begin{aligned} & \mathrm{QIO}_{0} \\ & \mathrm{QiO}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	SIO_{0} Parity
A, B Address (Arith Mode)	MSS	99/101	88/93	-	123/126	99/102	112/118	49/52	-	-	-	-	140/148
	IS, LSS	99/101	88/93	81/84	123/126	-	-	49/52	-	-	-	-	140/148
DA, DB Inputs	MSS	63/64	60/62	-	87	64	89	-	-	-	-	-	101/107
	IS, LSS	63/64	60/62	49/51	87/89	-	-	-	-	-	-	-	101/107
$\overline{E A}$	MSS	-	-	-	-	-	-	-	-	-	-	-	-
	IS, LSS	-	-	-	-	-	-	-	-	-	-	-	-
C_{n}	MSS	40/40	30/30	-	64/65	40/40	58/59	-	-	-	-	-	67/69
	IS, LSS	40/40	30/30	-	64/65	40/40	58/59	-	-	-	-	-	67/69
I_{0}	MSS	66/73	60/61	-	90/98	71/72	82/87	-	-	*	*	*	103/110*
	IS	66/73	60/61	58/62	90/98	-	-	-	-	*	*	*	103/110*
	LSS	66/73	60/61	58/62	90/98	-	-	-	49/53	*	*	*	103/110*
14321	MSS	71/72	60/61	-	95/97	72/74	80/87	-	-	*	*	*	102/110*
	IS	71/72	60/61	58/62	95/97	-	-	-	-	*	*	*	102/110*
	LSS	71/72	60/61	58/62	95/97	-	-	-	49/53	*	*	*	102/110*
${ }_{8765}$	MSS	71/72	60/61	-	95/97	72/74	82/87	-	-	*	*	*	102/110*
	IS	71/72	60/61	58/62	95/97	-	-	-	-	*	*	*	102/110*
	LSS	71/72	60/61	58/62	95/97	-	-	-	50/50	*	*	*	102/110*
Clock	MSS	87/89	87/90	71/74	111/114	88/89	108/116	37/39	-	40/42	-	-	105/110
	IS, LSS	87/89	87/90	71/74	111/114	88/89	108/116	37/39	-	40/42	-	-	105/110
z	MSS	Z is an Output											
	IS, LSS	Z is an Output											
Y	Any	-	-	-	24/25	-	-	-	-	-	-	-	-
$\overline{\text { IEN }}$	Any	-	-	-	-	-	-	-	22/24	-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	Any	26/26	-	-	-	-	-	-	-	-	-	-	-

$F=S+1+C_{n}$
Notes: 1. An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an *is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct data is determined by something else.
2. A "-" means the delay path does not exist.
3. Data in boldface is different from standard function tabie; other data is the same.

B. Combinational Delays

Two's Complement Multiply Instruction
$\left(I_{8765}=\mathbf{2}_{\mathbf{H}}, \mathrm{I}_{\mathbf{4 3 2 1}}=\mathbf{O}_{\mathrm{H}}, \mathrm{I}_{\mathbf{O}}=\mathbf{0}\right.$)

To Output From Input	Slice Position	Y	C_{n+4}	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	$\overline{\text { WRITE }}$	$\begin{aligned} & \mathbf{Q 1 O}_{0} \\ & \mathrm{QIO}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	SIO_{0} Parity
A, B Address (Arith Mode)	MSS	106/113	88/93	-	-	99/102	112/118	49/52	-	-	94/97	-	-
	IS, LSS	99/101	88/93	81/84	-	-	-	49/52	-	-	94/97	-	-
DA, DB Inputs	MSS	78/78	60/62	-	-	64/66	89/94	-	-	-	62/64	-	-
	IS, LSS	63/64	60/62	49/51	-	-	-	-	-	-	62/64	-	-
EA	MSS	85/85	53/56	-	-	59/60	83/87	-	-	-	57/58	-	-
	IS, LSS	59/60	53/56	42/43	-	-	-	-	-	-	57/58	-	-
C_{n}	MSS	58/58	30/30	-	-	40/40	58/59	-	-	-	38/38	-	$-$
	IS, LSS	40/40	30/30	-	-	-	-	-	-	-	38/38	-	-
10	MSS	104/105	95/97	-	-	89/89	102/102	-	-	*	68/71*	*	-
	IS	104/105	95/97	78/81	-	-	-	-	-	*	68/71*	*	-
	LSS	104/105	95/97	78/81	42/42	-	-	-	49/53	*	68/71*	*	-
1_{4321}	MSS	112/112	95/98	-	-	94/94	108/111	-	-	*	71/75*	*	-
	Is	112/112	95/98	78/85	-	-	-	-	-	*	71/75*	*	-
	LSS	112/112	95/98	78/85	43/43	-	-	-	49/53	*	71/75*	*	-
l_{8765}	MSS	98/99	84/86	-	-	76/78	100/100	-	-	*	71/74*	*	-
	Is	98/99	84/86	82/84	-	-	-	-	-	*	71/74*	*	$-$
	LSS	98/99	84/86	82/84	46/48	-	-	-	50/50	*	71/74*	*	$\dot{-}$
Clock	MSS	100/107	87/90	-	-	88/89	108/116	37/39	-	40/42	84/91	-	-
	IS, LSS	87/89	87/90	71/74	53/57	-	-	37/39	-	40/42	84/91	-	-
z	MSS	90/90	62/65	-	-	69/70	78/81	-	-	-	71/72	-	-
	IS	90/90	62/65	48/48	-	-	-	-	-	-	71/72	-	-
$\overline{\mathrm{IEN}}$	Any	-	-	-	-	-	-	-	22/24	-	-	-	$-$
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	Any	26/26	-	-	-	-	-	-	-	-	-	-	-

$F=S-C_{n}$ if $Z=0$
$R-S-C_{n}$ if $Z=1$
$\mathrm{Y}_{3}=\mathrm{F}_{3} \oplus \mathrm{OVR}(\mathrm{MSS})$
$Z=Q_{0}$ (LSS)
Notes: 1. An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an *is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct data is determined by something else.
2. A "-" means the delay path does not exist,
3. Data in boldface is different from standard function table; other data is the same.
C. Combinational Delays

Unsigned Multiply Instruction
($\mathrm{I}_{8765}=\mathrm{O}_{\mathrm{H}}, \mathrm{I}_{\mathbf{4 3 2 1}}=\mathrm{O}_{\mathrm{H}}, \mathrm{I}_{\mathbf{0}}=0$)

To Output From Input	Slice Position	Y	C_{n+4}	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	$\overline{\text { WRITE }}$	$\begin{aligned} & \mathrm{QlO}_{0} \\ & \mathrm{QIO}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	$\begin{gathered} \mathrm{SIO}_{0} \\ \text { Parity } \end{gathered}$
A, B Address (Arith Mode)	MSS	102/103	88/93	-	-	99/102	112/118	49/52	-	-	94/97	-	--
	IS, LSS	99/101	88/93	81/84	-	-	-	49/52	-	-	94/97	-	-
DA, DB Inputs	MSS	65/66	60/62	-	-	64/66	89/94	-	-	-	62/64	-	-
	IS, LSS	63/64	60/62	49/51	-	-	-	-	-	-	62/64	-	-
$\overline{E A}$	MSS	73/74	53/56	-	-	59/60	83/87	-	-	-	57/58	-	-
	IS, LSS	59/60	53/56	42/43	-	-	-	-	-	-	57/58	-	-
C_{n}	MSS	45/45	30/30	-	-	40/40	58/59	-	-	-	38/38	-	-
	IS, LSS	40/40	30/30	-	-	-	-	-	-	-	38/38	-	-
I_{0}	MSS	94/97	95/97	-	-	87/87	102/106	-	-	*	70/71*	*	-
	IS	94/97	95/97	80/85	-	-	-	-	-	*	70/71*	*	-
	LSS	94/97	95/97	80/85	42/42	-	-	-	49/53	*	70/71*	*	-
1_{4321}	MSS	102/103	96/100	-	-	92/94	110/111	-	-	*	72/73*	*	-
	IS	102/103	96/100	81/86	-	-	-	-	-	*	72/73*	*	-
	LSS	102/103	96/100	81/86	43/43	-	-	-	49/53	*	72/73*	*	-
I_{8765}	MSS	102/102	90/93	-	-	77/76	84/89	-	-	*	72/75*	*	-
	Is	102/102	90/93	84/92	-	-	-	-	-	*	72/75*	*	-
	LSS	102/102	90/93	84/92	46/51	-	-	-	50/50	*	72/75*	*	-
Clock	MSS	91/94	87/90	-	-	88/89	108/116	37/39	-	40/42	84/91	-	-
	IS, LSS	87/89	87/90	71/74	53/57	-	-	37/39	-	40/42	84/91	-	-
z	MSS	74/76	62/65	-	-	70/70	78/81	-	-	-	71/72	-	-
	IS	74/76*	62/65	48/49	-	-	-	-	-	-	71/72	-	-
$\overline{\text { IEN }}$	Any	-	-	-	-	-	-	-	22/24	-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	Any	26/26	-	-	-	-	--	-	-	-	-	-	-

$\begin{aligned} F= & S+C_{n} \text { if } Z=0 \\ S & +R+C_{n} \text { if } Z=1\end{aligned}$
$Y_{3}=C_{n+4}$ (MSS)
$\mathrm{Z}=\mathrm{Q}_{0}$ (LSS)
Notes: 1. An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an * is the the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct data is determined by something else.
2. A "-" means the delay path does not exist.
3. Data in boldface is different from standard function table; other data is the same.

Am2903/2903A

COMMERCIAL RANGE/MILITARY RANGE (Cont.)

D. Combinational Delays

Two's Complement Multiply, Last Cycle
($\mathbf{l}_{8765}=\mathbf{6}_{\mathrm{H}}, \mathrm{l}_{\mathbf{4} 321}=\mathbf{0}_{\mathrm{H}}, \mathrm{I}_{\mathbf{O}}=0$)

To Output From Input	Slice Position	Y	C_{n+4}	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	$\overline{\text { WRITE }}$	QIO_{0} QiO_{3}	SIO_{0}	SiO_{3}	$\underset{\text { Parity }}{\mathrm{SIO}_{0}}$
A, B Address (Arith Mode)	MSS	120/121	88/93	-	-	99/102	112/118	49/52	-	-	94/97	-	-
	IS, LSS	99/101	88/93	81/84	-	-	-	49/52	-	-	94/97	-	-
DA, DB Inputs	MSS	85/88	60/62	-	-	64/66	89/94	-	-	-	62/64	-	-
	IS, LSS	63/64	60/62	49/51	-	-	-	-	-	-	62/64	-	-
$\overline{E A}$	MSS	93/96	53/56	-	-	59/60	83/87	-	-	-	57/58	-	-
	IS, LSS	59/60	53/56	42/43	-	-	-	-	-	-	57/58	-	-
C_{n}	MSS	64/64	30/30	-	-	40/40	58/59	-	-	-	38/38	-	-
	IS, LSS	40/40	30/30	-	-	-	-	-	-	-	38/38	-	-
I_{0}	MSS	112/118	99/102	-	-	91/97	120/126	-	-	*	98/102*	*	-
	IS	112/118	99/102	86/87	-	-	-	-	-	*	98/102*	*	-
	LSS	112/118	99/102	86/87	42/42	-	-	-	49/53	*	98/102*	*	-
14321	MSS	115/120	93/101	-	-	94/97	124/127	-	-	*	97/101*	*	-
	IS	115/120	93/101	85/86	-	-	-	-	-	*	97/101*	*	-
	LSS	115/120	93/101	85/86	43/43	-	-	-	49/53	*	97/101**	*	-
18765	MSS	105/105	93/98	-	-	88/88	114/115	-	-	*	96/102*	*	-
	IS	105/105	93/98	78/86	-	-	-	-	-	*	96/102*	*	-
	LSS	105/105	93/98	78/86	50/51	-	-	-	50/50	*	96/102*	*	-
Clock	MSS	110/110	87/90	-	-	88/89	108/116	37/39	-	40/42	84/91	-	-
	IS, LSS	87/89	87/90	71/74	53/58	-	-	37/39	-	40/42	84/91	-	-
z	MSS	91/92	64/67	-	-	74/80	98/103	-	-	-	70/72	-	-
	IS	91/92	64/67	50/53	-	-	-	-	-	-	70/72		
$\overline{\text { IEN }}$	Any	-	-	-	-	-	-	-	22/24	-	-	-	
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	Any	26/26	-	-	-	-	-	-	-	-	-	-	-

$F=S+C_{n}$ if $Z=0$

$$
S-R-1+C_{n} \text { if } Z=1
$$

$Y_{3}=\left(O V R \oplus F_{3}\right) M S S$
$Z=Q_{0}$ (LSS)
Notes: 1. An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an * is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct data is determined by something else.
2. A "-" means the delay path does not exist.
3. Data in boldface is different from standard function table; other data is the same.

E. Combinational Delays

Sign Magnitude/Two's Complement Conversion
$\left(I_{8765}=5_{H}, I_{4321}=0_{H}, I_{0}=0\right)$

To Output From Input	Slice Position	Y	$\mathrm{C}_{\mathrm{n}+4}$	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	$\overline{\text { WRITE }}$	$\begin{aligned} & \mathrm{QIO}_{0} \\ & \mathrm{QIO}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	$\begin{gathered} \mathrm{SIO}_{0} \\ \text { Parity } \end{gathered}$
A, B Address (Arith Mode)	MSS	138/143	88/93	-	70/78	138/143	112/118	49/52	-	-	-	-	140/148
	IS, LSS	99/101	88/93	81/84	-	-	-	49/52	-	-	-	-	140/148
DA, DB Inputs	MSS	98/103	60/62	-	40/40	98/103	89/94	-	-	-	-	-	101/107
	IS, LSS	63/64	60/62	49/51	-	-	-	-	-	-	-	-	101/107
$\overline{E A}$	MSS	-	-	-	-	-	-	-	-	-	-	-	-
	IS, LSS	-	-	-	-	-	-	-	-	-	-	-	-
C_{n}	MSS	79/83	30/30	-	-	79/83	58/59	-	-	-	-	-	67/69
	IS, LSS	40/40	30/30	-	-	-	-	-	-	-	-	-	67/69
I_{0}	MSS	102/102	78/80	-	46/50	100/100	112/115	-	-	*	*	*	131/132*
	IS	102/102	78/80	70/70	-	-	-	-	-	*	*	*	131/132*
	LSS	102/102	78/80	70/70	-	-	-	-	49/53	*	*	*	131/132*
I_{4321}	MSS	102/102	78/80	-	46/50	100/102	103/110	-	-	*	*	*	131/132*
	IS	102/102	78/80	72/75	-	-	-	-	-	*	*	*	131/132*
	LSS	102/102	78/80	72/75	-	-	-	-	49/53	*	*	*	131/132*
I_{8765}	MSS	100/103	78/80	-	46/50	97/100	105/112	-	-	*	*	*	138/142*
	IS	100/103	78/80	65/65	-	-	-	-	-	*	*	*	138/142*
	LSS	100/103	78/80	65/65	-	-	-	-	50/50	*	*	*	138/142*
Clock	MSS	118/120	87/90	71/-	58/61	118/120	108/116	37/39	-	-	-	-	105/110
	IS, LSS	87/89	87/90	71/74	-	-	-	37/39	-	-	-	-	105/110
z	MSS	Z is an Output											
	IS, LSS	72/76	60/61	48/51	-	-	-	-	-	-	-	-	114/118
$\overline{\text { IEN }}$	Any	-	-	-	-	-	-	-	22/24	-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	Any	26/26	-	-	-	-	-	-	-	-	-	-	-

$F=S+C_{n}$ if $Z=0$

$$
S+C_{n} \text { if } Z=1
$$

$\mathrm{Y}_{3}=\mathrm{S}_{3} \oplus \mathrm{~F}_{3}$ (MSS)
$Z=S_{3}$ (MSS)
Notes: 1. An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an * is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct data is determined by something else.
2. A"-" means the delay path does not exist.
3. Data in boldface is different from standard function table; other data is the same.

Am2903/2903A
COMMERCIAL RANGE/MILITARY RANGE (Cont.)
F. Combinational Delays

Single-Length Normalize Instruction
$\left(\mathrm{l}_{8765}=\mathrm{B}_{\mathrm{H}}, \mathrm{I}_{4321}=\mathrm{O}_{\mathrm{H}}, \mathrm{I}_{\mathrm{O}}=0\right.$)

To Output From Input	Slice Position	Y	$\mathrm{C}_{\mathrm{n}+4}$	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	$\overline{\text { WRITE }}$	$\begin{aligned} & \mathrm{QlO}_{0} \\ & \mathrm{QlO}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	$\underset{\text { Parity }}{\mathrm{SIO}_{0}}$
A, B Address (Arith Mode)	MSS	99/101	88/93	-	-	99/102	112/118	49/52	-	-	-	-	-
	IS, LSS	99/101	88/93	81/84	-	-	-	49/52	-	-	-	-	-
DA, DB Inputs	MSS	63/63	60/60	-	-	64/66	89/94	-	-	-	-	-	-
	IS, LSS	63/63	60/60	49/51	-	-	-	-	-	-	-	-	-
$\overline{E A}$	MSS	59/60	53/56	-	-	59/60	83/87	-	-	-	-	-	-
	IS, LSS	59/60	53/56	42/43	-	-	-	-	-	-	-	-	-
c_{n}	MSS	40/40	30/30	-	-	40/40	58/59	-	-	-	-	-	-
	IS, LSS	40/40	30/30	-	-	-	-	-	-	-	-	-	-
I_{0}	MSS	67/72	52/60	-	33/34	45/43	42/42	-	-	*	*	72/78*	-
	IS	$67 / 72$	52/60	58/59	33/34	-	-	-	-	*	*	72/78*	-
	LSS	$67 / 72$	52/60	58/59	33/34	-	-	-	49/53	*	*	72/78*	-
I_{4321}	MSS	68/72	58/60	-	34/38	45/48	47/47	-	-	*	*	72/78*	-
	IS	67/72	58/60	58/60	36/38	-	-	-	-	*	*	72/78*	-
	LSS	68/72	58/60	58/60	36/38	-	-	-	49/53	*	*	72/78*	-
I_{8765}	MSS	66/67	70/58	-	44/50	50/53	47/47	-	-	*	*	72/72*	-
	IS	66/67	70/58	41/42	44/50	-	-	-"	-	*	*	72/72*	-
	LSS	66/67	70/58	41/42	44/50	-	-	-	50/50	*	*	72/72*	-
Clock	MSS	87/89	49/53	-	46/53	49/49	47/49	37/39	-	40/42	-	92/96	-
	IS, LSS	87/89	87/90	71/74	48/53	-	-	37/39	-	40/42	-	92/96	-
z	MSS	Z is an Output											
	IS, LSS	Z is an Output											
$\overline{\text { IEN }}$	Any	-	-	-	-	-	-	-	22/24	-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	Any	26/26	-	-	-	-	-	-	-	-	-	-	-
$F \quad=S+c_{n}$													
$\begin{array}{ll} \mathrm{N} & =\mathrm{Q}_{3}(M S S) \\ \mathrm{Z} & =\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{Q}}_{2} \overline{\mathrm{Q}}_{3} \end{array}$													

Notes: 1. An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an * is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct data is determined by something else.
2. A"-" means the delay path does not exist.
3. Data in boldface is different from standard function table; other data is the same.
G. Combinational Delays

First Divide Operation (Double Length Normalize)
$\left(I_{8765}=A_{H}, I_{4321}=O_{H}, I_{0}=0\right)$

To Output From Input	Slice Position	\mathbf{Y}	$\mathrm{C}_{\mathrm{n}+4}$	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	$\overline{\text { WRITE }}$	QlO_{0} QlO_{3}	SIO_{0}	SIO_{3}	$\begin{gathered} \mathrm{SIO}_{\mathbf{0}} \\ \text { Parity } \end{gathered}$
A, B Address (Arith Mode)	MSS	99/101	113/122	-	94/96	94/100	102/112	49/52	-	-	-	120/130	-
	IS, LSS	99/101	88/93	81/84	-/96	-	-	49/52	-	-	-	104/106	-
DA, DB Inputs	MSS	63/64	75/80	-	54/63	54/65	62/72	-	-	-	-	80/84	-
	IS, LSS	63/64	60/62	49/51	-/63	-	-	-	-	-	-	70/71	-
$\overline{E A}$	MSS	-	-	-	-	-	-	-	-	-	-	76/80	-
	IS, LSS	-	-	-	-	-	-	-	-	-	-	64/46	-
C_{n}	MSS	40/40	54/57	-	45/48	45/48	50/55	-	-	-	-	68/68	-
	IS, LSS	40/40	30/30	-	-/48	-	-	-	-	-	-	46/46	-
I_{0}	MSS	69/71	95/98	-	68/85	72/72	86/91	-	' -	*	*	96/101*	-
	IS	69/71	95/98	56/61	68/85	-	-	-	-	*	*	96/101*	-
	LSS	69/71	95/98	56/61	68/85	-	-	-	49/53	*	*	96/101*	-
I_{4321}	MSS	69/71	94/98	-	68/85	72/76	86/91	-	-	*	*	96/101*	-
	IS	69/71	94/98	57/61	68/85	-	-	-	-	*	*	96/101*	-
	LSS	69/71	94/98	57/61	68/85	-	-	-	49/53	*	*	96/101*	-
I_{8765}	MSS	69/71	95/98	-	68/85	72/76	86/91	-	-	*	*	96/101*	-
	IS	69/71	95/98	57/61	68/85	-	-	-	-	*	*	96/101*	-
	LSS	69/71	95/98	57/61	68/85	-	-	-	50/50	*	*	96/101*	-
Clock	MSS	87/89	101/113	-	80/90	84/87	86/98	37/39	-	40/42	-	106/114	-
	IS, LSS	87/89	87/90	71/74	80/90	-	-	37/39	-	40/42	-	92/96	-
z	MSS	Z is an Output											
	Is	Z is an Output											
$\overline{\text { IEN }}$	Any	-	-	-	-	-	-	-	22/24	-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	Any	26/26	-	-	-	-	-	-	-	-	-	-	-

$F \quad=S+C_{n}$
$\mathrm{N}=\mathrm{F}_{3}$ (MSS)
$\mathrm{SIO}_{3}=\mathrm{F}_{3} \oplus \mathrm{R}_{3}$ (MSS)
$\mathrm{C}_{\mathrm{n}+4}=\mathrm{F}_{3} \oplus \cdot \mathrm{~F}_{2}$ (MSS)
OVR $=F_{2} \oplus F_{1}$ (MSS)
$\mathrm{Z}=\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{Q}}_{2} \overline{\mathrm{Q}}_{3} \overline{\mathrm{~F}}_{0} \bar{F}_{1} \overline{\mathrm{~F}}_{2} \bar{F}_{3}$
Notes: 1. An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an * is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct data is determined by something else.
2. A "-" means the delay path does not exist.
3. Data in boldface is different from standard function table; other data is the same.

H. Combinational Delays

Two's Complement Divide Operation
($\mathrm{I}_{8765}=\mathrm{C}_{\mathrm{H}}, \mathrm{I}_{4321}=\mathrm{O}_{\mathrm{H}}, \mathrm{I}_{\mathrm{O}}=0$)

To Output From Input	Slice Position	Y	$\mathrm{C}_{\mathrm{n}+4}$	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	WRITE	$\begin{aligned} & \mathrm{QIO}_{0} \\ & \mathrm{QIO}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	$\begin{array}{\|l} \mathbf{S I O}_{0} \\ \text { Parity } \end{array}$
A, B Address (Arith Mode)	MSS	99/101	88/93	-	-	99/102	112/118	49/52	-	-	-	107/112	-
	IS, LSS	99/101	88/93	81/84	-	-	-	49/52	-	-	-	104/106	-
DA, DB Inputs	MSS	63/64	60/62	-	-	64/66	89/94	-	-	-	-	84/88	-
	IS, LSS	63/64	60/62	49/51	-	-	-	-	-	-	-	70/71	-
$\overline{E A}$	MSS	59/60	53/56	-	-	59/60	83/87	-	-	-	-	91/96	-
	IS, LSS	59/60	53/56	42/43	-	-	-	-	-	-	-	64/64	-
C_{n}	MSS	40/40	30/30	-	-	40/40	58/59	-	-	-	-	64/64	-
	IS, LSS	40/40	30/30	-	-	-	-	-	-	-	-	46/46	-
I_{0}	MSS	94/95	93/96	-	39/42	94/98	120/127	-	-	*	*	108/113*	-
	Is	94/95	93/96	74/77	-	-	-	-	-	*	*	108/113*	-
	LSS	94/95	93/96	74/77	-	-	-	-	49/53	*	*	108/113*	-
${ }_{4321}$	MSS	94/95	84/96	-	42/42	93/97	120/124	-	-	*	*	108/114*	-
	Is	94/96	84/97	74/82	-	-	-	-	-	*	*	108/114*	-
	LSS	94/96	84/97	74/82	-	-	-	-	49/53	*	*	108/114*	-
18765	MSS	93/98	89/97	-	43/44	93/102	120/112	-	-	*	*	108/119*	-
	IS	93/98	89/97	64/64	-	-	-	-	-	*	*	108/119*	-
	LSS	93/98	89/97	64/64	-	-	-	-	50/50	*	*	108/119*	-
Clock	MSS	87/89	87/90	-	53/58	88/89	108/116	37/39	-	40/42	-	130/136	-
	IS, LSS	87/89	87/90	74/74	-	-	-	37/39	-	40/42	-	92/96	-
z	MSS	Z is an Output											
	IS, LSS	68/71	65/68	52/56	-	-	-	-	-	-	-	77/81	-
IEN	Any	-	-	-	-	-	-	-	22/24	-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	Any	26/26	-	-	-	-	-	-	-	-	-	-	-
$\begin{aligned} F= & R+S+C_{n} \text { if } Z=0 \\ & S-R-1+C_{n} \text { if } Z=1 \end{aligned}$													
$\mathrm{SiO}_{3}=\overline{\mathrm{F}}_{3} \oplus \mathrm{R}_{3}(\mathrm{MSS})$													

Notes: 1. An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an * is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct data is determined by something else.
2. A "-" means the delay path does not exist.
3. Data in boldface is different from standard function table; other data is the same.

I. Combinational Delays

Two's Complement Divide, Correction
($\mathrm{l}_{8765}=\mathrm{E}_{\mathrm{H}}, \mathrm{I}_{4321}=\mathrm{O}_{\mathrm{H}}, \mathrm{I}_{0}=0$)

To Output From Input	Slice Position	Y	C_{n+4}	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	Z (s)	N	OVR	DB	$\overline{\text { WRITE }}$	$\begin{aligned} & \mathrm{QIO}_{0} \\ & \mathrm{QIO}_{3} \end{aligned}$	SIO_{0}	SIO_{3}	SIO_{0} Parity
A, B Address (Arith Mode)	MSS	99/101	88/93	-	-	99/102	112/118	49/52	-	-	-	104/106	-
	IS, LSS	99/101	88/93	81/84	-	-	-	49/52	-	-	-	104/106	-
DA, DB Inputs	MSS	63/64	60/62	-	-	64/66	89/94	-	-	-	-	70/71	-
	IS, LSS	63/64	60/62	49/51	-	-	-	-	-	-	-	70/71	-
$\overline{E A}$	MSS	59/60	53/56	-	-	59/60	83/87	-	-	-	-	64/64	-
	IS, LSS	59/60	53/56	42/43	-	-	-	-	-	-	-	64/64	-
C_{n}	MSS	40/40	30/30	-	-	40/40	58/59	-	-	-	-	46/46	-
	IS, LSS	40/40	30/30	-	-	-	-	-	-	-	-	46/46	-
t_{0}	MSS	95/98	91/96	-	42/42	94/96	120/127	-	-	*	*	98/105*	-
	IS	95/98	91/96	72/78	-	-	-	-	-	*	*	98/105*	-
	LSS	95/98	91/96	72/78	-	-	-	-	49/53	*	*	98/105*	-
14321	MSS	96/100	91/96	-	42/43	94/97	118/123	-	-	*	*	98/104*	-
	is	96/100	91/96	78/84	-	-	-	-	-	*	*	98/104*	-
	LSS	96/100	91/96	78/84	-	-	-	-	49/53	*	*	98/104*	-
${ }_{18765}$	MSS	85/85	78/78	-	43/44	74/78	89/95	-	-	*	*	88/89*	-
	IS	85/85	78/78	62/62	-	-	-	-	-	*	*	88/89*	-
	LSS	85/85	78/78	62/62	-	-	-	-	50/50	*	*	88/89*	-
Clock	MSS	87/89	87/90	-	53/58	88/89	108/116	37/39	-	40/42	-	92/96	-
	IS, LSS	87/89	87/90	71/74	-	-	-	37/39	-	40/42	-	92/96	-
Z	MSS	Z is an Output											
	IS, LSS	73/76	66/70	54/54	-	-	-	-	-	-	-	79/79	-
IEN	Any	-	-	-	-	-	-	-	22/24	-	-	-	-
$\mathrm{SIO}_{3}, \mathrm{SIO}_{0}$	Any	26/26	-	-	-	-	-	-	-	-	-	-	-

$F=R+S+C_{n}$ if $Z=0$
$S-R-1+C_{n}$ if $Z=1$
$Z=\overline{F_{3} \oplus R_{3}}$ (MSS) from previous cycle
Notes: 1. An "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with an * is the delay to correct data on an enabled output. An * shown without a number means the output is disabled by the input or it is enabled but the delay to correct data is determined by something else.
2. A "-" means the delay path does not exist
3. Data in boldface is different from standard function table; other data is the same.

CYCLE TIMES FOR 16-BIT SYSTEM FOR COMMON OPERATIONS

The illustration below shows a typical configuration using 4 Am2903 Superslices, an Am2902A carry lookahead chip, and the Am2904 for shift multiplexers, status registers, and carry-in control. For the system enclosed within the dashed lines, there are four major switching paths whose values for various kinds of cycles are summarized below, and shown on the timing waveform.

1. MICROCYCLE TIME (TCHCH).

The minimum time which must elapse between a LOW-TOHIGH clock transition and the next LOW-TO-HIGH clock transition.
2. DATA SET-UP TIME (TDVCH).

The minimum time which must be allowed between valid, stable data on the D inputs and the clock LOW-TO-HIGH transition.
3. D TO Y (TDVYV).

The maximum time required to obtain valid Y output data after the D inputs are valid. This is the combinational delay through the parts from D to Y.
4. CP TO Y (TCHYV).

The maximum time required to obtain valid Y outputs after a clock LOW-TO-HIGH transition.
The types of cycles for which data is summarized are as follows:

1. Logic - Any logical operation without a shift.
2. Logic Rotate - Any logic operation with a rotate or shift.
3. Arithmetic - An add or subtract with no shift.
4. Multiply - The first cycle of a 2's complement multiply instruction. Subsequent cycles require less time.
5. Divide - The iterative divide cycle. The first divide instruction and the last divide (correction) instruction require less time.

Time in ns Over Commercial Operating Range

CYCLE	TCHCH		TDVCH	TDVYV		TCHYV
LOGIC	143	105	64	102		
LOGIC ROTATE	180	143	123	160		
ARITHMETIC	184	137	96	143		
MULTIPLY	200	140	120	180		
DIVIDE	228	167	128	189		

16-Bit System with Am2903, Am2902A, Am2904

MPR-583
Timing Waveforms for Data In, Clock, and Y Out

USING THE Am2903

For additional applications information, see chapters III and IV of Bit Slice Microprocessor Design, Mick and Brick, McGraw-Hill Publishers.

Am2903 APPLICATIONS

The Am2903 is designed to be used in microprogrammed systems. Figure 1 illustrates a recommended architecture. The control and data inputs to the Am2903 normally will all come from registers clocked at the same time as the Am2903. The register inputs come from a ROM or PROM - the "microprogram store". This memory contains sequences of microinstructions which apply the proper control signals to the Am2903's and other circuits to execute the desired operation.
The address lines of the microprogram store are driven from the Am2910 Microprogram Sequencer. This device has facilities for storing an address, incrementing an address, jumping to any address, and linking subroutines. The Am2910 is controlled by some of the bits coming from the microprogram store. Essentially, these bits are the "next instruction" control.

Figure 1. Typical Microprogram Architecture.

One Level Pipeline Based System
MPR-035

Note that with the microprogram register in between the microprogram memory store and the Am2903's, a microinstruction accessed on one cycle is executed on the next cycle. As one microinstruction is executed, the next microinstruction is being read from microprogram memory. In this configuration, system speed is improved because the execution time in the Am2903's occurs in parallel with the access time of the microprogram store. Without the "pipeline register", these two functions must occur serially.

Expansion of the Am2903

The Am2903 is a four-bit CPU slice. Any number of Am2903's can be interconnected to form CPU's of $8,16,32$, or more bits, in four-bit increments. Figure 2 illustrates the interconnection of four Am2903's to form a 16 -bit CPU, using ripple carry.

With the exception of the carry interconnection, all expansion schemes are the same. The QIO_{3} and SIO_{3} pins are bidirectional left/right shift lines at the MSB of the device. For all devices except the most significant, these lines are connected to the QIO_{0} and SIO_{0} pins of the adjacent more significant device. These connections allow the Q Registers of all Am2903's to be shifted left or right as a contiguous n-bit register, and also allow the ALU output data to be shifted left or right as a contiguous n-bit word prior to storage in the RAM. At the LSB and MSB of the CPU, the shift pins should be connected to a shift multiplexer which can be controlled by the microcode to select the appropriate input signals to the shift inputs.
Device 1 has been defined as the least significant slice (LSS) and its $\overline{L S S}$ pin has accordingly been grounded. The Write/Most Significant Slice (WRITE/MSS) pin of device 1 is now defined as being the Write output, which may now be used to drive the write enable ($\overline{\mathrm{WE}}$) signal common to the four devices. Devices 2 and 3 are designated as intermediate slices and hence the $\overline{\text { LSS }}$ and $\overline{\text { WRITE }} / \overline{M S S}$ pins are tied HIGH. Caution: $\overline{\text { W }} / \overline{M S S}$ must be tied to V_{CC} through a resistor; $\overline{\mathrm{W}} / \overline{\mathrm{MSS}}$ and $\overline{\mathrm{LSS}}$ may not be shorted directly together. Device 4 is designated the most significant slice (MSS) with the $\overline{\mathrm{LSS}}$ pin tied HIGH and the WRITE/MSS pin held LOW. The open collector, bidirectional Z pins are tied together for detecting zero or for inter-chip communication for some special instruction. The Carry-Out ($\mathrm{C}_{\mathrm{n}+4}$) is connected to the Carry-In $\left(\mathrm{C}_{n}\right)$ of the next chip in the case of ripple carry. For a faster carry scheme, an Am2902 may be employed (as shown in Figure 3) such that the \bar{G} and \bar{P} outputs of the Am2903 are connected to the appropriate \bar{G} and $\overline{\mathrm{P}}$ inputs of the Am2902, while the $\mathrm{C}_{n+\mathrm{x}}, \mathrm{C}_{n+y}$, and C_{n+z} outputs of the Am2902 are connected to the C_{n} input of the appropriate Am2903. Note that $\overline{\mathrm{G}} / \mathrm{N}$ and $\overline{\mathrm{P}} / \mathrm{OVR}$ pin functions are device dependent. The most significant slice outputs N and OVR while all other slices output $\overline{\mathrm{G}}$ and $\overline{\mathrm{P}}$.

Figure 2. 16 -Bit CPU with Ripple Carry.

The $\overline{I E N}$ pin of the Am2903 allows the option of conditional instruction execution. If IEN is LOW, all internal clocking is enabled, allowing the latches, RAM, and Q Register to function. If $\overline{I E N}$ is HIGH, the RAM and Q Register are disabled. The RAM is controlled by IEN if WE is connected to the WRITE output.
It would be appropriate at this point to mention that the Am2903 may be microcoded to work in either two-or three-address architecture modes. The two-address modes allow $A+B \rightarrow B$ while the three-address mode makes possible $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$. Implementation of a three-address architecture is made possible by varying the timing of $\overline{E N}$ in relationship to the external clock and changing the B address as shown in Figure 4. This technique is discussed in more detail under Memory Expansion.

Parity

The Am2903 computes parity on a chosen word when the instruction bits I_{5-8} have the values of 4_{16} to 7_{16} as shown in Table 3 . The computed parity is the result of the exclusive OR of the individual ALU outputs and SIO_{3}. Parity output is found on SIO_{0}. Parity between devices may be cascaded by the interconnection of the SIO_{0} and SIO_{3} ports of the devices as shown in Figure 3. The equation for the parity output at SIO_{0} port of device 1 is given by $\mathrm{SIO}_{0}=F_{15} \forall F_{14} \forall F_{13} \forall \ldots \forall F_{1} \forall F_{0} \forall$ SIO_{15}.

Figure 3. 16-Bit CPU with Carry Look Ahead.

Figure 4. Relationship of $\overline{\mathrm{IEN}}$ and Clock During'Two Address and Three Address Modes.

Figure 5. Sign Extend.

Sign Extend

Sign extension across any number of Am2903 devices can be done in one microcycle. Referring again to the table of instructions (Table 3), the sign extend instruction (Hex instruction E) on I_{5-8} causes the sign present at the SIO_{0} port of a device to be extended across the device and appear at the SIO_{3} port and at the Y outputs. If the least significant bit of the instruction (bit I_{5}) is HIGH, Hex instruction F is present on I_{5-8}, commanding a shifter pass instruction. At this time, F_{3} of the ALU is present on the SIO_{3} output pin. It is then possible to control the extension of the sign across chip boundaries by controlling the state of I_{5} when I_{6-8} are HIGH. Figure 5 outlines the Am2903 in sign extend mode. With I_{6-8} held HIGH, the individual chip sign extend is controlled by $\mathrm{I}_{5 \mathrm{~A}-\mathrm{D}}$. If, for example, $I_{5 A}$ and $I_{5 B}$ are HIGH while $I_{5 C}$ and $I_{5 D}$ are LOW, the signal present at the boundaries of devices 2 and 3 (F_{3} of device 2) will be extended across devices 3 and 4 at the SIO_{3} pin of device 4. The output of the four devices will be available at their respective Y data ports. The next positive edge of the clock will load the Y outputs into the address selected by the B port. Hence, the results of the sign extension is stored in the RAM.

SPECIAL FUNCTIONS

When $\mathrm{I}_{0-4}=0$, the Am2903 is in the Special Function mode. In this mode, both the source and destination are controlled by I_{5-8}. The Special Functions are in essence special microinstructions that are used to reduce the number of microcycles needed to execute certain functions in the Am2903.

NORMALIZATION, SINGLE- AND DOUBLE-LENGTH

Normalization is used as a means of referencing a number to a fixed radix point. Normalization strips out all leading sign bits such that the two bits immediately adjacent to the radix point are of opposite polarity.
Normalization is commonly used in such operations as fixed-tofloating point conversion and division. The Am2903 provides for normalization by using the Single-Length and Double-Length Normalize commands. Figure 6a represents the Q Register of a 16 -bit processor which contains a positive number. When the Single-Length Normalize command is applied, each positive edge of the clock will cause the bits to shift toward the most significant bit (bit 15) of the Q Register. Zeros are shifted in via the QIO_{0} port. When the bits on either side of the radix point (bits 14 and 15) are of opposite value, the number is considered to be normalized as shown in Figure 6b. The event of normalization is externally indicated by a HIGH level on the C_{n+4} pin of the most significant slice $\left(C_{n+4}\right.$ MSS $=Q_{3}$ MSS $\forall Q_{2}$ MSS).

Figure 6.
a) Unnormalized Positive Number.

b) Normalized Positive Number.

There are also provisions made for a normalization indication via the OVR pin one microcycle before the same indication is available on the C_{n+4} pin ($O V R=Q_{2}$ MSS $\forall Q_{1}$ MSS). This is for use in applications that require a stage of register buffering of the normalization indication.
Since a number comprised of all zeros is not considered for normalization, the Am2903 indicates when such a condition arises. If the Q Register is zero and the Single-Length Normalization command is given, a HIGH level will be present on the Z line.
The sign output, N, indicates the sign of the number stored in the Q register, Q_{3} MSS. An unnormalized negative number (Figure 7a) is normalized in the same manner as a positive number. The results of single-length normalization are shown in Figure 7b. The device interconnection for single-length normalization is outlined in Figure 8. During single length normalization, the number of shifts performed to achieve normalization can be counted and stored in one of the working registers. This can be achieved by forcing a HIGH at the C_{n} input of the least significant slice, since during this special function the ALU performs the function $[B]+C_{n}$ and the result is stored in B .
Normalizing a double-length word can be done with the DoubleLength Normalize command which assumes that a user-selected RAM Register contains the most significant portion of the word to be normalized while the Q Register holds the least significant half (Figure 9). The device interconnection for double-length normalization is shown in Figure 10. The $\mathrm{C}_{\mathrm{n}+4}$, OVR, N , and Z outputs of the most significant slice perform the same functions in doublelength normalization as they did in single-length normalization except that $\mathrm{C}_{\mathrm{n}+4}$, OVR, and N are derived from the output of the ALU of the most significant slice in the case of double-length normalization, instead of the Q Register of the most significant

Figure 7.
a) Unnormalized Negative Single Length Number.

b) Normalized Negative Single Length Number.

Figure 8. Single Length Normalize.

Figure 9. Double Length Word.

Figure 10. Double Length Normalize.

slice as in single-length normalization. A high-level Z line in double-length normalization reveals that the outputs of the ALU and Q Register are both zero, hence indicating that the doublelength word is zero.

When double-length normalization is being performed, shift counting is done either with an extra microcycle or with an external counter.

SIGN MAGNITUDE, TWO'S COMPLEMENT CONVERSION

As part of the special instruction set, the Am2903 can convert between two's complement and sign/magnitude representations. Figure 11 illustrates the interconnection needed for sign magnitude/two's complement conversion. The word to be converted is applied to the S input port of the ALU (from the RAM B port or the DB I/O port). The C_{n} input of device 1 is connected to the Z pin. The sign bit ($\mathrm{S}_{3} \mathrm{MSS}$) is brought out on the Z line and informs the other ALU's if the conversion is being performed on a negative or positive number. If the number to be converted is the most negative number in two's complement [i.e., $100 \ldots 00\left(-2^{n}\right)$], an overflow indication will occur. This is because -2^{n} is one greater than any number that can be represented in sign magnitude notation and hence an attempted conversion to sign magnitude from -2^{n} will cause an overflow. When minus zero in sign magnitude notation ($100 \ldots 0$) is converted to two's complement notation, the correct result is obtained (0...0).

INCREMENT BY ONE OR TWO

Incrementation by One or Two is made possible by the Special Function of the same name. This command is quite useful in the case of byte addressable words. Referencing Figure 12, a word may be incremented by one if C_{n} is LOW or incremented by two if C_{n} is HIGH .

UNSIGNED MULTIPLY

This Special Function allows for easy implementation of unsigned multiplication. Figure 13 is the unsigned multiply flow chart. The algorithm requires that initially the RAM word addressed by Address port B be zero, that the multiplier be in the Q Register, and that the multiplicand be in the register addressed by Address port A. The initial conditions for the execution of the algorithm are that: 1) register R_{0} be reset to zero; 2) the multiplicand be in R_{1}; and 3) the multiplier be in R_{2}. The first operation transfers the multiplier, R_{2}, to the \mathbf{Q} Register. The Unsigned Multiply instruction is then executed 16 times. During the Unsigned Multiply instruction, R_{0} is addressed by RAM address port B and the multiplicand is addressed by RAM address port A.
When the unsigned Multiply command is given, the Z pin of device 1 becomes an output while the Z pins of the remaining devices are specified as inputs as shown in Figure 15. The Z output of device 1 is the same state as the least significant bit of the multiplier in the Q Register. The Z output of device 1 informs the ALU's of all the slices, via their Z pins, to add the partial product (referenced by the B address port) to the mul-

Figure 11. 2's Complement \longrightarrow Sign/Magnitude.

Figure 12. Increment by 2/1.

Figure 13. Unsigned 16×16 Multiply Flowchart.

tiplicand (referenced by the A address port) if $Z=1$. If $Z=0$, the output of the ALU is simply the partial product (referenced by the B address port). Since C_{n} is held LOW, it is not a factor in the computation. Each positive-going edge of the clock will internally shift the ALU outputs toward the least significant bit and simultaneously store the shifted results in the register selected by the B address port, thus becoming the new partial sum. During the down shifting process, the $\mathrm{C}_{\mathrm{n}+4}$ generated in device 4 is internally shifted into the Y_{3} position of device 4. At this time, one bit of the multiplier will down shift out of the QIO_{0} ports of each device into the QIO_{3} port of the next less significant slice. The partial product is shifted down between chips in a like manner, between the SIO_{0} and SIO_{3} ports, with SIO_{0} of device 1 being connected to QIO_{3} of device 4 for purposes of constructing a 32 -bit long register to hold the 32 -bit product. At the finish of the 16×16 multiply, the most significant 16 bits of the product will be found in the register referenced by the B address lines while the least significant 16 bits are stored in the Q Register. Using a typical Computer Control Unit (CCU), as shown in Figure 16, the unsigned multiply operation requires only two lines of microcode, as shown in Figure 17, and is executed in 17 microcycles.

TWO'S COMPLEMENT MULTIPLICATION

The algorithm for two's complement multiplication is illustrated by Figure 14. The initial conditions for two's complement multiplication are the same as for the unsigned multiply operation. The Two's Complement Multiply Command is applied for 15 clock cycles in the case of a 16×16 multiply. During the down shifting process the term $N \forall O V R$ generated in device 4 is internally shifted into the Y_{3} position of device 4. The data flow shown in Figure 15 is still valid. After 15 cycles, the sign bit of the multiplier is present at the Z output of device 1. At this time, the user must place the Two's Complement Multiply Last cycle command on the instruction lines. The interconnection for this instruction is shown in Figure 18. On the next positive edge of the clock, the Am2903 will adjust the partial product, if the sign of the multiplier is negative, by subtracting out the two's complement representation of the multiplicand. If the sign bit is positive, the partial product is not adjusted. At this point, two's complement multiplication is completed. Using a typical CCU, as shown in Figure 16, the two's complement multiply operation requires only three lines of microcode, as shown in Figure 19, and is executed in 17 microcycles.

Figure 14. 2's Complement 16×16 Multiply.

MPR-048

Figure 15. Multiply.

Note: For unsigned multiply, $\mathrm{C}_{\mathrm{n}}+4$ MSS is internally shifted into position Y_{3} MSS; 2's complement multiply N \forall OVR is internally shifted into position Y_{3} MSS.

Figure 16. Typical Computer Control Unit (CCU).

Figure 17. Micro Code for Unsigned 16×16 Multiply.

Micro Memory Address	Am2910 Inst	Data Pipeline Reg.	I_{0}	$l_{4}-l_{1}$	$\mathrm{I}_{8}-\mathrm{I}_{5}$	OEB	OEY	$\mathrm{A}_{3}-\mathrm{A}_{0}$	$\mathrm{B}_{3}-\mathrm{B}_{0}$	C_{n}	Comment
n	LDCT	$00 \mathrm{~F}_{16}$	H	6	6	X	X	R_{2}	X	0	Load Counter \& $\mathrm{R}_{2} \rightarrow 0$
$n+1$	RPCT	$\mathrm{n}+1$	0	0	0	0	0	R_{1}	R_{0}	0	Unsigned Multiply

Figure 18. 2's Complement Multiply, Last Cycle.

Note: $N \forall$ OVR is internally shifted into position Y_{3} MSS
'Figure 19. Microcode for 2's Complement 16×16 Multiply.

Memory Address	Am2910 Inst	Data Pipeline Reg.		$\begin{aligned} & \underset{1}{1} \end{aligned}$	$\begin{gathered} \infty \\ \hline \\ \hline \end{gathered}$			8 4 4 4 8		J^{5}	Comment
n	LDCT	$00 \mathrm{E}_{16}$	X	6	6	X	X	R_{2}	X	0	Load Counter \& R $\mathrm{R} \rightarrow 0$
$\mathrm{n}+1$	RPCT	$\mathrm{n}+1$	0	0	2	0	0	R_{1}	R_{0}	0	2's Complement Multiply
$\mathrm{n}+2$	X	X	0	0	6	0	0	R_{1}	R_{0}	Z	2's Complement Multiply (Last Cycle)

TWO'S COMPLEMENT DIVISION

Three instructions on the Am2903/203 can be used to microcode signed integer division. The algorithm is a non-restoring four-quadrant division, with different preamble and postamble microcode for single- and double-precision integer division.
Single-precision signed integer divide is the most straightforward. Other than division by zero, there is only one case when an overflow results, namely when the most negative number $\left(-2^{n-1}\right)$ is divided by -1 . This case is detected by the postamble, and does not require separate tests of dividend and divisor in the preamble.
Single-precision signed integer divide is the most straightforward. Other than division by zero, there is only one case when an overflow results, namely when the most negative number $\left(-2^{n-1}\right)$ is divided by -1 . This case is detected by the postamble, and does not require separate tests of dividend and divisor in the preamble.
Single-precision division begins by loading the Q Register with the dividend. Following this, the negative bit of the status register is tested and the dividend register is loaded with all ones or all zeros so as to sign extend the Q Register. The dividend is now a double-precision integer, with the least significant half in the Q Register and the most significant half in the dividend register. This double-precision integer is then shifted up one position in preparation for the divide.
The division starts with the First Divide Operation applied to the divisor register (A address) and the dividend register (B address). This operation computes the quotient sign as the exclusive OR of dividend and divisor sign, and shifts it into the least significant position of the Q Register while simultaneously upshifting the double-precision dividend one bit. The First Divide Operation also updates the Sign Compare Flip-Flop (in the MSS) with the exclusive NOR of the dividend and divisor sign, which determines whether the next operation will be an add or a subtract.
The stage is now set for repeated execution of the divide step. Provided correct shift linkages externally $\left(\mathrm{SiO}_{3}\right.$ on the MSS to QIO_{0} on the LSS, and QIO_{3} on MSS to SIO_{0} on the LSS), each execution of the divide step computes a new quotient bit by either adding the divisor to the dividend (if the sign compare flip-flop is HIGH) or subtracting the divisor from the dividend (if the sign compare flip-flop is LOW), and then producing the exclusive NOR of the sign of the result and the divisor sign as the new quotient bit and the new value of the sign compare flipflop. The upshifted result replaces the partial remainder in the dividend register. The divide step must be repeated $n-2$ times
for n bit signed integers. Note that the sign compare flip-flop resides on the most significant slice, and controls the other slices through the zero pin which becomes an input on the intermediate and least significant slices for this operation.
The divide correction step also adds or subtracts the divisor from the partial remainder in the dividend register, but does not. upshift the result. The quotient bit shifted into the Q Register by this step is always a 1 . This means that the quotient produced by the divide algorithm is always odd; in half the cases, of course, this guess is wrong, and must be corrected. At each step of the divide algorithm, the result of the previous guess is corrected and a new guess is made. Since correction lags computation of the quotient bits by one step, after the last step there is still one correction needed.
After the divide correction step, the product of quotient and divisor plus the remainder is guaranteed to be equal to the dividend. However, the magnitude of the quotient may be off by one, the sign of the remainder may be wrong, and the magnitude of the remainder may lie between the magnitude of the divisor and zero.

In general, correction is needed when the sign of the remainder and initial dividend differ. For positive quotients, the correction is performed by subtracting one from the quotient and adding the divisor back to the remainder. For negative quotients, the correction is performed by adding one to the quotient and subtracting the divisor from the remainder.
A special case arises when the dividend is negative and the remainder at the end of the division is exactly zero. Since zero appears to be positive in two's complement, it appears that correction is necessary, whereas in fact it is not. This case is easily detected by testing the remainder for zero after the last divide step, and terminating the algorithm if it is. A related problem arises with negative dividends when the partial remainder becomes exactly zero in an intermediate step of the division. Once again, the algorithm sees this as a change of sign, and records the wrong quotient bit. However, in such cases, the final remainder always has the same magnitude as the divisor, but has the same sign as the dividend. Since the multiplicative rule is still satisfied, this means that the quotient is too small in magnitude by one. This case is detected by adding the magnitude of the divisor to the remainder and testing for zero, and the correction is the opposite of the "normal" correction: positive quotients are incremented, and negative quotients are decremented. (The remainder should be made exactly zero). Note that the single case that produces overflow for singleprecision signed integer divide may be detected by checking the overflow in this correction step.

The complete algorithm is shown in Figure 20. It is important to remember that the zero status available at the end of the divide correction step is the sign compare flip-flop output, and does not reflect whether the final partial remainder is zero or not. Also, in interruptible systems, the division steps must not be interrupted, because the sign compare flip-flop cannot be saved or restored on the interrupt. However, division can be stopped and resumed provided no instruction in between affects the state of the sign compare flip-flop. Some examples of the correction for single-precision signed divide are shown in Figure 21.
The shift linkage requirements for the divide steps are summarized in Figures 22, 23 and 24. These figures should be used as guidelines when microcoding the fields controlling the shift multiplexers in the 2904 for the divide steps.
Except for the overflow problem, the same algorithm with minor variations in the preamble implements double-precision division. Of course, in this case, sign extension is not needed; instead, the least significant half of the double-precision dividend is loaded in the Q Register, the most significant half remains in the "dividend" registers, and, after the initial upshift by one bit, the divide steps are executed exactly as before.
When a double-precision signed integer is divided by a singleprecision signed integer, overflow occurs when the quotient requires more than n bits to represent. For example $22 n-2$ divided by 1 requires $2 n$ bits to represent. A subset of these cases of overflow is the case where the magnitude of the quotient requires exactly n bits to represent, leaving no bits for the sign; and a special case of this is where the quotient magnitude is 2^{n-1}. The preamble to the divide presented below detects the first two cases in that order, and the postamble detects the last case.
The principle of overflow detection used here is to first calculate the quotient sign, and then calculate $n+1$ bits of quotient. There is an overflow when bits $n+1$ and n differ from the sign. This detects cases where the quotient requires more than $n+1$ bits to represent (quotient bit $n+1$ differs from the quotient sign), and where the quotient requires exactly $n+1$ bits to represent (quotient bit $n+1$ is the same as the quotient sign but quotient bit. n differs from the quotient sign). Unfortunately quotients with a magnitude of 2^{n-1} do not fit this scheme: when the quotient is -2^{n-1}, this test indicates an overflow, and when the quotient is 2^{n-1} (an overflow), this test does not show an overflow. In other words, when there is a disagreement between the $n^{\text {th }}$ quotient bit and the quotient sign, it does not necessarily indicate an overflow; and it is not until all the quotient bits are calculated that it can be decided whether there was an overflow or not. This irregularity is a consequence of the asymmetry of the two's complement number system.
The implementation of this algorithm on the Am2903/203 is simplified by using a flip-flop on the SIO_{3} line out of the MSS to store a copy of the new quotient bit calculated each cycle. If this flip-flop output is connected to a sequencer test multiplexer input, then testing of quotient bits can be pipelined. This is useful in the preamble for overflow detection and in the postamble for the correction steps.
The microcode for the double-precision divide is outlined in Figure 25. The divide operation is first applied to the dividend and divisor without the initial upshift of the dividend. This calculates the quotient sign and updates the sign compare flipflop. At the end of the cycle, the complement of the quotient
sign is setup at the input to the external flip-flop, which can be tested in the next cycle to determine the quotient sign. However, the divide first operation has the side-effect of upshifting the dividend. This side-effect is undesirable because it prevents the divide step from calculating the $n+1^{\text {th }}$ quotient bit. For this reason, the dividend is shifted down again with the sign bit of the status register selected as the linkage in. Following this, a divide step is executed and the algorithm terminated on overflow if the quotient bit calculated by the divide steps is different from the sign bit. The algorithm proceeds to calculate the $n^{\text {th }}$ quotient bit. If the $n^{\text {th }}$ quotient bit agrees with the quotient sign, there still may be an overflow if the quotient turns out to be 2^{n-1}; and if the nth quotient bit disagrees with the quotient sign, there still may not be an overflow if the quotient turns out to be -2^{n-1}. So at this stage the algorithm cannot decide whether there is an overflow or not based on the quotient bit; instead, it proceeds to calculate the remaining quotient bits, retaining the information about potential overflow in the control flow.
After the last divide step (the so-called "divide correction"), the algorithm again tests the state of the external flip-flop, "storing" it in the control flow. This last state of the divide flip-flop would be lost without the external flip-flop, since the quotient bit shifted in is always a I in this case, and the internal divide flipflop is not updated. (The state of the external flip-flop after this cycle determines whether the correction requires incrementing or decrementing of the quotient). Concurrently with the testing of the external flip-flop, the microcode also passes the remainder through the ALU to update the Z bit of the status register. In the next cycle, the Z bit is tested and the algorithm terminates if it is set. This is followed by a test for negative remainder and dividend. If the test fails, a branch is taken to the test for positive dividend and remainder. Concurrently, the remainder is added to the divisor with $\overline{\mathrm{EN}}$ high and the Z flag again updated. This is the first part of the test for the absolute value of the remainder being equal to the divisor. In the next cycle, the Z flag is tested; if it is set, a branch is taken to the correction step. Again, in the same cycle, the remainder is subtracted from the divisor with $\overline{\mathrm{EN}}$ high to complete the magnitude test.
In the following cycle, the Z flag is tested as before. If it is not set, the algorithm terminates. The test for positive dividend and remainder computes the OR of the remainder and initial dividend with IEN high, and updates the N flag of the status register. In the next cycle the algorithm tests the N flag and exits if it is low, indicating that the dividend and remainder signs agreed. Otherwise, the correction steps are executed.
The algorithm has been written for fastest execution, not shortest possible microcode. The technique of using the control flow to "remember" states of flags leads to duplication of code but saves cycles on testing flags and branching. At the end of the algorithm, there are two places where the quotient is incremented. One of these sequences corresponds to the "normal" case (quotient bit n agreed with quotient sign). This microcycle produces an overflow when the quotient is 2^{n-1}. The other sequence where the quotient is incremented corresponds to the case where the $n^{\text {th }}$ bit of quotient disagreed with the quotient sign. This case is an overflow unless the quotient is -2^{n-1}; however, then an overflow is produced by the correction, when $2^{n-1}-1$ is incremented. Hence, in this case, if the correction does not produce an overflow, then there is an overflow.

Figure 20b. Single-Precision Divide Microcode

```
        1. Y\leftarrowRDIVSR, UPDATE Z FLAG;
        IF Z GOTO OVERFLOW, Q\leftarrowRDIVDND, UPDATE N:
        3. IF NOT N GOTO UPSH, RREM }\leftarrow0\mathrm{ ;
UPSH:
    4. RREM\leftarrow-1;
            UPSHIFT RREM Q
            6. FOR ( n-3), FIRST DIVIDE OP (RREM, RDIVSR);
            7. ENDFOR,TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
            8. DIVIDE "CORRECTION" OP (RREM, RDIVSR);
            9. }Y\leftarrow\mp@subsup{R}{\mathrm{ REM, UPDATE Z,V}}{
            0. IF Z GOTO DONE, Y}\leftarrow\mp@subsup{R}{\mathrm{ REM AND RDIVDND, UPDATE N;}}{
            1.. IF NOT N GOTO NORMCHK, Y\leftarrowRDIVSR - RREM, UPDATE Z;
            12. IF Z GOTO EQMAG, Y\leftarrow R PIVSR + RREM, UPDATE }Z\mathrm{ ;
            13. IF Z GOTO EQMAGNXT, Y\leftarrowQ, UPDATE N:
DONE: 14. IF NOT V RETURN, RQUOT }\leftarrowQ\mathrm{ Q;
            15. GOTO OVERFLOW;
NORMCHK: 16. Y\leftarrowRRREM OR RDIVDND, UPDATE N;
            17. IF NOT N GOTO DONE, Y }-Q\mathrm{ , UPDATE N;
            18. IF N GOTO ADDONE;
SUBONE: 19. R REM}\leftarrow\mp@subsup{R}{REM + RDIVSR:}{
            20. Q\leftarrowQ Q-1, UPDATE V,GOTO DONE;
EQMAG: 21. Y\leftarrowQ, UPDATE N
EQMAG:
ADDONE: 23. RREM\leftarrowRREM - RDIVSR;
23. RREM &-RREM - RDIVSR;
OVERFLOW: 25. (. . . OVERFLOW MICROCODE)
```

Test for divisor $=0$
Test quotient sign for sign extension
zero extend into RREM
One extend if negative
Logic upshift R REM and Q, zero fill
Loop setup: load 2910 counter and push PC
Rem $_{\text {REM }}$ on B address; repeat $\mathrm{n}-2$ times
Shift in ' 1 ' into QIO_{0} of LSS
Test remainder for zero
Done if remainder $=0$, check for dividend
and remainder being negative
First half of magnitude check
Other half of magnitude check
If magnitude equal, then go test
sign of Q else return
Check if remainder and dividend positive
If yes, exit
increment negative quotients
This can never overflow since Q is odd
Decrement negative quotients
This could overflow for positive Q
Note: Where Y is specified as destination, use IEN $=$ HIGH.

Figure 21. Examples of Single-Precision Signed Divide

Operation	Before Correction		After Correction		Comments
	Q	REM	Q	REM	
$12 \div 5$	3	-3	2	2	
$12 \div-5$	-3	-3	-2	2	Normal correction: decrement positive
quotients, increment negative quotients					

Figure 22. Double Length Normalize/First Divide Operation

Figure 23. Two's Complement Divide
$F=[B]+[A]+C_{n}$ if $Z=0$
$F=[B]-[A]-1+C_{n}$ if $Z=1 \quad$ Log. $2 F \rightarrow Y, B \quad 2 Q \rightarrow O$

Figure 24. Two's Complement Divide Correction

Figure 25. Double-Precision Signed Division Microcode

```
    1. Q}\leftarrow\mp@subsup{\textrm{R}}{\mathrm{ DIVDNDLSH;}}{
    2. RREM\leftarrowRDIVDNDMSH
    3. DIVIDE FIRST OP (RREM,'RDIVSR), UPDATE N;
    4. IF EXTQFF GOTO NEGQUOT, DOWNSH RREM - Q WITH N FILL
    5. TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
    6. IF EXTQFF GOTO OVERFLOW, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
    7. IF EXTQFF GOTO POSSBLOVF, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR)
    FOR ( }n-5\mathrm{ ), TWO'S COMPLEMENT DIVIDE OP (RREM, ROIVSR);
    9. ENDFOR, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
    10. DIVIDE "CORRECTION" STEP (RREM, RDIVSR);
    11. IF EXTQFF GOTO SUB, Y\leftarrow RREM, UPDATE Z;
    12. IF Z GOTO DONE, }Y\leftarrow\mp@subsup{R}{\mathrm{ REM AND RDIVDNDMSH, UPDATE }Z,V;}{
    13. IF NOT N GOTO NORMCHK1, Y & RREM + RDIVSR, UPDATE Z;
    14. IF Z GOTO CORRECT1, Y }\leftarrow\mp@subsup{R}{\mathrm{ REM - RDIVSR, UPDATE Z}}{
    15. IF Z GOTO CORRECT1;
    DONE: 16. IF NOT V RETURN, RQUOT }\leftarrow
        17. GOTO OVERFLOW;
    NORMCHK1: 18. Y & RREM OR RDIVDNDMSH, UPDATE N; V;
    19. IF NOT N GOTO DONE;
CORRECT1: 20. RREM}\leftarrow\mp@subsup{R}{\mathrm{ REM + RDIVSA}}{
    21. Q\leftarrowQ-1,GOTO DONE;
SUB: 22. IF Z GOTO DONE, Y\leftarrowRRREM AND ROIVDNDMSH; UPDATE Z, V;
    23. IF NOT N GOTO NORMCHK2, Y \leftarrow R REM + RDIVSR, UPDATE Z;
    24. IF Z GOTO CORRECT2, Y\leftarrow R REM - RDIVSR, UPDATE Z;
    25. IF Z GOTO CORRECT2;
    26. GOTO DONE
NORMCHK2: 27. Y}\leftarrow\mp@subsup{R}{\mathrm{ REM OR RDIVDNDMSHं, UPDATE N, V;}}{
    28. IF NOT N GOTO DONE;
    29. RREM}\leftarrow\mp@subsup{R}{\mathrm{ REM - RDIVSR;}}{\mathrm{ R}
    30. Q\leftarrowQ + 1, UPDATE V;
    31. GOTO DONE
NEGQUOT: 32. TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
    33. IF NOT EXTQFF GOTO OVERFLOW, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
    34. IF EXTQFF GOTO LOOP, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
POSSBLOVF: 35. FOR ( }n-5)\mathrm{ , TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
    36. ENDFOR, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
    37. DIVIDE "CORRECTION" STEP (RREM, RDIVSR)
    38. IF NOT EXTQFF GOTO OVERFLOW, RREM }\leftarrow
    39. }Q\leftarrowQ+1, UPDATE V
    40. IFV GOTO DONE;
    41. GOTO OVERFLOW
. \(\mathbf{Q} \leftarrow \mathrm{R}_{\text {DIVDNDLSH; }}\)
2. RREM \(\leftarrow\) RDIVDNDMSH \(^{\text {3. DIVIDE FIRST }}\)
3. DIVIDE FIRST OP (R REM, 'RDIVSR), UPDATE N;
4. IF EXTQFF GOTO NEGQUOT, DOWNSH RREM • Q WITH N FILL;
5. TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
(RREM, RDIVSR);
LOOP: 8. FOR \((n-5)\), TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR):
9. ENDFOR, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
11. IF EXTQFF GOTO SUB, \(Y \leftarrow R_{\text {REM }}\) UPDATE \(Z\);
13. IF IF
14. IF \(Z\) GOTO CORRECT1, \(Y \leftarrow R_{\text {REM }}\) - RDIVSR, UPDATE \(Z\);
15. IF Z GOTO CORRECT1.
DONE: 16. IF NOT V RETURN, RQUOT \(\leftarrow Q\)
17. GOTO OVERFLOW
NORMCHK1: 18. Y \(\leftarrow\) RREM \(^{\text {OR }}\) OR RIVDNDMSH, UPDATE N; \(V\);
CORRECT1: 20. RREM \(\leftarrow\) RREM \(_{\text {REM }}\) + RIVSA;
SUB: 22. IF \(Z\) GOTO DONE, \(Y \leftarrow R_{\text {REM }}\) AND R RIVDNDMSH; UPDATE \(Z, V\);
23. IF NOT N GOTO NORMCHK2, \(Y \leftarrow\) RREM \(^{\text {R }}\) R RIVSR, UPDATE \(Z\);
24. IF \(Z\) GOTO CORRECT2, \(Y \leftarrow R_{\text {REM }}\) - RDIVSR, UPDATE \(Z\)
26. GOTO DONE;
NORMCHK2: 27. \(Y \leftarrow R_{\text {REM }}\) OR R RIVDNDMSHं, UPDATE \(N, V\); 8. F NOT N GOTO DONE,
29. RREM \(\leftarrow\) RREM - RDIVSR;
31. GOTO DONE
NEGQUOT: 32. TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
34. IF NOTEXTQFF
35. FOR ( \(n-5\) ), TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
36. ENDFOR, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
37. DIVIDE "CORRECTION" STEP (RREM, RDIVSR);
39. \(\mathrm{Q} \leftarrow \mathrm{Q}+1\), UPDATE V
41. GOTO OVERFLOW;
```

Initialize Q Register
Initialize remainder register $\mathrm{R}_{\text {REM }}$
Find quotient sign, setup external quotient flip-flop (EXTQFF)
Branch on quotient sign; restore dividend by downshift
Compute bit $\mathrm{n}+1$ of quotient
Error if different from sign; compute bit n of quotient
Possible overflow if different from sign
Iterate setup
Iterate divide step
Divide last step: quotient bit is always a ' 1 '; setup EXTQFF
Last state of EXTQFF decides direction of connection
Exit if remainder zero; test for negative remainder and dividend
If test failed, go check for positive remainder and dividend
For negative remainder and dividend, check remainder magnitude
If remainder magnitude = divisor magnitude, connect quotient
Else if no overflow return
Else if no over
Else overflow
Check for positive dividend and remainder
If test passed, done
Else correct remainder
Correct quotient, and exit
This part of the aigorithm repeats the correction code for the case where the last value of the EXTQFF was a high indicating correction in the opposite direction.

Executed instead of 5, 6,7 when the quotient is negative

This is executed when the $n^{\text {th }}$ quotient bit differs from the quotient sign. The division is completed to check whether the quotient is $-2 n-1$.
This is signalled by an overflow in the correction step Otherwise, there has been a division overflow.

BYTE SWAP

The multi-port architecture of the Am2903 allows for easy implementation of high- and low-order byte swapping. Figure 26 outlines a byte swap implementation utilizing two data ports. Initially, the lower order 8 -bit byte is stored in devices 1 and 2, while the high-order byte is in devices 3 and 4 . When the user wishes to exchange the two bytes, the register location of the desired word is placed on the B address port. When the byte swap line is brought LOW, the bytes to be swapped will be flowing from the DB ports of the Am2903 through the Am2958/2959 Three-state Buffers. The outputs of the threestate buffers are permuted such that the byte swap is achieved.

The resultant permuted data is presented to the DA ports of the Am2903 where it is re-loaded into the memories of the Am2903 on the next positive edge of $C P$ using the source and function commands of $F=A$ plus $C_{n}\left(C_{n}=0\right)$ for the Am2958 or $F=A$ plus $C_{n}\left(C_{n}=0\right)$ for the Am2959 and the destination command F Y, B.

A higher speed technique for achieving the byte swap operation is illustrated in Figure 27. Instead of inputting the permuted data via the DA ports, the permuted data is entered via the Y input/output ports with $\overline{\mathrm{EE}_{Y}}$ held HIGH. This technique bypasses the ALU, thus allowing faster operation. The Am2903 destination command $F \rightarrow Y, B$ should be used.

Figure 26. Byte Swap.

Figure 27. High Speed Byte Swap.

Figure 28. Connections for Word/Byte Operations (Am29203 Only).

The Am2903 theoretically allows for an infinite memory expansion. Figure 27, Am2903 and Am29705, pictures a 4-bit slice of a system which has 48 words of RAM and 16 words of ROM. RAM storage is provided by the Am2903 and the Am29705s. The Am29705 RAM is functionally identical to the Am2903 RAM. The Am27S19 is used to store constants and masks and is addressable from address port A only. The system is organized around five data buses. Inter-bus communication may be done through the Am29705s or the Am2903. The memory addressing scheme specifies the data source for the R input of the ALU eminating from the register locations specified by address field $A . A_{0-3}$ addresses 16 memory locations in each chip while address bits A_{4-6} are decoded and used for the output enable for the desired chip. The B address field is used to select the S input of the ALU and the C field is used to specify the register location where the result of the ALU operation is to be stored.
Bits B_{0-3} are for source register addressing in each chip. Bits B_{4} and B_{5} are used for chip output enable selection. C_{0-3} access the

16 destination addresses on each chip while bits C_{4} and C_{5} control the Write Enable of the desired chip. The source and destination register address are multiplexed such that when the clock is HIGH, the source register address is presented to the B address ports of the RAM's. The Instruction Enable (IEN) is HIGH at this time. The data flows from the Y port or the internal B port as selected by the decoder whose inputs are B_{4} and B_{5}. When the clock goes LOW, the data eminating from the selected Y outputs of the Am29705's and the RAM outputs of the Am2903 are latched and the destination address is now selected for use by the RAM address lines. When the destination address stabilizes on the address lines, the IEN pin is brought LOW. The WRITE output of the Am2903 will now go LOW, enabling the decoder sourced by address bits C_{4} and C_{5}. The selected decoder line will go LOW, allowing the desired memory location to be written into. To switch between two- and three-address architecture, the user simply makes the source and destination addresses the same; i.e., $B_{0-3}=C_{0-3}$ and $B_{4-5}=C_{4-5}$. For two-address architecture, the MUX is removed from the circuit.

Figure 29. Expanded Memory on Am2903

Am2904
 Status and Shift Control Unit

DISTINCTIVE CHARACTERISTICS

- Replaces most MSI used around any ALU including the Am2901, Am2903 and MSI ALUs.
- Generates Carry-In to the ALU

Carry signal is selectable from 7 different sources.

- Contains shift linkage multiplexers

Connects to shift lines at the ends of an Am2901 or Am2903 array to implement single and double length arithmetic and logical shifts and rotates - 32 different modes in all.

- Contains two edge-triggered status registers

Use for foreground/background registers in controllers or as microlevel and machine level status registers. Bit manipulating instructions are provided.

- Condition Code Multiplexer on chip

Single cycle tests for any of 16 different conditions. Tests can be performed on either of the two status registers or directly on the ALU output.

DESCRIPTION

The Am2904 is designed to perform all the miscellaneous functions which are usually performed in MSI around an ALU. These include the generation of the carry-in signal to the ALU and carry lookahead unit; the interconnection of the data path, auxiliary register, and carry flip-flop during shift operations; and the storage and testing of ALU status flags. These tasks are accomplished in the Am2904 by three nearly independent blocks of logic. The carry-in is generated by a multiplexer. The shift linkages are established by four three-state multiplexers. There are two registers for storing the carry, overflow, zero, and negative status flags. The condition code multiplexer on the Am2904 can look at true or complement of any of the four status bits and certain combinations of status bits from either of the storage registers or directly from the ALU.

For additional applications refer to Chapter 4 of Bit Slice Microprocessor Design, Mick \& Brick, McGraw Hill Publications.

PIN DEFINITIONS

$I_{z} \quad$ Zero status input pin, intended for connection to the Z outputs of the Am2903 or the $F=0$ ouputs of the Am2901.

IC Carry status input pin, intended for connection to the $\mathrm{C}_{\mathrm{n}+4}$ output of the most significant ALU slice.
$I_{N} \quad$ Sign status input pin, intended for connection to the most significant ALU slice. The connection is to the N pin on the Am2903, and the F_{3} pin on the Am2901.
Elovr Overflow status input pin, intended for connection to the OVR pin on the most significant ALU slice.
I_{0-12} The thirteen instruction pins which select the operation the Am2904 is to perform.
This pin, used in conjunction with $\overline{E_{Z}}, \overline{\mathrm{E}_{\mathrm{C}}}, \overline{\mathrm{E}_{\mathrm{N}}}, \overline{\mathrm{E}_{\mathrm{OVR}}}$ acts as the overall enable for the machine status register. When the pin is LOW, MSR bits may be modified, according to the states of $\overline{\mathrm{E}_{\mathrm{Z}}}, \overline{\mathrm{E}_{\mathrm{C}}}, \overline{\mathrm{E}_{\mathrm{N}}}$, EOVR. When HIGH, the MSR will retain the present state, regardless of the state of $\overline{E_{Z}}, \overline{\mathrm{E}_{\mathrm{C}}}, \overline{\mathrm{E}_{\mathrm{N}}}, \overline{\mathrm{E}_{\text {OVR }}}$.
$\bar{E}_{\mathrm{Z}}, \bar{E}_{\mathrm{C}}$ These pins, when LOW, enable the corresponding \bar{E}_{N}, bits in the Machine Status Register. When HIGH, they will prevent the corresponding bits from changing state. By using these pins together with the $\overline{\mathrm{CE}_{\mathrm{M}}}$ pin, MSR bits can be selectively modified.
$\overline{\mathrm{CE} \mu} \quad$ This pin, when LOW, enables all four bits of the Micro Status Register. When this pin is HIGH, the μ SR will not change state.
Y_{Z}, Y_{C}, These pins form a three-state bidirectional bus over Y_{N}, which MSR and μ SR status can be read out or the Yovr MSR can be loaded in parallel.

When LOW, this pin enables the Y pins as outputs. When HIGH, the Y outputs are in the high impedance state.

CT The conditional test output. The output of the Condition Code multiplexer appears here.
$\overline{\mathrm{OE}_{\mathrm{CT}}}$ When this pin is LOW, the CT pin is active. When HIGH the CT pin is in the high impedance state.
$\mathrm{SiO}_{\mathrm{o}}$, These pins complete the linking for the various shift $\mathrm{SIO}_{\mathrm{n}}$ and rotate conditions. SIO_{0} is intended for connecQIO_{0} tion to the SIO_{0} pin of the least significant Am2903 $\mathrm{QIO}_{n} \quad$ slice (RAM_{0} for Am2901). $\mathrm{SIO}_{\mathrm{n}}$ connects to the SIO_{3} pin of the most significant Am2903 slice, (RAM 3 for Am2901). QlO_{0} connects to the QIO_{0} pin of the least significant Am2903 slice (QIO_{0} for Am2901) and QIO_{n} connects to the QIO_{3} pin of the most significant Am2903 slice (Q_{3} for Am2901).
$\overline{\mathrm{SE}} \quad$ This pin controls the state of the shift outputs. When LOW, the shift outputs are enabled. When HIGH, the shift outputs are in the high impedance state.
$\mathrm{C}_{0} \quad$ This pin is the output of the Carry In control multiplexer. It connects to the C_{n} input of the least significant ALU slice, and the C_{n} input of the Am2902A.
$\mathrm{C}_{\mathrm{x}} \quad$ This pin is used as an input to the Carry In Control multiplexer which can route it to the C_{0} pin. The C_{x} pin is intended for connection to the Z output of the Am2903 to facilitate some of the Am2903 special instructions.
CP The clock input to the device. The μ SR and MSR are modified on the LOW to HIGH transition of the clock input. All other portions of the Am2904 are combinational and are unaffected by CP.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Case) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $\mathrm{V}_{\mathrm{cC}} \mathrm{max}$
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

OPERATING RANGE

P/N			Temperature		$V_{C C}$
Am2904PC, DC	COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$	$(\mathrm{MIN} .=4.75 \mathrm{~V}, \mathrm{MAX} .=5.25 \mathrm{~V})$	
Am2904DM, FM	MIL	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MIN} .=4.50 \mathrm{~V}, \mathrm{MAX} .=5.50 \mathrm{~V})$	

DC CHARACTERISTICS OVER OPERATING RANGE

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. These are three-state outputs internally connected to TTL inputs. Input Characteristics are measured with output enables HIGH.
5. "MIL" = Am2904 XM, DM, FM. "COM'L" = Am2904 XC, PC, DC.
6. Worst case $I_{C C}$ is at minimum temperature.
7. These input levels provide zero noise immunity and should only be static tested in a noise-free environment (not functionally tested.)

Am2904 ARCHITECTURE

The Am2904 Status and Shift Control Unit provides four functions which are included in all processors. These are: a) Status Register, b) Condition Code Multiplexer, c) Shift Linkages and d) Carry-in Control. The architecture and instruction codes have been designed to complement the flexibility of the 2900 Family.

Status Register

The Am2904 contains two four-bit registers which can store the status outputs of an ALU: Carry (C), Negative (N), Zero (Z), and Overflow (OVR). They are designated Micro Status Register ($\mu \mathrm{SR}$) and Machine Status Register (MSR). Each register can be independently controlled. The registers use edge-triggered D-type flip-flops which change state on the LOW to HIGH transition of the Clock Input.
The μ SR can be loaded from the four status inputs $\left(I_{C}, I_{N}, I_{Z}\right.$, love) or from the MSR under instruction control (l_{0-5}). The bits in the $\mu \mathrm{SR}$ can also be individually set or reset under instruction control (I_{0-5}). When the CE μ input is HIGH, the μ SR is inhibited from changing, independent of the I_{0-5} inputs.
The MSR can be loaded from the four status inputs (I_{C}, I_{N}, I_{2}, $\mathrm{l}_{\mathrm{ovR}}$), from the $\mu \mathrm{SR}$, and from the four parallel input/output pins ($\mathrm{Y}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{N}}, \mathrm{Y}_{\mathrm{Z}}, \mathrm{Y}_{\text {OVR }}$) under instruction control (I_{0-5}). The MSR can also be set, reset or complemented under instruction control $\left(l_{0-5}\right)$. The bits in the MSR can be selectively updated by controlling the four bit-enable inputs ($\overline{\bar{E}_{2}}, \overline{\mathrm{E}_{\mathrm{N}}}, \overline{\mathrm{E}_{\mathrm{C}}}$, $\overline{\mathrm{E}_{\mathrm{OVR}}}$) and the $\overline{\mathrm{CE}} \mathrm{E}_{\mathrm{M}}$ input. A LOW on both the $\overline{\mathrm{CE}}_{\mathrm{M}}$ input and the bit enable input for a specific bit enables updating that bit. A HIGH on a given bit enable input prevents the corresponding bit changing in the MSR. A HIGH on $\overline{\mathrm{CE}}_{\mathrm{M}}$ prevents any bits changing in the MSR.
The four parallel bidirectional input/output pins $\left(Y_{Z}, Y_{N}, Y_{C}\right.$, $\mathrm{Y}_{\mathrm{OVR}}$) allow the contents of both the $\mu \mathrm{SR}$ and the MSR to be transferred to the system data bus and also allows the MSR to be loaded from the system data bus. This capability is used to save and restore the status registers during certain subroutines and when servicing interrupts.

Condition Code Multiplexer

The Condition Code Multiplexer output, CT, can be selected from 16 different functions. These include the true and complemented state of each of the status bits and combinations of these bits to detect such conditions as "greater than", "greater than or equal to", "less than" or "less than or equal to" for unsigned or two's complement numbers.
The Am2904 can perform these tests on the contents of the $\mu \mathrm{SR}$, the MSR or the direct status inputs, ($\mathrm{I}_{\mathrm{z}}, \mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{ovR}}$). The CT output is used as the test ($\overline{\mathrm{CC}}$) input of the Am2910 and is provided with an output enable, $\overline{\mathrm{OE}}_{\mathrm{CT}}$ to make the addition of other condition inputs to this point easy.

Shift Linkage Multiplexer

The Shift Linkage Multiplexer generates the necessary linkages to allow the ALU to perform 32 different shift and rotate functions. Both single length and double length shifts and rotates, with and without carry $\left(\mathrm{M}_{\mathrm{C}}\right)$, are provided. When the $\overline{\mathrm{SE}}$ input is HIGH, the four input/output pins $\left(\mathrm{SIO}_{0}, \mathrm{SIO}_{\mathrm{n}}, \mathrm{QIO}_{0}\right.$, QIO_{n}) are disabled. The $\mathrm{SIO}_{0}, \mathrm{SIO}_{n}, \mathrm{QIO}_{0}, \mathrm{QIO}_{n}$ pins of the Am2904 are intended to be directly connected to the RAM 0_{0}, $\mathrm{RAM}_{3}, \mathrm{Q}_{0}$ and Q_{3} pins of the Am2901 or the $\mathrm{SIO}_{0}, \mathrm{SIO}_{3}, \mathrm{QIO}_{0}$, QIO_{3} pins of the Am2903.

Carry-In Control Multiplexer

The Carry-In Control Multiplexer generates the C_{0} output which can be selected from 7 functions $\left(0,1, C_{X}, \mu_{C}, M_{C}, \bar{\mu}_{C}\right.$,
$\left.\overline{\mathrm{M}_{\mathrm{C}}}\right)$. These functions allow easy implementation of both single length and double length addition and subtraction. The C_{x} input is intended to be connected to the Z output of the Am2903 to facilitate execution of some of the Am2903 special instructions. The C_{0} pin is to be connected to the C_{n} pin of the least significant Am2901 or Am2903 and the C_{n} pin of the Am2902A.

Am2904 INSTRUCTION SET

The Am2904 is controlled by manipulating the 13 instruction lines, I_{0-12}, together with the nine enable lines, $\overline{\mathrm{CE}}_{\mathrm{M}}, \overline{\mathrm{CE}} \mu$, $\overline{E_{Z}}, \overline{E_{C}}, \overline{E_{N}}, \overline{E_{O V R}}, \overline{O E_{Y}}, \overline{O E_{C T}}, \overline{S E}$. Most systems will save on microword bits by tying some of these lines to a fixed level or by connecting certain lines together, or by decoding microinstructions to generate appropriate Am2904 controls.

Status Registers

Instruction lines $I_{5}, I_{4}, I_{3}, I_{2}, I_{1}, I_{0}$ control the Status Registers. Below, these lines are referred to as two octal digits.

Micro Status Register (μ SR)

The instruction codes for the Micro Status Register fall into three groups: Bit Operations, Register Operations and Load Operations (See Table 1 and Map 1). All operations require

TABLE 1. MICRO STATUS REGISTER INSTRUCTION CODES.

Bit Operations		
\mathbf{I}_{543210} Octal	$\mu \mathbf{S R}$ Operation	Comments
10	$0 \rightarrow \mu_{Z}$	RESET ZERO BIT
11	$1 \rightarrow \mu_{\mathrm{Z}}$	SET ZERO BIT
12	$0 \rightarrow \mu_{\mathrm{C}}$	RESET CARRY BIT
13	$1 \rightarrow \mu_{\mathrm{C}}$	SET CARRY BIT
14	$0 \rightarrow \mu_{\mathrm{N}}$	RESET SIGN BIT
15	$1 \rightarrow \mu_{\mathrm{N}}$	SET SIGN BIT
16	$0 \rightarrow \mu_{\text {OVR }}$	RESET OVERFLOW BIT
17	$1 \rightarrow \mu_{\text {OVR }}$	SET OVERFLOW BIT

Register Operations

I 543210 Octal		
00	μ SR Operation	Comments
01	$M_{X} \rightarrow \mu_{X}$	LOAD MSR TO μ SR
02	$1 \rightarrow \mu_{X}$	SET μ SR
03	$M_{X} \rightarrow \mu_{X}$	REGISTER SWAP
$0 \rightarrow \mu_{X}$	RESET μ SR	

Load Operations

I_{543210} Octal	$\mu \mathrm{SR}$ Operation	Comments
06, 07	$\begin{aligned} & I_{Z} \rightarrow \mu_{Z} \\ & I_{C} \rightarrow \mu_{C} \\ & I_{N} \rightarrow \mu_{N} \\ & I_{\text {OVR }}+\mu_{\text {OVR }} \rightarrow \mu_{\text {OVR }} \end{aligned}$	LOAD WITH OVERFLOW RETAIN
$\begin{aligned} & 30,31 \\ & 50,51 \\ & 70,71 \end{aligned}$	$\begin{aligned} & \frac{I_{Z} \rightarrow \mu_{Z}}{I_{C} \rightarrow \mu_{C}} \\ & I_{N} \rightarrow \mu_{N} \\ & I_{\text {OVR }} \rightarrow \mu_{\text {OVR }} \end{aligned}$	LOAD WITH CARRY INVERT
$\begin{aligned} & 04,05 \\ & 20-27 \\ & 32-47 \\ & 52-67 \\ & 72-77 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{Z}} \rightarrow \mu_{\mathrm{Z}} \\ & \mathrm{I}_{\mathrm{C}} \rightarrow \mu_{\mathrm{C}} \\ & \mathrm{I}_{\mathrm{N}} \rightarrow \mu_{\mathrm{N}} \\ & \mathrm{I}_{\text {OVR }} \rightarrow \mu_{\mathrm{OVR}} \end{aligned}$	LOAD DIRECTLY FROM $\mathrm{I}_{\mathrm{z}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\mathrm{l}}$

Note: The above tables assume $\overline{\mathrm{CE}} \mu$ is LOW.

MAP 1. MICRO STATUS REGISTER INSTRUCTION CODES.

Notes: 1. All unmarked locations are a load direct from $I_{Z}, I_{C}, I_{N}, I_{\text {OVR }}$.
that $\overline{\mathrm{CE}}_{\mu}$ be LOW to operate.
Instruction Codes 10_{8} to 17_{8} are BIT operations. These operations set or reset the individual bits in the $\mu \mathrm{SR}$.
Instruction Codes 00_{8} to 03_{8} are REGISTER operations. These operations affect all bits in the $\mu \mathrm{SR}$.
$00_{8} \quad$ This instruction loads the $\mu \mathrm{SR}$ with the contents of the MSR while loading the MSR from the Y inputs and is further explained under "INTERRUPTS".
$01_{8} \quad$ This instruction SETS all μ SR bits.
02_{8} This instruction SWAPS the contents of the μ SR and the MSR. It will also COPY one register to the other if the register to be copied is not enabled.
$03_{8} \quad$ This instruction RESETS all μ SR bits.
All instruction codes except those mentioned in the above two sections cause a LOAD operation from the $I_{z}, I_{C}, I_{N}, l_{\text {ove }}$ inputs.
$06_{8}, 07_{8}$ When a series of arithmetic operations are being executed sometimes it is not necessary to test for an overflow condition after each operation, but rather it is sufficient simply to know that an overflow occured during any one of the operations. Use of these instructions captures the overflow condition by loading the μ SR overflow bit with the LOGICAL OR of its present state and Iovr. Thus, once an overflow occurs, μ OVR will remain set throughout the remaining operations.
$30_{8}, 31_{8}$, These instructions cause a load from the I inputs, $50_{8}, 51_{8}$, but invert the carry bit. The reason for this is
$70_{8}, 71_{8}$ explained more fully under the "BORROW SAVE" section.
All The remaining instructions load the $\mu \mathrm{SR}$ directly from others the $I_{Z}, I_{C}, I_{N}, l_{\text {ove }}$ inputs.

Machine Status Register (MSR)

The instruction codes for the MSR fall into two groups; REGISTER Operations and LOAD Operations. All operations require that $\overline{\mathrm{CE}}_{\mathrm{M}}$ be LOW to operate (See Table 2 and Map 2).

BIT operations are accomplished by the use of Register or Load Operations with the $\overline{E_{Z}}, \overline{E_{C}}, \overline{E_{N}}, \overline{E_{O V R}}$ inputs selectively set LOW.
Instruction codes $00_{8}-03_{8}$ and 05_{8} are REGISTER operations. They affect only those bits enabled by $\overline{E_{Z}}, \overline{E_{C}}, \overline{E_{N}}, \overline{E_{\text {OVR }}}$.
$00_{8} \quad$ This instruction loads the MSR from the Y inputs while transferring the present contents to the $\mu \mathrm{SR}$. The use of this instruction is further explained under "INTERRUPTS".
$01_{8} \quad$ This instruction SETS all enabled MSR bits.
028 This instruction SWAPS the contents of the μ SR and the MSR. It will also COPY one register to the other if the register to be copied is not enabled.
03_{8}
This instruction RESETS all enabled MSR bits.
05_{8} This instruction COMPLEMENTS all enabled MSR bits.

All instruction codes except those mentioned in the above section cause a LOAD operation from the $\mathrm{I}_{\mathrm{Z}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\text {OVR }}$ inputs.
048 The Am2904 Shift Linkage Multiplexer allows for shifts and rotates through the MSR CARRY bit. Some machines require a shift or rotate through the OVERFLOW bit. By using this code, which swaps the contents of the MSR CARRY bit (M_{C}) and OVERFLOW bit (MovR), the shift or rotate can be made to appear to take place through the OVERFLOW bit. The procedure is to swap the bits, shift or rotate (any number or positions) then swap the bits again.
table 2. machine status register
INSTRUCTION CODES.
Register Operations

\mathbf{I}_{543210} Octal	MSR Operation	Comments
00	$Y_{X} \rightarrow M_{X}$	LOAD $Y_{Z}, Y_{C}, Y_{N}, Y_{\text {OVR }}$
01	$1 \rightarrow M_{X}$	TO MSR
02	$\mu_{X} \rightarrow M_{X}$	SET MSR
03	$0 \rightarrow M_{X}$	REGISTER SWAP
05	$\bar{M}_{X} \rightarrow M_{X}$	RESET MSR

Load Operations

I_{543210} Octal	MSR Operation	Comments
04	$\begin{aligned} & \mathrm{I}_{\mathrm{Z}} \rightarrow \mathrm{M}_{\mathrm{Z}} \\ & \mathrm{M}_{\text {OVR }} \rightarrow \mathrm{M}_{\mathrm{C}} \\ & \mathrm{I}_{\mathrm{N}} \rightarrow \mathrm{M}_{\mathrm{N}} \\ & \mathrm{M}_{\mathrm{C}} \rightarrow \mathrm{M}_{\text {OVR }} \end{aligned}$	LOAD FOR SHIFT THROUGH OVERFLOW OPERATION
$\begin{aligned} & 10,11 \\ & 30,31 \\ & 50,51 \\ & 70,71 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{z}} \rightarrow \mathrm{M}_{\mathrm{Z}} \\ & \mathrm{I}_{\mathrm{C}} \rightarrow M_{\mathrm{C}} \\ & I_{\mathrm{N}} \rightarrow M_{\mathrm{N}} \\ & \mathrm{I}_{\text {OVR }} \rightarrow M_{\text {OVR }} \end{aligned}$	LOAD WITH CARRY INVERT
$\begin{aligned} & 06,07 \\ & 12-17 \\ & 20-27 \\ & 32-37 \\ & 40-47 \\ & 52-67 \\ & 72-77 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{Z}} \rightarrow \mathrm{M}_{\mathrm{Z}} \\ & \mathrm{I}_{\mathrm{C}} \rightarrow \mathrm{M}_{\mathrm{C}} \\ & \mathrm{I}_{\mathrm{N}} \rightarrow \mathrm{M}_{\mathrm{N}} \\ & \mathrm{I}_{\mathrm{OVR}} \rightarrow \mathrm{M}_{\mathrm{OVR}} \end{aligned}$	LOAD DIRECTLY FROM Iz, Ic I_{N}, lovr

Notes: 1. The above tables assume $\overline{\mathrm{CE}_{\mathrm{M}}}, \overline{\mathrm{E}_{\mathrm{Z}}}, \overline{\mathrm{E}_{\mathrm{C}}}, \overline{\mathrm{E}_{\mathrm{N}}}, \overline{\mathrm{E}_{\text {OVR }}}$ are LOW.
2. A shift-through-carry instruction loads M_{C} irrespective of $\mathrm{I}_{5}-\mathrm{I}_{0}$.

MAP 2. MACHINE STATUS REGISTER INSTRUCTION CODES.

Note 1. All unmarked locations are a load direct from $\mathrm{I}_{\mathrm{z}}, \mathrm{I}_{\mathrm{c}}, \mathrm{l}_{\mathrm{OVR}}, \mathrm{I}_{\mathrm{N}}$.
$06_{8}, 07_{8}$ These instructions load the MSR directly from the $12_{8}-27_{8} \quad \mathrm{I}_{\mathrm{Z}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{N}}$, love inputs.
$32_{8}-47_{8}$
$52_{8}-67_{8}$
$72_{8}-77_{8}$
$10_{8}, 11_{8}$ These instructions cause a load from the 1 inputs $30_{8}, 31_{8}$ but invert the CARRY bit. The reason for this is $50_{8}^{\prime}, 51_{8}$ explained more fully under the "BORROW SAVE" $70_{8}, 71_{8}$ section

Condition Code.Multiplexer

The four instruction lines $I_{3}, I_{2}, l_{1}, I_{0}$ will select one of 16 possible operations to be carried out on the input bits, the result being routed to the Conditional Test Output (CT). Eight of the operations supply an individual status bit or its complement to the CT output. Another four do more complex operations while the remaining four are the complemented results of these (See Table 4).

TABLE 3. Y OUTPUT INSTRUCTION CODES.

$\overline{\mathbf{O E}} \mathbf{Y}_{Y}$	I_{5}	\mathbf{I}_{4}	Y Output	Comment
1	X	X	Z	Output Off High Impedance
O	O	X	$\mu_{\mathrm{i}} \rightarrow Y_{\mathrm{i}}$	See Note 1
O	1	O	$\mathrm{M}_{\mathrm{i}} \rightarrow Y_{\mathrm{i}}$	
O	1	1	$\mathrm{I}_{\mathrm{i}} \rightarrow Y_{\mathrm{i}}$	

Notes: 1. For the conditions:
$I_{5}, I_{4}, I_{3}, I_{2}, I_{1}, I_{0}$ are LOW, Y is an input $\overline{O E_{Y}}$ is "Don't Care" for this condition.
2. X is "Don't Care" condition.

TABLE 4. CONDITION CODE OUTPUT (CT) INSTRUCTION CODES.

$\begin{gathered} \mathrm{I}_{3}-0 \\ \mathrm{HEX} \end{gathered}$	I_{3}	I_{2}	I_{1}	I_{0}	$l_{5}=I_{4}=0$	$l_{5}=0, l_{4}=1$	$t_{5}=1, l_{4}=0$	$l_{5}=I_{4}=1$
0	0	0	0	0	$\left(\mu_{N} \oplus \mu_{\text {OVR }}\right)+\mu_{Z}$	$\left(\mu_{N} \oplus \mu_{O V R}\right)+\mu_{Z}$	$\left(M_{N} \oplus M_{\text {OVR }}\right)+M_{Z}$	$\left(I_{N} \oplus \mathrm{I}_{\text {OVR }}\right)+\mathrm{I}_{Z}$
1	0	0	0	1	$\left(\mu_{N} \odot \mu_{\text {OVR }}\right) \cdot \bar{\mu}_{Z}$	$\left(\mu_{N} \odot \mu_{\text {OVR }}\right) \cdot \bar{\mu}_{Z}$	$\left(M_{N} \odot M_{\text {OVR }}\right) \cdot \bar{M}_{Z}$	$\left(I_{N} \odot I_{\text {OVR }}\right) \cdot \bar{I}_{Z}$
2	0	0	1	0	$\mu_{N} \oplus \mu_{\text {OVR }}$	$\mu_{N} \oplus \mu_{\text {OVR }}$	$\mathrm{M}_{\mathbf{N}} \oplus \mathrm{M}_{\text {OVR }}$	$\mathrm{I}_{\mathrm{N}} \oplus \mathrm{I}_{\text {OVR }}$
3	0	0	1	1	$\mu N \bigcirc \mu_{\text {OVR }}$	$\mu_{N} \odot \mu_{\text {OVR }}$	$M_{N} \odot M_{\text {OVR }}$	$\mathrm{I}_{\mathrm{N}} \mathrm{O}$ lovr
4	0	1	0	0	μ_{Z}	μz	Mz_{z}	Iz
5	0	1	0	1	$\bar{\mu}_{Z}$	$\bar{\mu} Z$	\bar{M}_{Z}	T_{z}
6	0	1	1	0	$\mu \mathrm{OVR}$	$\mu_{\text {OVR }}$	Movr	lovr
7	0	1	1	1	$\mu_{\text {OVR }}$	$\bar{\mu}$ OVR	$\bar{M}_{\text {OVR }}$	TovR
8	1	0	0	0	$\mu_{C}+\mu_{Z}$	$\mu_{C}+\mu_{Z}$	$M_{C}+M_{Z}$	$\bar{T}_{C}+I_{z}(2)$
9	1	0	0	1	$\bar{\mu}_{C} \cdot \bar{\mu}_{Z}$	$\bar{\mu}_{C} \cdot \bar{\mu}_{Z}$	$\bar{M}_{C} \cdot \bar{M}_{Z}$	$I_{C} \cdot \overline{I_{z}}$ (2)
A	1	0	1	0	μ_{C}	$\mu_{\text {C }}$	M_{C}	I_{1}
B	1	0	1	1	$\bar{\mu}_{C}$	$\bar{\mu}_{C}$	\bar{M}_{C}	T_{C}
C	1	1	0	0	$\bar{\mu}_{C}+\mu_{Z}$	$\bar{\mu}_{C}+\mu_{Z}$	$\bar{M}_{C}+M_{z}$	$T_{C}+I_{z}$
D	1	1	0	1	$\mu_{C} \cdot \bar{\mu}_{Z}$	$\mu_{C} \cdot \bar{\mu}_{Z}$	$M_{C} \cdot \bar{M}_{Z}$	$I_{C} \cdot T_{z}$
E	1	1	1	0	$\mathrm{IN}_{\mathrm{N}} \oplus \mathrm{M}_{\mathrm{N}}$	μ_{N}	M_{N}	
F	1	1	1	1	${ }_{N} \bigcirc M_{N}$	$\bar{\mu}_{N}$	\bar{M}_{N}	T_{N}

Notes: 1. \oplus Represents EXCLUSIVE-OR \odot Represents EXCLUSIVE-NOR or coincidence.
2. Correct code as stated.

TABLE 5. CRITERIA FOR COMPARING TWO NUMBERS FOLLOWING "A MINUS B" OPERATION.

	For Unsigned Numbers			For 2's Complement Numbers		
	Status	3_{3-0}		Status	l_{3-0}	
Relation		$\mathbf{C T}=\mathrm{H}$	$\mathbf{C T}=\mathrm{L}$		$\mathbf{C T}=\mathrm{H}$	$\mathbf{C T}=\mathrm{L}$
$A=B$	$\mathrm{Z}=1$	4	5	$\mathrm{z}=1$	4	5
$A \neq B$	Z $=0$	5	4	$\mathrm{Z}=0$	5	4
$A \geqslant B$	$C=1$	A	B	$N \odot O V R=1$	3	2
$A<B$	$\mathrm{C}=0$	B	A	$N \oplus$ OVR $=1$	2	3
$A>B$	$\mathrm{C} \cdot \overline{\mathrm{Z}}=1$	D	C	$(\mathrm{N} \odot$ OVR $) \cdot \overline{\mathrm{Z}}=1$	1	0
$A \leqslant B$.	$\overline{\mathrm{C}}+\mathrm{Z}=1$	C	D	$(\mathrm{N} \oplus$ (OVR) $+\mathrm{Z}=1$	0	1

$$
\begin{array}{lll}
\oplus=\text { Exclusive OR } & H=H I G H & \text { Note: For Am2910, the } C C \text { input is active LOW, so use } I_{3-0} \text { code to produce } \\
\odot=\text { Exclusive NOR } & \mathrm{L}=\mathrm{LOW} & \mathrm{CT}=\mathrm{L} \text { for the desired test. }
\end{array}
$$

The more complex operations are intended to follow the calculation $A-B$ to give an indication of which is the larger (A, B unsigned) or more positive (A, B in 2's complement form). See Table 5.
The two instruction lines I_{4}, I_{5} select whether the μ SR, the MSR or the direct inputs I_{Z}, I_{C}, I_{N}, love are used as the inputs to the Y output buffer and the CT output (see Tables 3 and 4).

Instruction codes 16_{8} and 17_{8} form the EXCLUSIVE - OR and the EXCLUSIVE - NOR functions of M_{N} and I_{N}. The use of these instructions is explained under "NORMALIZING".

Shift Linkage Multiplexer

The five instruction lines $I_{10}, l_{9}, I_{8}, I_{7}, l_{6}$ control the SHIFT LINKAGE multiplexer. All instructions set up the linkages for both the ALU shifter (RAM shifter on the Am2901A) and the Q register.
UP and DOWN shifts are decided by I_{10} which should be connected to I_{8} of the Am2903's instruction lines or I_{7} of the Am2901's instruction lines. A wide range of input and output connections are provided, allowing for single or double length shifting or rotating with or without the use of the MSR CARRY or SIGN bits (See Table 7).
In the following discussion of some of the shifts the instruction codes are given as two octal digits AB; A represents I_{10}, I_{9}, B represents I_{8}, I_{7}, I_{6}.
When adding and down shifting on the same microcycle, (i.e. when doing multiplication or averaging) the shifter input must be the present CARRY, I_{c}, rather than the carry resulting from the last cycle (M_{C}). Instruction Code 13_{8} accomplishes this for unsigned arithmetic. For 2's complement arithmetic, the required shifter input is: $I_{N} \oplus l_{\text {OVR }}$. This is provided by instruction Code 168.

Instruction Codes $14_{8}, 15_{8}, 17_{8}$ provide the RIGHT ROTATE THROUGH CARRY, ROTATE BRANCH CARRY and ROTATE WITHOUT CARRY functions respectively.
Instruction Codes $34_{8}, 35_{8}, 37_{8}$ provide the LEFT ROTATE THROUGH CARRY, ROTATE BRANCH CARRY and ROTATE WITHOUT CARRY functions respectively.
The shift outputs are in the high impedance state unless $\overline{\mathrm{SE}}$ is LOW.
Loading of the M_{C} bit by a shift operation overrides any loading or holding of the M_{C} bit by MSR Instructions ($I_{0-5}, \overline{C E}_{M}$ and $\overline{E_{C}}$).

"CARRY-IN" Control Multiplexer

The two instruction lines $\mathrm{I}_{12}, \mathrm{l}_{11}$ control the source of the CARRY output (C_{0}).
When $I_{12}=0 \quad C_{0}=I_{11}$
When $I_{12}=1$ and $I_{11}=0$, the external carry input C_{X} is presented to the carry output.
When $\underline{I_{12}}=I_{11}=1$ the carry output is selected from $\mu_{\mathrm{C}}, \overline{\mu_{\mathrm{C}}}$, M_{C} or $\overline{M_{C}}$ as defined by $I_{5}, I_{3}, I_{2}, I_{1}$ (See Table 6).

APPLICATIONS INFORMATION

Borrow - Save

One of the capabilities of the Am2900 Family is the complete emulation of other processing machines. One requirement of an emulator is that, when a calculation is being performed, not only must the answer obtained from the Am2900 chips be the same as that from the machine being emulated, but after each machine level instruction, the status bits must be indentical.

TABLE 6. CARRY-IN CONTROL MULTIPLEXER INSTRUCTION CODES.

I_{12}	I_{11}	I_{5}	I_{3}	I_{2}	I_{1}	C_{0}
0	0	X	X	X	X	0
0	1	X	X	X	X	1
1	0	X	X	X	X	C_{X}
1	1	0	0	X	X	μ_{C}
1	1	0	X	1	X	μ_{C}
1	1	0	X	X	1	μ_{C}
1	1	0	1	0	0	$\bar{\mu}_{C}$
1	1	1	0	X	X	M_{C}
1	1	1	X	1	X	M_{C}
1	1	1	X	X	1	M_{C}
1	1	1	1	0	0	\bar{M}_{C}

There are alternative methods for subtracting in a digital machine and the state of the CARRY after the calculation depends on the method. For instance, the subtraction of 0100 from 1010 by the 2's complement add method generates a result of 0110 with a CARRY. Direct subtraction however, yields an answer of 0110 with no BORROW.
Many machines store the state of the CARRY for subtract operations, and this is the recommended method for maximum effective use of the Am2904, but, to allow those machines which store the BORROW to be efficiently emulated, the Am2904 has allocated special instructions. Using these codes causes the CARRY bit to be inverted before storage in the status registers and also re-inverts these status bits before using them as carry inputs. These codes are $10_{8}, 11_{8}, 30_{8}$, $31_{8}, 50_{8}, 51_{8}, 70_{8}, 71_{8}\left(1_{5-0}\right)$.
Notice that when these codes are used to load the inverted CARRY to either of the status registers, the CT output selected by the Condition Code Multiplexer assumes the CARRY is inverted and still defines whether $A>B$ or $A \leqslant B$ (See Table 4).
Similarly, when doing a compare on a machine which saves the borrow, testing for $\mathrm{A}>\mathrm{B}, \mathrm{A} \leqslant \mathrm{B}$ forces the complement of the CARRY to be stored in the status registers (See Tables 1 and 2).

Normalizing

Normalizing is the process of stripping off all leading sign bits until the two most significant bits are complementary. The Am2904 facilitates both single and double length normalization in the Am2901 and the Am2903. When using the NORMALIZE special instructions with the Am2903, the EXCLUSIVE - OR of the most significant two bits is generated at the $\mathrm{C}_{\mathrm{n}+4}$ pin of the most significant Am2903. The EXCLUSIVE OR of the two bits next to the most significant bit is also generated at the OVR pin. The procedure for normalizing then is to loop on the normalize instruction with a branch condition on the C_{n+4} state or the OVR state, depending on the architecture employed. The $\mathrm{C}_{\mathrm{n}+4}$ or OVR output is routed to the Am2910 CC input through the Am2904 Condition Code multiplexer. As the contents of the status registers always refers to the last cycle, not the present one, the last operation in Normalizing is to downshift, bringing the sign bit $\left(M_{N}\right)$ back into the most significant bit position. This is achieved using the shift operations $05_{8}\left(l_{10-6}\right)$ for double length normalizing,

TABLE 7．SHIFT LINKAGE MULTIPLEXER INSTRUCTION CODES．

l_{10}	19	I_{8}	17	I_{6}	M_{C}	RAM	Q	SIO_{0}	$\mathrm{SIO}_{\mathrm{n}}$	Q10 ${ }_{0}$	$\mathrm{QIO}_{\mathrm{n}}$	Loaded into M_{C}
0	0	0	0	0		$\begin{gathered} \text { MSB LSE } \\ -\rightarrow- \end{gathered}$	$\begin{aligned} & \text { MSB } \\ & -\square \end{aligned}$	z	0	z	0	
0	0	0	0	1		\rightarrow	－	Z	1	z	1	
0	0	0	1	0	Γ	\cdots	－	z	0	z	M_{N}	SIO_{0}
0	0	0	1	1		$=$	－	z	1	z	SIO_{0}	
0	0	1	0	0		\rightarrow	－	z	Mc_{C}	z	SIO_{0}	
0	0	1	0	1		\rightarrow	－	z	M_{N}	z	SIO_{0}	
0	0	1	1	0		\rightarrow	－	z	0	z	SIO_{0}	
0	0	1	1	1		\rightarrow		z	0	Z	SIO_{0}	QIO_{0}
0	1	0	0	0		\rightarrow	\rightarrow	Z	SIO_{0}	Z	Q1O	SIO_{0}
0	1	0	0	1				Z	M_{C}	Z	Q1O	SIO
0	1	0	1	0		\rightarrow		Z	SIO_{0}	Z	Q1O。	
0	1	0	1	1		\rightarrow	－	Z	I_{C}	Z	SIO_{0}	
0	1	1	0	0		\rightarrow		Z	M_{C}	Z	SIO_{0}	QIO
0	1	1	0	1			－	z	QIO_{0}	z	SIO_{0}	QIO。
0	1	1	1	0		$=$		z	$\mathrm{I}_{\mathrm{N}} \oplus \mathrm{lovr}^{\text {l }}$	z	SIO_{0}	
0	1	1	1	1		\rightarrow		Z	QIO。	Z	SIO_{0}	
1	0	0	0	0		SB LSB	－	0	Z	0	Z	SiO_{n}
1	0	0	0	1		－	－	1	Z	1	z	SIO_{n}
1	0	0	1	0		－	－	0	z	0	z	
1	0	0	1	1		－	－	1	z	1	z	
1	0	1	0	0		－	－	QIOn	z	0	z	SIO_{n}
1	0	1	0	1		－		QIOn	z	1	z	SIO_{n}
1	0	1	1	0		－	－	QIOn	z	0	z	
1	0	1	1	1				QIO_{n}	z	1	Z	
1	1	0	0	0		\square		SIO_{n}	Z	QIO ${ }_{n}$	Z	SIO_{n}
1	1	0	0	1		$-\sqrt{-}$	－	M_{C}	Z	QIO ${ }_{n}$	Z	SIO_{n}
1	1	0	1	0		－	－	SiO_{n}	Z	QIOn	Z	
1	1	0	1	1		$-\square$	－	M_{C}	Z	0	Z	
1	1	1	0	0		$-\square$	－	QIO_{n}	Z	Mc_{C}	Z	SIO_{n}
1	1	1	0	1		$-$	－	QIO_{n}	Z	SIO_{n}	Z	SIO_{n}
1	1.	1	1	0		-1	－	QIO_{n}	Z	M_{C}	Z	
1		1	1	1		－-	－	QIO_{n}	Z	SIO_{n}	Z	

Notes：1．$Z=$ High impedance（outputs off）state．
3．Loading of M_{C} from I_{10-6} overrides control from $I_{5-0}, \overline{\mathrm{CE}}_{M}, \bar{E}_{C}$ ．
2．Outputs enabled and M_{C} loaded only if $\overline{S E}$ is LOW．
and 02_{8} for single length normalizing. For more details regarding normalizing with the Am2903 see the Am2903 data sheet.

The Am2901 does not have the EXCLUSIVE - OR gates to help with normalizing, so the Am2904 includes in the Condition Code multiplexer the EXCLUSIVE - OR and EXCLUSIVE - NOR functions of M_{N} (the sign bit resulting from the last operation) and I_{N} (the sign bit resulting from the present operation).

Interrupts

Some machines allow interrupts only at the machine instruction level while others allow them at the microinstruction level. The Am2904 is designed to handle both cases.
When the machine is interrupted, it is necessary to store the contents of either the MSR (machine instruction level interrupts) or both the status registers (micro instruction level inter-
rupts) into an external store. This transfer is intended to take place over the Y input/output pins (See Table 3).
After the interrupt has been serviced the registers must be restored to their pre-interrupt state. This is accomplished by two operations of instruction 0_{8} (i_{5-0}) which loads the MSR from the Y inputs while loading the μ SR from the MSR. Thus, the pre-interrupt contents of the $\mu \mathrm{SR}$ are first loaded to the MSR (first instruction 00_{8}), then this data is transferred to the $\mu \mathrm{SR}$ while the MSR is restored to its pre-interrupt state (second instruction 00_{8}).

In controllers and some other microprogrammed machines the applications program itself is often in the microprogram memory; that is, there is no macroinstruction set. These machines require only a microstatus register since there is no separate machine status. The MSR in the Am2904 can be used as a one-level stack on the microstatus register. When an interrupt occurs, the $\mu \mathrm{SR}$ and the MSR are simply swapped ($\mathrm{I}_{5-0}=$ 028).

SWITCHING CHARACTERISTICS

The tables below define the Am2904 switching characteristics. Tables A are set-up and hold times relative to the clock LOW-to-HIGH transition. Tables B are combinational delays. Tables C are clock requirements. All measurements are made at 1.5 V with input levels at OV or 3 V . All values are in ns. All outputs have maximum DC loading.

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $+5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)
A. Set-up and Hold Times (ns)

Input	t_{8}	$t_{\text {h }}$
	14	5
$\mathrm{Ic}\left(I_{1} I_{2} I_{3}=001\right)$	27	5
$\mathrm{Ic}\left(I_{1} I_{2} I_{3} \neq 001\right)$	14	5
$\overline{\mathrm{CE}} \boldsymbol{\mu}$	18	3
$\overline{\mathrm{CE}_{M}}$	23	3
$\begin{aligned} & \overline{\bar{E}}_{\mathrm{Z},} \overline{\mathrm{E}}_{\mathrm{C}}, \overline{\mathrm{E}}_{\mathrm{N}} \\ & \overline{\mathrm{E}}_{\mathrm{OVR}} \end{aligned}$	22	3 (b)
$\mathrm{I}_{0}-\mathrm{I}_{5}$	41	1
${ }_{16}-10$	40	1
$\overline{\text { SE }}$	36	0
$\begin{aligned} & Y_{Z}, Y_{C}, Y_{N}, Y_{O V R} \\ & \left(1_{0-5}=L O W\right) \end{aligned}$	15	5
$\begin{aligned} & \mathrm{SIO}_{0}, \mathrm{SIO}_{\mathrm{n}}, \\ & \mathrm{QiO}_{\mathrm{o}}, \mathrm{QiO}_{\mathrm{n}} \end{aligned}$	20	5

C. Clock Requirements (ns)

From (Input)	To (Output)	Enable	Disable
$\mathrm{OE}_{\mathrm{CT}}$	CT	23	18
SE	$\mathrm{SIO}_{\mathrm{o}}, \mathrm{SIO}_{n}$ $\mathrm{QIO}_{\mathrm{O}}, \mathrm{QIO}_{\mathrm{n}}$	30	12
I_{10}	$\mathrm{SIO}_{\mathrm{O}}, \mathrm{SIO}_{n}$ $\mathrm{QIO}_{\mathrm{o}}, \mathrm{QIO}_{\mathrm{n}}$	39	29
OE_{Y}	$\mathrm{Y}_{\mathrm{Z}}, \mathrm{Y}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{N}}, \mathrm{Y}_{\mathrm{OVR}}$	26	21
$\mathrm{I}_{\mathrm{O}}-\mathrm{I}_{5}$	$\mathrm{Y}_{\mathrm{Z}}, \mathrm{Y}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{N}}, \mathrm{Y}_{\mathrm{OVR}}$	28	40

Minimum Clock LOW Time	20
Minimum Clock HIGH Time	20

D. Enable/Disable Times (ns)
$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests

A. Set-up and Hold Times (ns)

Input	t_{s}	t_{n}
$\mathrm{I}_{2}, \mathrm{I}_{\mathrm{N}}, \mathrm{l}_{\text {l }}$ IVR	15	5
$\mathrm{I}_{\mathrm{C}}\left(I_{1} \mathrm{I}_{2} \mathrm{I}_{3}=001\right)$	28	5
$\mathrm{IC}_{C}\left(\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3} \neq 001\right)$	15	5
$\overline{\mathrm{CE}} \mu$	20	3
$\overline{\mathrm{CE}}_{\mathrm{M}}$	23	4
$\begin{aligned} & \bar{E}_{Z_{1}} \bar{E}_{\mathrm{C}}, \overline{\mathrm{E}}_{\mathrm{N}} \\ & \overline{\mathrm{E}}_{\mathrm{OVR}} \end{aligned}$	23	4
10^{-15}	48	2
l_{6-10}	44	2
$\overline{\text { SE }}$	40	0
$\begin{aligned} & Y_{Z}, Y_{C}, Y_{N}, Y_{O V R} \\ & \left(I_{0-5}=L O W\right) \end{aligned}$	16	6
$\begin{aligned} & \mathrm{SIO}_{\mathrm{o}}, \mathrm{SIO}_{\mathrm{n}}, \\ & \mathrm{QiO}_{0}, \mathrm{QIO}_{\mathrm{n}} \\ & \hline \end{aligned}$	20	5

B. Combinational Delays (ns)

From (Input)	To (Output)	$t_{\text {pd }}$
$\begin{aligned} & \hline I_{z} \\ & I_{C} \\ & I_{N} \\ & I_{\text {OVR }} \end{aligned}$	$\begin{aligned} & Y_{Z} \\ & Y_{C} \\ & Y_{N} \\ & Y_{\text {OVR }} \end{aligned}$	38
CP	$Y_{Z}, Y_{C}, Y_{N}, Y_{O V R}$	41
$\mathrm{I}_{4}, \mathrm{I}_{5}$	$Y_{Z}, Y_{C}, Y_{N}, Y_{\text {OVR }}$	35
$\mathrm{I}_{\mathrm{z},} \mathrm{I}, \mathrm{I}_{\mathrm{N}}, \mathrm{l}$ OVR	CT	33
CP	CT	36
1_{0-15}	CT	33
C_{X}	C_{0}	20
CP	C_{0}	27
$\mathrm{I}_{1,2,3,5,11,12}$	C_{0}	39
$\mathrm{SIO}_{n}, \mathrm{QIO}_{n}$	SiO_{0}	19
$\mathrm{SIO}_{\mathrm{o}}, \mathrm{QlO}_{0}$	SIO_{n}	19
${ }^{1} \mathrm{C}, \mathrm{I}_{\mathrm{N}, ~ \mathrm{lovr}}$	SIO_{n}	26
$\mathrm{SIO}_{n}, \mathrm{QIO}_{n}$	QlO_{0}	19
$\mathrm{SIO}_{\mathrm{o}}, \mathrm{QlO}_{0}$	QlO_{n}	19
CP	$\begin{aligned} & \mathrm{SIO}_{\mathrm{o}}, \mathrm{SIO}_{n} \\ & \mathrm{QIO}_{0}, \mathrm{QiO}_{n} \end{aligned}$	30
1_{6}^{-10}	$\begin{aligned} & \mathrm{SIO}_{0}, \mathrm{SIO}_{n} \\ & \mathrm{QIO}_{\mathrm{o}}, \mathrm{QIO}_{n} \end{aligned}$	26

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE

($\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to $+5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

From (Input)	To (Output)	t_{pd}
$\begin{aligned} & I_{Z} \\ & I_{C} \\ & I_{N} \\ & I_{\text {OVR }} \end{aligned}$	$\begin{aligned} & Y_{Z} \\ & Y_{C} \\ & Y_{N} \\ & Y_{\text {OVR }} \end{aligned}$	40
CP	$Y_{Z}, Y_{C}, Y_{N}, Y_{\text {OVR }}$	45
$\mathrm{I}_{4}, \mathrm{I}_{5}$	$Y_{Z}, Y_{C}, Y_{N}, Y_{O V R}$	38
$\mathrm{I}_{\mathrm{z},} \mathrm{I}_{\mathrm{C},}, \mathrm{I}_{\mathrm{N}}, \mathrm{l}_{\text {OVR }}$	CT	44
CP	CT	40
1_{0-15}	CT	41
C_{X}	Co_{0}	22
CP	C_{0}	28
$\mathrm{I}_{1,2,3,5,11,12}$	Co_{0}	42
$\mathrm{SIO}_{\mathrm{n}}, \mathrm{QIO}_{\mathrm{n}}$	SIO_{0}	20
$\mathrm{SIO}_{0}, \mathrm{QlO}_{0}$	$\mathrm{SIO}_{\mathrm{n}}$	20
l^{\prime} c. I_{N}. lovr	SIO_{n}	29
$\mathrm{SIO}_{n}, \mathrm{QIO}_{n}$	QIO_{0}	20
$\mathrm{SIO}_{0}, \mathrm{QlO}_{0}$	Q1On	20
CP	$\begin{aligned} & \mathrm{SIO}_{\mathrm{o}}, \mathrm{SIO}_{\mathrm{n}} \\ & \mathrm{QIO}_{\mathrm{o}}, \mathrm{QIO}_{n} \end{aligned}$	32
$1_{6}-10$	$\begin{aligned} & \mathrm{SIO}_{\mathrm{o}}, \mathrm{SIO}_{n} \\ & \mathrm{QIO}_{\mathrm{o}}, \mathrm{QIO}_{n} \end{aligned}$	31.

C. Clock Requirements (ns)

Minimum Clock LOW Time	25
Minimum Clock HIGH Time	25

D. Enable/Disable Times (ns)
$C_{L}=5.0 \mathrm{pF}$ for output disable tests

From (Input)	To (Output)	Enable	Disable
$\mathrm{OE}_{\mathrm{CT}}$	CT	25	18
SE	$\mathrm{SIO}_{\mathrm{O}}, \mathrm{SIO}_{\mathrm{n}}$ $\mathrm{QIO}_{\mathrm{O}}, \mathrm{QIO}_{n}$	35	16
I_{10}	$\mathrm{SIO}_{\mathrm{o}}, \mathrm{SIO}_{\mathrm{n}}$ $\mathrm{QIO}_{0}, \mathrm{QIO}_{n}$	43	32
OE_{Y}	$\mathrm{Y}_{\mathrm{Z}}, \mathrm{Y}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{N}}, \mathrm{Y}_{\mathrm{OVR}}$	28	23
$\mathrm{I}_{0}-\mathrm{I}_{5}$	$\mathrm{Y}_{\mathrm{Z}}, \mathrm{Y}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{N}}, \mathrm{Y}_{\mathrm{OVR}}$	30	41

TEST OUTPUT LOAD CONFIGURATIONS FOR Am2904

A. THREE-STATE OUTPUTS

$$
\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{BE}}-V_{\mathrm{OL}}}{\mathrm{lOL}+\mathrm{V}_{\mathrm{OL}} / 1 \mathrm{~K}}
$$

B. NORMAL OUTPUTS

$$
\mathrm{R}_{2}=\frac{2.4 \mathrm{~V}}{\mathrm{I}_{\mathrm{OH}}}
$$

$$
\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{BE}}-V_{\mathrm{OL}}}{\mathrm{lOL}+\mathrm{V}_{\mathrm{OL}} / \mathrm{R}_{2}}
$$

Notes: 1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. S_{1}, S_{2}, S_{3} are closed during function tests and all $A C$ tests except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open for $t_{P Z H}$ test.
S_{1} and S_{2} are closed while S_{3} is open for tPZL test.
4. $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests.

TEST OUTPUT LOADS FOR Am2904

Pin \# (DIP)	Pin Label	Test Circuit	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
25	C_{0}	B	470	3 K
27	CT	A	430	1 K
28	$\mathrm{Y}_{\text {OVR }}$	A	220	1 K
29	Y_{N}	A	220	1 K
31	Y_{C}	A	220	1 K
32	$\mathrm{Y}_{\mathbf{Z}}$	A	220	1 K
33	$\mathrm{QIO}_{\mathrm{N}}$	A	430	1 K
34	QIO_{0}	A	430	1 K
35	$\mathrm{SIO}_{\mathrm{N}}$	A	430	1 K
36	SIO_{0}	A	430	1 K

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

1. Insure the part is adequately decoupled at the test head. Large changes in V_{CC} current as the device switches may cause erroneous function failures due to V_{Cc} changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable may allow the ground pin at the device to rise by 100s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or V_{IH} until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

Am2905

Quad Two-Input OC Bus Transceiver with Three-State Receiver

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Open-collector bus driver
- Two-port input to D-type register on driver
- Bus driver output can sink 100 mA at 0.8 V max.

FUNCTIONAL DESCRIPTION

The Am2905 is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four open-collector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches that feature three-state outputs.

This LSI bus transceiver is fabricated using advanced lowpower Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100 mA at 0.8 V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input ($\overline{\mathrm{BE}}$) is used to force the driver outputs to the high-impedance state. When $\overline{\mathrm{BE}}$ is HIGH, the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bas.
The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_{i} data is stored in the register and when S is HIGH, the B_{i} data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.

Data from the A or B inputs is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\mathrm{RLE}}$) input. When the $\overline{\mathrm{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and $\overline{O E}$ LOW). When the $\overline{R L E}$ input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have threestate outputs and are controlled by a buffered common
 receiver outputs are in the high-impedance state.

- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12 mA
- Advanced low-power Schottky processing

Am2905

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +7 V
DC Output Current, Into Outputs (Except Bus)	30 mA
DC Output Current, Into Bus	200 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2905XC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C M I N}=4.75 \mathrm{~V} \quad V_{C C M A X}=5.25 \mathrm{~V}$
Am2905 $\times \mathrm{M}$ (MIL) $\quad \mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C M} M \mathrm{~N}=4.50 \mathrm{~V} V_{C C M A X}=5.50 \mathrm{~V}$

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ. (Note 2)	Max.	Units
$\mathrm{VOL}_{\text {O }}$	Bus Output LOW Voltage	$V_{C C}=\mathrm{MIN}$.	$1 \mathrm{OL}=40 \mathrm{~mA}$			0.32	0.5	Volts
			$1 \mathrm{OL}=70 \mathrm{~mA}$			0.41	0.7	
			$1 \mathrm{OL}=100 \mathrm{~mA}$			0.55	0.8	
10	Bus Leakage Current	$V_{C C}=$ MAX.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$	MIL			200	
				COM'L			100	
IOFF	Bus Leakage Current (Power OFF)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$				-	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Receiver Input HIGH Threshold	Bus enable $=2.4 \mathrm{~V}$		MIL	2.4	2.0		Volts
				COM'L	2.3	2.0		
$V_{\text {TL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$		MIL		2.0	1.5	Volts
				COM'L		2.0	1.6	

ELECTRICAL CHARACTERISTICS
The following conditions apply unless otherwise noted:
Am2905XC (COM'L) $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C} M I N .=4.75 \mathrm{~V} \quad V_{C C M A X}=5.25 \mathrm{~V}$
Am2905XMMIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C} M I N .=4.50 \mathrm{~V} \quad V_{C C M A X}=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	$\begin{aligned} & \text { Typ. } \\ & \text { (Note 2) } \end{aligned}$	Max.	Units
V_{OH}	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=V_{I N} \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$		2.4	3.4		
v_{OL}	Receiver Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$			0.27	0.4	Volts
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.32	0.45	
			$\mathrm{IOL}^{\prime}=12 \mathrm{~mA}$			0.37	0.5	
$V_{\text {IH }}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
$V_{\text {II }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Volts
				COM ${ }^{\text {L }}$			0.8	
v_{1}	Input Clamp Voltage (Except Bus)	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current (Except Bus)	$V_{C C}=M A X ., V_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
$\mathrm{I}_{1} \mathrm{H}$	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{1 N}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
10	Receiver Off-State Output Current	$V_{C C}=M A X$.		$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20	A
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20	
Isc	Receiver Output Short Circuit Current	$V_{C C}=$ MAX.			-12		-65	mA
ICC	Power Supply Current	$\mathrm{V}_{\text {CC }}=$ MAX., All inputs $=$ GND				69	105	mA

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical timits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Am2905

The Am2905 is a universal Bus Transceiver useful for many system data, address, control and timing input/output interfaces.

Am2906
 Quad Two-Input OC Bus Transceiver with Parity

Distinctive Characteristics

- Quad high-speed LSI bus transceiver.
- Open-collector bus driver.
- Two-port input to D-type register on driver.
- Bus driver output can sink 100 mA at 0.8 V max.
- Internal odd 4-bit parity checker/generator.
- Receiver has output latch for pipeline operation.
- Receiver outputs sink 12 mA .
- Advanced low-power Schottky processing.

FUNCTIONAL DESCRIPTION

The Am2906 is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four opencollector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches. The device also contains a four-bit odd parity checker/generator.

This LSI bus transceiver is fabricated using advanced lowpower Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100 mA at 0.8 V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input ($\overline{\mathrm{BE}}$) is used to force the driver outputs to the high-impedance state. When $\overline{\mathrm{BE}}$ is HIGH ; the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bus.

The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_{i} data is stored in the register and when S is $H I G H$, the B_{i} data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.
Data from the A or B input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\mathrm{RLE}}$) input. When the $\overline{\mathrm{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted). When the $\overline{R L E}$ input is HIGH, the latch will close and retain the present data regardless of the bus input.

The Am2906 features a built-in four-bit odd parity checker/ generator. The bus enable input ($\overline{\mathrm{BE}}$) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A or B field data input to the driver register. When $\overline{\mathrm{BE}}$ is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the highimpedance state, the BUS parity is checked.

LOGIC SYMBOL

$v_{C C}=\operatorname{Pin} 24$
$\mathrm{GND}_{1}=\operatorname{Pin} 6$
$G N D_{2}=\operatorname{Pin} 18$

CONNECTION DIAGRAM Top View

Am2906

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs (Except Bus)	30 mA
DC Output Current, Into Bus	200 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

Am2906 $\mathrm{C}\left(\mathrm{COM}^{\prime} \mathrm{L}\right)$	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C} M I N=4.75 \mathrm{~V}$	$V_{C C} M A X=5.25 \mathrm{~V}$
Am2906 M (MIL)	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C} M I N=4.50 \mathrm{~V}$	$V_{C C} M A X=5.50 \mathrm{~V}$

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	$\begin{gathered} \text { Typ. } \\ \text { (Note 2) } \\ \hline \end{gathered}$	Max.	Units.
v_{OL}	Bus Output LOW Voltage		$\mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$			0.32	0.5	Volts
			$\mathrm{IOL}^{\prime}=70 \mathrm{~mA}$			0.41	0.7	
			$1 \mathrm{OL}=100 \mathrm{~mA}$			0.55	0.8	
${ }^{1} 0$	Bus Leakage Current	$\mathrm{V}_{C C}=$ MAX.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$	MIL			200	
				COM'L			100	
IOFF	Bus Leakage Current (Power OFF)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$V_{\text {TH }}$	Receiver Input HIGH Threshold	Bus enable $=2.4 \mathrm{~V}$		MIL	2.4	2.0		Volts
				COM'L	2.3	2.0		
$V_{\text {TL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$		MIL		2.0	1.5	Volts
				COM'L		2.0	1.6	

Am2906XC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C} M I N .=4.75 \mathrm{~V} \quad V_{C C} M A X .=5.25 \mathrm{~V}$
Am2906 $\times \mathrm{M}$ (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C} M I N .4 .5 \mathrm{~V} \quad V_{C C} M A X .=5.5 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ. (Note 2)	Max.	Units
V_{OH}	Receiver Output	$V_{C C}=$ MIN .	MIL	$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4	3.4		Volts
	HIGH Voltage	$V_{\text {IN }}=V_{\text {IL }}$ or $V_{\text {IH }}$	COM'L	$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}$	2.4	3.4		
	Parity Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-660 \mu A^{\prime} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		MIL	2.5	3.4		
				COM'L	2.7	3.4		
V_{OL}	Output LOW Voltage (Except Bus)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$			0.27	0.4	Volts
			$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$			0.32	0.45	
			$\mathrm{I}^{\mathrm{OL}}=12 \mathrm{~mA}$			0.37	0.5	
$\mathbf{V I H}^{\text {I }}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Volts
				COM'L			0.8	
v_{1}	Input Clamp Voltage (Except Bus)	$V_{C C}=M I N ., I_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
IIL	Input LOW Current (Except Bus)	$V_{C C}=$ MAX ${ }_{\text {; }} \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
IIH	Input HIGH Current (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$V_{C C}=$ MAX.			-12		-65	mA
ICC	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ MAX., All inputs $=$ GND				72	105	mA

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Am2906XM			Am2906XC			Units
			Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	
tPHL	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B \cup S)=50 p F \\ & R_{L}(B \cup S)=50 \Omega \end{aligned}$		21	40		21	36	
$\mathrm{t}_{\text {PLH }}$				21	40		21	36	ns
tPHL	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13	23	ns
tPLH				13	26		13	23	
t_{5}	Data inputs (A or B)	$\begin{gathered} C_{L}=15 \mathrm{pF} \\ R_{L}=2.0 \mathrm{k} \Omega \end{gathered}$	25			23			ns
th			8.0	.		7.0			
t_{s}	Select Inputs (S)		33			30			ns
th			8.0			7.0			
tPW	Clock Pulse Width (HIGH)		28			25			ns
tPLH	Bus to Receiver Output (Latch Enabled)			18	37		18	34	ns
tPHL				18	37	-	18	34	
tPLH	Latch Enable to Receiver Output			21	37		21	34	ns
tPHL				21	37		21	34	ns
$\mathrm{t}_{\text {s }}$	Bus to Latch Enable ($\overline{\mathrm{RLE}}$)		21			18			ns
th			7.0			5.0			
tPLH	A or B Data to Odd Parity Output (Driver Enabled)			21	40		21	36	ns
tPHL				21	40		21	36	
tPLH	Bus to Odd Parity Output (Driver Inhibited, Latch Enabled)			21	40		21	36	ns
tPHL				21	40		21.	36	
tPLH	Latch Enable ($\overline{\mathrm{RLE}})$ to Odd Parity Output			21	40		21	36	ns
${ }_{\text {tPHL }}$				21	40		21	36	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2906PC	P-24	C	C-1
AM2906DC	D-24	C	C-1
AM2906DC-B	D-24	C	B-1
AM2906DM	D-24	M	C-3
AM2906DM-B	D-24	M	B-3
AM2906FM	F-24-1	M	C-3
AM2906FM-B	F-24-1	M	B-3
AM2906XC	Dice	C	Visual inspection
AM2906XM	Dice MIL-STD-883	M	Method 2010B.

Notes:

1. $\mathbf{P}=$ Molded DIP, $\mathbf{D}=$ Hermetic DIP, F $=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V .
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD883, Class B.

The " A " word data input into the two input multiplexer of the driver register.
$\mathbf{B}_{\mathbf{0}}, \mathbf{B}_{1}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{3}$ The " \mathbf{B}^{\prime} word data input into the two input multiplexers of the driver register.

S
Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is HIGH, the B word is applied to the driver register.
DRCP
Driver Clock Pulse. Clock pulse for the driver register.
$\overline{B E}$
Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance state.
$\overline{\operatorname{BUS}}_{\mathbf{0}}, \overline{\mathrm{BUS}}_{1} \quad$ The four driver outputs and receiver in$\overline{\mathrm{BUS}}_{2}, \overline{\mathrm{BUS}}_{3}$ puts (data is inverted).
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{3}$ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
$\overline{R L E} \quad$ Receiver Latch Enable. When $\overline{R L E}$ is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.
$\overline{\mathbf{O E}}$
Output Enable. When the $\overline{\mathrm{OE}}$ input is HIGH, the four three state receiver outputs are in the high-impedance state.

LOAD TEST CIRCUIT

MPR-080
Metallization and Pad Layout

Generating or checking parity for 16 data bits.

Am2907• Am2908
 Quad Bus Transceivers with Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Open-collector bus driver
- D-type register on driver
- Bus driver output can sink 100 mA at 0.8 V max.
- Internal odd 4-bit parity checker/generator
- Am2907 has 2.0V input receiver threshold; Am2908 is "DEC Q or LSI-II bus compatible" with 1.5 V receiver threshold
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12 mA
- Advanced Low-power Schottky processing

FUNCTIONAL DESCRIPTION

The Am2907 and Am2908 are high-performance bus transceivers intended for bipolar or MOS microprocessor system applications. The Am2908 is Digital Equipment Corporation "Q or LSI-II bus compatible" while the Am2907 features a 2.0V receiver threshold. These devices consist of four D-type edge-triggered flip-flops. The flip-flop outputs are connected to four open-collector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches, that feature three-state outputs. The devices also contain a four-bit odd parity checker/generator.
These LSI bus transceivers are fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100 mA at 0.8 V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input ($\overline{\mathrm{BE}}$) is used to force the driver outputs to the high-impedance state. When $\overline{B E}$ is HIGH, the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bus.
The input register consists of four D-type flip-flops with a buffered common clock. The buffered common clock (DRCP) enters the A_{i} data into this driver register on the LOW-to-HIGH transition.
Data from the A input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted form driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable (RLE) input. When the RLE input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and OE LOW). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is HIGH, the receiver outputs are in the high-impedance state.
The Am2907 and Am2908 feature a built-in four-bit odd parity checker/generator. The bus enable input ($\overline{\mathrm{BE}}$) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A field data input to the driver register. When $\overline{\mathrm{BE}}$ is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.
The Am2907 has receiver threshold typically of 2.0 V while the Am2908 threshold is typically 1.5 V .

LOGIC SYMBOL

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 20$
$\mathrm{GND}_{1}=\operatorname{Pin} 5$
$\mathrm{GND}_{2}=\operatorname{Pin} 15$
MPR-083
CONNECTION DIAGRAM Top View

MPR-085
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs (Except BUS)	30 mA
DC Output Current, Into Bus	200 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2907XC, Am2908XC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C} \mathrm{MIN} .=4.75 \mathrm{~V} \quad \mathrm{~V}_{C C} \mathrm{MAX} .=5.25 \mathrm{~V}$
Am2907XM, Am2908XM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{C C}$ MIN. $=4.50 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}} \mathrm{MAX} .=5.50 \mathrm{~V}$
BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	$\begin{aligned} & \text { Typ. } \\ & \text { (Note 2) } \end{aligned}$	Max.	Units
V_{OL}	Bus Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	$\mathrm{IOL}=40 \mathrm{~mA}$			0.32	'0.5	Voits
			$\mathrm{I}^{\mathrm{OL}}=70 \mathrm{~mA}$			0.41	0.7	
			$\mathrm{IOL}^{\text {O }}=100 \mathrm{~mA}$			0.55	0.8	
10	Bus Leakage Current	$V_{C C}=M A X$.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$	MIL			200	
				COM'L			100	
Ioff	Bus Leakage Current (Power Off)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Receiver Input HIGH Threshold	Bus Enable $=\mathbf{2 . 4 V}$	Am2907	MIL	2.4	2.0		Volts
				COM'L	2.3	2.0		
			Am2908	MIL	1.9	1.5		
				COM'L	1.7	1.5		
$\mathrm{V}_{T L}$	Receiver Input LOW Threshold	Bus Enable $=2.4 \mathrm{~V}$	Am2907	MIL		2.0	1.5	Volts
				COM'L		2.0	1.6	
			Am2908	MIL		1.5	1.1	
				COM'L		1.5	1.3	
v_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts

ELECTRICAL CHARACTERISTICS
The following conditions apply unless otherwise noted:
Am2907XC, Am2908XC (COM'L) $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}} \mathrm{MIN} .=4.75 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}} \mathrm{MAX} .=5.25 \mathrm{~V}$
Am2907XM, Am2908XM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}} \mathrm{MIN} .=4.50 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}}$ MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ. (Note 2)	Max.	Units
$\mathrm{VOH}^{\text {O }}$	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL: $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$		2.4	3.4		Volts
			COM'L: ${ }^{\text {IOH}}$	-2.6mA	2.4	3.4		
$\mathrm{VOH}^{\text {O }}$	Parity Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOH}_{\mathrm{OH}}=-660 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		MIL	2.5	3.4		Volts
				COM'L	2.7	3.4		
v_{OL}	Output LOW Voltage (Except Bus)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$			0.27	0.4	Volts
			$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$			0.32	0.45	
			${ }^{1} \mathrm{OL}=12 \mathrm{~mA}$			0.37	0.5	
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0		.	Volts
$V_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Valts
				COM'L			0.8	
v_{1}	Input Clamp Voltage (Except Bus)	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
IIL	Input LOW Current (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
${ }_{1 / H}$	Input HIGH Current (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$V_{C C}=\mathrm{MAX}$.			-12		-65	mA
${ }^{1} \mathrm{Cc}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ MAX., All inputs $=$ GND		Am2907		75	110	mA
				Am2908		80	120	
10	Off-State Output Current (Receiver Outputs)	$V_{C C}=M A X$.	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$$\mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$				20	$\mu \mathrm{A}$
							-20	

Am 2907 SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	Units
${ }_{\text {tPHL }}$	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B \cup S)=50 p F \\ & R_{L}(B \cup S)=50 \Omega \end{aligned}$		21	40		21	36	
tPLH				21	40		21	36	
tPHL	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13	23	ns
tPLH				13	26		13	23	
t_{s}	Data Inputs	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$	18			15			ns
th			8.0			7.0			
tpw	Clock Pulse Width (HIGH)		28			25			ns
tple	Bus to Receiver Output (Latch Enabled)			18	37	.	18	34	
tPHL				18	37		18	34	
tplh	Latch Enable to Receiver Output			21	37		21	34	ns
tPHL				21	37		21	34	
t_{s}	Bus to Latch Enable ($\overline{\mathrm{RLE}}$)		21			18			ns
th			7.0			5.0			
tPLH	Data to Odd Parity Out (Driver Enabled)			21	40		21	36	ns
tPHL				21	40		21	36	
tPLH	Bus to Odd Parity Out ${ }^{\prime}$ (Driver Inhibit)			21	40		21	36	ns
tPHL				21	40		21	36	
tpliH	Latch Enable ($\overline{\mathrm{RLE}}$) to Odd Parity Output			21	40		21	36	ns
tPHL				21	40		21	36	
t ZH	Output Control to Output			14	28		14	25	ns
t_{ZL}				14	28		14	25	
t_{Hz}	Output Control to Output	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$		14	28		14	25	ns
$t_{L} \mathrm{Z}$		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$		14	28		14	25	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Am2908 SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	Units
$\mathrm{t}_{\text {PHL }}$	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(\text { BUS })=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}(\mathrm{BUS}): 91 \Omega \text { to } \\ & V_{\mathrm{CC}} \\ & 200 \Omega \text { to } G N D \end{aligned}$		21	40		21	36	ns
$\mathrm{tPLH}^{\text {P }}$				21	40		21	36	
$\mathrm{t}_{\mathrm{PHL}}$	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13.	23	ns
${ }_{\text {tPLH }}$				13	26		13	23	
t_{r}	Bus Output Rise Time		5	10		7	10		
t_{f}	Bus Output Fall Time		3	6		4	6		ns
t_{s}	Data Inputs		18			15			ns
$t_{\text {h }}$			8.0			7.0			
$t_{\text {pw }}$	Clock Pulse Width (HIGH)		28			25			ns
tPLH	Bus to Receiver Output (Latch Enabled)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$		18	38		18	35	ns
$\mathrm{t}_{\text {PHL }}$				18	38		18	35	
$\mathrm{t}_{\text {PLH }}$	Latch Enable to Receiver Output			21	38		21	35	ns
$\mathrm{t}_{\text {PHL }}$				21	38		21	35	
t_{s}	Bus to Latch Enable ($\overline{\text { RLE }}$)		21			18			ns
$t_{\text {h }}$			7.0			5.0			
$t_{\text {PLL }}$	Data to Odd Parity Out (Driver Enabled)	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$		21	40		21	36	ns
$\mathrm{t}_{\text {PHL }}$				21	40		21	36	
${ }_{\text {tPLH }}$	Bus to Odd Parity Out (Driver Inhibit)			21	40		21	36	ns
$\mathrm{t}_{\text {PHL }}$				21	40		21	36	
$t_{\text {PLH }}$	Latch Enable ($\overline{\mathrm{RLE}}$) to Odd Parity Output			21	40		21	36	ns
$\mathrm{t}_{\text {PHL }}$				21	40		21	36	
t_{zH}	Output Control to Output			14	28		14	25	ns
t_{zL}				14	28		14	25	
t_{HZ}	Output Control to Output	$\begin{aligned} & C_{L}=5.0 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$		14	28		14	25	ns
tzz				14	28		14	25	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics fo the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

	Am2907 Order Number	Am2908 Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level '(Note 3)
	AM2907PC	AM2908PC	P-20	C	C-1
	AM2907DC	AM2908DC	D-20	C	C-1
	AM2907DC-B	AM2908DC-B	D-20	C	B-1
	AM2907DM	AM2908DM	D-20	M	C-3
	AM2907DM-B	AM2908DM-B	D-20	M	B-3
	AM2907FM	AM2908FM	F-20	M	C-3
	AM2907FM-B	AM2908FM-B	F-20	M	Visual inspection to MIL-STD-883 Method 2010B.
	AM2907XC	AM2908XC	Dice	C	
	AM2907XM	AM2908XM	Dice	M	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C, Level B-3 conforms to MIL-STD-883, Class B.

Am2907/08 SWITCHING WAVEFORMS

1. INPUT SET-UP AND HOLD TIMES.

TRUTH TABLE

INPUTS					INTERNAL TO DEVICE		BUS	OUTPUT	FUNCTION
A_{i}	DRCP	$\overline{B E}$	$\overline{\text { RLE }}$	$\overline{O E}$	D_{i}	a_{i}	Bi_{i}	Ri	
X	X	H	X	X	X	X	H	\times	Driver output disable
x	X	X	X	H	X	X	X	Z	Receiver output disable
X	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	L	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & \mathrm{~L} \end{aligned}$	Driver output disable and receive data via Bus input
X	X	X	H	X	X	NC	X	X	Latch received data
L	\uparrow	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Load driver register
X X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	No driver clock restrictions
X X	$\begin{aligned} & x \\ & x \end{aligned}$	L	X	X x	L H	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	H	$\begin{aligned} & x \\ & x \end{aligned}$	Drive Bus

$$
\begin{array}{llll}
H=H I G H & Z=\text { High Impedance } & X=\text { Don't Care } & i=0,1,2,3 \\
L=\text { LOW } & \text { NC }=\text { No Change } & \uparrow=\text { LOW-to-HIGH Transition } &
\end{array}
$$

PARITY OUTPUT FUNCTION TABLE

$\overline{B E}$	ODD PARITY OUTPUT
L	$O D D=A_{0} \oplus A_{1} \oplus A_{2} \oplus A_{3}$
H	$O D D=\mathbf{Q}_{0} \oplus \mathbf{Q}_{1} \oplus \mathbf{Q}_{2} \oplus \mathbf{Q}_{3}$

DEFINITION OF FUNCTIONAL TERMS

DRCP Driver Clock Pulse. Clock pulse for the driver register.
$\overline{\mathrm{BE}}$ Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance state.
BUS $_{0}$, BUS $_{1}$, BUS $_{2}$, BUS $_{3}$ The four driver outputs and receiver inputs (data is inverted).
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}$ The four receiver outputs. Data from the bus is inverted while data from the A inputs is non-inverted.
$\overline{\text { RLE }}$ Receiver Latch Enable. When $\overline{\text { RLE }}$ is LOW, data on the BUS inputs is passed through the receiver latches. When $\overline{\mathrm{RLE}}$ is HIGH , the receiver latches are closed and will retain the data independent of all other inputs.

ODD Odd parity output. Generates parity with the driver enabled, checks parity with the driver in the high-impedance state.
$\overline{\mathrm{OE}}$ Output Enable. When the $\overline{\mathrm{OE}}$ input is HIGH, the four three-state receiver outputs are in the high-impedance state.

Am2907/08 SWITCHING WAVEFORMS AND LOAD TEST CIRCUITS

2. DRIVER CLOCK (DRCP) TO BUS

3. BUS ENABLE (BE) TO BUS

DRIVER SWITCHING WAVEFORMS

4. BUS TO RECEIVER OUTPUT (LATCH ENABLED)

APPLICATIONS

The Am2907 can be used as an I/O Bus Transceiver and Main Memory I/O Transceiver in high-speed Microprocessor Systems.

Am2909• Am2911 Am2909A •Am2911A
 Microprogram Sequencers

DISTINCTIVE CHARACTERISTICS

- 4-bit slice cascadable to any number of microwords
- Internal address register
- Branch input for N -way branches
- Cascadable 4-bit microprogram counter
- 4×4 file with stack pointer and push pop control for nesting microsubroutines
- Zero input for returning to the zero microcode word
- Individual OR input for each bit for branching to higher microinstructions (Am2909 only)
- Three-state outputs
- All internal registers change state on the LOW-to-HIGH transition of the clock
- Am2909 in 28 -pin package
- Am2911 in 20-pin package
- New high-speed versions (Am2909A and Am2911A) are plug-in replacements for original Am2909 and Am2911 with critical path speeds improved by about 25%

GENERAL DESCRIPTION

The Am2909 is a four-bit wide address controller intended for sequencing through a series of microinstructions contained in a ROM or PROM. Two Am2909's may be interconnected to generate an eight-bit address (256 words), and three may be used to generate a twelve-bit address (4 K words).
The Am2909 can select an address from any of four sources. They are: 1) a set of external direct inputs (D); 2) external data from the R inputs, stored in an internal register; 3) a four-word deep push/pop stack; or 4) a program counter register (which usually contains the last address plus one). The push/pop stack includes certain control lines so that it can efficiently execute nested subroutine linkages. Each of the four outputs can be OR'ed with an external input for conditional skip or branch instructions, and a separate line forces the outputs to all zeroes. The outputs are three-state.

The Am2911 is an identical circuit to the Am2909, except the four OR inputs are removed and the D and R inputs are tied together. The Am2911 is in a 20 -pin, $0.3^{\prime \prime}$ centers package. The Am2909A and Am2911A are direct plug-in replacements for the Am2909 and Am2911, but are about 25\% faster.

RELATED PRODUCTS
Part No. Description

Am2918	Pipeline Register
Am2922	Condition Code MUX
Am29803A	16-Way Branch Control Unit
Am29811A	Next Address Control
Am25LS163	4-Bit Counter
Am27S35	Registered PROM

MICROPROGRAM SEQUENCER BLOCK DIAGRAM

MPR-093
ORDERING INFORMATION
Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

$\begin{aligned} & \text { Am2911 } \\ & \text { Order } \\ & \text { Number } \end{aligned}$	Am2911A Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)	Am2909 Order Number	Am2́s09A Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2911PC	AM2911APC	P-20	C	C-1	AM2909PC	AM2909APC	P-28	C	C-1
AM2911DC	AM2911ADC.	D-20	C	C-1	AM2909DC	AM2909ADC	D-28	C	C-1
AM2911DC-B	AM2911ADC-B	D-20	c	B-2 (Note 4)	AM2909DC-B	AM2909ADC-B	D-28	C	B-2 (Note 4)
AM2911DM	AM2911ADM	D-20	M	C-3	AM2909DM	AM2909ADM	D-28	M	C-3
AM2911DM-B	AM2911ADM-B	D-20	M	B-3	AM2909DM-B	AM2909ADM-B	D-28	M	B-3
AM2911FM	AM2911AFM	F-20-1	M	C-3	AM2909FM	AM2909AFM	F-28-1	M	C-3
AM2911FM-B	AM2911AFM-B	F-20-1	M	B-3	AM2909FM-B	AM2909AFM-B	F-28-1	M	B-3
AM2911LC	AM2911ALC	L-20-1	C	C-1	AM2909LC	AM2909ALC	L-28-1	C	C-1
AM2911LM	AM2911ALM	L-20-1	M	C-3	AM2909LM	AM2909ALM	L-28-1	M	C-3
AM2911LM-B	AM2911ALM-B	L-20-1	M	B-3	AM2909LM-B	AM2909ALM-B	L-28-1	M	B-3
AM2911XC AM2911XM	AM2911AXC AM2911AXM	Dice Dice	C	Visual inspection to MIL-STD-883 Method 2010B.	AM2909XC AM2909XM	AM2909AXC AM2909AXM	Dice Dice	$\begin{aligned} & \mathrm{C} \\ & \mathrm{M} \end{aligned}$	Visual inspection to MIL-STD-883 Method 2010B.

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic BIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $-70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hours of burn-in.

Am2909/09A/11/11A
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

OPERATING RANGE

Part Number Operating Range Suffix				Power Supply	Temperature Range
Commercial					

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Notes)
(For Am2909, Am2911, Am2909A, Am2911A)

Parameters	Description	Test Conditions (Note 1)					Min.	$\begin{gathered} \text { Typ. } \\ \text { (Note } 2) \\ \hline \end{gathered}$	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		MIL		$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	2.4			Volts
				COM'		$1 \mathrm{OH}=-2.6 \mathrm{~mA}$	2.4			
v_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\mathrm{I}^{\mathrm{OL}}=4.0 \mathrm{~mA}, 2909 / 11$					0.4	Volts
				$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}, 2909 / 11$					0.45	
				$\begin{aligned} & \mathrm{IOL}=12 \mathrm{~mA}, 2909 / 11 \\ & \text { (Note 5) } \end{aligned}$					0.5	
				$\mathrm{I}^{\mathrm{OL}}=16 \mathrm{~mA}, 2909 \mathrm{~A} / 11 \mathrm{~A}$					0.5	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs					2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				MIL, 2909/11			0.7	Volts
						All others			0.8	
v_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., IIN $=-18 \mathrm{~mA}$							-1.5	Volts
$1 / 1$	Input LOW Current	$\begin{aligned} & V_{C C}=M A X ., \\ & V_{I N}=0.4 \mathrm{~V} \end{aligned}$		C_{n}					-1.08	mA
				Push/Pop, $\overline{\mathrm{OE}}$					-0.72	
				Other	s (No	te 6)			-0.36	
${ }_{1} \mathrm{H}$	Input HIGH Current	$\begin{aligned} & V_{C C}=\text { MAX. }, \\ & V_{I N}=2.7 \mathrm{~V} \end{aligned}$		C_{n}					40	$\mu \mathrm{A}$
				Push/Pop					40	
				Other	s (No	te 6)			20	
1	Input HIGH Current	$\begin{aligned} & V_{C C}=\text { MAX. } \\ & V_{I N}=7.0 \mathrm{~V} \end{aligned}$		Cn, Push/Pop					0.2	mA
				Others (Note 6)					0.1	
Ios	Output Short Circuit Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=.5 \mathrm{~V} \end{aligned}$				$Y_{0}-Y_{3}$	-30		-100	mA
						$\mathrm{C}_{\mathrm{n}+4}$	-30		-85	
${ }^{\text {I CC }}$	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MAX. } \\ & \text { (Note 4) } \end{aligned}$	COM'L and MIL		$T_{A}=$	+ $25^{\circ} \mathrm{C}$			130	mA
			COM'	Only	$T_{A}=$	0 to $+70^{\circ} \mathrm{C}$			130	
			MIL Only		${ }^{1}{ }^{\text {c }}$ C $=$	$=-55$ to $+125^{\circ} \mathrm{C}$			140	
					$T_{C}=$	$+125^{\circ} \mathrm{C}$			110	
'OZL	Output OFF Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \\ & \mathrm{OE}=2.7 \mathrm{~V} \end{aligned}$	Y_{0-3}		$\mathrm{V}_{\text {Ou }}$	$\mathrm{T}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
' OZH					Vout	$\mathrm{T}=2.7 \mathrm{~V}$			20	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Apply GND to $C_{n}, R_{0}, R_{1}, R_{2}, R_{3}, O R_{0}, O R_{1}, O R_{2}, O R_{3}, D_{0}, D_{1}, D_{2}$, and D_{3}. Other inputs high. All outputs open. Measured after a LOW-to-HIGH clock transition.
5. The 12 mA guarantee applies only to $\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{Y}_{2}$ and Y_{3}.
6. For the Am2911 and Am2911A, D_{i} and R_{i} are internally connected. Loading is doubled (to same values as Push/Pop).

Am2909A/Am2911A SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Tables I, II and III below define the timing characteristics of the Am2909A/Am2911A over the operating voltage and temperature range. The tables are divided into three types of parameters; clock characteristics, combinational delays from inputs to outputs, and set-up and hold time requirements. The latter table defines the time prior to the end of the cycle (i.e., clock LOW-toHIGH transition) that each input must be stable to guarantee that the correct data is written into one of the internal registers.

Measurements are made at 1.5 V with $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V}$ For three-state disable tests, $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ and measurement is to 0.5 V change on output voltage level. All outputs have maximum DC loading. The data on this page applies to the following part numbers:

Operating Range	Part Numbers	Power Supply	Temperature Range
Com'।	Am2909APC, DC Am2911APC, DC	$5.0 \mathrm{~V} \pm 5 \%$	$\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Mil	Am2909ADM, FM Am2911ADM	$5.0 \mathrm{~V} \pm 10 \%$	$\mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TABLE I
CYCLE TIME AND CLOCK CHARACTERISTICS

Time	COMMERCIAL	MILITARY
Minimum Clock LOW Time	20	20
Minimum Clock HIGH Time	20	20

TABLE II
MAXIMUM COMBINATIONAL PROPAGATION DELAYS
(all in ns, $C_{\mathrm{L}}=50 \mathrm{pF}$ (except output disable tests))

From Input	COMMERCIAL		MILITARY	
	\mathbf{Y}	$\mathbf{C}_{\boldsymbol{n}+4}$	\mathbf{Y}	$\mathbf{C}_{\boldsymbol{n}+4}$
	17	22	20	25
$\mathrm{~S}_{\mathbf{0}} \mathrm{S}_{1}$	29	34	29	34
OR_{i}	17	22	20	25
$\mathrm{C}_{\boldsymbol{n}}$	-	14	-	16
$\overline{\text { ZERO }}$	29	34	30	35
OE LOW (enable)	25	-	25	-
OE HIGH (disable)*	25	-	25	-
Clock $\uparrow \mathrm{S}_{1} \mathrm{~S}_{0}=\mathrm{LH}$	39	44	45	50
Clock $\uparrow \mathrm{S}_{1} \mathrm{~S}_{\mathbf{0}}=\mathrm{LL}$	39	44	45	50
Clock $\uparrow \mathrm{S}_{1} \mathrm{~S}_{\mathbf{0}}=\mathrm{HL}$	44	49	53	58

${ }^{*} \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
TABLE III
guaranteed set-ur and hold times (all in ns) (Note 1)

From Input	COMMERCIAL	MILITARY			
		Set-Up Time	Hold Time	Set-Up Time	Hold Time
		19	4	19	5
R_{i}	2	10	4	12	5
PUSH/POP		25	4	27	5
$F E$	25	4	27	5	
C_{n}		18	4	18	5
D_{i}	25	0	25	0	
OR $_{\mathrm{i}}$		25	0	25	0
$S_{0}, \mathrm{~S}_{1}$	25	0	29	0	
$\overline{Z E R O}$	25	0		0	

Notes: 1. All times relative to clock LOW-to-HIGH transition.
2. On Am2911A, R_{i} and D_{i} are internally connected and labeled D_{i}. Use R_{i} set-up and hold times when D inputs are used to load register.

Am2909 and Am2911
SWITCHING CHARACTERISTICS

OVER OPERATING RANGE

Tables I, II, and III below define the timing characteristics of the Am2909 and Am2911 over the operating voltage and temperature range. The tables are divided into three types of parameters; clock characteristics, combinational delays from inputs to outputs, and set-up and hold time requirements. The latter table defines the time prior to the end af the cycle (i.e. clock LOW-toHIGH transition) that each input must be stable to guarantee that the correct data is written into one of the internal registers.
Measurements are made at 1.5 V with $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V}$. For three-state disable tests, $C_{L}=5.0 \mathrm{pF}$ and measurement is to 0.5 V change on output voltage level. All outputs have maximum DC loading. The data on this page applies to the following part numbers:

Operating Range	Part Numbers	Power Supply	Temperature Range
Coml $^{\circ}$	Am2909PC, DC Am2911PC, DC	$5.0 \mathrm{~V} \pm 5 \%$	$T_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Mil	Am2909DM, FM Am2911DM	$5.0 \mathrm{~V} \pm 10 \%$	$\mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TABLE I
CYCLE TIME AND CLOCK CHARACTERISTICS

TIME	COMMERCIAL	MILITARY
Minimum Clock LOW Time	30	35
Minimum Clock HIGH Time	30	35

TABLE II
MAXIMUM COMBINATIONAL PROPAGATION DELAYS
(all in ns, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (except output disable tests))

	COMMERCIAL		MILITARY	
	Y	$\mathrm{C}_{\mathrm{n}+4}$	Y	$\mathrm{C}_{\mathrm{n}+4}$
D_{i}	17	30	20	32
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	30	48	40	50
OR ${ }_{\text {i }}$	17	30	20	32
C_{n}	-	14	-	16
ZERO	30	48	40	50
$\overline{\mathrm{OE}}$ LOW (enable)	25	-	25	-
$\overline{\mathrm{OE}}$ HIGH (disable)*	25	-	25	-
Clock $\uparrow \mathrm{S}_{1} \mathrm{~S}_{0}=\mathrm{LH}$	43	55	50	62
Clock $\uparrow \mathrm{S}_{1} \mathrm{~S}_{0}=\mathrm{LL}$	43	55	50	62
Clock $\uparrow \mathrm{S}_{1} \mathrm{~S}_{0}=\mathrm{HL}$	80	95	90	102

${ }^{*} C_{L}=5.0 \mathrm{pF}$
TABLE III
GUARANTEED SET-UP AND HOLD TIMES (all in ns) (Note 1)

From Input	Notes	COMMERCIAL		MILITARY	
		Set-Up Time	Hold Time	Set-Up Time	Hold Time
$\overline{R E}$		22	5	22	5
R_{i}	2	10	5	12	5
PUSHIPOP		26	6	30	7
$\overline{F E}$	26	5	30	5	
C_{n}		28	5	30	5
D_{i}	30	0	35	3	
O_{i}	30	0	50	3	
S_{0}, S_{1}	45	0	50	0	
$\overline{Z E R O}$	45	0		0	

Notes: 1. All times relative to clock LOW-to-HIGH transition.
2. On Am2911, R_{i} and D_{i} are internally connected together and labeled D_{i}. Use R_{i} set-up and hold times when D inputs are used to load register.

OPERATION OF THE Am2909/Am2911

Figure 5 lists the select codes for the multiplexer. The two bits applied from the microword register (and additional combinational logic for branching) determine which data source contains the address for the next microinstruction. The contents of the selected source will appear on the Y outputs. Figure 5 also shows the truth table for the output control and
for the control of the push/pop stack. Figure 6 shows in detail the effect of $S_{0}, S_{1}, \overline{F E}$ and PUP on the Am2909. These four signals define what address appears on the Y outputs and what the state of all the internal registers will be following the clock LOW-to-HIGH edge. In this illustration, the microprogram counter is assumed to contain initially some word J , the address register some word K, and the four words in the push/ pop stack contain R_{a} through R_{d}.

Figure 5.

CYCLE	$\mathrm{S}_{1}, \mathrm{~S}_{0}, \overline{\mathrm{FE}}, \mathrm{PUP}$	$\mu \mathrm{PC}$	REG	STK0	STK1	STK2	STK3	Yout	COMMENT	PRINCIPLE USE
$\begin{gathered} N \\ N+1 \end{gathered}$	0000	$\underset{\mathrm{J}+1}{\mathrm{~J}}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	J	Pop Stack	End Loop
$\begin{gathered} N \\ N+1 \end{gathered}$	0001 $-\quad 1$	$\underset{J+1}{J}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{gathered} \mathrm{Ra} \\ \mathrm{~J} \end{gathered}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rc} \end{aligned}$	J	Push μ PC	Set-up Loop
$\begin{gathered} N \\ N+1 \end{gathered}$	${ }_{0}^{001} \mathrm{X}$	${ }_{J+1}^{J}$	$\begin{aligned} & \hline K \\ & K \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rd} \end{aligned}$	J	Continue	Continue
$\begin{gathered} N \\ N+1 \end{gathered}$	0100	$\underset{K+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rc} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	K	Pop Stack; Use AR for Address	$\begin{aligned} & \text { End } \\ & \text { Loop } \end{aligned}$
$\underset{N+1}{N}$	0101	$\underset{K+1}{J}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\underset{\mathrm{J}}{\mathrm{Ra}}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rc} \end{aligned}$	K	Push $\mu \mathrm{PC}$; Jump to Address in AR	JSR AR
$\begin{gathered} N \\ N+1 \end{gathered}$	011 x	$\underset{K+1}{J}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rd} \end{aligned}$	K	Jump to Address in AR	JMP AR
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	1000	$\underset{\mathrm{Ra}+1}{\mathrm{~J}}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	Ra	Jump to Address in STKO; Pop Stack	RTS
$\underset{N+1}{N}$	1001	$\underset{R a+1}{J}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\underset{\mathrm{J}}{\mathrm{Ra}}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rc} \end{aligned}$	Ra	Jump to Address in STK0; Push μ PC	
$\underset{N+1}{N}$	101 x	$\underset{\text { Ra+1 }}{J}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rd} \end{aligned}$	Ra	Jump to Address in STKO	Stack Ref (Loop)
$\stackrel{N}{N+1}$	1100	$\underset{\mathrm{D}+1}{\mathrm{~J}}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \\ & \hline \end{aligned}$	Rb Rc	Rc Rd	Rd Ra	D	Pop Stack; Jump to Address on D	End Loop
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	1101	$\underset{\mathrm{D}+1}{\mathrm{~J}}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{gathered} \text { Ra } \\ J \end{gathered}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rc} \\ & \hline \end{aligned}$	D	Jump to Address on D; Push $\mu \mathrm{PC}$	JSR D
$\underset{N+1}{N}$	$111 x$	$\underset{\mathrm{D}+1}{\mathrm{~J}}$	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	Rc Rc	Rd Rd	D	Jump to Address on D	JMP D

$X=$ Don't care, $0=$ LOW, $1=$ HIGH, Assume $C_{n}=$ HIGH
Note: STKO is the location addressed by the stack pointer.
Figure 6. Output and Internal Next-Cycle Register States for Am2909/Am2911.

Figure 7 illustrates the execution of a subroutine using the Am2909. The configuration of Figure 3 is assumed. The instruction being executed at any given time is the one contained in the microword register ($\mu \mathrm{WR}$). The contents of the $\mu W R$ also controls (indirectly, perhaps) the four signals S_{0}, S_{1}, $\overline{F E}$, and PUP. The starting address of the subroutine is applied to the D inputs of the Am2909 at the appropriate time.

In the columns on the left is the sequence of microinstructions to be executed. At address $\mathrm{J}+2$, the sequence control portion of the microinstruction contains the comand "Jump to sub-
routine at $A^{\prime \prime}$. At the time T_{2}, this instruction is in the $\mu W R$, and the Am2909 inputs are set-up to execute the jump and save the return address. The subroutine address A is applied to the D inputs from the $\mu W R$ and appears on the Y outputs. The first instruction of the subroutine, $I(A)$, is accessed and is at the inputs of the $\mu \mathrm{WR}$. On the next clock transition, $l(A)$ is loaded into the $\mu \mathrm{WR}$ for execution, and the return address $\mathrm{J}+3$ is pushed onto the stack. The return instruction is executed at T_{5}. Figure 8 is a similar timing chart showing one subroutine linking to a second, the latter consisting of only one microinstruction.
CONTROL MEMORY

Execute Cycle	Microprogram	
	Address	Sequencer Instruction
	$\mathrm{J}-1$	-
T_{0}	J	-
T_{1}	$\mathrm{~J}+1$	-
T_{2}	$\mathrm{~J}+2$	JSR A
T_{6}	$\mathrm{~J}+3$	-
T_{7}	$\mathrm{~J}+4$	-
	-	-
	-	-
	-	-
	-	-
T_{3}	-	-
T_{4}	$\mathrm{~A}+1$	I (A)
T_{5}	$\mathrm{~A}+2$	-
	-	-
	-	-
	-	-
	-	-
	-	-
	-	-
	-	-

CONTROL MEMORY

Execute Cycle	Microprogram	
	Address	Sequencer Instruction
	$\mathrm{J}-1$	-
T_{0}	J	-
T_{1}	$\mathrm{~J}+1$	-
T_{2}	$\mathrm{~J}+2$	JSR A
T_{9}	$\mathrm{~J}+3$	-
	-	-
	-	-
	-	-
T_{3}	-	-
T_{4}	$\mathrm{~A}+1$	-
T_{5}	$\mathrm{~A}+2$	-
T_{7}	$\mathrm{~A}+3$	-
T_{8}	$\mathrm{~A}+4$	RTS B
	-	-
	-	-
	-	-
T_{6}	-	-
	B	RTS
	-	-

Figure 7. Subroutine Execution.
$\mathrm{C}_{\mathrm{n}}=\mathrm{HIGH}$

Execute Cycle		T_{0}	T1	T2	T3	T4	T_{5}	T6	T_{7}	T_{8}	T9
Clock Signals											
Am2909	$\mathrm{S}_{1}, \mathrm{~S}_{0}$	0	0	3	0	0	3	2	0	2	0
Inputs	$\overline{\mathrm{FE}}$	H	H	L	H	H	L	L	H	L	H
(from	PUP	X	X	H	X	X	H	L	X	L	X
$\mu \mathrm{WR}$)	D	X	X	A	X	X	B	X	X	X	X
Internal Registers	$\mu \mathrm{PC}$	J+1	J+2	J+3	A+1	A+2	A +3	B+1	A+4	A+5	J+4
	STK0	-	-	-	J+3	J+3	J+3	A+3	J+3	J+3	-
	STK1	-	-	-	$-$	-	-	J+3	-	-	-
	STK2	-	-	-	-	-	-	-	-	-	-
	STK3	-	-	-	-	-	-	-	-	-	-
Am2909 Output	Y	J+1	J+2	A	A+1	A+2	B	A+3	A+4	J+3	J+4
ROM Output	(Y)	1(J+1)	JSR A	I(A)	$1(A+1)$	JSR B	RTS	$1(A+3)$	RTS	1(J+3)	1(J+4)
Contents of $\mu \mathrm{WR}$ (Instruction being executed)	$\mu \mathrm{WR}$	(J)	1(J+1)	JSR A	(${ }^{\text {A }}$	$1(A+1)$	JSR B	RTS	$1(A+3)$	RTS	1(J+3)

Figure 8. Two Nested Subroutines. Routine B is Only One Instruction.

USING THE Am2909 AND Am2911

The Am2909 and Am2911 are four-bit slice sequencers which are cascaded to form a microprogram memory address generator. Both products make available to the user several lines which are used to directly control the internal holding register, multiplexer and stack. By appropriate control of these lines, the user can implement any desired set of sequence control functions; by cascading parts he can generate any desired address length. These two qualities set the Am2909 and Am2911 apart from the Am2910, which is architecturally similar, but is fixed at 12 bits in length and has a fixed set of 16 sequence control instructions. The Am 2909 or Am2911 should be selected instead of the Am2910 under the following conditions:

- Address less than 8 bits and not likely to be expanded
- Address longer than 12 bits
- More complex instruction set needed than is available on Am2910

Architecture of the Control Unit

The recommended architecture using the Am2909 or Am2911 is shown in Figure 1. Note that the path from the pipeline register output through the next address logic, multiplexer, and microprogram memory is all combinational. The pipeline register contains the current microinstruction being executed. A portion of that microinstruction consists of a sequence control command such as "continue", "loop", "return-from-subroutine", etc. The bits representing this sequence command are logically combined with bits representing such things as test conditions and system state to generate the required control signals to the Am2909 or Am2911. The block labeled "next address logic" may consist of simple gates, a PROM or a PLA, but it should be all combinational.

Figure 1. Recommended Computer Control Unit Architecture Using the Am2911 or Am2909.

Am2909/09A/11/11A

The Âm2̃̃9811A is a combinational circuit which implements 16 sequence control instructions; it may be used with either an Am2909 or an Am2911. The set of instructions is nearly identical to that implemented internally in the Am2910.

Figure 2 shows the CCU of Figure 1 with the Am29811A in place. The Am29811A, in addition to controlling the Am2911,
also controls a loop counter and several branch address sources. The instructions which are implemented by the Am29811A are shown in Figure 3, along with the Am29811A outputs for each instruction. Generating any instruction set consists simply of writing a truth table and designing combinational logic to implement it. For more detailed information refer to "The Microprogramming Handbook".

Figure 2. A Typical Computer Control Unit Using the Am2911 and Am29811A.

Expansion of the Am2909 or Am2911

Figure 4 shows the interconnection of three Am2911's to form a 12-bit sequencer. Note that the only interconnection between packages, other than the common clock and control lines, is the ripple carry between $\mu \mathrm{PC}$ incrementors. This carry path is not in the critical speed path if the Am2911 Y outputs drive the microprogram memory, because the ripple carry occurs in parallel with the memory access time. If, on the other hand, a micro-address register is placed at the Am2911 output, then the carry may lie in the critical speed path, since the last carry-in must be stable for a set-up time prior to the clock.

Selecting Between the Am2909 and Am2911

The difference between the Am2909 and the Am2911 involves two signals: the data inputs to the holding register
and the "OR" inputs. In the Am2909, separate four-bit fields are provided for the holding register and the direct branch inputs to the multiplexer. In the Am2911, these fields are internally tied together. This may affect the design of the branch address system, as shown in Figure 5. Using the Am2909, the register inputs may be connected directly to the microprogram memory; the internal register replaces part of the pipeline register. The direct (D) inputs may be tied to the mapping logic which translates instruction op codes into microprogram addresses. While the same technique might be used with the Am2911, it is more common to connect the Am2911's D inputs to a branch address bus onto which various sources may be enabled. Shown in Figure 5 is a pipeline register and a mapping ROM. Other sources might also be applied to the same bus. The internal register is used on'ly for temporary storage of some previous branch address.

Figure 4. Twelve Bit Sequencer.

Figure 5. Branch Address Structures.
5-117

The second difference between the Am2909 and Am2911 is that the Am2909 has OR inputs available on each address output line. These pins can be used to generate multi-way single-cycle branches by simply tying several test conditions into the OR lines. See Figure 6. Typically, a branch is taken to an address with zeroes in the least significant bits. These bits are replaced with 1's or 0's by test conditions applied to the OR lines. In Figure 6, the states of the two test conditions X and Y result in a branch to $1100,1101,1110$, or 1111.

Figure 6. Use of OR Inputs to
Obtain 4 - Way Branch.

The Am29803A has been designed to selectively apply any or all of four different test conditions to an Am2909. Figure 7 shows the truth table for this device. A nice trade off between flexibility and board space is achieved by using a single 28-pin Am2909 for the least significant four bits of a sequencer, and using the space-saving 20-pin Am2911's for the remainder of the bits. A detailed logic design for such a system is contained in The Microprogramming Handbook.

How to Perform Some Common Functions with the Am2909 or Am2911

1. CONTINUE

MUX $/ Y_{\text {OUT }}$	STACK	C_{n}	S_{1}	$\mathrm{~S}_{0}$	$\overline{\mathrm{FE}}$	PUP
PC	HOLD	1	0	0	1	X

Contents of PC placed on Y outputs; PC incremented.
2. BRANCH

$M U X / Y_{\text {OUT }}$	STACK	C_{n}	S_{1}	$\mathrm{~S}_{0}$	$\overline{\mathrm{FE}}$	PUP
D	HOLD	1	1	1	1	X

Feed data on D inputs straight through to memory address lines. Increment address and place in PC.
3. JUMP-TO-SUBROUTINE

MUX $M_{\text {OUT }}$	STACK	C_{n}	S_{1}	S_{0}	$\overline{F E}$	PUP
D	PUSH	1	1	1	0	1

Sub-routine address fed from Dinputs to memory address. Current PC is pushed onto stack, where it is saved for the return.
4. RETURN-FROM-SUBROUTINE

MUX $N_{\text {OUT }}$	STACK	C_{n}	S_{1}	$\mathrm{~S}_{0}$	$\overline{\mathrm{FE}}$	PUP
STACK	POP	1	1	0	0	0

The address at the top of the stack is applied to the microprogram memory, and is incremented for PC on the next cycle. The stack is popped to remove the return address.

Figure 7.

Burn-in Circuit for Am2909 (Flatpack and Hermetic DIP)

Notes:
Max. $\mathrm{I}_{\mathrm{CC}}=200 \mathrm{~mA}$
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
Resistors $= \pm 5 \%$
$\mathrm{R}_{1}=390 \Omega$
$R_{2}=560 \Omega$
$R_{3}=1 k \Omega$
$f_{\text {in }}=100 \mathrm{kHz}, 50 \%$ duty-cycle, $0-3 \mathrm{~V}$
$V_{\text {CC }} \min .=5.0 \mathrm{~V}$
$V_{\text {CC }}$ max. $=5.1 \mathrm{~V}$

This circuit conforms to MIL-STD-883, Method 1005 and 1015, Condition D. Parallel excitation.
MPR-726

Notes:

Max. $\mathrm{I}_{\mathrm{CC}}=200 \mathrm{~mA}$
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
Resistors $= \pm 5 \%$
$R_{1}=390 \Omega$
$R_{2}=560 \Omega$
$R_{3}=1 \mathrm{k} \Omega$
$\mathrm{f}_{\mathrm{in}}=100 \mathrm{kHz}, 50 \%$ duty-cycle, $0-3 \mathrm{~V}$
From clock buffer on each board:
$V_{\text {CC }} \min .=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {CC }}$ max. $=5.1 \mathrm{~V}$
Burn-in Circuit for Am2911

TEST OUTPUT LOAD CONFIGURATIONS FOR Am2909/2911 AND Am2909A/2911A

A. THREE-STATE OUTPUTS

$R_{1}=\frac{5.0-V_{B E}-V_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}+\mathrm{V}_{\mathrm{OL}} / 1 \mathrm{~K}}$
B. NORMAL OUTPUTS

$R_{2}=\frac{2.4 \mathrm{~V}}{\mathrm{IOH}}$
$\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{BE}}-V_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}+\mathrm{V}_{\mathrm{OL}} / R_{2}}$

Notes: 1. $C_{L}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. S_{1}, S_{2}, S_{3} are closed during function tests and all $A C$ test except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open for tpzH test.
S_{1} and S_{2} are closed while S_{3} is open for tpZL test.
4. $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests.

TEST OUTPUT LOADS

Pin \# (DIP)	Pin Label	Test Circuit	Am2909		Am2909A	
			$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	
$18-21$	Y_{0-3}	A	300	1 K	220	1 K
24	$\mathrm{C}_{\mathrm{n}}+4$	B	470	2.4 K	220	2.4 K

TEST OUTPUT LOADS

Pin \# (DIP)	Pin Label	Test Circuit	Am2911		Am2911A	
			$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
$12-15$	Y_{0-3}	A	300	1 K	220	1 K
18	$\mathrm{C}_{\mathrm{n}+4}$	B	470	2.4 K	220	2.4 K

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to $V_{c c}$ changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or V_{IH} until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

ARCHITECTURE OF THE Am2909/Am 2911

The Am2909/Am2911 are bipolar microprogram sequencers intended for use in high-speed microprocessor applications. The device is a cascadable 4-bit slice such that two devices allow addressing of up to 256 -words of microprogram and three devices allow addressing of up to 4 K words of microprogram. A detailed logic diagram is shown in Figure 2.
The device contains a four-input multiplexer that is used to select either the address register, direct inputs, microprogram counter, or file as the source of the next microinstruction address. This multiplexer is controlled by the S_{0} and S_{1} inputs.
The address register consists of four D-type, edge triggered flip-flops with a common clock enable. When the address register enable is LOW, new data is entered into the register on the clock LOW-to-HIGH transition. The address register is available at the multiplexer as a source for the next microinstruction address. The direct input is a four-bit field of inputs to the multiplexer and can be selected as the next microinstruction address. On the Am2911, the direct inputs are also used as inputs to the register. This allows an N -way branch where N is any word in the microcode.
The Am2909/Am2911 contains a microprogram counter ($\mu \mathrm{PC}$) that is composed of a 4-bit incrementer followed by a 4-bit register. The incrementer has carry-in $\left(C_{n}\right)$ and carry-out $\left(C_{n}+4\right)$ such that cascading to larger word lengths is straightforward. The μ PC can be used in either of two ways. When the least significant carry-in to the incrementer is HIGH, the microprogram register is loaded on the next clock cycle with the current Y output word plus one ($\mathrm{Y}+1 \rightarrow \mu \mathrm{PC}$.) Thus sequential microinstructions can be executed. If this least significant C_{n} is LOW, the incrementer passes the Y output word unmodified and the microprogram register is loaded with the same Y word on the next clock cycle ($Y \rightarrow \mu \mathrm{PC}$). Thus, the same microinstruction can be executed any number of times by using the least significant C_{n} as the control.
The last source available at the multiplexer input is the 4×4 file (stack). The file is used to provide return address linkage
when executing microsubroutines. The file contains a built-in stack pointer (SP) which always points to the last file word written. This allows stack reference operations (looping) to be performed without a push or pop.

The stack pointer operates as an up/down counter with separate push/pop and file enable inputs. When the file enable input is LOW and the push/pop input is HIGH, the PUSH operation is enabled. This causes the stack pointer to increment and the file to be written with the required return linkage - the next microinstruction address following the subroutine jump which initiated the PUSH.

If the file enable input is LOW and the push/pop control is LOW, a POP operation occurs. This implies the usage of the return linkage during this cycle and thus a return from subroutine. The next LOW-to-HIGH clock transition causes the stack pointer to decrement. If the file enable is HIGH, no action is taken by the stack pointer regardless of any other input.
The stack pointer linkage is such that any combination of pushes, pops or stack references can be achieved. One microinstruction subroutines can be performed. Since the stack is 4 words deep, up to four microsubroutines can be nested.
The ZERO input is used to force the four outputs to the binary zero state. When the ZERO input is LOW, all Y outputs are LOW regardless of any other inputs (except $\overline{\mathrm{OE}}$). Each Y output bit also has a separate $O R$ input such that a conditional logic one can be forced at each Y output. This allows jumping to different microinstructions on programmed conditions.
The Am2909/Am2911 feature three-state Y outputs. These can be particularly useful in military designs requiring external Ground Support Equipment (GSE) to provide automatic checkout of the microprocessor. The internal control can be placed in the high-impedance state, and preprogrammed sequences of microinstructions can be executed via external access to the control ROM/PROM.

DEFINITION OF TERMS

A set of symbols is used in this data sheet to represent various internal and external registers and signals used with the Am2909. They are:
Inputs to Am2909/ Am 2911
$\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{0}} \quad$ Control lines for address source selection
$\overline{F E}$, PUP Control lines for push/pop stack
$\overline{R E} \quad$ Enable line for internal address register
$\mathbf{O R}_{\mathbf{i}} \quad$ Logic OR inputs on each address output line
$\overline{\text { ZERO }} \quad$ Logic AND input on the output lines
$\overline{\mathbf{O E}}$
Output Enable. When $\overline{\mathrm{OE}}$ is HIGH, the Y outputs are OFF (high impedance)
$\mathrm{C}_{\mathrm{n}} \quad$ Carry-in to the incrementer
$\mathbf{R}_{\mathbf{i}} \quad$ Inputs to the internal address register
$\mathrm{D}_{\mathbf{i}} \quad$ Direct inputs to the multiplexer
CP Clock input to the AR and $\mu \mathrm{PC}$ register and Push-Pop stack
Outputs from the Am2909/ Am2911
$Y_{i} \quad$ Address outputs from Am2909. (Address inputs to control memory.)
C_{n+4}
Carry out from the incrementer

Internal Signals

$\mu \mathrm{PC} \quad$ Contents of the microprogram counter AR Contents of the address/holding register
STK0-STK3 Contents of the push/pop stack. By definition, the word in the four-by-four file, addressed by the stack pointer is STKO. Conceptually data is pushed into the stack at STK0; a subsequent push moves STK0 to STK1; a pop implies STK3 \rightarrow STK2 \rightarrow STK1 \rightarrow STK0. Physically, only the stack pointer changes when a push or pop is performed. The data does not move. I/O occurs at STKO.
SP Contents of the stack pointer
External to the Am2909/Am2911
$\mu W R \quad$ Contents of the microword register (at output of control memory). The microword register contains the instruction currently being executed.
$\mathbf{T}_{\mathbf{n}}$. Time period (cycle) n

Am2910 • Am2910-1 • Am2910A
 Microprogram Controller

DISTINCTIVE CHARACTERISTICS

- Twelve Bits Wide

Address up to 4096 words of microcode with one chip. All internal elements are a full 12 bits wide.

- Internal Loop Counter

Pre-settable 12-bit down-counter for repeating instructions and counting loop iterations.

- Four Address Sources

Microprogram Address may be selected from microprogram counter, branch address bus, 5 -level push/pop stack, or internal holding register.

- Sixteen Powerful Microinstructions Executes 16 sequence control instructions, most of which are conditional on external condition input, state of internal loop counter, or both.
- Output Enable Controls for Three Branch Address Sources
Built-in decoder function to enable external devices onto branch address bus. Eliminates external decoder.
- All Registers Positive Edge-triggered

Simplifies timing problems. Eliminates long setup times.

- Fast Control from Condition Input

Delay from condition code input to address output only 21ns typical.

- Fast

The Am2910-1 supports 100 ns cycle times. The
Am2910A will meet or exceed all Am2910-1 specifications and will be $25-30 \%$ faster than the Am2910.

- IMOX $^{\text {™ }}$

The Am2910A will be processed with AMD's proprietary IMOX technology.

Figure 1.

GENERAL DESCRIPTION

The Am2910 Microprogram controller is an address sequencer intended for controlling the sequence of execution of microinstructions stored in microprogram memory. Besides the capability of sequential access, it provides conditional branching to any microinstruction within its 4096-microword range. A last-in, first-out stack provides microsubroutine return linkage and looping capability; there are five levels of nesting of microsubroutines. Microinstruction loop count control is provided with a count capacity of 4096.

During each microinstruction, the microprogram controller provides a 12-bit address from one of four sources: 1) the microprogram address register ($\mu \mathrm{PC}$), which usually contains an address one greater than the previous address; 2) an external (direct) input (D); 3) a register/counter (R) retaining data loaded during a previous microinstruction; or 4) a five-deep last-in, first-out stack (F).

The Am2910-1 is a speed selected plug-in replacement for the Am2910 capable of 100 ns cycle times. The Am2910A is a speed improved plug-in replacement of the Am2910 featuring AMD's ion-implanted micro-oxide (IMOX) processing and offering $25-30 \%$ speed improvement. The Am2910A also features a nine-word deep stack versus the five-deep stack of the Am2910.

For applications information, see Chapter II of Bit Slice Microprocessor Design, Mick \& Brick, McGraw Hill Publi-

RELATED PRODUCTS

Part No.	Description
Am2914	Vectored Interrupt Controller
Am2918	Pipeline Register
Am2922	Condition Code MUX
Am25LS377	Status Register
Am27S35	Registered PROM

cations.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am2910A Order Number	$\begin{gathered} \text { Am2910-1 } \\ \text { Order Number } \end{gathered}$	$\begin{gathered} \text { Am2910 } \\ \text { Order Number } \end{gathered}$	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
Available 1H1983	AM2910-1DM	AM2910PC	P-40	C	C-1
	AM2910-1DC	AM2910DC	D-40	C	C-1
		AM2910DC-B	D-40	C	B-2 (Note 4)
		AM2910DM	D-40	M	C-3
		AM2910DM-B	D-40	M	B-3
		AM2910FM	F-42	M	C-3
		AM2910FM-B	F-42	M	B-3
		AM2910LC	L-44	C	C-1
		AM2910LM	L-44	M	C-3
		AM2910LM-B	L-44	M	B-3
		AM2910XC AM2910XM	Dice Dice	C	Visual inspection to MIL-STD-883
		AM2910XM	Dice	M	

Notes: 1. $P=$ Molded DIP, $D=$.Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to V_{CC} max
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	$\mathrm{MIN} .=4.75 \mathrm{~V}$	$\mathrm{MAX}=5.25 \mathrm{~V}$
MIL	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$\mathrm{MIN} .=4.50 \mathrm{~V}$	$\mathrm{MAX} .=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)		Min.	(Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.4			Volts
	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{Y}_{0-11}, \mathrm{I}^{\text {OL }}=12 \mathrm{~mA}$			0.5	Voits
L			$\overline{P L}, \overline{\mathrm{VECT}}, \overline{\mathrm{MAP}}, \overline{\mathrm{FULL}}, \mathrm{I} O L=8 \mathrm{~mA}$				
$\mathrm{V}_{\text {IH }}$	Input HIGH Level (Note 4)	Guaranteed Input Logical HIGH voltage for all inpúts		2.0			Volts
$V_{\text {IL }}$	Input LOW Level (Note 4)	Guaranteed input logical LOW voltage for all inputs				0.8	Volts

Notes: 1. For conditions shown as MIN., or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. These input levels provide no guaranteed noise immunity and should only be static tested in a noise-free environment, (not functionally tested).

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to V_{CC} changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable
may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or V_{IH} until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

Am2910 SWITCHING CHARACTERISTICS

The tables below define the Am2910 switching characteristics. Tables A are set-up and hold times relative to the clock LOW-to-HIGH transition. Tables B are combinational delays. Tables C are clock requirements. All measurements are made at 1.5 V with input levels at OV or 3 V . All values are in ns. All outputs have maximum DC loading.

I. GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 Am2910PC, $\mathrm{DC}\left(\mathrm{T}_{\mathrm{A}}=0\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $\left.5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$
A. Set-up and Hold Times

Input	$\mathbf{t}_{\mathbf{s}}$	$\boldsymbol{t}_{\mathbf{h}}$
$\mathrm{D}_{\boldsymbol{i}} \rightarrow \mathrm{R}$	24	6
$\mathrm{D}_{\boldsymbol{i}} \rightarrow \mathrm{PC}$	58	4
$\mathrm{I}_{\boldsymbol{i}}-\mathrm{I}_{3}$	104	0
$\overline{\mathrm{CC}}$	80	0
$\overline{\mathrm{CCEN}}$	80	0
Cl	46	5
$\overline{\mathrm{RLD}}$	36	6

B. Combinational Delays

Input	\mathbf{Y}	$\overline{\text { PL }}, \overline{\text { VECT, }} \overline{\text { MAP }}$	$\overline{\text { Full }}$
$\mathrm{D}_{0}-\mathrm{D}_{11}$	20	-	-
$\mathrm{I}_{0} \mathrm{I}_{3}$	70	51	-
$\overline{\mathrm{CC}}$	43	-	-
$\overline{\mathrm{CCEN}}$	45	-	-
CP (Note 2)	100	-	60
$\mathrm{I}=8,9,15$	125	-	60
CP All other 1	55	-	60
$\overline{\mathrm{OE}}$ (Note 3)	$35 / 30$	-	-

C. Clock Requirements (Note 1)

Minimum Clock LOW Time	50	ns
Minimum Clock HIGH Time	35	ns
Minimum Clock Period, 138 $\mathbf{I}=\mathbf{8}, 9,15$ (Note 2)	163	
ns		
Minimum Clock Period, $\mathrm{I}=14$	93	ns

II. GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE
 Am2910DM,FM ($\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

A. Set-up and Hold Times

Input	$\mathbf{t}_{\mathbf{s}}$	$\mathbf{t}_{\mathbf{h}}$
$\mathrm{D}_{\boldsymbol{i}} \rightarrow \mathrm{R}$	28	6
$\mathrm{D}_{\boldsymbol{i}} \rightarrow \mathrm{PC}$	62	4
$\mathrm{I}_{\mathrm{o}-1}$	110	0
$\overline{\mathrm{CC}}$	86	0
$\overline{\mathrm{CCEN}}$	86	0
Cl	58	5
$\overline{\mathrm{RLD}}$	42	6

B. Combinational Delays

Input	Y	$\overline{\text { PL, }} \overline{\mathrm{VECT}}, \overline{\mathrm{MAP}}$	Full.
$\mathrm{D}_{0}-\mathrm{D}_{11}$	25	-	-
$\mathrm{I}_{0}-13$	75	58	-
$\overline{\mathrm{CC}}$	48	-	-
$\overline{\text { CCEN }}$	50	-	-
$\begin{aligned} & C P(\text { Note 2) } \\ & I=8,9 ; 15 \end{aligned}$	106	-	67
	130	-	67
CP All other I	61	-	67
$\overline{\mathrm{OE}}$ (Note 3)	40/30	-	-

C. Clock Requirements (Note 1)

Minimum Clock LOW Time	58	ns
Minimum Clock HIGH Time	42	ns
Minimum Clock Period, I=8, 9, 15 (Note 2)	143	ns
	167	
Minimum Clock Period, I=14	100	ns

NOTES:

1. Clock periods for instructions not specified are determined by external conditions.
2. These instructions are conditional on the counter. Use the shorter specified delay times if the previous instruction could produce no
change in the counter or could only decrement the counter. Use the longer delays from CP to outputs if the instruction prior to the clock was 4 or 12 or $\overline{R L D}$ was LOW.
3. Enable/Disable. Disable times measured to 0.5 V change on output voltage level with $C_{L}=5.0 \mathrm{pF}$.

Am2910-1 SWITCHING CHARACTERISTICS

The tables below define the Am2910-1 switching characteristics. Tables A are setup and hold times relative to the clock LOW-to-HIGH transition. Tables B are combinational delays. Tables C are clock requirements. All measurements are made at 1.5 V with input levels at 0 or 3V. All values are in ns. All outputs have maximum DC loading.
I. GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE Am2910-1DC ($T_{A}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)
A. Set-up and Hold Times

Input	t_{S}	t_{h}
$\mathrm{D}_{\mathrm{i}} \rightarrow \mathrm{R}$	24	6
$\mathrm{D}_{\mathrm{i}} \rightarrow \mathrm{PC}$	58	4
$\mathrm{I}_{0}-\mathrm{I}_{3}$	75	0
$\overline{\mathrm{CC}}$	63	0
$\overline{\mathrm{CCEN}}$	63	0
Cl	46	5
$\overline{\mathrm{RLD}}$	36	6

B. Combinational Delays

Input	Y	$\overline{\text { PL }}$, $\overline{\mathrm{VECT}}, \overline{\text { MAP }}$	Full
$\mathrm{D}_{0}-\mathrm{D}_{11}$	20	-	-
$\mathrm{I}_{0}-13$	50	51	-
$\overline{C C}$	30	-	-
CCEN	30	-	-
$\begin{aligned} & C P(\text { Note 2) } \\ & I=8,9,15 \end{aligned}$	75	-	60
	85	-	60
$\begin{aligned} & \mathrm{CP} \\ & \text { All other I } \end{aligned}$	55	-	60
$\overline{\mathrm{OE}}$ (Note 3)	35/30	-	-

C. Clock Requirements (Note 1)

Minimum Clock LOW Time	50	ns
Minimum Clock HIGH Time	35	ns
Minimum Clock Period, $\mathrm{I}=\mathbf{8}, 9,15$ (Note 2)	$\mathbf{1 1 3}$	ns
	$\mathbf{1 2 3}$	
Minimum Clock Period, $\mathrm{I}=14$	93	ns

Boldface times indicate speed selected critical paths.

II. GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE

 Am2910-1DM ($T_{C}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)
A. Set-up and Hold Times

Input	t_{s}	t_{h}
$D_{i} \rightarrow R$	28	6
$D_{i} \rightarrow P C$	62	4
$I_{0}-I_{3}$	81	0
$\overline{C C}$	65	0
$\overline{C C E N}$	63	0
$\overline{C I}$	58	5
$\overline{R L D}$	42	6

B. Combinational Delays

Input	Y	$\overline{\mathbf{P L}}, \overline{\mathrm{VECT}}, \overline{\mathrm{MAP}}$	Full
$\mathrm{D}_{0}-\mathrm{D}_{11}$	25	-	-
I_{0-1}	54	58	-
$\overline{\mathrm{CC}}$	35	-	-
$\overline{\text { CCEN }}$	37	-	-
$\begin{aligned} & C P(\text { Note } 2) \\ & I=8,9 ; 15 \end{aligned}$	77	-	67
	98	-	67
CP All other I	61	-	67
$\overline{\mathrm{OE}}$ (Note 3)	40/30	-	-

C. Clock Requirements (Note 1)

Minimum Clock LOW Time	58	ns
Minimum Clock HIGH Time	42	ns
Minimum Clock Period, $\mathrm{I}=\mathbf{8}, 9,15$ (Note 2)	$\mathbf{1 1 4}$	n
	$\mathbf{1 2 5}$	
Minimum Clock Period, $\mathrm{I}=14$	100	ns

NOTES:

1. Clock periods for instructions not specified are determined by external conditions.
2. These instructions are conditional on the counter. Use the shorter specified delay times if the previous instruction could produce no
change in the counter or could only decrement the counter. Use the longer delays from CP to outputs if the instruction prior to the clock was 4 or 12 or $\overline{\text { RLD }}$ was LOW.
3. Enable/Disable. Disable times measured to 0.5 V change on output voltage level with $C_{L}=5.0 \mathrm{pF}$.

Am2910A SWITCHING CHARACTERISTICS

The tables below define the Am2910A switching characteristics. Tables A are setup and hold times relative to the clock LOW-to-HIGH transition. Tables B are combinational delays. Tables C are clock requirements. All measurements are made at 1.5 V with input levels at 0 or 3V. All values are in ns. All outputs have maximum DC loading.
I. GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE Am2910APC, $D C\left(T_{A}=0\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=4.75$ to $\left.5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$

A. Set-up and Hold Times

Input	$t_{\text {S }}$	t_{n}
$\mathrm{D}_{\mathrm{i}} \rightarrow \mathrm{R}$		
$\mathrm{D}_{\mathrm{i}} \rightarrow \mathrm{PC}$		
$\mathrm{I}_{0} \cdot \mathrm{I}_{3}$		
$\overline{\mathrm{CC}}$		
$\overline{\mathrm{CCEN}}$		
Cl		
$\overline{\mathrm{RLD}}$		

B. Combinational Delays

Input	Y	$\overline{\text { PL, }}$ VECT, $\overline{\text { MAP }}$	Full
$\mathrm{D}_{0}-\mathrm{D}_{11}$		-	-
$\mathrm{I}_{0}-\mathrm{I}_{3}$			-
$\overline{\mathrm{C}}$		-	-
CCEN		-	-
$\begin{aligned} & \mathrm{CP} \text { (Note 2) } \\ & \mathrm{I}=8,9,15 \end{aligned}$		-	60
		-	60
CP All other I	55	-	60.
$\overline{\mathrm{OE}}$ (Note 3)	35/30	-	

C. Clock Requirements (Note 1)

II. GUARANTEED CHAAACTERISTICS OUR MILITARY OPERATING RANGE

Am2910ADM, FM ($T_{C}=55$ to $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

B. Combinational Delays

Input	Y	$\overline{\text { PL, }}$, VECT, $\overline{M A P}$	Full
$\mathrm{D}_{0}-\mathrm{D}_{11}$		-	-
1_{0-13}			-
$\overline{\mathrm{CC}}$		-	-
$\overline{\text { CCEN }}$		--	-
CP (Note 2)		-	
$\mathrm{I}=8,9$; 15		-	
CP All other 1	.	-	
$\overline{O E}$ (Note 3)		-	-

C. Clock Requirements (Note 1)

Minimum Clock LOW Time		ns
Minimum Clock HIGH Time		ns
Minimum Clock. Period, $\mathrm{I}=8,9,15$ (Note 2)		ns
Minimum Clock Period, $\mathrm{I}=14$		

NOTES:

1. Clock periods for instructions not specified are determined by external conditions.
2. These instructions are conditional on the counter. Use the shorter specified delay times if the previous instruction could produce no
change in the counter or could only decrement the counter. Use the longer delays from CP to outputs if the instruction prior to the clock was 4 or 12 or RLD was LOW.
3. Enable/Disable. Disable times measured to 0.5 V change on output voltage level with $C_{L}=5.0 \mathrm{pF}$.

Am2910/2910-1/2910A

ARCHITECTURE OF THE Am2910

The Am2910 is a bipolar microprogram controller intended for use in high-speed microprocessor applications. It allows addressing of up to 4 K words of microprogram. A block diagram is shown in Figure 1.
The controller contains a four-input multiplexer that is used to select either the register/counter, direct input, microprogram counter, or stack as the source of the next microinstruction address.
The register/counter consists of 12 D-type, edge-triggered flipflops, with a common clock enable. When its load control, $\overline{\mathrm{RLD}}$, is LOW, new data is loaded on a positive clock transition. A few instructions include load; in most systems, these instructions will be sufficient, simplifying the microcode. The output of the register/counter is available to the multiplexer as a source for the next microinstruction address. The direct input furnishes a source of data for loading the register/counter.

The Am2910 contains a microprogram counter ($\mu \mathrm{PC}$) that is composed of a 12-bit incrementer followed by a 12-bit register. The $\mu \mathrm{PC}$ can be used in either of two ways: When the carry-in to the incrementer is HIGH, the microprogram register is loaded on the next clock cycle with the current Y output word plus one ($Y+1 \rightarrow \mu \mathrm{PC}$). Sequential microinstructions are thus executed. When the carry-in is LOW, the incrementer passes the Y output word unmodified so that $\mu \mathrm{PC}$ is reloaded with the same Y word on the next clock cycle $(Y \rightarrow \mu \mathrm{PC})$. The same microinstruction is thus executed any number of times.
The third source for the multiplexer is the direct (D) input. This source is used for branching.
The fourth source available at the multiplexer input is a 5 -word by 12 -bit stack (file). The stack is used to provide return address linkage when executing microsubroutines or loops. The stack contains a built-in stack pointer (SP) which aiways points to the last file word witten. This aliows stack reference operations (looping) to be performed without a pop.
The stack pointer operates as an up/down counter. During microinstructions 1,4 , and 5 , the PUSH operation may occur. This causes the stack pointer to increment and the file to be written with the required return linkage. On the cycle following the PUSH, the return data is at the new location pointed to by the stack pointer.
During five microinstructions, a POP operation may occur. The stack pointer decrements at the next rising clock edge following a POP, effectively removing old information from the top of the stack.

The stack pointer linkage is such that any sequence of pushes, pops, or stack references can be achieved. At RESET (Instruction 0), the depth of nesting becomes zero. For each PUSH, the nesting depth increases by one; for each POP, the depth decreases by one. The depth can grow to five. After a depth of five is reached, FULL goes LOW. Any further PUSHes onto a full stack overwrite information at the top of the stack, but leave the stack pointer unchanged. This operation will usually destroy useful information and is normally avoided. A POP from an empty stack may place non-meaningful data on the Y outputs, but is otherwise safe. The stack pointer remains at zero whenever a POP is attempted from a stack already empty.

The register/counter is operated during three microinstructions $(8,9,15)$ as a 12 -bit down counter, with result = zero available as a microinstruction branch test criterion. This provides efficient iteration of microinstructions. The register/counter is arranged such that if it is preloaded with a number N and then used as a loop termination counter, the sequence will be executed exactly $N+1$ times. During instruction 15, a three-way branch under combined control of the loop counter and the condition code is available.

The device provides three-state Y outputs. These can be particularly useful in designs requiring automatic checkout of the processor. The microprogram controller outputs can be forced into the high-impedance state, and pre-programmed sequences of microinstructions can be executed via external access to the address lines.

OPERATION

Table I shows the result of each instruction in controlling the multiplexer which determines the Y outputs, and in controlling the three enable signals $\overline{\mathrm{PL}}, \overline{\mathrm{MAP}}$, and $\overline{\mathrm{VECT}}$. The effect on the register/counter and the stack after the next positive-going clock edge is also shown. The multiplexer determines which internal source drives the Y outputs. The value loaded into $\mu \mathrm{PC}$ is either identical to the Y output, or else one greater, as determined by Cl . For each instruction, one and only one of the three outputs $\overline{\mathrm{PL}}, \overline{\mathrm{MAP}}$, and $\overline{\mathrm{VECT}}$ is LOW. If these outputs control three-state enables for the primary source of microprogram jumps (usually part of a pipeline register), a PROM which maps the instruction to a microinstruction starting location, and an optional third source (often a vector from a DMA or interrupt source), respectively, the three-state sources can drive the D inputs without further logic.
Several inputs, as shown in Table II, can modify instruction execution. The combination $\overline{\mathrm{CC}}$ HIGH and $\overline{\mathrm{CCEN}}$ LOW is used as a test in 9 of the 16 instructions. $\overline{R L D}$, when LOW, causes the D input to be loaded into the register/counter, overriding any HOLD or DEC operation specified in the instruction. $\overline{O E}$, normally LOW, may be forced HIGH to remove the Am2910 Y outputs from a three-state bus.

The stack, a five-word last-in, first-out 12 -bit memory, has a pointer which addresses the value presently on the top of the stack. Explicit control of the stack pointer occurs during instruction 0 (RESET), which makes the stack empty by resetting the SP to zero. After a RESET, and whenever else the stack is empty, the contents of the top of stack is undefined until a PUSH occurs. Any POPs performed while the stack is empty put undefined data on the F outputs and leave the stack pointer at zero.

Any time the stack is full (five more PUSHes than POPs have occurred since the stack was last empty), the FULL warning output occurs. This signal first appears on the microcycle after a fifth PUSH. No additional PUSH should be attempted onto a full stack; if tried, information within the stack will be overwritten and lost.

TABLE I. INSTRUCTIONS

13.10	MNEMONIC	NAME	REG/ CNTR CON-	$\overline{\text { CCEN }}=L O W \text { and } \overline{\text { CC }}=\mathrm{HIGH}$		$\overline{\text { PASS }} \overline{\overline{C C E N}}=\text { HIGH or } \overline{\mathbf{C C}}=\text { LOW }$		REG/ CNTR	ENABLE
				Y	STACK	V	STACK		
0	JZ	JUMP ZERO	x	0	CLEAR	0	CLEAR	HOLD	PL
1	CJS	COND JSB PL	\times	PC	HOLD	D	PUSH	HOLD	PL
2	JMAP	JUMP MAP	X	D	HOLD	D	HOLD	HOLD	MAP
3	CJP	COND JUMP PL	X	PC	HOLD	D	HOLD	HOLD	PL
4	PUSH	PUSH/COND LD CNTR	X	PC	PUSH	PC	PUSH	Note 1	PL
5	JSRP	COND JSB R/PL	x	R	PUSH	D	PUSH	HOLD	PL
6	CJV	COND JUMP VECTOR	X	PC	HOLD	D	HOLD	HOLD	VECT
7	JRP	COND JUMP R/PL	x	R	HOLD	D	HOLD	HOLD	PL
8	RFCT	REPEAT LOOP, CNTR $\neq 0$	$\neq 0$	F	HOLD	F	HOLD	DEC	PL
			$=0$	PC	POP	PC	POP	HOLD	PL
9	RPCT	REPEAT PL, CNTR $=0$	$\neq 0$	D	HOLD	D	HOLD	DEC	PL
			=0	PC	HOLD	PC	HOLD	HOLD	PL
10	CRTN	COND RTN	X	PC	HOLD	F	POP	HOLD	PL
11	CJPP	COND JUMP PL \& POP	X	PC	HOLD	D	POP	HOLD	PL
12	LDCT	LD CNTR \& CONTINUE	X	PC	HOLD	PC	HOLD	LOAD	PL
13	LOOP	TEST END LOOP	X	F	HOLD	PC	POP	HOLD	PL
14	CONT	CONTINUE	X	PC	HOLD	PC	HOLD	HOLD	PL
15	TWB	THREE-WAY BRANCH	$\neq 0$	F	HOLD	PC	POP	DEC	PL
			$=0$	D	POP	PC	POP	HOLD	PL

Note 1: If $\overline{C C E N}=$ LOW and $\overline{C C}=H I G H$, hold; else load. $\quad X=$ Don't Care

TABLE II. PIN FUNCTIONS

Abbreviation	Name	Function
D_{i}	Direct Input Bit i	Direct input to register/counter and multiplexer. D_{0} is L.SB
Ii	Instruction Bit i	Selects one-of-sixteen instructions for the Am2910
$\overline{\mathrm{CC}}$	Condition Code	Used as test criterion. Pass test is a LOW on $\overline{\mathrm{CC}}$.
$\overline{\text { CCEN }}$	Condition Code Enable	Whenever the signal is HIGH, $\overline{\mathrm{CC}}$ is ignored and the part operates as though $\overline{\mathrm{CC}}$ were true (LOW).
Cl	Carry-In	Low order carry input to incrementer for microprogram counter
$\overline{\text { RLD }}$	Register Load	When LOW forces loading of register/counter regardless of instruction or condition
$\overline{\mathrm{OE}}$	Output Enable	Three-state control of Y_{i} outputs
CP	Clock Pulse	Triggers all internal state changes at LOW-to-HIGH edge
$V_{C C}$	+5 Volts	
GND	Ground	
Y_{i}	Microprogram Address Bit i	Address to microprogram memory. Y_{0} is L.SB, Y_{11} is MSB
$\overline{\text { FULL }}$	Full	Indicates that five items are on the stack
$\overline{P L}$	Pipeline Address Enable	Can select \#1 source (usually Pipeline Register) as direct input source
$\overline{\text { MAP }}$	Map Address Enable	Can select \#2 source (usually Mapping PROM or PLA) as direct input source
$\overline{\text { VECT }}$	Vector Address Enable	Can select \#3 source (for example, Interrupt Starting Address) as direct input source

TEST OUTPUT LOAD CONFIGURATIONS FOR Am2910

A. THREE-STATE OUTPUTS
B. NORMAL OUTPUTS

Notes: 1. $C_{L}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. S_{1}, S_{2}, S_{3} are closed during function tests and all $A C$ tests except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open for tPZH test.
S_{1} and S_{2} are closed while S_{3} is open for $t_{P Z L}$ test.
4. $C_{L}=5.0 \mathrm{pF}$ for output disable tests.

TEST OUTUPT LOADS FOR Am2910

Pin \# (DIP)	Pin Label	Test Circuit	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
-	Y_{0-11}	A	300	1 K
5	$\overline{\mathrm{VECT}}$	B	470	1.5 K
6	$\overline{\mathrm{PL}}$	B	470	1.5 K
7	$\overline{\mathrm{MAP}}$	B	470	1.5 K
16	$\overline{\mathrm{FULL}}$	B	470	1.5 K

For additional information on testing, see section "Guidelines on Testing Am2900 Family Devices."

Figure 2. Switching Waveforms.

See Tables A for t_{s} and t_{h} for various inputs. See Tables B for combinational delays from clock and other inputs to outputs. See Figure 5 for timing of a typical CCU cycle.

Figure 3. Typical Bipolar Microcomputer Using Am2910.

Am2910/2910-1/2910A

0 JUMP ZERO (JZ)	1 COND JSB PL (CJS)	2 JUMP MAP (JMAP)
3 COND JUMP PL (CJP)	4 PUSH/COND LD CNTR (PUSH)	5 COND JSB R/PL (JSRP)
6 COND JUMP VECTOR (CJV)	7 COND JUMP R/PL (JRP)	
8 REPEAT LOOP, CNTR $\neq 0$ (RFCT)	9 REPEAT PL, CNTR $\neq 0$ (RPCT)	10 COND RETURN (CRTN)
11 COND JUMP PL \& POP (CJPP)	12 LD CNTR \& CONTINUE (LDCT)	
		13 TEST END LOOP (LOOP)
14 CONTINUE (CONT)	15 THREE-WAY BRANCH (TWB)	50 51 52 53 54 55 56 57 57

Figure 4. Am2910 Execution Examples.

THE Am2910 INSTRUCTION SET

The Am2910 provides 16 instructions which select the address of the next microinstruction to be executed. Four of the instructions are unconditional - their effect depends only on the instruction. Ten of the instructions have an effect which is partially controlled by an external, data-dependent condition. Three of the instructions have an effect which is partially controlled by the contents of the internal register/counter. The instruction set is shown in Table I. In this discussion it is assumed that C_{i} is tied HIGH.
In the ten conditional instructions, the result of the datadependent test is applied to $\overline{\mathrm{CC}}$. If the $\overline{\mathrm{CC}}$ input is LOW, the test is considered to have been passed, and the action specified in the name occurs; otherwise, the test has failed and an alternate (often simply the execution of the next sequential microinstruction) occurs. Testing of $\overline{\mathrm{CC}}$ may be disabled for a specific microinstruction by setting $\overline{\text { CCEN }}$ HIGH, which unconditionally forces the action specified in the name; that is, it forces a pass. Other ways of using $\overline{C C E N}$ include (1) tying it HIGH, which is useful if no microinstruction is data-dependent; (2) tying it LOW if data-dependent instructions are never forced unconditionally; or (3) tying it to the source of Am2910 instruction bit 10 , which leaves instructions 4,6 , and 10 as data-dependent but makes others unconditional. All of these tricks save one bit of microcode width.

The effect of three instructions depends on the contents of the register/counter. Unless the counter holds a value of zero, it is decremented; if it does hold zero, it is held and a different microprogram next address is selected. These instructions are useful for executing a microinstruction loop a known number of times. Instruction 15 is affected both by the external condition code and the internal register/counter.
Perhaps the best technique for understanding the Am2910 is to simply take each instruction and review its operation. In order to provide some feel for the actual execution of these instructions, Figure 4 is included and depicts examples of all 16 instructions.

The examples given in Figure 4 should be interpreted in the following manner: The intent is to show microprogram flow as various microprogram memory words are executed. For example, the CONTINUE instruction, instruction number 14, as shown in Figure 4, simply means that the contents of microprogram memory word 50 is executed, then the contents of word 51 is executed. This is followed by the contents of microprogram memory word 52 and the contents of microprogram memory word 53. The microprogram addresses used in the examples were arbitrarily chosen and have no meaning other than to show instruction flow. The exception to this is the first example, JUMP ZERO, which forces the microprogram location counter to address ZERO. Each dot refers to the time that the contents of the microprogram memory word is in the pipeline register. While no special symbology is used for the conditional instructions, the text to follow will explain what the conditional choices are in each example.
It might be appropriate at this time to mention that AMD has a microprogram assembler called AMDASM, which has the capability of using the Am2910 instructions in symbolic representation. AMDASM's Am2910 instruction symbolics (or mnemonics) are given in Figure 4 for each instruction and are also shown in Table I.

Instruction 0, JZ (JUMP and ZERO, or RESET) unconditionally specifies that the address of the next microinstruction is zero. Many designs use this feature for power-up sequences
and provide the power-up firmware beginning at microprogram memory word location 0.

Instruction 1 is a CONDITIONAL JUMP-TO-SUBROUTINE via the address provided in the pipeline register. As shown in Figure 4, the machine might have executed words at address 50,51 , and 52 . When the contents of address 52 is in the pipeline register, the next address control function is the CONDITIONAL JUMP-TO-SUBROUTINE. Here, if the test is passed, the next instruction executed will be the contents of microprogram memory location 90. If the test has failed, the JUMP. TO-SUBROUTINE will not be executed; the contents of microprogram memory location 53 will be executed instead. Thus, the CONDITIONAL JUMP-TO-SUBROUTINE instruction at location 52 will cause the instruction either in location 90 or in location 53 to be executed next. If the TEST input is such that location 90 is selected, value 53 will be pushed onto the internal stack. This provides the return linkage for the machine when the subroutine beginning at location 90 is completed. In this example, the subroutine was completed at location 93 and a RETURN-FROM-SUBROUTINE would be found at location 93.

Instruction 2 is the JUMP MAP instruction. This is an unconditional instruction which causes the $\overline{\mathrm{MAP}}$ output to be enabled so that the next microinstruction location is determined by the address supplied via the mapping PROMs. Normally, the JUMP MAP instruction is used at the end of the instruction fetch sequence for the machine. In the example of Figure 4, microinstructions at locations 50,51,52, and 53 might have been the fetch sequence and at its completion at location 53 , the jump map function would be contained in the pipeline register. This example shows the mapping PROM outputs to be 90 ; therefore, an unconditional jump to microprogram memory address 90 is performed.

Instruction 3, CONDITIONAL JUMP PIPELINE, derives its branch address from the pipeline register branch address value ($B R_{0}-B R_{11}$ in Figure 2). This instruction provides a technique for branching to various microprogram sequences depending upon the test condition inputs. Quite often, state machines are designed which simply execute tests on various inputs waiting for the condition to come true. When the true condition is reached, the machine then branches and executes a set of microinstructions to perform some function. This usually has the effect of resetting the input being tested until some point in the future. Figure 4 shows the conditional jump via the pipeline register address at location 52 . When the contents of microprogram memory word 52 are in the pipeline register, the next address will be either location 53 or location 30 in this example. If the test is passed, the value currently in the pipeline register (30) will be selected. If the test fails, the next address selected will be contained in the microprogram counter which, in this example, is 53.

Instruction 4 is the PUSH/CONDITIONAL LOAD COUNTER instruction and is used primarily for setting up loops in microprogram firmware. In Figure 4; when instruction 52 is in the pipeline register, a PUSH will be made onto the stack and the counter will be loaded based on the condition. When a PUSH occurs, the value pushed is always the next sequential instruction address. In this case, the address is 53. If the test fails, the counter is not loaded; if it is passed, the counter is loaded with the value contained in the pipeline register branch address field. Thus, a single microinstruction can be used to set up a loop to be executed a specific number of times. Instruction 8 will.

THE Am2910 INSTRUCTION SET (Cont.)

describe how to use the pushed value and the register/counter for looping.

Instruction 5 is a CONDITIONAL JUMP-TO-SUBROUTINE via the register/counter or the contents of the PIPELINE register. As shown in Figure 4, a PUSH is always performed and one of two subroutines executed. In this example, either the subroutine beginning at address 80 or the subroutine beginning at address 90 will be performed. A return-from-subroutine (instruction number 10) returns the microprogram flow to address 55 . In order for this microinstruction control sequence to operate correctly, both the next address fields of instruction 53 and the next address fields of instruction 54 would have to contain the proper value. Let's assume that the branch address fields of instruction 53 contain the value 90 so that it will be in the Am2910 register/counter when the contents of address 54 are in the pipeline register. This requires that the instruction at address 53 load the register/counter. Now, during the execution of instruction 5 (at address 54), if the test failed, the contents of the register (value $=90$) will select the address of the next microinstruction. If the test input passes, the pipeline register contents (value $=80$) will determine the address of the next microinstruction. Therefore, this instruction provides the ability to select one of two subroutines to be executed based on a test condition.
Instruction 6 is a CONDITIONAL JUMP VECTOR instruction which provides the capability to take the branch address from a third source heretofore not discussed. In order for this instruction to be useful, the Am2910 output, VECT is used to control a three-state control input of a register, buffer, or PROM containing the next microprogram address. This instruction provides one technique for performing interrupt type branching at the microprogram level. Since this instruction is conditional, a pass causes the next address to be taken from the vector source, while failure causes the next address to be taken from the microprogram counter. In the example of Figure 4 , if the CONDITIONAL JUMP VECTOR instruction is contained at location 52, execution will continue at vector address 20 if the $\overline{\mathrm{CC}}$ input is LOW and the microinstruction at address 53 will be executed if the $\overline{\mathrm{CC}}$ input is HIGH.
Instruction 7 is a CONDITIONAL JUMP via the contents of the Am2910 REGISTER/COUNTER or the contents of the PIPELINE register. This instruction is very similar to instruction 5; the conditional jump-to-subroutine via R or PL. The major difference between instruction 5 and instruction 7 is that no push onto the stack is performed with 7 . Figure 4 depicts this instruction as a branch to one of two locations depending on the test condition. The example assumes the pipeline register contains the value 70 when the contents of address 52 is being executed. As the contents of address 53 is clocked into the pipeline register, the value 70 is loaded into the register/counter in the Am2910. The value 80 is available when the contents of address 53 is in the pipeline register. Thus, control is transferred to either address 70 or address 80 depending on the test condition.
Instruction 8 is the REPEAT LOOP, COUNTER \neq ZERO instruction. This microinstruction makes use of the decrementing capability of the register/counter. To be useful, some previous instruction, such as 4 , must have loaded a count value into the register/counter. This instruction checks to see whether the register/counter contains a non-zero value. If so, the register/ counter is decremented, and the address of the next microinstruction is taken from the top of the stack. If the register counter contains zero, the loop exit condition is occuring; control falls through to the next sequential microinstruction
by selecting $\mu \mathrm{PC}$; the stack is POP'd by decrementing the stack pointer, but the contents of the top of the stack are thrown away.

An example of the REPEAT LOOP, COUNTER \neq ZERO instruction is shown in Figure 4. In this example, location 50 most likely would contain a PUSH/CONDITIONAL LOAD COUNTER instruction which would have caused address 51 to be PUSHed on the stack and the counter to be loaded with the proper value for looping the desired number of times.
In this example, since the loop test is made at the end of the instructions to be repeated (microaddress 54), the proper value to be loaded by the instructions at address 50 is one less than the desired number of passes through the loop. This method allows a loop to be executed 1 to 4096 times. If it is desired to execute the loop from 0 to 4095 times, the firmware should be written to make the loop exit test immediately after loop entry.
Single-microinstruction loops provide a highly efficient capability for executing a specific microinstruction a fixed number of times. Examples include fixed rotates, byte swap, fixed point multiply, and fixed point divide.
Instruction 9 is the REPEAT PIPELINE REGISTER, COUNT$E R \neq Z E R O$ instruction. This instruction is similar to instruction 8 except that the branch address now comes from the pipeline register rather than the file. In some cases, this instruction may be thought of as a one-word file extension; that is, by using this instruction, a loop with the counter can still be performed when subroutines are nested five deep. This instruction's operation is very similar to that of instruction 8 . The differences are that on this instruction, a failed test condition causes the source of the next microinstruction address to be the D inputs; and, when the test condition is passed, this instruction does not perform a POP because the stack is not being used.
In the example of Figure 4, the REPEAT PIPELINE, COUNT$E R \neq$ ZERO instruction is instruction 52 and is shown as a single microinstruction loop. The address in the pipeline register would be 52. Instruction 51 in this example could be the LOAD COUNTER AND CONTINUE instruction (number 12). While the example shows a single microinstruction loop, by simply changing the address in a pipeline register, multiinstruction loops can be performed in this manner for a fixed number of times as determined by the counter.

Instruction 10 is the conditional RETURN-FROM-SUBROUTINE instruction. As the name implies, this instruction is used to branch from the subroutine back to the next microinstruction address following the subroutine call. Since this instruction is conditional, the return is performed only if the test is passed. If the test is failed, the next sequential microinstruction is performed. The example in Figure 4 depicts the use of the conditional RETURN-FROM-SUBROUTINE instruction in both the conditional and the unconditional modes. This example first shows a jump-to-subroutine at instruction location 52 where control is transferred to location 90. At location 93, a conditional RETURN-FROM-SUBROUTINE instruction is performed. If the test is passed, the stack is accessed and the program will transfer to the next instruction at address 53 . If the test is failed, the next microinstruction at address 94 will be executed. The program will continue to address 97 where the subroutine is complete. To perform an unconditional RETURN-FROM-SUBROUTINE, the conditional RETURN-FROM-SUBROUTINE inṣtruction is executed unconditionally; the microinstruction at address 97 is programmed to force

THE Am2910 INSTRUCTION SET (Cont.)

CCEN HIGH , disabling the test and the forced PASS causes an unconditional return.

Instruction 11 is the CONDITIONAL JUMP PIPELINE register address and POP stack instruction. This instruction provides another technique for loop termination and stack maintenance. The example in Figure 4 shows a loop being performed from address 55 back to address 51. The instructions at locations 52, 53 , and 54 are all conditional JUMP and POP instructions. At address 52, if the $\overline{\mathrm{CC}}$ input is LOW, a branch will be made to address 70 and the stack will be properly maintained via a POP. Should the test fail, the instruction at location 53 (the next sequential instruction) will be executed. Likewise, at address 53 , either the instruction at 90 or 54 will be subsequently executed, respective to the test being passed or failed. The instruction at 54 follows the same rules, going to either 80 or 55. An instruction sequence as described here, using the CONDITIONAL JUMP PIPELINE and POP instruction, is very useful when several inputs are being tested and the microprogram is looping waiting for any of the inputs being tested to occur before proceeding to another sequence of instructions. This provides the powerful jump-table programming technique at the firmware level.

Instruction 12 is the LOAD COUNTER AND CONTINUE instruction, which simply enables the counter to be loaded with the value at its parallel imputs. These inputs are normally connected to the pipeline branch address field which (in the architecture being described here) serves to supply either a branch address or a counter value depending upon the microinstruction being executed. There are altogether three ways of loading the counter - the explicit load by this instruction 12 ; the conditional load included as part of instruction 4; and the use of the RLD input along with any instruction. The use of $\overline{R L D}$ with any instruction overrides any counting or decrementation specified in the instruction, calling for a load instead. Its use provides additional microinstruction power, at the expense of one bit of microinstruction width. This instruction 12 is exactly equivalent to the combination of instruction 14 and $\overline{\mathrm{RLD}}$ LOW. Its purpose is to provide a simple capability to load the register/counter in those implementations which do not provide microprogrammed control for $\overline{R L D}$.
Instuction 13 is the TEST END OF-LOOP instruction, which provides the capability of conditionally exiting a loop at the bottom; that is, this is a conditional instruction that will cause the microprogram to loop, via the file, if the test is failed else to continue to the next sequential instruction. The example in Figure 4 shows the TEST END OF-L.OOP microinstruction at address 56. If the test fails, the microprogram wiil branch to address 52 . Address 52 is on the stack because a PUSH instruction had been executed at address 51. If the test is passed at instruction 56, the loop is terminated and the next sequential microinstruction at address 57 is executed, which also causes the stack to be POP'd; thus, accomplishing the required stack maintenance.

Instruction 14 is the CONTINUE instruction, which simply causes the microprogram counter to increment so that the next sequential microinstruction is executed. This is the simplest microinstruction of all and should be the default instruction which the firmware requests whenever there is nothing better to do.

Instruction 15, THREE-WAY BRANCH, is the most complex. It provides for testing of both a data-dependent condition and the counter during one microinstruction and provides for selecting among one of three microinstruction addresses as the next microinstruction to be performed. Like instruction 8, a previous instruction will have loaded a count into the register/ counter while pushing a microbranch address onto the stack. Instruction 15 performs a decrement-and-branch-until-zero function similar to instruction 8 . The next address is taken from the top of the stack until the count reaches zero; then the next address comes from the pipeline register. The above action continues as long as the test condition fails. If at any execution of instruction 15 the test condition is passed, no branch is taken; the microprogram counter register furnishes the next address. When the loop is ended, either by the count becoming zero, or by passing the conditional test, the stack is POP'd by decrementing the stack pointer, since interest in the value contained at the top of the stack is then complete.

The application of instruction 15 can enhance performance of a variety of machine-level instructions. For instance, (1) a memory search instruction to be terminated either by finding a desired memory content or by reaching the search limit; (2) variable-field-length arithmetic terminated early upon finding that the content of the portion of the field still unprocessed is all zeroes; (3) key search in a disc controller processing variable length records; (4) normalization of a floating point number.

As one example, consider the case of a memory search instruction. As shown in Figure 4, the instruction at microprogram address 63 can be Instruction 4 (PUSH), which will push the value 64 onto the microprogram stack and load the number N , which is one less than the number of memory locations to be searched before giving up. Location 64 contains a microinstruction which fetches the next operand from the memory area to be searched and compares it with the search key. Location 65 contains a microinstruction which tests the result of the comparison and also is a THREE-WAY BRANCH for microprogram control. If no match is found, the test fails and the microprogram goes back to location 64 for the next operand address. When the count becomes zero, the microprogram branches to location 72, which does whatever is necessary if no match is found. If a match occurs on any execution of the THREE-WAY BRANCH at location 65, control falls through to location 66 which handles this case. Whether the instruction ends by finding a match or not, the stack will have been POP'd once, removing the value 64 from the top of the stack.

OTHER ARCHITECTURES USING THE Am2910

(Shading shows path(s) which usually limit speed)
Figure 6.

A Register at the Microprogram Memory output contains the microinstruction being executed. The microprogram memory and Am2901 delay are in series. Conditional branches are executed on same cycle as the ALU operation generating the condition.

The Status Register provides conditional Branch control based on results of previous ALU cycle. The Microprogram Memory and Am2901 are in series in the critical paths.

MPR-116

The Register at the Am2910 output contains the address of the microinstruction being executed. The Microprogram Memory and Am2901 are in series in the critical path. This architecture provides about the same speed as the Instruction based architecture, but requires fewer register bits, since only the address (typically $10-12$ bits) is stored instead of the instruction (typically 40-60 bits).

MPR-115
D. Two Level Pipeline Based

Two level pipeline provides highest possible speed. It is more difficult to program because the selection of a microinstruction occurs two instructions ahead of its execution.

ARCHITECTURES USING THE Am2910

(Shading shows path(s) which usually limit speed)
Figure 5.

One Level Pipeline Based (Recommended)

One level pipeline provides better speed than most other architectures. The μ Program Memory and the Am2901 array are in parallel speed paths instead of in series. This is the recommended architecture for Am2900 designs.

Typical CCU Cycle Timing Waveforms.
This drawing shows the timing relationships in the CCU illustrated above.

Am2910 HIGH SPEED APPLICATION

Optimal Am2910 configurations can support high speed bit slice designs. When used with high speed registers and PROMs', the Am2910-1/Am2910A can execute simple instructions in 100 ns .

The following figure illustrates the usual critical path in the sequencer.
Timing on the critical paths becomes

Device	Path	Delay
Status Register	Clock \rightarrow Output	12ns
Fast MUX	Select \rightarrow Output	20 ns
Am2910-1/Am2910A	CC $\rightarrow Y$	30 ns
Fast PROM	Addr \rightarrow Output	35 ns
Pipeline Register	Setup	5 ns
		102 ns

All delay times are worst case times in ns.

The following gives one suggested parts configuration to meet this design criterion.

Status Register	Am29825
MUX	Am2922
PROM	Am27S35
Pipeline Register	Am2918

One Level Pipeline Based

(Recommended)

Am2912
 Quad Bus Transceiver

Distinctive Characteristics

- Input to bus is inverting
- Quad high-speed open collector bus transceiver
- Driver outputs can sink 100 mA at 0.8 V maximum
- Bus compatible with Am2905, Am2906, Am2907
- Advanced Schottky processing
- PNP inputs to reduce input loading

FUNCTIONAL DESCRIPTION

The Am2912 is a quad Bus Transceiver consisting of four highspeed bus drivers with open-collector outputs capable of sinking 100 mA at 0.8 volts and four high-speed bus receivers. Each driver output is connected internally to the high-speed bus receiver in addition to being connected to the package pin. The receiver has a Schottky TTL output capable of driving 10 Schottky TTL unit loads.

An active LOW enable gate controls the four drivers so that outputs of different device drivers can be connected together for party-line operation. The enable input can be conveniently driven by active LOW decoders such as the Am25LS139.
The bus output high-drive capability in the LOW state allows party-line operation with a line impedance as low as 100Ω. The line can be terminated at both ends, and still give considerable noise margin at the receiver. The receiver typical switching point is 2.0 volts.
The Am2912 features advanced Schottky processing to minimize propagation delay. The device package also has two ground pins to improve ground current handling and allow close decoupling between V_{CC} and ground at the package. Both GND_{1} and GND_{2} should be tied to the ground bus external to the device package.

LOGIC DIAGRAM

LIC-370

$$
\begin{aligned}
& V_{C C}=\operatorname{Pin} 16 \\
& G N D_{1}=\operatorname{Pin} 1
\end{aligned}
$$

$$
G N D_{2}=\operatorname{Pin} 8
$$

BLI-062

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Bus	200 mA
Output Current, Into Outputs (Except Bus)	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
$A m 2912 \mathrm{PC}, \mathrm{DC}, \mathrm{XC} \quad \mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%$ (COM'L) MIN. $=4.75 \mathrm{~V} \quad \mathrm{MAX} .=5.25 \mathrm{~V}$
Am2912DM, FM, XM $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%(M I L) \quad$ MIN. $=4.5 \mathrm{~V} \quad$ MAX. $=5.5 \mathrm{~V}$
Parameters
Description

Parameters	Description	Test Conditions (Note		Min.	(Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage (Receiver Outputs)	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-1.0 \mathrm{~mA} \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL	2.5	3.4		Volts
			COM'L	2.7	3.4		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage (Receiver Outputs)	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=20 \mathrm{~mA} \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$				0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs				0.8	Volts
v_{1}	Input Clamp Voltage (Except Bus)	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
IIL	Input LOW Current (Except Bus)	$V_{C C}=. \operatorname{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	Enable			-0.36	mA
			Data			-0.54	
$\mathrm{I}_{1 \mathrm{H}}$	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$	Enable			20	$\mu \mathrm{A}$
			Data			30	
11	Input HIGH Current (Except Bus)	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				100	$\mu \mathrm{A}$
Isc	Output Short Circuit Current (Except Bus)	$V_{C C}=$ MAX. (Note 3)	MIL	-20		-55	mA
			COM ${ }^{\prime}$ L	-18		-60	
${ }^{1} \mathrm{CCL}$	Power Supply Current (All Bus Outputs LOW)	$\begin{aligned} & V_{C C}=\text { MAX } \\ & \text { Enable }=G N D \end{aligned}$			45	70	mA

Bus Input/Output Characteristics

Parameters	Description	Test Con	ditions ((1)	Min.	Typ. (Note 2)	Max.	Units
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}$.	MIL	$1 \mathrm{OL}=40 \mathrm{~mA}$		0.33	0.5	Volts
				$1 \mathrm{OL}=70 \mathrm{~mA}$		0.42	0.7	
				$1 \mathrm{OL}=100 \mathrm{~mA}$		0.51	0.8	
			COM'L	$1 \mathrm{OL}=40 \mathrm{~mA}$		0.33	0.5	
				$1 \mathrm{OL}=70 \mathrm{~mA}$		0:42	0.7	
				$1 \mathrm{OL}=100 \mathrm{~mA}$		0.51	0.8	
10	Bus Leakage Current	$V_{C C}=\mathrm{MAX}$.		$\mathrm{V}_{\mathrm{O}}=0.8 \mathrm{~V}$			-50	$\mu \mathrm{A}$
			MIL	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			200	
			COM'L	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
Ioff	Bus Leakage Current (Power Off)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Receiver Input HIGH Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$		MIL	. 2.4	2.0		Volts
				COM'L	2.25	2.0		
$\mathrm{V}_{\text {TL }}$	Receiver Input LOW Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\text { MIN } \end{aligned}$		MIL		2.0	1.6	Volts
				COM'L		2.0	1.75	

[^8]Am2912
SWITCHING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Param	Description	Test Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$	Data Input to Bus	$\mathrm{R}_{\mathrm{B}}=50 \Omega$$=50 \mathrm{pF}($ Note 1)		10	15	ns
$\mathrm{t}_{\mathrm{PHL}}$				10	15	ns
$t_{\text {PLH }}$	Enable Input to Bus			14	18	ns
$t_{\text {PHL }}$				13	18	
$t_{\text {PLH }}$	Bus to Receiver Out	$\begin{gathered} R_{\mathrm{B}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=280 \Omega \\ \mathrm{C}_{\mathrm{B}}=50 \mathrm{pF}(\text { Note } 1), \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$		10	15	ns
$t_{\text {PHL }}$				10	15	
t_{r}	Bus	$\begin{gathered} R_{B}=50 \Omega \\ C_{B}=50 \mathrm{pF}(\text { Note } 1) \end{gathered}$	4.0	10		ns
t_{f}	Bus		2.0	4.0		ns

Note 1. Includes probe and jig capacitance.

TRUTH TABLE

Inputs	Outputs		
\bar{E}	I	$\overline{\mathbf{B}}$	\mathbf{Z}
L	L	H	L
L	H	L	H
H	X	Y	\bar{Y}

$H=H I G H$ Voltage Level
$L=$ LOW Voltage Level
$X=$ Don't Care
$Y=$ Voltage Level of Bus (Assumes Control by Another Bus Transceiver)

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type $($ Note 1)	Operating Range $($ Note 2)	Screening Level $($ Note 3)
AM2912PC	P-16-1	C	$\mathrm{C}-1$
AM2912DC	$\mathrm{D}-16-1$	C	$\mathrm{C}-1$
AM2912DC-B	$\mathrm{D}-16-1$	C	$\mathrm{B}-1$
AM2912DM	$\mathrm{D}-16-1$	M	C
AM2912DM-B	$\mathrm{D}-16-1$	M	$\mathrm{B}-3$
AM2912FM	F-16-1	M	$\mathrm{C}-3$
AM2912FM-B	F-16-1	M	$\mathrm{B}-3$
AM2912XC	Dice	C	,\quadVisual inspection to MIL-STD-883
AM2912XM	Dice	M	Method 2010B.

Notes:

1. $P=$ Molded DIP,$D=$ Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

SWITCHING CHARACTERISTICS

TEST CIRCUIT

BLI-067

Note 1. Includes Probe and Jig Capacitance.

WAVEFORMS

Am2913

Priority Interrupt Expander

Distinctive Characteristics

- Encodes eight lines to three-line binary
- Gated three-state output
- Expands use of Am2914
- Advanced Low-Power Schottky processing
- Cascadable
- Similar in function to Am54LS/74LS/25LS148/2513

Am2913

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
$\begin{array}{lllll}\text { COM } & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 5 \% & \text { MIN }=4.75 \mathrm{~V} & \text { MAX. }=5.25 \mathrm{~V} \\ \text { MIL } & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 10 \% & \text { MIN. }=4.50 \mathrm{~V} & \text { MAX. }=5.50 \mathrm{~V}\end{array}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Co	ditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{IOH}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$		2.4	3.2		
			$\overline{\mathrm{EO}, 1 \mathrm{OH}=-440 \mu \mathrm{~A}}$	MIL	2.5	3.4		
				COM'L	2.7	3.4		
v_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	${ }^{1} \mathrm{OL}=4.0 \mathrm{~mA}$				0.4	Volts
			$1 \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
			$1 \mathrm{OL}=12 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}\right.$ Outputs)				0.5	
$\mathrm{V}_{\mathbf{1 H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				$\mathrm{COM}^{\prime} \mathrm{L}$			0.8	
v	Input Clamp Voltage	$V_{C C}=M I N ., 1 / 1 N=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MAX. } \\ & \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V} \end{aligned}$	EI, $\mathrm{G}_{1}, \mathrm{G}_{2}, \overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}, \mathrm{~T}_{0}$				0.4	mA
			All others				0.8	
I'H	Input HIGH Current	$\begin{aligned} & V_{C C}=M A X . \\ & V_{I N}=2.7 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{E}}, \mathrm{G}_{1}, \mathrm{G}_{2}, \overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}, \bar{T}_{0}$				20	$\mu \mathrm{A}$
			All others				40	
1	Input HIGH Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} . \\ & \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{EI}}, \mathrm{G}_{1}, \mathrm{G}_{2}, \overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}, \overline{\mathrm{~T}}_{0}$				0.1	mA
			All others				0.2	
'0	Off-State (High-Impedance) Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				20	
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX.			-15		-85	mA
${ }^{\text {I CC }}$	Power Supply Current (Note 4)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.				15	24	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. All inputs and outputs open.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2913PC	P-20	C	C-1
AM2913DC	D-20	C	C-1
AM2913DC-B	D-20	C	B-1
AM2913DM	D-20	M	C-3
AM2913DM-B	D-20	M	B-3
AM2913FM	F-20	M	C-3
AM2913FM-B	F-20	M	B-3
AM2913LC	L-20-1	c	C-1
AM2913LC-B	L-20-1	c	B-1
AM2913LM	L-20-1	M	C-3
AM2913LM-B	L-20-1	M	B-3
AM2913XC	Dice	C	Visual inspection
AM2913XM	Dice	M	$\begin{aligned} & \text { to MIL-STD-883. } \\ & \text { Method 2010B. } \end{aligned}$

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Flat-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening: Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS

$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Parameters	Description	Min.	Typ.'	Max.	Units	Test Conditions
${ }^{\text {tPLH }}$	T_{i} to A_{n} (In-phase)		17	25	ns	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
tpHL			17	25	ns	
tPLH	T_{i} to A_{n} (Out-phase)		11	17	ns	
${ }^{\text {tPHL }}$			12	18		
${ }^{\text {tPLH }}$	\bar{T} to EO		7.0	11	ns	
tPHL			24	36		
tPLH	$\overline{E l}$ to $\overline{E O}$		11	17	ns	
tPHL			23	34		
tPLH	El to A_{n}		12	18	ns	
tPHL			14	21		
${ }^{\text {Z }} \mathrm{ZH}$	G_{1} or G_{2} to A_{n}		23	40	ns	
${ }^{\text {t }} \mathrm{L}$			20	37		
${ }^{\text {t }} \mathrm{ZH}$	$\overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}$ to A_{n}		20	30	ns	
${ }^{\text {t }} \mathrm{L}$			18	27		
${ }_{\text {thz }}$	G_{1} or G_{2} to A_{n}		17	27	ns	$\begin{aligned} & C_{\mathrm{L}}=5.0 \mathrm{pF} \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {t }}^{\text {L }}$ L			19	28		
${ }_{\text {thz }}$	$\bar{G}_{3}, \bar{G}_{4}, \bar{G}_{5}$ to A_{n}		16	24	ns	
${ }_{t}{ }_{L Z}$			18	27		

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \pm 5 \% \\ & \text { Min. } \quad \text { Max. } \end{aligned}$		VCC Min.	$\begin{aligned} & \pm 10 \% \\ & \text { Max. } \end{aligned}$	Units	Test Conditions
$t_{\text {PLH }}$	\bar{T}_{i} to A_{n} (In-phase)		31		37	ns	$\begin{aligned} C_{L} & =50 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL			30		34		
${ }^{\text {tPLH }}$	T_{i} to A_{n} (Out-phase)		22		27	ns	
${ }^{\text {tPHL }}$			22		25		
${ }^{\text {tPLH }}$	\bar{T}_{i} to $\overline{E O}$		15		18	ns	
tPHL			48		60		
tPLH	$\overline{\mathrm{EI}}$ to $\overline{\mathrm{EO}}$		19		21	ns	
tPHL			- 46		57		
tPLH	$\overline{E 1}$ to A_{n}		22		25	ns	
tPHL			27		32		
${ }^{\text {t }} \mathrm{ZH}$	G_{1} or G_{2} to A_{n}		42		49	ns	
${ }^{\text {t }} \mathrm{L}$ L			43		. 49		
${ }^{\text {t }} \mathrm{ZH}$	$\overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}$ to A_{n}		36		43	ns	
${ }^{\text {t }} \mathrm{L}$ L			35		43		
t_{Hz}	G_{1} or G_{2} to A_{n}		34		40	ns	$\begin{aligned} C_{L} & =5.0 \mathrm{pF} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {t }} \mathrm{L}$ L			34		40		
${ }_{\text {t }}^{\mathbf{H} Z}$	$\overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}$ to A_{n}		30		35	ns	
${ }^{\text {t }} \mathrm{L} \mathrm{Z}$			31		35		

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9 .
Note: $\mathrm{i}=0$ to 7 $\mathrm{n}=0$ to 2

Am2913

LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

Shown above is the connection of the instruction lines and vector output lines in a 64-input priority interrupt system. The Am2913 is used to encode the most significant bits associated with the vector output.

Am2914
 Vectored Priority Interrupt Controller

DISTINCTIVE CHARACTERISTICS

- Accepts 8 interrupt inputs Interrupts may be pulses or levels and are stored internally
- Built-in mask register

Six different operations can be performed on mask register

- Built-in status register

Status register holds code for lowest allowed interrupt

- Vectored output

Output is binary code for highest priority un-masked interrupt

- Expandable

Any number of Am2914's may be stacked for large interrupt systems

- Microprogrammable

Executes 16 different microinstructions
Instruction enable pin aids in vertical microprogramming

- High-speed operation

Delay from an interrupt clocked into the interrupt register to interrupt request output is typically 60 ns

RELATED PRODUCTS

Part No.	Description
Am2902A	Carry Look-ahead Generator
Am2913	Priority Interrupt Expander
Am25LS138	3-to-8 Decoder
Am27S19	Mapping PROM

FUNCTIONAL DESCRIPTION

The Am2914 is a high-speed, eight-bit priority interrupt unit that is cascadable to handle any number of priority interrupt request levels. The high-speed of the Am2914 makes it ideal for use in Am2900 family microcomputer designs, but it can also be used with the Am9080A MOS microprocessor.

The Am2914 receives interrupt requests on 8 interrupt input lines ($\mathrm{P}_{0}-\mathrm{P}_{7}$). A LOW level is a request. An internal latch may be used to catch pulses on these lines, or the latch may be bypassed so the request lines drive the edge-triggered interrupt register directly. An 8-bit mask register is used to mask individual interrupts. Considerable flexibility is provided for controlling the mask register. Requests in the interrupt register are ANDed with the corresponding bits in the mask register and the results are sent to an 8 -input priority encoder, which produces a three bit encoded vector representing the highest numbered input which is not masked.

An internal status register is used to point to the lowest priority at which an interrupt will be accepted. The contents of the status register are compared with the output of the priority encoder, and an interrupt request output will occur if the vector is greater than or equal to status. Whenever a vector is read from the Am2914 the status register is automatically updated to point to one level higher than the vector read. (The status register can be loaded externally or read out at any time using the S pins.) Signals are provided for moving the status upward across devices (Group Advance Send and Group Advance Receive) and for inhibiting lower priorities from higher order devices (Ripple Disable, Parallel Disable, and Interrupt Disable). A status overflow output indicates that an interrupt has been read at the highest priority.
The Am2914 is controlled by a 4-bit instruction field $\mathrm{I}_{0}-\mathrm{I}_{3}$. The command on the instruction lines is executed if IE is LOW and is ignored if IE is HIGH, allowing the 4 I bits to be shared with other devices.

BLOCK DIAGRAM DESCRIPTION

The Microinstruction Decode circuitry decodes the Interrupt Microinstructions and generates required control signals for the chip.
The Interrupt Register holds the Interrupt Inputs and is an eight-bit, edge-triggered register which is set on the rising edge of the CP Clock signal.
The Interrupt latches are set/reset-type latches. When the Latch Bypass signal is LOW, the latches are enabled and act as negative pulse catchers on the inputs to the Interrupt Register. When the Latch Bypass signal is HIGH, the Interrupt latches are transparent.
The Mask Register holds the eight mask bits associated with the eight interrupt levels. The register may be loaded from or read to the M Bus. Also, the entire register or individual mask bits may be set or cleared.

The Interrupt Detect circuitry detects the presence of any unmasked Interrupt Input. The eight-input Priority Encoder determines the highest priority, non-masked Interrupt Input and forms a binary coded interrupt vector. Following a Vector Read, the three-bit Vector Hold Register holds the binary coded interrupt vector. This stored vector is used for clearing interrupts.
The three-bit Status Register holds the status bits and may be loaded from or read to the S Bus. During a Vector Read, the Incrementer increments the interrupt vector by one, and the result is clocked into the Status Register. Thus the Status

Register always points to the lowest level at which an interrupt will be accepted.
The three-bit Comparator compares the Interrupt Vector with the contents of the Status Register and indicates if the Interrupt Vector is greater than or equal to the contents of the Status Register.
The Lowest Group Enabled Flip-Flop is used when a number of 2914 's are cascaded. In a cascaded system, only one Lowest Group Enabled Flip-Flop is LOW at a time. It indicates the eight interrupt group, which contains the lowest priority interrupt level which will be accepted and is used to form the higher order status bits.
The Interrupt Request and Group Enable logic contain various gating to generate the Interrupt Request, Parallel Disable, Ripple Disable, and Group Advance Send signals.
The Status Overflow signal is used to disable all interrupts. It indicates the highest priority interrupt vector has been read and the Status Register has overflowed.
The Clear Control logic generates the eight individual clear signals for the bits in the Interrupt Latches and Register. The Vector Clear Enable Flip-Flop indicates if the last vector read was from this group. When it is set, it enables the Clear Control Logic.
The CP clock signal is used to clock the Interrupt Register, Mask Register, Status Register, Vector Hold Register, and the Lowest Group Enabled, Vector Clear Enable and Status Overflow Flip-Flops, all on the clock LOW-to-HIGH transition.

Am2914

STANDARD SCREENING
 (Conforms to MIL-STD-883 for Class C Parts)

Step	MIL-STD-883 Method	Conditions	Level	
			Am2914PC, DC	Am2914DM, FM
Pre-Seal Visual Inspection	2010	B	100\%	100\%
Stabilization Bake	1008	$\begin{array}{ll} \text { C } & 24 \text {-hour } \\ 150^{\circ} \mathrm{C} \end{array}$	100\%	100\%
Temperature Cycle	1010	$\text { C } \quad-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}$	100\%	100\%
Centrifuge	2001	B $10,000 \mathrm{G}$	100\%	100\%
Fine Leak	1014	A $5 \times 10^{-8} \mathrm{~atm}-\mathrm{cc} / \mathrm{sec}$	100\%	100\%
Gross Leak	1014	C2 Fluorocarbon	100\% *	100\%
Electrical Test Subgroups 1 and 7	5004	See below for definitions of subgroups	100\%	100\%
Insert Additional Screening here for Class B Parts				
Group A Sample Tests Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 7 Subgroup 8 Subgroup 9	5005	See below for definitions of subgroups Maximum accept number is 3	LTPD $=5$ LTPD $=7$	$\begin{aligned} & \text { LTPD }=5 \\ & \text { LTPD }=7 \end{aligned}$

*Not applicable for Am2914PC.

TABLE 1
MICROINSTRUCTION SET FOR Am2914 PRIORITY INTERRUPT CIRCUIT

Decimal $\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	Mnemonic	Instruction	Decimal $I_{3} l_{2} l_{1} I_{0}$	Mnemonic	Instruction
$\begin{array}{r} 14 \\ 7 \\ 12 \\ 8 \\ 10 \\ 11 \end{array}$	LDM RDM CLRM SETM BCLRM BSETM	Mask Register FunctionsLoad mask register from M bus	5	RDVC	Vectored Output Read vector output to V outputs, load $\mathrm{V}+1$ into status register, load V into vector hold register and set vector clear enable flip-flop.
		Read mask register to M bus			
		Clear mask register (enables all priorities)			
		Set mask register (inhibits all interrupts)			Priority Interrupt Register Clear
		Bit set mask register from M bus	1	CLRIN	Clear all interrupts
			3	CLRMR	Clear interrupts from mask register data (uses the M bus)
		Status Register Functions			Clear interrupts from M bus data
9	LDSTA	Load status register from S bus and LGE flip-flop from GE input	4	CLRVC	Clear the individual interrupt associated with
6	RDSTA	Read status register to S bus			the last vector read
					Master Clear
15	ENIN	Interrupt Request Control	0	MCLR	Clear all interrupts, clear mask register, clear status register, clear LGE flip-flop, enable
13	DISIN	Disable interrupt request			interrupt request.

Am2914

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	+0.5 V to $+\mathrm{V}_{\mathrm{cC} \text { max }}$
DC Input Voltage	-0.5 V to 5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

OPERATING RANGE

P/N	Temperature	
Am2914PC, DC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4.75 V to 5.25 V
Am2914DM, FM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4.50 V to 5.50 V

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

(Group A, Subgroups 1, 2, and 3)
$\begin{array}{ll}\text { Am2914XC } & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { Am2914XM } & T_{C}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\end{array}$
$V_{C C}=5.0 \mathrm{~V} \pm 5 \%(C O M ' L) \quad$ MIN. $=4.75 \mathrm{~V}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$ (MIL) $\quad M I N .=4.50 \mathrm{~V}$
MAX. $=5.25 \mathrm{~V}$

Parameters

Parameters	Description	Test Conditions (Note 1)			Min.	$\begin{gathered} \text { Typ. } \\ \text { (Note 2) } \\ \hline \end{gathered}$	Max.	Units
v_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{I} \mathrm{OH}=-1.0 \mathrm{~mA}$		2.4			Volts
			$\mathrm{COM}^{\prime} \mathrm{L}, 1 \mathrm{OH}=-2.6 \mathrm{~mA}$		2.4			
ICEX	Output Leakage Current for IR Output	$\mathrm{V}_{C C}=\mathrm{MIN} ., \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$					250	$\mu \mathrm{A}$
v_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	${ }^{1} \mathrm{OL}=4.0 \mathrm{~mA}$				0.4	Volts
			$1 \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
			$\mathrm{IOL}=12 \mathrm{~mA}$				0.5	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
v_{1}	Ínput Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., IIN $=-18 \mathrm{MA}$					-1.5	Volts
$I_{\text {IL }}$	Input LOW Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} ., \\ & \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V} \end{aligned}$	M_{0-7}				-0.15	mA
			S_{0-2}				-0.1	
			L. B.				-0.4	
			I. D.				-2.0	
			TE				-1.08	
			All Others				-0.8	
$\mathrm{I}_{1 \mathrm{H}}$	Input HIGH Current	$\begin{aligned} & V_{C C}=M A X . \\ & V_{I N}=2.7 \mathrm{~V} \end{aligned}$	M_{0-7}				150	$\mu \mathrm{A}$
			S0-2				100	
			$\overline{\mathrm{GE}}, \overline{\mathrm{GAR}}$				40	
			$\overline{\mathrm{IE}}$.				60	
			I. D.				60	
			All Others				20	
11	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
${ }^{\text {I OZL }}$	Off-State Output Current	$v_{C C}=$ MAX	$V_{\text {OUT }}=0.5 \mathrm{~V}$	M_{0-7}			-150	$\mu \mathrm{A}$
				S_{0-2}			-100	
				V_{0-2}			-50	
lozh			$V_{\text {OUT }}=2.4 \mathrm{~V}$	M_{0-7}			150	
				S_{0-2}			100	
				V_{0-2}			50	
${ }^{\text {I Cc }}$	Power Supply Current	$V_{C C}=$ MAX.		$25^{\circ} \mathrm{C}$		170	286	mA
			COM'L	$0^{\circ} \mathrm{C}$			305	
				$70^{\circ} \mathrm{C}$			250	
			MIL	$-55^{\circ} \mathrm{C}$			310	
				$125^{\circ} \mathrm{C}$			200	
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$.			-30		-85	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

SWITCHING CHARACTERISTICS AT $25^{\circ} \mathrm{C}$ AND 5.0 VOLTS
Note: Guaranteed limits at $25^{\circ} \mathrm{C}$ and 5.0 V are group A , subgroup 9 tests All outputs fully loaded. $C_{L}=50 \mathrm{pF}$. Measurements made at 1.5 V with input levels of OV and 3.0 V . All numbers are in ns .

For interrupt request output, $R_{L}=470 \Omega$
TABLE I. CLOCK AND INTERRUPT INPUT PULSE WIDTHS (ns)

Time	GUARANTEED
Minimum Clock LOW Time	30
Minimum Clock HIGH Time	30
Minimum Interrupt Input ($\mathrm{P}_{0}-\mathrm{P}_{7}$) LOW Time for Guaranteed Acceptance (Pulse Mode)	25
Maximum Interrupt Input ($\mathrm{P}_{0}-\mathrm{P}_{7}$) LOW Time for Guaranteed Rejection (Pulse Mode)	10

TABLE II. COMBINATIONAL PROPAGATION DELAYS (ns)

	TYPICAL						GUARANTEED					
To Output From Input	$\begin{gathered} M \\ \text { Bus } \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \text { Bus } \end{gathered}$	V_{012}	Irpt Req	Ripple Disable	Group Advance Send	$\begin{gathered} \mathrm{M} \\ \text { Bus } \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \text { Bus } \end{gathered}$	V_{012}	Irpt Req	Ripple Disable	Group Advance Send
$\overline{\text { IE }}$	36	40	40	-	-	30	48	55	55	-	-	47
${ }^{1} 123$	36	40	40	-	-	30	48	55	55	-	-	47
Irpt. Disable	-	-	25	35	8	19	-	-	37	42	18	25

TABLE III. DELAYS FROM CLOCK TO OUTPUTS (ns)

Clock Path	TYPICAL							GUARANTEED						
	$\begin{gathered} \text { To } \\ \mathrm{V}_{012} \end{gathered}$	To Irpt Req	$\begin{aligned} & \text { To } \\ & \text { PD } \end{aligned}$	$\frac{\text { To }}{\text { RD }}$	$\frac{\text { To }}{\text { GAS }}$	To Status O'flow	$\frac{\text { To }}{\text { GS }}$	$\begin{gathered} \text { To } \\ \mathrm{V}_{012} \end{gathered}$	To Irpt Req	$\begin{aligned} & \text { To } \\ & \text { PD } \end{aligned}$	$\frac{\text { To }}{\text { R }}$	$\frac{\text { To }}{\text { GAS }}$	To Status O'flow	To
Irpt Latches and Register	55	65	37	39	47	-	-	67	82	57	57	66	-	-
Mask Register	55	65	37	39	47	-	-	67	82	57	57	66	-	-
Status Register	45	55	28	31	37	-	-	59	74	57	57	58	-	-
Lowest Group Enabled Flip-Flop	-	-	22	25	-	-	17	--	-	42	45	-	-	32
Irpt Request Enable Flip-Flop	-	40	-	-	-	$-$	-	-	56	-	-	-	-	-
Status Overflow Flip-Flop	-	-	-	-	-	17	-	-	-	-	-	-	30	-

TABLE IV. SET-UP AND HOLD TIME REQUIREMENTS (ns)
(All relative to clock LOW-to-HIGH transition).

From Input	GUARANTEED ${ }_{j}$	
	Set-up Time	, Hold Time
S-Bus	11	8
M-Bus	11	8
$\overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$	11	6
Latch Bypass	16	0
IE I_{0123} (See Note)	$\begin{gathered} 46 \\ t_{p w L}+29 \end{gathered}$	0
$\overline{\mathrm{GE}}$	11	11
$\overline{\text { GAR }}$	11	11
Trpt Disable	35	0
$\begin{aligned} & \mathrm{P}_{0}-\mathrm{P}_{7} \text { Hold Time } \\ & \text { Relative to LB } \end{aligned}$	-	21

Note: $\mathrm{t}_{\mathrm{pwL}}$ is the Clock LOW Time. Both Set-up times must be met. 5-155
(Group A, subgroup 10 and 11 tests and limits)
All outputs fully loaded, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$. Measurements made at 1.5 V with input levels of 0 and 3.0 V . For Interrupt Request Output, $\mathrm{R}_{\mathrm{L}}=390 \Omega$, $\mathrm{V}_{\text {LOAD }}=5.0 \mathrm{~V}$

TABLE I. CLOCK AND INTERRUPT INPUT PULSE WIDTHS (ns)

Time	Am2914PC, DC, XC $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 5 \%$	Am2914DM, FM, XM $\mathrm{TC}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 10 \%$
Minimum Clock LOW Time	30	30
Minimum Clock HIGH Time	30	30
Minimum Interrupt Input ($\mathrm{P}_{0}-\mathrm{P}_{7}$) LOW Time for Guaranteed Acceptance. (Pulse Mode)	40	40
Maximum Interrupt Input ($\mathrm{P}_{0}-\mathrm{P}_{7}$) LOW Time for Guaranteed Rejection (Pulse Mode)	8	8
Minimum Clock Period, $\overline{\mathrm{I}}=\mathrm{H}$ on current cycle and previous cycle	50	55
Minimum Clock Period, $\overline{\mathrm{I}}=\mathrm{L}$ on current cycle or previous cycle	100	110

TABLE II. MAXIMUM COMBINATIONAL PROPAGATION DELAYS (ns)

	Am2914PC, DC, XC$T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 5 \%$						$\begin{gathered} \text { Am2914DM, FM, XM } \\ \mathrm{TC}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 10 \% \end{gathered}$					
To Output From Input	$\begin{gathered} \mathbf{M} \\ \text { Bus } \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \text { Bus } \end{gathered}$	V_{012}	$\begin{aligned} & \text { Irpt } \\ & \text { Req } \end{aligned}$	Ripple Disable	Group Advance Send	$\begin{gathered} \mathrm{M} \\ \text { Bus } \end{gathered}$	$\begin{gathered} \text { S } \\ \text { Bus } \end{gathered}$	V_{012}	$\begin{aligned} & \text { Irpt } \\ & \text { Req } \end{aligned}$	Ripple Disable	Group Advance Send
位	52	60.	65	-	-	56	60	68	70	-	-	62
10123	52	60	65	-	-	56	60	68	70	-	-	62
Irpt. Disable	-	-	45	52	20	30	-	-	48	60	22	33

TABLE III. MAXIMUM DELAYS FROM CLOCK TO OUTPUTS (ns)

	$\begin{gathered} \text { Am2914PC, DC, XC } \\ T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 5 \% \end{gathered}$							$\begin{gathered} \text { Am2914DM, FM, XM } \\ \mathrm{TC}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 10 \% \end{gathered}$						
Clock Path	To V_{012}	To Irpt Req	$\begin{aligned} & \text { To } \\ & \text { PD } \end{aligned}$	$\frac{\text { To }}{\text { RD }}$	$\frac{\text { To }}{\text { GAS }}$	To Status O'flow	To	To V_{012}	To Irpt Req	$\begin{aligned} & \text { To } \\ & \text { PD } \end{aligned}$	$\underline{\text { To }}$	$\frac{\text { To }}{\text { GAS }}$	To Status O'flow	To
Irpt Latches and Register	76	97	67	67	80	-	-	82	105	75	75	85	-	-
Mask Register	76	97	67	67	80	-	-	82	105	75	75	85	-	-
Status Register	67	88	63	63	70	-	-	73	96	66	66	76	-	-
Lowest Group Enabled Flip-Flop	-	-	48	52	-	-	38	-	-	54	58	-	-	45
Irpt Request Enable Flip-Flop	-	62	-	-	-	-	-	- .	66	-	-	-	-	-
Status Overflow Flip-Flop	-	-	-	-	-	35	-	-	-	-	-	-	40	-

TABLE IV. SETUP AND HOLD TIME REQUIREMENTS (ns)
(All relative to clock LOW-to-HIGH transition)

From Input	$\begin{gathered} \text { Am2914PC, DC, XC } \\ T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 5 \% \end{gathered}$		Am2914DM, FM, XM$\mathrm{TC}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 10 \%$	
	Set-Up Time	Hold Time	Set-Up Time	Hold Time
S-Bus	15	10	15	10
M-Bus	15	10	15	10
$\bar{P}_{0} \bar{P}_{7}$	15	8	15	8
Latch Bypass	20	0	20	0
$\begin{aligned} & \hline \overline{\mathrm{IE}} \\ & \mathrm{I}_{0123} \text { (See Note) } \end{aligned}$	$\begin{gathered} 55 \\ t_{\text {pwL }}+33 \end{gathered}$	0	$\begin{gathered} 55 \\ t_{\mathrm{pwL}}+40 \end{gathered}$	0
$\overline{\mathrm{GE}}$	15	13	15	13
$\overline{\mathrm{GAR}}$	15	13	15	13
Trpt Disable	42	0	42	0
$\mathrm{P}_{0}-\mathrm{P}_{7}$ Hold Time Relative to LB	-	25	-	25°

Note: ${ }_{t_{\text {PWL }}}$ is the Clock LOW Time. Both Set-up times must be met;

TEST OUTPUT LOAD CONFIGURATIONS FOR Am2914

C. OPEN-COLLECTOR OUTPUTS

D. THREE-STATE OUTPUTS

TEST OUTPUT LOADS FOR Am2914

Pin \# (DIP)	Pin Label	Test Circuit	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
3	Group Signal	C	2 K	-
4	Group Advance Receive	C	2 K	-
7	Ripple Disable	C	2 K	-
8	Parallel Disable	C	2 K	-
9	Interrupt Request	C	390	-
$13-11$	So-2	D	240	240
14	Status Overflow	C	2 K	-
$18-16$	$\mathrm{~V}_{0-2}$	D	240	240
-	M $_{0-7}$	D	240	240

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to V_{CC} changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for $A C$ tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or V_{IH} until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

A Microprogrammable, Bipolar, LSI Interrupt Structure Using the Am2914

INTRODUCTION

Advanced Micro Devices' introduction of the Am2914 Vectored Priority Interrupt Controller now makes possible the structuring of a microprogrammable bipolar LSI interrupt system. The design engineer may use the Am2914 to simplify his design process, dramatically reduce the system cost, size and package count, and increase the speed, capability and reliability of his interrupt system.

The Am2914 is a modular, low cost, standard LSI component that may be microprogrammed to meet the requirements of specific applications. Today's engineer may utilize the Am2914 microprogrammability to provide functional flexibility and ease of engineering change, while taking advantage of its modularity to provide hardware regularity and future expansion capability.

THE INTERRUPT CONCEPT

In any state machine, a requirement exists for the efficient synchronization and response to asynchronous events such as power failure, machine malfunctions, control panel service requests, external timer signals, supervisory calls, program errors, and input/output device service requests. The merit of such an "asynchronous event handler" may be measured in terms of response time, system throughput, real time overhead, hardware cost and memory space required.

The simplest approach to asynchronous event handling is the poll approach. A status indicator is associated with each possible asynchronous event. The processor tests each indicator in sequence and, in effect, "asks" if service is required. This program-driven method is inefficient for a number of reasons. Much time is consumed polling when no service is required; programs must have frequent test points to poll indicators, and since indicators are polled in sequence, considerable time may elapse before the processor responds to an event. Thus, system throughput is low; real time overhead and response time are high, and a large memory space is required.

The interrupt method is a much more efficient way of servicing asynchronous requests. An asynchronous event requiring service generates an interrupt request signal to the processor. When the processor receives the interrupt request, it may suspend the program it is currently executing, execute an interrupt service routine which services the asynchronous request, then resume the execution of the suspended program. In this system, the execution of the service routine is initiated by an interrupt request; thus, the system is interrupt driven and service routines are executed only when service is requested. Although hardware cost may be higher in this type of system, it is more efficient since system throughput is higher, response time is faster, real time overhead is lower and less memory space is required.

INTERRUPT SYSTEM FUNCTIONAL DEFINITION

A complete and clear functional definition is key to the design of a good interrupt system. The following features are useful.

Multiple Interrupt Request Handling: Since interrupt requests are generated from a number of different sources, the interrupt system's ability to handle interrupt requests from several sources is important.

Interrupt Request Prioritization: Since the processor can service only one interrupt request at a time, it is important that the interrupt system has the ability to prioritize the requests and determine which has the highest priority.

Interrupt Service Routine "Nesting": This feature allows an interrupt service routine for a given priority request to be interrupted in turn, but only by a higher priority interrupt request. The service routine for the higher priority request is executed, then the execution of the interrupted service routine is resumed. If there are " n " interrupt requests, an " n " deep "nest" is possible.

Dynamic Interrupt Enabling/Disabling: The ability to enable/ disable all interrupts "on the fly" under microprogram control can be used to prevent interruption of certain processes.

Dynamic Interrupt Request Masking: The ability to selectively inhibit or "mask" individual interrupt requests under microprogram control is useful.

Interrupt Request Vectoring: Many times, a particular interrupt request requires the execution of a unique interrupt service routine. For this reason, the generation of a unique binary coded vector for each interrupt request is very helpful. This vector can be used as a pointer to the start of a unique service routine.

Interrupt Request Priority Threshold: The ability to establish a priority threshold is valuable. In this type of operation, only those interrupt requests which have higher priority than a specified threshold priority are accepted. The threshold priority can be defined by microprogram or can be automatically established by hardware at the interrupt currently being serviced plus one. This automatic threshold prevents multiple interrupts from the same source. Also useful is the ability to read the threshold priority under microprogram control. Thus, the interrupt request being serviced may be determined by the microprogram.

Interrupt Request Clearing Flexibility: Flexibility in the method of clearing interrupt requests allows different modes of interrupt system operation. Of particular value are the abilities to clear the interrupt currently being serviced, clear all interrupts, or clear interrupts via a programmable mask register or bus.

Microprogrammability: Microprogrammability permits the construction of a general purpose or "universal" interrupt structure which can be microprogrammed to meet a specific application's requirements. The universality of the structure allows standardization of the hardware and amortization of the hardware development costs across a much broader user base. The end result is a flexible, low cost interrupt structure.

Am2914

Hardware Modularity: Modular interrupt system hardware is beneficial in two ways. First, hardware modularity provides expansion capability. Additional modules may be added as the need to service additional requests arises. Secondly, hardware modularity provides a structural regularity which simplifies the system structure and also reduces the number of hardware part numbers.

Fast Interrupt System Response Time: Quick interrupt system response provides more efficient system operation. Fast response reduces real time overhead and increases overall system throughput.

INTERRUPT SYSTEM IMPLEMENTATION USING THE Am2914

The Am2914 provides all of the foregoing features on a single LSI chip. The Am2914 is a high-speed, eight-bit priority interrupt unit that is cascadable to handle any number of priority interrupt request levels. The Am2914's high speed is ideal for use in Am2900 Family microcomputer designs, but it can also be used with the Am9080A MOS microprocessor.

The Am2914 receives interrupt requests on eight Interrupt input lines $\left(P_{0}-P_{7}\right)$. A LOW level is a request. An internal latch may be used to catch pulses (HIGH-LOW-HIGH) on these lines, or the latch may be bypassed so that the request lines drive the D-inputs to the edge-triggered interrupt Register directly. An eight-bit Mask Register is used to mask individual interrupts. Considerable flexibility is provided for controlling the Mask Register. Requests in the Interrupt Register ($\mathrm{P}_{0}-\mathrm{P}_{7}$) are ANDed with the corresponding bits in the mask register $\left(\mathrm{M}_{0}-\mathrm{M}_{7}\right)$ and the results are sent to an eight-input priority encoder, which produces a three-bit encoded vector representing the highest priority input which is not masked.

An internal Status Register is used to point to the lowest priority at which an interrupt will be accepted. The contents of the Status Register are compared with the output of the

Figure 1. Am 2914 Logic Symbol.
priority encoder, and an Interrupt Request output will occur if the vector is greater than or equal to the contents of the Status Register. Whenever a vector is read from the Am2914, the Status Register is automatically updated to point to one level higher than the vector read. (The Status Register can be loaded externally or read out at any time using the S-Bus.) Signals are provided for moving the status upward across devices (Group Advance Send and Group Advance Receive) and for inhibiting lower priorities from higher order devices (Ripple Disable, Parallel Disable, and Interrupt Disable). A Status Overflow output indicates that an interrupt has been read at the highest priority.

The Am2914 is controlled by a four-bit microinstruction field ${ }^{1} 0^{-1} 3$. The microinstruction is executed if $\overline{I E}$ (Instruction Enable) is LOW and is ignored if $\overline{I E}$ is HIGH, allowing the four I bits to be shared with other functions. Sixteen different microinstructions are executed. Figure 2 shows the microinstructions and the microinstruction codes.

MICROINSTRUCTION DESCRIPTION	MICROINSTRUCTION CODE $I_{3} I_{2}^{\prime} 10$
MASTER CLEAR	0000
CLEAR ALL INTERRUPTS	0001
CLEAR INTERRUPTS FROM M-BUS	0010
CLEAR INTERRUPTS FROM MASK	
REGISTER	0011
CLEAR INTERRUPT, LAST	
VECTOR READ	0100
READ VECTOR	0101
READ STATUS REGISTER	0110
READ MASK REGISTER	0111
SET MASK REGISTER	1000
LOAD STATUS REGISTER	1001
BIT CLEAR MASK REGISTER	1010
BIT SET MASK REGISTER	1011
CLEAR MASK REGISTER	1100
DISABLE INTERRUPT REOUEST	1101
LOAD MASK REGISTER	1110
ENABLE INTERRUPT REQUEST	1111

Figure 2. Am2914 Microinstruction Set.

In this microinstruction set, the Master Clear microinstruction is selected as binary zero so that during a power up sequence, the microinstruction register in the microprogram control unit of the central processor can be cleared to all zeros. Thus, on the next clock cycle, the Am2914 will execute the Master Clear function. This includes clearing the Interrupt Latches and Register as well as the Mask Register and Status Register. The LGE flip-flop of the least significant group is set LOW because the Group Advance Receive input is tied LOW. All other Group Advance Receive inputs are tied to Group Advance Send outputs and these are forced HIGH during this instruction. This clear instruction also sets the Interrupt Request Enable flip-flop so that a fully interrupt driven system can be easily initiated from any interrupt.

The Clear All Interrupts microinstruction clears the Interrupt Latches and Register.

The Clear Interrupts from Mask Register microinstruction clears those Interrupt Latches and Register bits which have corresponding Mask Register bits set equal to one. The M-Bus is used by the Am2914 during the execution of this microinstruction and must be floating.
The Clear Interrupts from M-Bus microinstruction clears those Interrupt Latches and Register bits which have corresponding M-Bus bits set equal to one.

The Clear Interrupt, Last Vector Read microinstruction clears the Interrupt Latch and Register bit associated with the last vector read.

The Read Vector microinstruction is used to read the vector value of the highest priority request causing the interrupt. The vector outputs are three-state drivers that are enabled onto the $\mathrm{V}_{0} \mathrm{~V}_{1} \mathrm{~V}_{2}$ bus during this instruction. This microinstruction also automatically loads the value "vector plus one" into the Status Register. In addition, this instruction sets the Vector Clear Enable flip-flop and loads the current vector value into the Vector Hold Register so that this value can be used by the Clear Interrupt, Last Vector Read microinstruction. This allows the user to read the vector associated with the interrupt, and at some later time clear the Interrupt Latch and Register bit associated with the vector read.

The Load Status Register microinstruction loads S-Bus data into the Status Register and also loads the LGE flip-flop from the Group Enable input.

During the Read Status Register microinstruction, the Status Register outputs are enabled onto the Status Bus $\left(\mathrm{S}_{0}-\mathrm{S}_{2}\right)$. The Status Bus is a three-bit, bi-directional, three-state bus.

The Load Mask Register microinstruction loads data from the three-state, bi-directional M-Bus into the Mask Register.

The Read Mask Register microinstruction enables the Mask Register outputs onto the bi-directional, three-state M-Bus.

The Set Mask Register microinstruction sets all the bits in the Mask Register to one. This results in all interrupts being inhibited.

The entire Mask Register is cleared by the Clear Mask Register microinstruction. This enables all interrupts subject to the Interrupt Enable flip-flop and the Status Register.

The Bit Clear Mask Register microinstruction may be used to selectively clear individual Mask Register bits. This microinstruction clears those Mask Register bits which have corresponding M-Bus bits equal to one. Mask Register bits with corresponding M-Bus bits equal to zero are not affected.
The Bit Set Mask Register microinstruction sets those Mask Register bits which have corresponding M-Bus bits equal to one. Other Mask Register bits are not affected.

All Interrupt Requests may be disabled by execution of the Disable Interrupt Request microinstruction. This microinstruction resets an Interrupt Request Enable flip-flop on the chip.

The Enable Interrupt Request microinstruction sets the Interrupt Enable flip-flop. Thus, Interrupt Requests are enabled subject to the contents of the Mask and Status Registers.

Figure 3. Am 2914 Block Diagram.

Am2914

Am 2914 BLOCK DIAGRAM DESCRIPTION

The Am2914 block diagram is shown in Figure 3. The Microinstruction Decode circuitry decodes the Interrupt Microinstructions and generates required control signals for the chip.

The Interrupt Register holds the Interrupt Inputs and is an eight-bit, edge-triggered register which is set on the rising edge of the CP Clock signal if the Interrupt Input is LOW.

The Interrupt latches are set/reset latches. When the Latch Bypass signal is LOW, the latches are enabled and act as nêgative pulse catchers on the inputs to the Interrupt Register. When the Latch Bypass signal is HIGH, the Interrupt latches are transparent.
The Mask Register holds the eight mask bits associated with the eight interrupt levels. The register may be loaded from or read to the M -Bus. Also, the entire register or individual mask bits may be set or cleared.
The Interrupt Detect circuitry detects the presence of any unmasked Interrupt Input. The eight-input Priority Encoder determines the highest priority, non-masked Interrupt Input and forms a binary coded interrupt vector. Following a Vector Read, the three-bit Vector Hold Register holds the binary coded interrupt vector. This stored vector can be used later for clearing interrupts.

The three-bit Status Register holds the status bits and may be loaded from or read to the S-Bus. During a Vector Read, the Incrementer increments the interrupt vector by one, and the result is clocked into the Status Register. Thus, the Status Register points to a level one greater than the vector just read.

The three-bit Comparator compares the Interrupt Vector with the contents of the Status Register and indicates if the Interrupt Vector is greater than or equal to the contents of the Status Register.
The Lowest Group Enabled Flip-Flop is used when a number of Am2914's are cascaded. In a cascaded system, only one Lowest Group Enabled Flip-Flop is LOW at a time. It indicates the eight interrupt group, which contains the lowest priority interrupt level which will be accepted and is used to form the higher order status bits.

The Interrupt Request and Group Enable logic contain various gating to generate the Interrupt Request, Parallel Disable, Ripple Disable, and Group Advance Send signals.

The Status Overflow signal is used to disable all interrupts. It indicates the highest priority interrupt vector has been read and the Status Register has overflowed.

The Clear Control logic generates the eight individual clear signals for the bits in the Interrupt Latches and Register. The Vector Clear Enable Flip-Flop indicates if the last vector read was from this chip. When it is set it enables the Clear Control Logic.
The CP clock signal is used to clock the Interrupt Register, Mask Register, Status Register, Vector Hold Register, and the Lowest Group Enabled, Vector Clear Enable and Status Overflow Flip-Flops, all on the clock LOW-to-HIGH transition.

The Am291.4 can be microprogrammed in many different ways. Figure 4 shows an example interrupt sequence. The Read Vector microinstruction is necessary in order to read the interrupt priority level. Since vector plus one is automatically loaded into the Status Register when a Read Vector microinstruction is executed, the Status Register possibly will overflow and disable all interrupts. For this reason, the Status

Figure 4. Example Interrupt Sequence.
Register must be reloaded periodically. The other Am2914 microinstructions are optional.

CASCADING THE Am2914

A number of input/output signals are provided for cascading the Am2914 Vectored Priority Interrupt Encoder. A definition of these I/O signals and their required connections follows:
Group Signal ($\overline{\mathrm{GS}}$) - This signal is the output of the Lowest Group Enabled flip-flop and during a Read Status microinstruction is used to generate the high order bits of the Status word.
Group Enable $(\overline{\mathrm{GE}})$.- This signal is one of the inputs to the Lowest Group Enable flip-flop and is used to load the flip-flop during the Load Status microinstruction.

Group Advance Send ($\overline{\mathrm{GAS}}$) - During a Read Vector microinstruction, this output signal is LOW when the highest priority vector (vector seven) of the group is being read. In a cascaded system Group Advance Send must be tied to the Group Advance Receive input of the next higher group in order to transfer status information.

Group Advance Receive ($\overline{\mathrm{GAR}}$) - During a Master Clear or Read Vector microinstruction, this input signal is used with other internal signals to load the Lowest Group Enabled flipflop. The Group Advance Receive input of the lowest priority group must be tied to ground.

Status Overflow ($\overline{\mathrm{SV}})$ - This output signal becomes LOW after the highest priority vector (vector seven) of the group has been read and indicates the Status Register has overflowed. It stays LOW until a Master Clear or Load Status microinstruction is executed. The Status Overflow output of the highest priority group should be connected to the Interrupt Disable input of the same group and serves to disable all interrupts until new status is loaded or the system is master cleared. The Status Overflow outputs of lower priority groups should be left open (see Figure 7).

Interrupt Disable ($\overline{\mathrm{ID}})$ - When LOW, this input signal inhibits the Interrupt Request output from the chip and also generates a Ripple Disable output.

Ripple Disable ($\overline{\mathrm{RD}}$) - This output signal is used only in the Ripple Cascade Mode (see below). The Ripple Disable output is LOW when the Interrupt Disable input is LOW, the Lowest Group Enabled flip-flop is LOW, or an Interrupt Request is generated in the group. In the ripple cascade mode, the

Figure 5. Cascade Lines Connection for Single Chip System.

Figure 6. Interrupt Disable Connections for Ripple Cascade Mode.

Figure 7. Interrupt Disable Connections for Parallel Cascade Mode.

Ripple Disable output is tied to the Interrupt Disable input of the next lower priority group (see Figure 6).

Parallel Disable (PD) - This output is used only in the parallel cascade mode (see below). It is HIGH when the Lowest Group Enabled flip-flop is LOW or an Interrupt Request is generated in the group. It is not affected by the Interrupt Disable input.

A single Am2914 chip may be used to prioritize and encode up to eight interrupt inputs. Figure 5 shows how the above cascade lines should be connected in such a single chip system.

The Group Advance Receive and Group Enable inputs should be connected to ground so that the Lowest Group Enabled flip-flop is forced LOW during a Master Clear or Load Status microinstruction. Status Overflow should be connected to Interrupt Disable in order to disable interrupts when vector seven is read. The Group Advance Send, Ripple Disable, Group Signal and Parallel Disable pins should be left open.

The Am2914 may be cascaded in either a Ripple Cascade Mode or a Parallel Cascade Mode. In the Ripple Cascade Mode, the Interrupt Disable signal, which disables lower priority interrupts, is allowed to ripple through lower priority groups. Figures 6, 9 and 11 show the cascade sonnections required for a ripple cascade 64 input interrupt system.

In the parallel cascade mode, a parallel lookahead scheme is employed using the high-speed Am2902 Lookahead Carry Generator. Figures 7, 9 and 10 show the cascade connections required for a parallel cascade 64 -input interrupt system. For this application, the Am2902 is used as a lookahead interrupt disable generator. A Parallel Disable output from any group results in the disabling of all lower priority groups in parallel. Figure 8 shows the Am2902 logic diagram and equations.

In Figures 9 and 10, the Am2913 Priority Interrupt Expander is shown forming the high order bits of the vector and status, respectively. The Am2913 is an eight-line to three-line priority encoder with three-state outputs which are enabled by the five output control signals G1, G2, $\overline{\mathrm{G} 3}, \overline{\mathrm{G} 4}$, and $\overline{\mathrm{G} 5}$. In Figure 9, the Am2913 is connected so that its outputs are enabled during a Read Vector instruction, and in Figure 10 the Am2913 is connected so that its outputs are enabled during a Read Status instruction. The Am2913 logic diagram and truth table are shown in Figure 11.

The Am25LS138 three-line to eight-line Decoder also is shown in Figure 10. It is used to decode the three high order status bits during a Load Status instruction. The Am25LS138 logic diagram and truth table are shown in Figure 12.

$$
\begin{aligned}
& C_{n+x}=G_{0}+P_{0} C_{n} \\
& C_{n+y}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n} \\
& C_{n+z}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n} \\
& G \quad=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0} \\
& P \quad=P_{3} P_{2} P_{1} P_{0}
\end{aligned}
$$

Figure 8. Am2902 Carry Look-Ahead Generator Logic Diagram and Equations.

Figure 9. Vector Connections for both the Parallel and Ripple Cascade Modes.

Figure 10. Group Signal, Group Enable, Group Advance Send, Group Advance Receive and Status Connections for Both the Parallel and Ripple Cascade Modes.

Am2914

Figure 11. Am2913 Priority Interrupt Expander Logic Diagram and Truth Table.

Figure 12. Am25LS138 3 to 8 Line Decoder Logic Diagram and Truth Table.

EXAMPLE INTERRUPT SYSTEMS DESIGNS FOR AN Am 2900 SYSTEM

A classical computer architecture is shown in Figure 13. The Computer Control Unit controls the internal busses and subsystems of the processor, synchronizes internal and external events and grants or denies permission to external systems. The data bus is commonly used by all of the subsystems in the computer. Information, instructions, address operands, data and sometimes control signals are transmitted down the data bus under control of a microprogram. The microprogram selects the source of the data as well as the destination(s) of the data. The Address Bus is typically used to select a word in memory for an internal computer function or to select an input/output port for an external subsystem or peripheral function. The source of the data for the address bus, also selected by microprogram commands, may be the program counter, the memory address register, a direct memory address controller, an interface controller, etc.

The arithmetic/logic unit (ALU) is that portion of the processor that computes. Under control of the microprogram, the ALU performs a number of different arithmetic and logic functions on data in the working registers or from the data bus. The ALU also provides a set of condition codes as a result of the current arithmetic or logic operation. The condi-
tion codes, along with other computer status information, are stored in a register for later use by the programmer or computer control unit.

The program counter and the memory address register are the two main sources of memory word and I / O address select data on the address bus. The program counter contains the address of the next instruction or instruction operand that is to be fetched from main memory, and the memory address register contains instruction address operands which are necessary to fetch the data required for the execution of the current instruction.

A subroutine address stack is provided to allow the return address linkage to be handled easily when exiting a subroutine. The address stack is a last-in, first-out stack that is controlled by a jump-to-subroutine, PUSH, or a return-fromsubroutine, POP, instruction from the CCU microinstruction word.

The next microprogram address control (NMAC) circuitry controls the generation of microinstruction addresses. Based on microprogram control, interrupt requests, test conditions and commands from a control panel or other processor, the NMAC determines the address of the next microinstruction to be executed.

Figure 13. Generalized Computer Architecture.

Figure 15. 16 Level Interrupt Control Unit for Am2900 System.

MPR-143
Figure 16. Computer Control Unit for Machine Program Interrupt System.

Figure 17. Computer Control Unit for Microprogram Interrupt System.

EXAMPLE INTERRUPT SYSTEM DESIGN FOR AN Am9080A SYSTEM

The Am2914 can be used in an Am9080A system also. Figure 18 shows the detailed hardware design of an eight-level ICU for an Am9080A system. The ICU attaches to the Am8228 data bus and uses any two I/O port addresses, designated X and Y . Three Am8228 control lines, INTA, $\overline{1 / O R}$ and $\overline{\mathrm{I}} / \mathrm{OW}$, are used to control the ICU, and the Am8224 ϕ_{2} (TTL) output is used as the ICU clock. The ICU provides the INT (interrupt request) input to the Am9080A.

The Am9080A acknowledges an interrupt request with the $\overline{\text { INTA }}$ signal which selects the A inputs of the Am25LS09 Instruction Register. The Am25LS09 is a quad, two-input register which is set on the LOW-to-HIGH transition of the clock. The A inputs are wired so that an Am2914 Read Vector instruction is forced at the Am2914 Instruction Inputs. The INTA signal also forces the Am2914 Instruction Enable signal LOW and enables the Am25LS241 outputs onto the Am8228 data bus. The Am25LS241 is an eight-bit, threestate bus driver in a 20 -pin package. Figure 19 shows a logic diagram of the Am25LS241. Five Am25LS241 inputs are wired HIGH so that, along with the Am2914 Vector outputs, they force an Am9080A Restart instruction onto the Am8228 data bus. The Am9080A then uses the vector to branch to an interrupt service routine.

During the interrupt service routine, the Am2914 is driven by Am9080A software. Figure 20 shows example Am9080A instruction code for Am2914 control and the comments describe the operation of the ICU hardware in detail. The Am2920 Data Out. Register buffers data during operations which require the transfer of data from the Am9080A to the Am2914, such as the load mask and load status operations. The Am2920 contains eight " D " type flip-flops. Figure 21 shows the Am2920 logic diagram.

The Am25LS374 Data In Register buffers data during operations which require transfer of data from the Am2914 to the Am9080A, such as the read mask and read status operations. The Am25LS374 contains eight "D" type flip-flops in a 20 pin package. Figure 22 shows the logic diagram for the Am25LS374.

The Am25LS175 " D "' type flip-flops are used to synchronize incoming and outgoing control signals with the ϕ_{2} clock to meet the Am2914 and Am9080A timing requirements. In this design, the Latch Bypass input is connected to ground so that a negative pulse will be detected at any of the interrupt inputs. As always when a single Am2914 is used, the Status Overflow output is connected to the Interrupt Disable input, and the Group Advance Receive and Group Enable inputs are connected to ground.

Figure 18. 8 Level Interrupt Control Unit for Am9080A System.

Figure 19. Am25LS241 Octal Bus Driver with 3-State Outputs, 20 Pin Package.

Am9080A MNEMONIC	Am9080A CODE (HEX)	COMMENTS	

Note: Am2914 instruction bits $1_{0}^{-1} 3$ must be on data bus bits $\mathrm{DB}_{0}-\mathrm{DB}_{3}$, respectively. $X=$ Don't Care

Figure 20. Example Am9080A Instruction Code for Am 2914 Control.

Figure 21. Am2920 Octal D-Type Flip-Flops with 3-State Outputs. Common Clock, Clear, Clock Enable and Output Control, 22 Pin Package.

Figure 22. Am25LS374 Octal D-Type Flip-Flops with 3-State Outputs, 20 Pin Package.

Implementing Interrupts for Bit-Slice Processors

By Vern Coleman

Interrupt detection and handling at the microprogram level can be easily implemented in the Am2900 bit-slice processor family thanks to versatile components like the Am2914 priority interrupt encoder and others. The interrupt scheme can generally be extended to other systems at the cost of additional circuitry.

As shown in the figure, the components required are the 2914, the 2910 microprogram sequencer, a 29775 programmable read-only memory, and two separate PROMs for mapping instructions from main memory and interrupt vectors from the 2914 into starting addresses for the 2910.

If an interrupt is detected by the 2914 as the 2910 executes an instruction, the interrupt-request output of the encoder moves low. This action turns off the carry input of the 2910, for all practical purposes causing the sequencer to halt for a microcycle. It also causes any data that would normally appear at the Y_{i}.outputs to be stored in the sequencer's program counter.

The interrupt request also forces the output of the sequencer into a high-impedance state. This allows an interrupt-handling vector to be applied at the Y_{i} outputs, thereby addressing the first instruction of the interrupt routine in the microprogram memory.

The 2914 is thus instructed to place an interrupt vector on its output port. The same word in microprogram memory also enables the output of the vector-mapping PROM to allow decoding of the interrupt vector. The result is then applied to the D inputs of the 2910 while it does a jump to the appropriate subroutine. Thus the first address of the interrupt routine is brought in, and the address to which the previously executed program is to return after the interrupt is serviced is stored away. If there is a point in the microprogram routing where no interrupts are to be allowed, a logic 0 can be applied to the interrupt disable input pin on the 2914.
The microcode for handling interrupts is shown in the table. The first entry commences with address I. This vector instructs the 2914 to execute a jump to subroutine if its condition code input is low. The encoder is then commanded to place its interrupt vector associated with the current interrupt request on its output port. At this time, it may be desirable to disable any further interrupts, in which case the appropriate pin should be brought low, as explained above. A logic 0 is also placed on the vector-mapping PROM while a logic 1 is placed on the data-mapping PROM's output-enable lead and the pipeline output-enable of the 29775. Thus the vector-mapping PPROM will be the sole source of any input to the D port of the 2910.

At address I +1 , the interrupt associated with the previous vector read into the 2914 may be cleared, and the vectormapping PROM disabled by bringing its output-enable lead high. At address I +2 and subsequent addresses, the 2914 may be commanded to accept any interrput by use of the enable interrupt request. The vector-mapping PROM is first disabled with a logic 1 signal. At this time the interrupt-disable pin of the 2914 is deactivated. At the end of the interrupt routine, an exit is achieved via the conditional-return instruction of the 2910. A logic 0 should be simultaneously applied to the condition-code inputs of the sequencer.

There is nothing that precludes the use of this architecture in a stacked-interrupt system. The number of interrupts that can be stacked is limited by the depth of the 2910. It is only necessary to issue a simple command to return from the subroutine utilized to the main program, for each stacked interrupt.

STOP

Standard elements of the Am2900 Family are easily configured to provide interrupt capability for bit-slice microprocessors. Architecture is applicable to stacked interrupt systems. Microcode for handling interrupts (see table) is fast and simple.

Interrupt Address	Am2910 Instruction	Instruction	Interrupt Disable	Vector- Mapping PROM	Data- Mapping PROM
	CJS	Read vector	0	0	0
I +1	-	Clear interrupt, last vector read	0	1	-
$\mathrm{I}+2$	-	Enable interrupt request	1	1	-
$\mathrm{I}+3$	CRTN	-	1	-	-

Am2914 Priority Interrupt Encoder Detailed Logic Description

INTRODUCTION

A clear understanding of the Am2914 Priority Interrupt controller's operation facilitates its efficient use. With that idea in mind, a detailed logic description of the Am2914 is presented here. A detailed logic diagram and control signal truth table are shown, and significant aspects of the Am2914 design are described verbally.

Figure 1. Interrupt Latches and Register.

LOGIC DIAGRAM DESCRIPTION

The Interrupt Latches and Register are shown in Figure 1. The Interrupt latches are set/reset-type latches. When the Latch Bypass signal is LOW, the latches are enabled and act as negative pulse catchers on the inputs to the Interrupt Register. When the Latch Bypass signal is HIGH, the Interrupt latches are transparent. The Interrupt Register holds the Interrupt Inputs and is an eight-bit, edge-triggered register. It is updated on the LOW-to-HIGH transition of the clock pulse (HIGH-toLOW transition of the $\overline{\mathrm{CP}}$ signal) as are all of the flip-flops on the chip.

Figure 2. Vector Hold Register

When a Read Vector instruction is executed, the binary coded vector is loaded into the Vector Hold Register of Figure 2. This stored vector can be used later for clearing the interrupt associated with the last vector that was read. The Vector Clear Enable Flip-Flop of Figure 2 is set when a Read Vector instruction is executed and the PASS ALL signal is HIGH. A HIGH PASS ALL signal level indicates that this group is enabled and that an interrupt request in this group was detected and passed priority. The Vector Hold Register and the Vector Clear Enable Flip-Flop are cleared when a Master Clear, Clear All Interrupts, or Clear Interrupt Last Vector Read is executed. Table 1 shows the generation of the " N and R " control signals for each of these operations.

Figure 3. Mask Register.

The Mask Register shown in Figure 3 holds the eight mask bits associated with the eight interrupt levels. The register may be set or cleared, bit set or bit cleared from the " M "
bus, or loaded or read to the " M " bus. Table 1 shows the generation of the " A ", " B ", " C " and " $O E-M$ " control signals for each of these operations.

MPR-152
Figure 4. Interrupt Request Detect and Priority Decoder.

The Interrupt Request Detect and Priority Encode circuitry are shown in Figure 4. The Interrupt Detect circuitry detects the presence of any unmasked Interrupt Input. The
eight-input Priority Encoder determines the highest priority, non-masked Interrupt Input and forms a binary coded interrupt vector, $\mathrm{V}_{0}-\mathrm{V}_{2}$.

MPR-153
Figure 5. Clear Control.

The Clear Control logic of Figure 5 generates the eight individual clear signals for the eight Interrupt Register bits. Under microinstruction control, all interrupts, interrupts with corresponding mask register bits set, interrupts with
corresponding mask bus bits equal to one, or the interrupt associated with the last vector read may be cleared. Table 1 shows the generation of the " J " and " K " control signals for each of these operations.

Figure 6. Three-Bit comparator.

The three-bit Comparator of Figure 6 compares the interrupt vector with the contents of the Status Register. A LOW signal level at the PASS PRIORITY output indicates that the interrupt vector is greater than or equal to the contents of the Status Register.

Figure 7. Group Enable Logic.

The Lowest Group Enabled Flip-Flop, Figure. 7, is used when a number of Am2914's are cascaded. In a cascaded system, only one Lowest Group Enabled Flip-Flop is LOW at a time. It indicates the group which contains the lowest priority interrupt which will be accepted and is used to form the high order status bits. When a Load Status instruction is executed, the flip-flop is loaded from the GROUP ENABLE input. When a

Master Clear instruction is executed, it is loaded from the GROUP ADVANCE RECEIVE input. The flip-flop is set HIGH when a Read Vector instruction is executed if a Group Advance is not received and no interrupt in this group is detected, if a Group Advance is sent from this group, or if interrupts from this group are disabled. For all other instructions, the flip-flop remains the same. Table 1 shows the generation of the " N ", " L " and " M " control signals for these operations.

The Status Register holds the status bits and may be loaded from or read to the " S " bus as shown in Figure 8. Note that when a Load Status instruction is executed, status from the " S " bus is loaded into the Status Register only if the GROUP $\overline{E N A B L E}$ input is LOW; if the GROUP ENABLE input is HIGH, the Status Register is cleared. Also note that during a Read Status instruction, the Status Register outputs are enabled onto the " S " bus only if the Lowest Group Enabled Flip-Flop of this group is LOW. When a Read Vector instruction is executed, the incrementer increases the vector by one and the result is loaded into the Status Register. Thus, the Status Register always points to the lowest level at which an interrupt will be accepted. Table 1 shows the generation of the " F ", " G " and "OE-S" control signals for Status Register operations.

The Interrupt Request Logic, shown in Figure 9, generates the RIPPLE DISABLE, PARALLEL DISABLE, INTERRUPT REQUEST, $\overline{G R O U P ~ A D V A N C E ~ S E N D, ~ a n d ~ S T A T U S ~ O V E R-~}$ $\overline{F L O W}$ output signals. The PARALLEL DISABLE signal is generated when the Lowest Group Enabled signal is LOW or an interrupt request in this group is detected and passes priority. The RIPPLE DISABLE signal is generated when the PARALLEL DISABLE signal is generated and also when the INTERRUPT DISABLE input signal is LOW. The INTERRUPT REQUEST output signal is generated when interrupt requests in this group are enabled and a request is detected and passes priority. The GROUP ADVANCE SEND output signal is generated when a vector of value seven is being read. The Status Overflow Flip-Flop is set LOW when a vector of value seven is read and indicates the Status Register has overflowed. The Interrupt Request Enable Flip-Flop is either set or reset by the Enable Request or Disable Request microinstructions respectively, and is used to enable or disable the INTERRUPT REQUEST output. Table 1 shows the generation of control signals "D", "E", "S" and "H".

Note that the vector outputs are enabled only when a Read Vector is being executed. Also note that when a Read Vector instruction is executed, the vector outputs will be disabled after the execution of the instruction since the Status Register is loaded with $V+1$, and the INTERRUPT REQUEST will no longer be generated.

The Microinstruction Decode circuitry, Figure 10, decodes the Am2914 microinstructions and generates the required internal control signals. Table 1 shows the truth table for these functions and Figure 11 shows the function tables.

Table 1. Am 2914 Control Signal Truth Table.

$$
0=\text { LOW, } 1=\mathrm{HIGH}
$$

Microinstruction						Function	Mask Register				Status Register			Group Enable		Clear Control		Irpt Request Enable		$\begin{aligned} & \text { Vector } \\ & \text { Hold } \\ & \text { Register } \\ & \hline \end{aligned}$		Other	
Decimal	\bar{T}	13	12	11	10	Description	A	B	c	OE-M	F	G	$\overline{\text { OES }}$	L	M	J	K	D	E	N	R	S	H
0	0	0	0	0	0	Master Clear	0	0	1	0	0	0	1	1	0	1	1	0	1	0	0	1	1
1	0	0	0	0	1	Clear All Interrupts	1	0	1	0	0	1	1	0	1	1	1	1	x	0	0	1	0
2	0	0	0	1	0	Clear Intr Via M Bus	1	0	1	0	0	1	1	0	1	1	0	1	x	0	1	1	0
3	0	0	0	1	1	Clear Intr Via M Reg	1	0	1	1	0	1	1	0	1	1	0	1	X	0	1	1	0
4	0	0	1	0	0	Clear Intr, Last Vector	1	0	1	0	0	1	1	0	1	0	1/0	1	x	0	0	1	0
5	0	0	1	0	1	Read Vector	1	0	1	0	0/1	0	1	0	0	0	0	1	X	1	0	0	1
6	0	0	1	1	0	Read Status Reg	1	0	1	0	0	1	0	0	1	0	0	1	X	0	1	1	0
7	0	0.	1	1	1	Read Mask Reg	1	0	1	1	0	1	1	0	1	0	0	1	X	0	1	1	0
8	0	1	0	0	0	Set Mask Reg	0	0	0	0	0	1	1	0	1	0	0	1	x	0	1	1	0
9	0	1	0	0	1	Load Status Reg	1	0	1	0	1	1	1	1	1	0	0	1	X	0	1	1	1
10	0	1	0	1	0	Bit Clear Mask Reg	0	1	0	0	0	1	1	0	1	0	0	1	X	0	1	1	0
11	0	1	0	1	1	Bit Set Mask Reg	1	1	1	0	0	1	1	0	1	0	0	1	X	0	1	1	0
12	0	1	1	0	0	Clear Mask Reg	0	0	1	0	0	1	1	0	1	0	0	1	X	0	1	1	0
13	0	1	1	0	1	Disable Request	1	0	1	0	0	1	1	0	1	0	0	0	0	0	1	1	0
14	0	1	1	1	0	Load Mask Reg	0	1	1	0	0	1	1	0	1	0	0	1	\times	0	1	1	0
15	0	1	1	1	1	Enable Request	1	0	1	0	0	1	1	0	1	0	0	0	1	0	1	1	0
X	1	X	X	X	X	Instruction Disable	1	0	1	0	0	1	1	0	1	0	0	1	X	0	1	1	0

Notes: 1. Control tine "F" during "READ VECTOR" instruction is 0 when "PASS ALL" is LOW and 1 when" "PASS ALL" is HIGH.
2. Control line "K" during "Clear Intr, Last Vector" instruction is 0 when "Vector Clear Enable" is LOW and 1 when "Vector Clear Enable" is HIGH.

MPR-156
Figure 8. Incrementer and Status Register.

Figure 9. Interrupt Request Logic.

Figure 10.

Figure 11. Control Function Tables.

Am2915A

Quad Three-State Bus Transceiver with Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Three-state bus driver
- Two-port input to D-type register on driver
- Bus driver output can sink 48 mA at 0.5 V max.
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12 mA
- Advanced low-power Schottky processing
- 3.5 V minimum output high voltage for direct interface to MOS microprocessors

FUNCTIONAL DESCRIPTION

The Am2915A is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four three-state bus drivers. Each bus driver is internally connected to the input of a receiver. The four receiver outputs drive four D-type latches that feature three-state outputs.

This LSI bus transceiver is fabricated using advanced lowpower Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The three-state bus output can sink up to 48 mA at 0.5 V maximum. The bus enable input (BE) is used to force the driver outputs to the high-impedance state. When $\overline{B E}$ is HIGH, the driver is disabled. The $V_{O H}$ and $V_{O L}$ of the bus driver are selected for compatibility with standard and Low-Power Schottky inputs.
The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_{i} data is stored in the register and when S is HIGH , the B_{i} data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.

Data from the A or B inputs is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\operatorname{RLE}}$) input. When the $\overline{\mathrm{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and OE LOW). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control ($\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is HIGH , the receiver outputs are in the highimpedance state.

LOGIC SYMBOL

$V_{C C}=P$ in 24
GND $_{1}=P$ in 6
$\mathrm{GND}_{2}=\operatorname{Pin} 18$
MPR-159
CONNECTION DIAGRAM Top View

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7 V
DC Output Current, Into Outputs (Except Bus)	30 mA
DC Output Current, Into Bus	100 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2915AXC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C M I N}=4.75 \mathrm{~V} \quad V_{C C} M A X .=5.25 \mathrm{~V}$
Am2915AXM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}} \mathrm{MIN}=4.50 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}} M A X .=5.50 \mathrm{~V}$

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)		Min.	Typ.	Max.	Units
v_{OL}	Bus Output LOW Voltage	$V_{C C}=\mathrm{MIN}$.	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.4	Volts
			$1 \mathrm{OL}=48 \mathrm{~mA}$			0.5	
v_{OH}	Bus Output HIGH'Voltage	$V_{C C}=$ MIN .	$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{IOH}=-20 \mathrm{~mA}$	2.4			Volts
			$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$				
10	Bus Leakage Current (High Impedance)	$\begin{aligned} & V_{C C}=\text { MAX. } \\ & \text { Bus enable }=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
IOFF	Bus Leakage Current (Power OFF)	$\begin{aligned} & V_{O}=4.5 \mathrm{~V} \\ & V_{C C}=0 \mathrm{~V} \end{aligned}$				100	$\mu \mathrm{A}$
$V_{\text {IH }}$	Receiver Input HIGH Threshold	Bus enable $=2.4 \mathrm{~V}$		2.0			Volts
$V_{\text {IL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$	COM ${ }^{\prime}$			0.8	Volts
			MIL			0.7	
ISC	Bus Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X . \\ & V_{O}=O V \end{aligned}$,	-50	-120	-225	mA

Am2915A

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2915AXC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C} \mathrm{MIN}=4.75 \mathrm{~V} \quad V_{C C} M A X .=5.25 \mathrm{~V}$

Am2915AXM (MIL)
 $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 $V_{\text {CC }}$ MIN. $=4.50 \mathrm{~V} \quad V_{C C} M A X=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test C	ons (te 1)	Min.	(Note 2)	Max.	Units
V_{OH}	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL: $\mathrm{IOH}^{=}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			COM	$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}$	2.4	3.4		
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$			3.5			
V_{OL}	Output LOW Voltage (Except Bus)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$		$1 \mathrm{OL}=4.0 \mathrm{~mA}$		0.27	0.4	Volts
				$1 \mathrm{OL}=8.0 \mathrm{~mA}$		0.32	0.45	
				$\mathrm{I}^{\mathrm{OL}}=12 \mathrm{~mA}$		0.37	0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Volts
				COM'L			0.8	
v_{1}	Input Clamp Voltage (Except Bus)	$\mathrm{V}_{\text {CC }}=$ MIN., IIN $=-18 \mathrm{~mA}$					-1.2	Volts
IIL	Input LOW Current (Except Bus)	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		$\overline{\mathrm{BE}, \overline{\mathrm{RLE}}}$			-0.72	mA
				All other inputs			-0.36	
1 H	Input HIGH Current (Except Bus)	$\mathrm{V}_{C C}=\mathrm{MAX},. \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
$1 /$	Input HIGH Current (Except Bus)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$V_{C C}=$ MAX			-30		-130	mA
Icc	Power Supply Current	$\mathrm{V}_{C C}=\mathrm{MAX}$.				63	95	mA
10	Off-State Output Current (Receiver Outputs)	$V_{C C}=$ MAX		$\mathrm{V}_{0}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-50	

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

		Test Conditions	Am2915AXM			Am2915AXC			Units
Parameters	Description			Typ. (Note 2)	Max.		Typ. (Note 2)		
tPHL.	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B \cup S)=50 \mathrm{pF} \\ & R_{L}(B \cup S)=130 \Omega \end{aligned}$		21	36		21	32	
tPLH				21	36		21	32	
${ }^{\text {Z }} \mathrm{H}, \mathrm{t} \mathrm{ZL}$	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		$\cdot 13$	23	ns
$\mathrm{t}_{\mathrm{HZ}, \mathrm{t}_{L} \mathrm{Z}}$				13	21		13	18	
t_{s}	Data Inputs (A or B)	\checkmark	15			12			ns
$t_{\text {h }}$			8.0			6.0			ns
t_{s}	Select Input (S)		28			25			ns
th			8.0			6.0			
${ }^{\text {tPW }}$	Driver Clock (DRCP) Pulse Width (HIGH)		20			17			ns
tPLH	Bus to Receiver Output	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$		18	33		18	30	
tPHL	(Latch Enable)			18	30		18	27	
tPLH	Latch Enable to Receiver Output			21	33		21	30	ns
tPHL				21	30		21	27	
$\mathrm{t}_{\text {s }}$	Bus to Latch Enable ($\overline{\mathrm{RLE}}$)		15			13			ns
$t^{\text {h }}$			6.0			4.0			
${ }^{\mathrm{Z}} \mathrm{H}, \mathrm{t}_{\mathrm{ZL}}$	Output Control to Receiver Output			14	26		14	23	ns
$\mathrm{t}_{\mathrm{HZ}, \mathrm{t}_{L} \mathrm{Z}}$		$C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$		14	26	:	14	23	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second

SWITCHING TEST CIRCUIT

MPR-163
SWITCHING WAVEFORMS

Note: Bus to Receiver output delay is measured by clocking data into the driver register and measuring the $\overline{B \cup S}$ to R combinatorial delay.

Am2915A

DEFINITION OF FUNCTIONAL TERMS

$\mathbf{A}_{1}, \mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$ The " A " word data input into the two input multiplexer of the driver register.
$\mathrm{B}_{0}, \mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}$ The " $\mathrm{B}^{\prime \prime}$ word data input into the two input multiplexers of the driver register.

Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is HIGH, the B word is applied to the driver register.

DRCP Driver Clock Pulse. Clock pulse for the driver register.
$\overline{B E}$
Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance state.
$\overline{B U S}_{0}, \overline{B U S}_{1}$
$\overline{\mathrm{BUS}}_{2}, \overline{\mathrm{BUS}}_{3}$
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{3}$ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
$\overline{\text { RLE }} \quad$ Receiver Latch Enable. When $\overline{\text { RLE }}$ is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.
Output Enable. When the $\overline{\mathrm{OE}}$ input is HIGH, the four three state receiver outputs are in the high-impedance state.

ORDERING INFORMATION
Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2915APC	P-24	C	C-1
AM2915ADC	D-24	C	C-1
AM2915ADC-B	D-24	C	B-1
AM2915ADM	D-24	M	C-3
AM2915ADM-B	D-24	M	B-3
AM2915AFM	F-24-1	M	C-3
AM2915AFM-B	F-24-1	M	B-3
AM2915AXC	Dice	C	Visual inspection
AM2915AXM	Dice	M	to MIL-STD-883 Method 2010B.

Notes: 1. $\mathbf{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

APPLICATIONS

The Am2915A is a universal Bus Transceiver useful for many system data, address, control and timing input/output interfaces.

Am2916A

Quad Three-State Bus Transceiver with Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Three-state bus driver
- Two-port input to D-type register on driver
- Bus driver output can sink 48 mA at 0.5 V max.
- Internal odd 4-bit parity checker/generator
- Receiver has output latch for pipeline operation
- Receiver outputs sink 12 mA
- Advanced low-power Schottky processing
- 3.5 V minimum output high voltage for direct interface to MOS microprocessors

FUNCTIONAL DESCRIPTION

The Am2916A is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edgetriggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four three-state bus drivers. Each bus driver is internally connected to the input of a receiver. The four receiver outputs drive four D-type latches. The device also contains a four-bit odd parity checker/ generator.

The LSI bus transceiver is fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The three-state bus output can sink up to 48 mA at 0.5 V maximum. The bus enable input $(\overline{\mathrm{BE}})$ is used to force the driver outputs to the high-impedance state. When $\overline{B E}$ is HIGH, the driver is disabled.
The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_{i} data is stored in the register and when S is HIGH, the B_{i} data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.
Data from the A or B input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data in non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\mathrm{RLE}}$) input. When the $\overline{\mathrm{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input.

The Am2916A features a built-in four-bit odd parity checker/ generator. The bus enable input ($\overline{\mathrm{BE}}$) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A or B field data input to the driver register. When $\overline{B E}$ is. HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.

LOGIC SYMBOL

$V_{C C}=P$ in 24
GND $_{1}=\operatorname{Pin} 6$
$G \mathrm{GD}_{2}=\operatorname{Pin} 18$
MPR-167

CONNECTION DIAGRAM

Top View

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7 V
DC Output Current, Into Outputs (Except Bus)	30 mA
DC Output Current, Into Bus	100 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2916AXC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C M I N}=4.75 \mathrm{~V} \quad V_{C C M A X}=5.25 \mathrm{~V}$
Am2916AXM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}} \mathrm{MIN}=4.50 \mathrm{~V} \quad V_{C C M A X}=5.50 \mathrm{~V}$
BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)		Min.	Typ.	Max.	Units
V_{OL}	Bus Output LOW Voltage	$V_{C C}=$ MIN.	$1 \mathrm{OL}=24 \mathrm{~mA}$			0.4	Volts
			$1 \mathrm{OL}=48 \mathrm{~mA}$			0.5	
V_{OH}	Bus Output HIGH Voltage	$V_{C C}=$ MIN.	$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$	2.4			Voits
			$\mathrm{MIL}, \mathrm{IOH}=-15 \mathrm{~mA}$				
10	Bus Leakage Current (High Impedance)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \text { Bus enable }=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
IOFF	Bus Leakage Current (Power OFF)	$\begin{aligned} & V_{O}=4.5 \mathrm{~V} \\ & V_{C C}=0 \mathrm{~V} \end{aligned}$				100	$\mu \mathrm{A}$
$V_{\text {IH }}$	Receiver Input HIGH Threshoid	Bus enable $=2.4 \mathrm{~V}$		2.0			Volts
$V_{\text {IL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$	COM ${ }^{\text {L }}$			0.8	Volts
			MIL			0.7	
ISC	Bus Output Short Circuit Current	$\begin{aligned} & V_{C C}=\text { MAX. } \\ & V_{O}=0 V \end{aligned}$		-50	-120	-225	mA

Am2916A

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2916AXC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C} M I N .=4.75 \mathrm{~V} \quad V_{C C} M A X .=5.25 \mathrm{~V}$
Am2916AXM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{C C} M I N .=4.50 \mathrm{~V} \quad \mathrm{~V}_{C C} M A X=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
V_{OH}	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL: $\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			COM	$1 \mathrm{OH}=-2.6 \mathrm{~mA}$	2.4	3.4		
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{IOH}=-100 \mu \mathrm{~A}$			3.5			
v_{OH}	Parity Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOH}=-660 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		MIL	2.5	3.4		Volts
				COM'L	2.7	3.4		
V_{OL}	Output LOW Voltage (Except Bus).	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$		$\mathrm{I}^{\text {OL }}=4.0 \mathrm{~mA}$		0.27	0.4	Volts
				$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.32	0.45	
				${ }^{1} \mathrm{OL}=12 \mathrm{~mA}$		0.37	0.5	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			
$V_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Volts
				COM'L			0.8	
v_{1}	Input Clamp Voltage (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
IIL	Input LOW Current (Except Bus)	$V_{C C}=$ MAX., $V_{\text {IN }}=0.4 \mathrm{~V}$		$\overline{\mathrm{BE}, \overline{R L E}}$			-0.72	mA
				All other inputs			-0.36	
$1 / \mathrm{H}$	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
I_{i}	Input HIGH Current (Except Bus)	$V_{C C}=$ MAX., $V_{\text {IN }}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$V_{C C}=$ MAX .		RECEIVER	-30		-130	mA
				PARITY	-20		-100	
${ }^{1} \mathrm{CC}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} .$, All Inputs = GND				75	110	mA

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Am2916AXM			Am2916AXC			Units
			Min.	Typ. (Note 2)	Max.		Typ. (Note 2)	Max.	
${ }^{\text {tPHL }}$	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B \cup S)=50 p F \\ & R_{L}(B \cup S)=130 \Omega \end{aligned}$		21	36		21	32	
$\mathrm{t}_{\mathrm{pLH}}$				21	36		21	32	ns
${ }^{\text {t }} \mathrm{ZH}, \mathrm{t}_{\mathrm{ZL}}$	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13	23	ns
${ }^{\text {thz }}$, $\mathrm{t}_{\mathrm{L}} \mathrm{Z}$				13	21		13	18	
$\mathrm{t}_{\text {s }}$	Data Inputs (A or B)		15			12			ns
t_{h}			8.0			6.0			
$\mathrm{t}_{\text {s }}$	Select Inputs (S)		28			25			ns
t_{h}			8.0			6.0			
tPW	Clock Pulse Width (HIGH)		20			17			ns
tPLH	Bus to Receiver Output (Latch Enabled)			18	33		18	30	ns
${ }^{\text {tPHL }}$				18	30		18	27	
tPLH	Latch Enable to Receiver Output			219	33		21	30	ns
tPHL				21	30		21	27	
t_{s}	Bus to Latch Enable ($\overline{\mathrm{RLE})}$	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$	15			13			ns
t_{h}			6.0			4.0			
tPLH	A or B Data to Odd Parity Output (Driver Enabled)			32	46		32	42	ns
tPHL				26	40		26	36	
tPLH	Bus to Odd Parity Output (Driver Inhibited, Latch Enabled)			21	36		21	32	ns
${ }^{\text {tPHL }}$				21	36		21	32	
${ }^{\text {tPLH }}$	Latch Enable ($\overline{\mathrm{RLE}}$) to Odd Parity Output			21	36		21	32	ns
tPHL				21	36		21	32	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test shoul not exceed one second.

SWITCHING TEST CIRCUIT

Note: Bus to Receiver output delay is measured by clocking data into the driver register
and measuring the $\overline{B \cup S}$ to R combinatorial delay.

Am2916A

DEFINITION OF FUNCTIONAL TERMS

$\mathbf{A}_{0}, \mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$ The " A " word data input into the two input multiplexer of the driver register.
$\mathbf{B}_{0}, \mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}$ The " B^{\prime} word data input into the two input multiplexers of the driver register.

S Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is HIGH, the B word is applied to the driver register.

DRCP
Driver Clock Pulse. Clock pulse for the driver register.
$\overline{B E}$
Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance state.
$\overline{\operatorname{BUS}}_{0}, \overline{\mathrm{BUS}}_{1} \quad$ The four driver outputs and receiver in$\overline{\mathrm{BUS}}_{2}, \overline{\mathrm{BUS}}_{3}$
$\mathbf{R}_{0}, \mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}$ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
$\overline{\text { RLE }} \quad$ Receiver Latch Enable. When $\overline{\operatorname{RLE}}$ is LOW, data on the BUS inputs is passed through the receiver latches. When $\overline{\operatorname{RLE}}$ is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.
Output Enable. When the $\overline{\mathrm{OE}}$ input is HIGH, the four three state receiver outputs are in the high-impedance state.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2916APC	P-24	C	C-1
AM2916ADC	D-24	C	C-1
AM2916ADC-B	D-24	C	B-1
AM2916ADM	D-24	M	C-3
AM2916ADM-B	D-24	M	B-3
AM2916AFM	F-24-1	M	C-3
AM2916AFM-B	F-24-1	M	B-3
AM2916AXC	Dice	C	Visual inspection
AM2916AXM	Dice	M	to MIL-STD-883
			Method 2010B.

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

APPLICATIONS

Generating or checking parity for 16 data bits.
MPR-173

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Three-state bus driver
- D-type register on driver
- Bus driver output can sink 48 mA at 0.5 V max.
- Internal odd 4-bit parity checker/generator
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12 mA
- Advanced low-power Schottky processing
- 3.5 V minimum output high voltage for direct interface to MOS microprocessors

FUNCTIONAL DESCRIPTION

The Am2917A is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops. The flip-flop outputs are connected to four threestate bus drivers. Each bus driver is internally connected to the input of a receiver. The four receiver outputs drive four D-type latches, that feature three-state outputs. The device also contains a four-bit odd parity checker/generator.

The LSI bus transceiver is fabricated using advanced lowpower Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The three-state bus output can sink up to 48 mA at 0.5 V maximum. The bus enable input ($\overline{\mathrm{BE}}$) is used to force the driver outputs to the high-impedance state. When $\overline{\mathrm{BE}}$ is HIGH, the driver is disabled.

The input register consists of four D-type flip-flops with a buffered common clock. The buffered common clock (DRCP) enters the A_{i} data into this driver register on the LOW-toHIGH transition.

Data from the A input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\mathrm{RLE}}$) input. When the $\overline{R L E}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and $\overline{O E}$ LOW). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control ($\overline{\mathrm{OE}}$) input. When $\overline{O E}$ is HIGH, the receiver outputs are in the high-impedance state.
The Am2917A features a built-in four-bit odd parity checker/ generator. The bus enable input ($\overline{\mathrm{BE}}$) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A field data input to the driver register. When $\overline{B E}$ is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.

LOGIC SYMBOL

$V_{C C}=P$ in 20
GND $_{1}=\operatorname{Pin} 5$
$\mathrm{GND}_{2}=\operatorname{Pin} 15$
MPR-175

CONNECTION DIAGRAM
Top View

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +VCC max.
DC Input Voltage	-0.5 V to +7 V
DC Output Current, Into Outputs (Except BUS)	30 mA
DC Output Current, Into Bus	100 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2917AXC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C M}$ MIN. $=4.75 \mathrm{~V} \quad V_{C C M A X}=5.25 \mathrm{~V}$
Am2917AXM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C} M I N .=4.50 \mathrm{~V} \quad V_{C C} M A X .=5.50 \mathrm{~V}$

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)		Min.	Typ.	Max.	Units
v_{OL}	Bus Output LOW Voltage	$V_{C C}=$ MIN.	$1 \mathrm{OL}=24 \mathrm{~mA}$			0.4	Volts
			$1 \mathrm{OL}=48 \mathrm{~mA}$			0.5	
v_{OH}	Bus Output HIGH Voltage	$V_{C C}=$ MIN.	COM'L, ${ }^{\prime} \mathrm{OH}=-20 \mathrm{~mA}$	2.4			Volts
			$\mathrm{MIL}, \mathrm{IOH}=-15 \mathrm{~mA}$				
10	Bus Leakage Current (High Impedance)	$V_{C C}=\operatorname{MAX}$ Bus enable $=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
IOFF	Bus Leakage Current (Power OFF)	$\begin{aligned} & V_{O}=4.5 \mathrm{~V} \\ & V_{C C}=0 \mathrm{~V} \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Receiver Input HIGH Threshold	Bus enable $=2.4 \mathrm{~V}$		2.0			Volts
$V_{\text {IL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$	COM ${ }^{\prime}$ L			0.8	Volts
			MIL	.		0.7	
Isc	Bus Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X . \\ & V_{O}=0 V \end{aligned}$		-50	-120	-225	mA

Am2917A

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2917AXC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C} M I N=4.75 \mathrm{~V} \quad V_{C C} M A X=5.25 \mathrm{~V}$
Am2917AXM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\text {CC }}$ MIN. $=4.50 \mathrm{~V} \quad \mathrm{~V}_{\text {CC }}$ MAX. $=5.50 \mathrm{~V}$
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE Typ.

Parameters	Description	Conditions (Note 1)			Min.	(Note 2)	Max.	Units
V_{OH}	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL: $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			COM ${ }^{\prime}$	$1 \mathrm{OH}^{\prime}=-2.6 \mathrm{~mA}$	2.4	3.4		
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$			3.5			
V_{OH}	Parity Output HIGH Voltage	$\begin{aligned} & V_{C C}=\text { MIN. } I_{O H}=-660 \mu A \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		MIL	2.5	3.4		Volts
				COM'L	2.7	3.4		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage (Except Bus)	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$		${ }^{1} \mathrm{OL}=4.0 \mathrm{~mA}$		0.27	0.4	Volts
				$1 \mathrm{OL}=8.0 \mathrm{~mA}$		0.32	0.45	
				$1 \mathrm{OL}=12 \mathrm{~mA}$		0.37	0.5	
$\mathrm{V}_{\mathbf{i}} \mathrm{H}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Volts
				COM'L			0.8	
V_{1}	Input Clamp Voltage (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
IIL	Input LOW Current (Except Bus)	$V_{C C}=$ MAX., $V_{\text {IN }}=0.4 \mathrm{~V}$		$\overline{\mathrm{BE}}, \overline{\mathrm{RLE}}$			-0.72	mA
				All other inputs			-0.36	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current (Except Bus)	$\mathrm{V}_{C C}=$ MAX., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current (Except Bus)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$V_{C C}=$ MAX .		RECEIVER	-30		-130	mA
				PARITY	-20		-100	
${ }^{\text {c C }}$	Power Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$.				63	95	mA
10	Off-State Output Current (Receiver Outputs)	$V_{C C}=$ MAX		$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-50	

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second

Note: Actual current flow direction shown

SWITCHING TEST CIRCUIT

Note: Bus to Receiver output delay is measured by clocking data into the driver register

Am2917A

The Am2917A can be used as an I/O Bus Transceiver and Main Memory I/O Transceiver in high-speed Microprocessor Systems.

Am2918

Quad D Register with Standard and Three-State Outputs

Distinctive Characteristics

- Advanced Schottky technology
- Four D-type flip-flops
- Four standard totem-pole outputs
- Four three-state outputs
- 75 MHz clock frequency

FUNCTIONAL DESCRIPTION

New Schottky circuits such as the Am2918 register provide the design engineer with additional flexibility in system configuration - especially with regard to bus structure, organization and speed. The Am2918 is a quadruple D-type register with four standard totem pole outputs and four three-state bus-type outputs. The 16 -pin device also features a buffered common clock (CP) and a buffered common output control ($\overline{\mathrm{OE}}$) for the Y outputs. Information meeting the set-up and hold requirements on the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock.

The same data as on the \mathbf{Q} outputs is enabled at the three-state Y outputs when the "output control" $(\overline{O E})$ input is LOW. When the $\overline{O E}$ input is HIGH, the Y outputs are in the highimpedance state.

The Am2918 register can be used in bipolar microprocessor designs as an address register, status register, instruction register or for various data or microword register applications. Because of the unique design of the three-state output, the device features very short propagation delay from the clock to the Q or Y outputs. Thus, system performance and architectural design can be improved by using the Am2918 register. Other applications of Am2918 register can be found in microprogrammed display systems, communication systems and most general or special purpose digital signal processing equipment.

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Flat-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}$, $V_{C C}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am2918×C Am2918XM Parameters	$\begin{gathered} \top_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ { }^{\top} A=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { Description } \end{gathered}$	$\begin{array}{r} V_{C C}=5.0 V \pm 5 \%(C O M \\ V_{C C}=5.0 V+10 \%(M) L \\ \text { Test Con } \end{array}$	ion	$\begin{aligned} & \mathrm{VIN}=4.75 \mathrm{~V} \\ & \text { VIN. }=4.5 \mathrm{~V} \end{aligned}$ Note 1)		$\begin{aligned} & =5.25 \mathrm{~V} \\ & =5.5 \mathrm{~V} \end{aligned}$ Min.	Typ. (Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M_{I N} ., \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	Q ${ }^{\text {OH }}$ ($=-1 \mathrm{~mA}$		MIL	2.5	3.4		Volts
					COM'L	2.7	3.4		
			Y	$\mathrm{XM}, \mathrm{I}^{\mathrm{OH}}=-2 \mathrm{~mA}$		2.4	3.4		
				$\mathrm{XC}, 1 \mathrm{OH}=-6.5 \mathrm{~mA}$		2.4	3.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 6)	$\begin{aligned} & V_{C C}=M I N ., I O L=20 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$						0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs				2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs						0.8	Volts
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{I N}=-18 \mathrm{~mA}$						-1.2	Volts
$\begin{aligned} & I_{I L} \\ & \text { (Note 3) } \end{aligned}$	Input LOW Current	$V_{C C}=M A X ., V_{1 N}=0.5 \mathrm{~V}$						-2.0	mA
$\begin{aligned} & I_{\text {IH }} \\ & \text { (Note 3) } \end{aligned}$	Input HIGH Current	$V_{C C}=M A X ., V_{1 N}=2.7 \mathrm{~V}$						50	$\mu \mathrm{A}$
11	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$						1.0	mA
${ }^{\prime}$	Y Output Off-State Leakage Current	$V_{C C}=$ MAX		$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				50	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0$. 4 V			-50	
Isc	Output Short Circuit Current (Note 4)	$V_{C C}=$ MAX.				-40		-100	mA
${ }^{\prime} \mathrm{CC}$	Power Supply Current	$\mathrm{V}_{\text {CC }}=$ MAX. (Note 5)					80	130	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents $=$ Unit Load Current \times Input Load Factor (see Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test shoud not exceed one second
5. I CC is measured with all inputs at 4.5 V and all outputs open.
6. Measured on Q outputs with Y outputs open. Measured on Y outputs with Q outputs open.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=280 \Omega$)

Parameters	Description		Test Conditions	Min.	Typ.	Max.	Units	
${ }^{\text {tPLH }}$	Clock to Q Output		$C_{L}=15 \mathrm{pF}$		6.0	9.0	ns	
${ }^{\text {tPHL }}$				8.5	13			
$t_{\text {pw }}$	Clock Pulse Width	HIGH		7.0			ns	
		LOW		9.0				
t_{s}	Daṭa			5.0			ns	
t_{h}	Data			3.0			ns	
tPLH	Clock to Y Output ($\overline{O E}$ LOW)				6.0	9.0	ns	
${ }_{\text {t PHL }}$				8.5	13			
${ }^{\text {t }} \mathrm{ZH}$	Output Control to Output			$C_{L}=15 \mathrm{pF}$		12.5	19	ns
t ZL					12	18		
${ }^{\text {t }} \mathrm{HZ}$			$C_{L}=5.0 \mathrm{pF}$		4.0	6.0		
$t_{L Z}$				7.0	10.5			
$f_{\text {max }}$	Maximum Clock Frequency			$C_{L}=15 \mathrm{pF}$	75	100		MHz

Am2918

TRUTH TABLE					
INPUTS			OUTPUTS		NOTES
$\overline{O E}$	$\underset{\text { CP }}{\text { CLOCK }}$	D	0	Y	
H H H H L L L L	L H \dagger \uparrow \uparrow \uparrow \uparrow - -	X X L H L H	NC NC L H L L H L H	Z Z Z Z Z L H L H	- - - - - 1 1
$L=$ LOW NC = No change $H=$ HIGH $\uparrow=$ LOW to HIGH transition $X=$ Don't care $Z=$ High impedance					
Note: 1. When $\bar{O} \bar{E}$ is LOW, the Y output will be in the same logic state as the Q output.					

DEFINITION OF FUNCTIONAL TERMS

D_{i} The four data inputs to the register.
$\mathbf{O}_{\mathbf{i}}$ The four data outputs of the register with standard totem-pole active pull-up outputs. Data is passed noninverted.
$\mathbf{Y}_{\mathbf{i}}$ The four three-state data outputs of the register. When the three-state outputs are enabled, data is passed noninverted. A HIGH on the "output control" input forces the Y_{i} outputs to the high-impedance state.
CP Clock. The buffered common clock for the register. Enters data on the LOW-to-HIGH transition.
$\overline{\mathrm{OE}}$ Output Control. When the $\overline{\mathrm{OE}}$ input is HIGH, the Yi outputs are in the high-impedance state. When the $\overline{O E}$ input is LOW, the TRUE register data is present at the Y_{i} outputs.

LOADING RULES (In Unit Loads)				
Input/Output	Pin No.'s	Input Unit Load	Fan Output HIGH	out Output LOW
D_{0}	1	1	-	-
O_{0}	2	-	20	10*
V_{0}	3	-	40/130	10*
D_{1}	4	1	-	-
\mathbf{Q}_{1}	5	-	20	10*
V_{1}	6	-	40/130	10*
$\overline{\mathbf{O E}}$	7	1	-	-
GND	8	-	-	-
CP	9	1	-	-
Y_{2}	10	-	40/130	10*
Q_{2}	11	-	20	10*
D_{2}	12	1	-	-
Y_{3}	13	-	40/130	10*
O_{3}	14	-	20	10*
	15	1	-	-
V_{CC}	16	-	-	-
A Schottky TTL Unit Load is defined as $50 \mu \mathrm{~A}$ measured at 2.7 V HIGH and -2.0 mA measured at 0.5 V LOW. *Fan-out on each Q_{i} and Y_{i} output pair should not exceed 15 unit loads (30 mA) for $i=0,1,2,3$.				
METALLIZATION AND PAD LAYOUT				

SCHOTTK Y INPUT/OUTPUT

 CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

The Am2918 as a 4-Bit status register

The Am2918 used as data-in, data-out and address registers.

The Am2918 can be connected for bi-directional interface between two buses. The device on the left stores data from the A-bus and drives the A-bus. The device on the right stores data from the B-bus and drives the A-bus. The output control is used to place either or both drivers in the high-impedance state. The contents of each register are available for continuous usage at the N and M ports of the device.

8-Bit serial to parallel converter with three-state output (W) and direct access to the register word (X).

Am29LS18

Quad D Register with Standard and Three-State Outputs

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	$(\mathrm{MIN}=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V})$
MIL	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MIN}=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V})$

DC CHAR Parameters	Description	ATING RANG Test Co	ditions (N		Min.	Typ. (Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{Q}, \mathrm{I}^{\text {OH }}=-660 \mu \mathrm{~A}$	MIL	2.5	3.4		Volts
				COM'L	2.7	3.4		
				$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4	3.4		
				$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{I}^{\mathrm{OH}}=2.6 \mathrm{~mA}$	2.4	3.4		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4.0 \mathrm{~mA}$				0.4	Volts
			${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
			$\mathrm{I}^{\mathrm{OLL}}=12 \mathrm{~mA}$				0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
v_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
I_{H}	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA
10	Off-State (High-Impedance) Output Current	$V_{C C}=$ MAX.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2$				20	
${ }^{1} \mathrm{SC}$	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX			-15		-85	mA
ICC	Power Supply Current (Note 4)	$V_{C C}=$ MAX				17	28	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. ICC is measured with all inputs at 4.5 V and all outputs open.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

Am29LS 18
SWITCHING CHARACTERISTICS
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Parameters	Description		Min.	Typ.	Max.	Units	Test Conditions
tPLH	Clock to $\mathrm{O}_{\mathbf{i}}$			18	27	ns	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL				18	27		
tple	Clock to $Y_{i}(\overline{O E}$ LOW)			18	27	ns	
tPHL				18	27		
$t_{\text {tw }}$	Clock Pulse Width	LOW	18			ns	
		HIGH	15				
t_{5}	Data		15			ns	
th	Data		5.0			ns	
${ }^{\text {2 }} \mathrm{ZH}$	$\overline{O E}$ to Y_{i}			7.0	11	ns	
${ }^{\mathrm{Z}} \mathrm{L}$				8	12		
${ }_{\text {t }} \mathrm{Hz}$	$\overline{O E}$ to Y_{i}			14	21	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }_{\text {t }} \mathrm{L}$				12	18		$R_{L}=2.0 \mathrm{k} \Omega$
$f_{\text {max }}$	Maximum Clock Frequency (Note 1)		35	50		MHz	

Note 1. Per industry convention, $f_{\text {max }}$ is the worst case value of the maximum device operating frequency with no constraints on t_{r}, t_{f}, pulse width or duty cycle.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description		$V_{C C}$ Min	$V \pm 5 \%$ Max.	$V_{C C}$ Min.	$\begin{aligned} & I \pm 10 \% \\ & \text { Max. } \end{aligned}$	Units	Test Conditions
tPLH	Clock to Q_{i}			38		45	ns	$\begin{aligned} C_{L} & =50 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL				38		45		
tpl ${ }^{\text {ch }}$	Clock to $Y_{i}(\overline{O E}$ LOW)			35		40	ns	
tPHL				35		40		
${ }^{t} \mathrm{pw}$	Clock Pulse Width	LOW	20		20		ns	
		HIGH	20		20			
$\mathrm{t}_{\text {s }}$	Data		15		15		ns	
th	Data		5.0		5.0		ns	
${ }^{\mathrm{Z}} \mathrm{H}$	$\overline{O E}$ to Y_{i}			15		17	ns	
${ }^{\text {Z }} \mathrm{L}$				16		17		
${ }_{\text {t }}^{\mathrm{Hz}}$	$\overline{O E}$ to Y_{i}			27		30	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{1}$ LZ				24		30		$R_{L}=2.0 \mathrm{k} \Omega$
$f_{\text {max }}$	Maximum Clock Frequency (Note 1)		30		25		MHz	

[^9]

Am29LS18

DEFINITION OF FUNCTIONAL TERMS

D_{i} The four data inputs to the register.
$\mathbf{Q}_{\mathbf{i}}$ The four data outputs of the register with standard totem-pole active pull-up outputs. Data is passed noninverted.
$\mathbf{Y}_{\mathbf{i}}$ The four three-state data outputs of the register. When the three-state outputs are enabled, data is passed noninverted. A HIGH on the "output control" input forces the Y_{i} outputs to the high-impedance state.
CP Clock. The buffered common clock for the register. Enters data on the LOW-to-HIGH transition.
$\overline{\mathrm{OE}}$ Output Control. When the $\overline{\mathrm{OE}}$ input is HIGH, the Yi outputs are in the high-impedance state. When the $\overline{\mathrm{OE}}$ input is LOW, the TRUE register data is present at the Y_{i} outputs.

TRUTH TABLE

INPUTS			OUTPUTS		NOTES
$\overline{\mathrm{OE}}$	$\begin{gathered} \text { CLOCK } \\ \text { CP } \end{gathered}$	D	0	Y	
H	L	X	NC	2	-
H	H	X	NC	z	-
H	\uparrow	L	L	Z	-
H	\uparrow	H	H	Z	-
L	\uparrow	L	L	L	-
L	\uparrow	H	H	H	-
L	-	-	L	L	1
L	-	-	H	H	1

$L=$ LOW $\quad N C=N o$ change $H=$ HIGH $\quad \uparrow=$ LOW to HIGH transition $X=$ Don't care $\quad Z=$ High impedance

Note: 1. When $\overline{O E}$ is LOW, the Y output will be in the same logic state as the Q output.

Metallization and Pad Layout

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM29LS18PC	P-16	C	$\mathrm{C}-1$
AM29LS18DC	D-16	C	$\mathrm{C}-1$
AM29LS18DC-B	D-16	C	$\mathrm{B}-1$
AM29LS18DM	D-16	M	$\mathrm{C}-3$
AM29LS18DM-B	$\mathrm{D}-16$	M	$\mathrm{B}-3$
AM29LS18FM	F-16	M	$\mathrm{C}-3$
AM29LS18FM-B	F-16	M	B-3
AM29LS18XC	Dice	C	Visual inspection
AM29LS18XM	Dice	M	to MIL-STD-883
			Method 2010B.

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Am2919

Quad Register with Dual Three-State Outputs

Am2919

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Typ.
Parameters Description Test Conditions (Note 1

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Inputs grounded; outputs open.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V CC max
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

FUNCTION TABLE

FUNCTION	INPUTS							INTERNAL	OUTPUTS	
	CP	$\mathrm{D}_{\mathbf{i}}$	\bar{E}	CLR	POL	$\overline{\text { OE-W }}$	$\overline{\mathrm{OE}-\mathrm{Y}}$	0	$\mathbf{w}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{i}}$
Output Three-State Control	$\begin{gathered} \hline x \\ x \\ x \\ x \\ \hline \end{gathered}$	$\begin{gathered} \hline x \\ x \\ x \\ x \\ \hline \end{gathered}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	H L H L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	NC NC NC NC		Enabled \mathbf{Z} \mathbf{Z} Enabled
Wi Polarity	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\bar{L}	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	Non-Inverting Inverting	Non-Inverting Non-Inverting
Asynchronous Clear	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	x \times	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Clock Enabled	$\begin{aligned} & \hline 1 \\ & t \\ & t \\ & t \\ & t \end{aligned}$	$\begin{aligned} & \text { X } \\ & \text { L } \\ & \text { L } \\ & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & H \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & X \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { NC } \\ & L \\ & L \\ & H \\ & H \\ & H \end{aligned}$	$\begin{gathered} \mathrm{NC} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{~L} \end{gathered}$	NC L L H H

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Note 1. Per industry convention, $f_{\text {max }}$ is the worst case value of the maximum device operating frequency with no constraints on t_{r}, t_{f}, pulse width or duty cycle.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters Description

Parameters		Description	Min.	Max.	Min.	Max.	Units	Test Conditions
$t_{\text {PLH }}$	Clock to Y_{i}			39		42	ns	$\begin{aligned} C_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
$\mathbf{t}_{\text {PHL }}$				39		45		
$t_{\text {PLH }}$	Clock to W_{i} (Either Polarity)			41		43	ns	
$t_{\text {PHL }}$				44		48		
$t_{\text {PHL }}$	Clear to Y_{i}			52		58	ns	
$t_{\text {PLH }}$	Clear to $\mathrm{W}_{\mathbf{i}}$			42		43	ns	
$t_{\text {PHL }}$				51		53		
${ }_{\text {tPLH }}$	Polarity to $\mathrm{W}_{\mathbf{i}}$			41		45	ns	
$t_{\text {PHL }}$				42		44		
$t_{\text {pw }}$	Clear		20		20		ns	
$t_{\text {pw }}$	Clock	LOW	20		20		ns	
		HIGH	20		20			
$\mathrm{t}_{\text {s }}$	Data		15		15		ns	
$t_{\text {h }}$	Data		10		10		ns	
$t_{\text {s }}$	Data Enable		25		25		ns	
$t_{\text {h }}$	Data Enable		0		0		ns	
t_{s}	Set-up Time, Clear Recovery (Inactive) to Clock		23		24		ns	
${ }_{\text {th }}$	Output Enable to W_{i} or Y_{i}			24		27	ns	
t_{Z}				29		35		
t_{HZ}	Output Enable to W_{i} or Y_{i}			33		45	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
$t_{L Z}$				22		26		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$
$f_{\text {max }}$	Maximum Clock Frequency (Note 1)		30		25		MHz	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$

[^10]

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type $($ Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2919PC	$\mathrm{P}-20$	C	$\mathrm{C}-1$
AM2919DC	$\mathrm{D}-20$	C	$\mathrm{C}-1$
AM2919DC-B	$\mathrm{D}-20$	C	$\mathrm{B}-1$
AM2919DM	$\mathrm{D}-20$	M	$\mathrm{C}-3$
AM2919DM-B	$\mathrm{D}-20$	M	$\mathrm{B}-3$
AM2919FM	$\mathrm{F}-20$	M	$\mathrm{C}-3$
AM2919FM-B	$\mathrm{F}-20$	C	$\mathrm{B}-3$
AM2919LC	$\mathrm{L}-20-1$	C	$\mathrm{C}-1$
AM2919LC-B	$\mathrm{L}-20-1$	M	$\mathrm{B}-1$
AM2919LM	$\mathrm{L}-20-1$	M	$\mathrm{C}-3$
AM2919LM-B	$\mathrm{L}-20-1$	C	$\mathrm{B}-3$
AM2919XC	Dice	M	Visual inspection
AM2919XM	Dice	to MIL-STD-883.	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Flat-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

APPLICATION

The Am2919 provides for easy control of the selection of source and destination register addresses for the Am2901. These controls can emanate from both the instruction register and the pipeline register. The control is accomplished by three-state action at the Am2919 outputs. Four different register outputs can be selected by the B address which is the destination register in the Am2901. Two registers can be selected for the Am2901 A input which is a second RAM source.
The other pair of three-state outputs can be used for function control select as shown with the Am2921. Here, bit set, bit clear, bit toggle and bit test on any of the 16 bits can be performed.

Am2920
 Octal D-Type Flip-Flop with Clear, Clock Enable and Three-State Control

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Flat-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Am2920

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$v_{C C}=5.0 V \pm 5 \%$
MIN. $=4.75 \mathrm{~V}$
MAX. $=5.25 \mathrm{~V}$
MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \% \quad \mathrm{MIN} .=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test' Conditions (Note 1)			Min.	(Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	MIL, $\mathrm{IOH}^{=}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts -
			COM'L	-2.6mA	2.4	3.4		
v_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOL}^{\prime}=$				0.4	Volts
			${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
v_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$V_{C C}=$ MAX., $V_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
$\mathbf{1 / H}^{\text {H }}$	Input HIGH Current	$V_{C C}=$ MAX., $V_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
$1 /$	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA
10	Off-State (High-Impedance) Output Current	$V_{C C}=M A X$.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2$				20	
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX.			-15		-85	mA
${ }^{\prime} \mathrm{CC}$	Power Supply Current (Note 4)	$V_{C C}=$ MAX .				24	37	mA

Notes: 1. For conditions shown as MIN, or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. All outputs open, $\bar{E}=G N D, D i$ inputs $=C L R=\overline{O E}=4.5 \mathrm{~V}$. Apply momentary ground, then 4.5 V to clock input.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$)

Note 1. Per industry convention, $f_{\max }$ is the worst case value of the maximum device operating frequency with no constraints on t_{r}, t_{f}, pulse width or duty cycle.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*			Am	C, DC	Am	,FM	Units	Test Conditions
			$\begin{aligned} & \mathrm{T}_{A}=0^{\circ} \\ & \mathrm{V}_{\mathrm{CC}}= \end{aligned}$	$\begin{aligned} & +70^{\circ} \mathrm{C} \\ & \pm 5 \% \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-5$ VCC	$\begin{aligned} & +125^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$		
Parameters	Description		Min.	Max.	Min.	Max.		
tplH	Clock to $Y_{i}(\overline{O E}$ LOW)			33		39	ns	$\begin{aligned} C_{L} & =50 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL				45		54		
tPHL	Clear to Y			43		51	ns	
t_{s}	Data (D_{j})		12		15		ns	
$t_{\text {h }}$	Data (D_{i})		12		15		ns	
$t_{\text {s }}$	Enable (\bar{E})	Active	17		20		ns	
		Inactive	20		23			
t_{h}	Enable (E)		0		0		ns	
$\mathrm{t}_{\text {s }}$	Clear Recovery (In-Active) to Clock		13		15		ns	
${ }^{\text {t }}$ w ${ }^{\text {d }}$	Clock	HIGH	25		30		ns	
		LOW	30		35			
${ }^{\text {tpw }}$	Clear		22		25		ns	
${ }^{\text {2 }} \mathrm{H}$	$\overline{O E}$ to Y_{i}			19		25	ns	
t ZL				30		39		
${ }^{\text {t }} \mathrm{HZ}$	$\overline{O E}$ to Y_{i}			35		40	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
$\mathrm{t}_{\mathrm{L}} \mathrm{Z}$				39		42		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$
$f_{\text {max }}$	Maximum Clock Frequency (Note 1)		25		20		MHz	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9 .

Am2920

Am2921
 One-of-Eight Decoder
 with Three-State Outputs and Polarity Control

ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:

COM	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Typ.

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OH}}=1.0 \mathrm{~mA}(\mathrm{MIL})$		2.4	3.4		Volts
			$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}\left(\mathrm{COM}^{\prime} \mathrm{L}\right)$		2.4	3.4		
$\mathrm{vOL}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} . \end{aligned}$	$\mathrm{IOL}=4$				0.4	Volts
			$1 \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
			$1 \mathrm{OL}=12 \mathrm{~mA}$				0.5	
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
v_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}^{\prime} \mathrm{N}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
${ }_{1} \mathrm{H}$	Input HIGH Current	$V_{C C}=M A X ., V_{I N}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA
10	Off-State (High-Impedance) Output Current	$\mathrm{V}_{\mathrm{CC}}=$ MAX.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{0}=2$,		20	
${ }^{\prime} \mathrm{SC}$	Output Short Circuit Current (Note 3)	$\mathrm{V}_{C C}=$ MAX.			-15		-85	mA
ICC	Power Supply Current (Note 4)	$V_{C C}=$ MAX.				21	34	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Tvpical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Test conditions: $A=B=C=\bar{E}_{1}=\bar{E}_{2}=G N D: E_{3}=E_{4}=P O L=\overline{O E}_{1}=\overline{O E}_{2}=4.5 \mathrm{~V}$.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

Am2921
SWITCHING CHARACTERISTICS
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$)

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
tPLH	A, B, C to Y_{i}		20	30	ns	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL			15	22		
tplH	$\overline{E_{1}}, \overline{E_{2}}$ to Y_{i}		19	28	ns	
tPHL			20	30		
tple	E_{3}, E_{4} to Y_{i}		21	31	ns	
tPHL			23	34		
tpLH	POL to Y_{i}		16	24	ns	
tPHL			20	30		
${ }^{\mathrm{Z}} \mathrm{Z} \mathrm{H}$	$\overline{O E_{1}}, \overline{O E_{2}}$ to Y_{i}		17	25	ns	
${ }_{\text {t }} \mathrm{L}$			14	21		
${ }_{\mathrm{t}}^{\mathrm{Hz}}$	$\overline{O E_{1}}, \overline{O E_{2}}$ to Y_{i}		17	25	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {t }} \mathrm{L}$ Z			20	30		$R_{L}=2.0 \mathrm{k} \Omega$

SWITCHING CHARACTERISTICS

 OVER OPERATING RANGE*

AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

DEFINITION OF FUNCTIONAL TERMS

A, B,C,D The three select inputs to the decoder/demultiplexer.
\bar{E}_{1}, \bar{E}_{2} The active LOW enable inputs. A HIGH on either the \bar{E}_{1} or \bar{E}_{2} input forces all decoded functions to be disabled.
E3, E4 The active HIGH enable inputs. A LOW on either E_{3} or E_{4} inputs forces all the decoded functions to be inhibited.
POL Polarity Control. A LOW on the polarity control input forces the output to the active-HIGH state while a HIGH on the polarity control input forces the Y outputs to the active-LOW state.
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$ Output Enable. When both the $\overline{\mathrm{OE}}_{1}$ and $\overline{\mathrm{OE}}_{2}$ inputs are LOW, the Y outputs are enabled. If either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ input is HIGH , the Y outputs are in the high impedance state.
$Y_{i} \quad$ The eight outputs for the decoder/demultiplexer.

GUARANTEED LOADING RULES OVER OPERATING RANGE (In Unit Loads)

A Low-Power Schottky TTL Unit Load is defined as $20 \mu \mathrm{~A}$ measured at

 2.7 VHIGH and -0.36 mA measured at 0.4 V LOW.| Pin No.'s | Input/Output | Input Load | Output HIGH MIL COM'L | | $\begin{array}{r} \mathrm{O} \\ \mathrm{MIL} \end{array}$ | utput
 LOW COM'L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Y_{2} | - | 50 | 130 | 33 | 33 |
| 2 | Y_{1} | - | 50 | 130 | 33 | 33 |
| 3 | Y_{0} | - | 50 | 130 | 33 | 33 |
| 4 | $\overline{\mathrm{OE}}_{1}$ | 1:0 | - | - | - | - |
| 5 | $\overline{\mathrm{OE}}_{2}$ | 1.0 | - | - | - | - |
| 6 | A | 1.0 | - | - | - | - |
| 7 | B | 1.0 | - | - | - | - |
| 8 | Y_{5} | - | 50 | 130 | 33 | 33 |
| 9 | Y_{6} | - | 50 | 130 | 33 | 33 |
| 10 | GND | - | - | - | - | - |
| 11 | Y_{7} | - | 50 | 130 | 33 | 33 |
| 12 | POL | 1.0 | - | - | - | - |
| 13 | E_{4} | 1.0 | - | - | - | - |
| 14 | E_{3} | 1.0 | - | - | - | - |
| 15 | \bar{E}_{2} | 1.0 | -. | - | - | - |
| 16 | \bar{E}_{1} | 1.0 | - | - | - | - |
| 17 | C | 1.0 | - | - | - | - |
| 18 | Y_{4} | - | 50 | 130 | 33 | 33 |
| 19 | Y_{3} | - | 50 | 130 | 33 | 33 |
| 20 | V_{CC} | - | - | - | - | - |

FUNCTION TABLE

FUNCTION	INPUTS										OUTPUTS							
	$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	\bar{E}_{1}	\bar{E}_{2}	E_{3}	E_{4}	POL	C	B	A	Y_{0}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}	Y_{7}
High Impedance	$\begin{aligned} & H \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	\times \times \times	X X	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & z \\ & z \end{aligned}$	z z						
Disable	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	H H X x x x x X	x x H H x x x x	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	L H L H L H L H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$
Active-HIGH Output	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & H \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & L \end{aligned}$	L L L H L L L L	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & H \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$
Active-LOW Output	L L L L L L L L	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	L L L L H H H H	L L H H L L H H	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & L \end{aligned}$	L L H H H H H H H	H L H H H H H H	H H L H H H H H	$\begin{aligned} & \mathrm{H} \\ & H \\ & H \\ & \mathrm{H} \end{aligned}$	H H H H L H H H	H H H H H L H H	H H H H H H H H	H H H H H H H L

$H=$ HIGH $\quad L=$ LOW $\quad X=$ Don't Care $\quad Z=$ High Impedance

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2921PC	$\mathrm{P}-20$	C	$\mathrm{C}-1$
AM2921DC	$\mathrm{D}-20$	C	$\mathrm{C}-1$
AM2921DC-B	$\mathrm{D}-20$	C	$\mathrm{B}-1$
AM2921DM	$\mathrm{D}-20$	M	$\mathrm{C}-3$
AM2921DM-B	$\mathrm{D}-20$	M	$\mathrm{B}-3$
AM2921FM	$\mathrm{F}-20$	M	$\mathrm{C}-3$
AM2921FM-B	$\mathrm{F}-20$	C	$\mathrm{B}-3$
AM2921LC	$\mathrm{C}-20-1$	C	$\mathrm{C}-1$
AM2921LC-B	$\mathrm{L}-20-1$	M	$\mathrm{B}-1$
AM2921LM	$\mathrm{L}-20-1$	C	B
AM2921LM-B	$\mathrm{L}-20-1$	M	$\mathrm{B}-3$
AM2921XC	Dice		Visual inspection
AM2921XM	Dice	to MIL-STD-883.	
		Method 2010B.	

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak, $\mathrm{F}=$ Flat-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Two Am2921's can be used to perform a bit set, bit clear, bit toggle or bit test on any of sixteen bits in a microprocessor system. Examples of the operations performed are as follows:

Microprogram Control					16-Bit Field From Am2921															Am2901 ALU Function	Bit Function Performed On Selected Register
D	C	B	A	POL	0	1	2	3	4	5	6	7	8	9	10	112	13	14			
0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	00	0	0	0	OR	BIT SET
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0		01	0	0	0	AND	BIT TEST
0	1	1	0	1	1	1	1	1	1.	1	0	1	1	1	1	11	1		1	AND	BIT CLEAR
1	0	1	0	1		1	1	1	1	1	1	1	1	1	0	$1 \cdot 1$	1	1	1	EX NOR	BIT TOGGLE
1	0		0	0	0	0	0	0	0	0	0	0	0	0	1	00	0	0		EX OR	BIT TOGGLE

Note: Bit test is performed using $F=0$ output of $A m 2901 A$.

Am2922
 Eight Input Multiplexer with Control Register

DISTINCTIVE CHARACTERISTICS

- High speed eight-input multiplexer
- On-chip Multiplexer Select and Polarity Control Register
- Output polarity control for inverting or non-inverting output
- Common register enable
- Asynchronous register clear
- Three-state output for expansion
- AC parameters specified over operating temperature and power supply ranges.

FUNCTIONAL DESCRIPTION

The Am2922 is an eight-input Multiplexer with Control Register. The device features high speed from clock to output and is intended for use in high speed computer control units or structured state machine designs.
The Am2922 contains an internal register which holds the A, B and C multiplexer select lines as well as the POL (Polarity) control bit. When the Register Enable input ($\overline{R E}$) is LOW, new data is.entered into the register on the LOW- to-HIGH, transition of the clock. When $\overline{R E}$ is HIGH, the register retains its current data. An asynchronous clear input ($\overline{\mathrm{CLR}}$) is used to reset the register to a logic LOW level.
The A, B and C register outputs select one of eight multiplexer data inputs. A HIGH on the Polarity Control flip-flop output causes a true (non-inverting) multiplexer output, and a LOW causes the output to be inverted. In a computer control unit, this allows testing of either true or complemented flag data at the microprogram sequencer test input.
An active LOW Multiplexer Enable input ($\overline{\mathrm{ME}}$) allows the selected multiplexer input to be passed to the output. When ME is HIGH, the output is determined only by the Polarity Control bit.
The Am2922 also features a three-state Output Enable control $(\overline{O E})$ for expansion. When $\overline{O E}$ is LOW, the output is enabled. When $\overline{\mathrm{OE}}$ is HIGH, the output is in the high impedance state.

RELATED PRODUCTS

Part No.	Description
Am25LS2535	8-Input Multiplexer
Am2923	8-Input Multiplexer

Am2922

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$	
MIL	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4	3.4		Volts
			$\mathrm{COM}^{\prime} \mathrm{L}, 1{ }^{\mathrm{OH}}=-6.5 \mathrm{~mA}$		2.4	3.2		
v_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$1 \mathrm{OL}=4.0 \mathrm{~mA}$				0.4	Volts
			$1 \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
			$1 \mathrm{OL}=20 \mathrm{~mA}$				0.5	
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
v_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\begin{aligned} & V_{C C}=\text { MAX. } \\ & V_{\text {IN }}=0.4 \mathrm{~V} \end{aligned}$	$\overline{M E}, \overline{O E}, \overline{R E}$				-0.72	mA
			$\mathrm{D}_{\mathrm{N}}, \mathrm{A}, \mathrm{B}$, CP, CLR			-2.0	
I_{H}	Input HIGH Current	$\begin{aligned} & v_{C C}=\text { MAX. } \\ & v_{I N}=2.7 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{ME}}, \overline{\mathrm{OE}}$,				40	$\mu \mathrm{A}$
			D_{N}, A, B	, CP, $\overline{C L R}$			50	
$1 /$	Input HIGH Current	$\begin{aligned} & V_{C C}=M A X ., \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{ME}}, \overline{\mathrm{OE}}$,				0.1	mA
			$\mathrm{D}_{\mathrm{N}}, \mathrm{A}, \mathrm{B}$, CP, $\overline{C L R}$			1.0	
${ }^{\prime} \mathrm{OZ}$	Off-State (High-Impedance) Output Current	$V_{C C}=$ MAX .	$\mathrm{V}_{\mathrm{O}}=0.4$				-50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4$				50	
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX			-40		-100	mA
I'c	Power Supply Current (Note 4)	$V_{C C}=$ MAX				97	148	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. $D_{N}, A, B, C, P O L, \overline{M E}$ at G nd. All other inputs and outputs open. Measured after a momentary ground then 4.5 V applied to clock input.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +VCC max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	-30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
$t_{\text {PLH }}$	Clock to Y POL - LOW		21	32	ns	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {tPHL }}$			19	29		
$t_{\text {PLH }}$	Clock to Y POL - HIGH		16	24	ns	
${ }_{\text {tPHL }}$			19	29		
$t_{\text {PLH }}$	D_{n} to Y		10	16	ns	
${ }^{\text {tPHL }}$.	13	19		
$t_{\text {PLH }}$	CLR to Y		22	33	ns	
${ }^{\text {tPHL }}$			22	33		
$t_{\text {PLH }}$	$\overline{M E}$ to Y		12	18	ns	
${ }^{\text {P }}$ PHL			12	18		
t_{ZL}	$\overline{\mathrm{OE}}$ to Y		8	14	ns	
${ }_{\text {Z }}$			8	14		
$t_{L Z}$			10	17	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
t_{HZ}			10	17		$R_{L}=2.0 \mathrm{k} \Omega$
$t_{\text {s }}$	A, B, C, POL	10			ns	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
	CE	15				
$t_{\text {s }}$	CLR Recovery	5			ns	
$t_{\text {pw }}$	Clock	10			ns	
	Clear (LOW)	10				
$t_{\text {h }}$	A, B, C, POL, CE	0			ns	

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*		Am2922PC, DC		Am2922DM, FM		Units	Test Conditions
Parameters Description		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$			
		Min.	Max.	Min.	Max.		
${ }^{\text {tPLH }}$	Clock to Y, POL-L		40		47	ns	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
$t_{\text {PHL }}$			34		38		
${ }_{\text {tPLH }}$	Clock to Y, POL-H		29		33	ns	
${ }^{\text {t PHL }}$			35		41	ns	
${ }_{\text {t }}{ }_{\text {PLH }}$	D_{N} to Y		19		21	ns	
${ }_{\text {t }}{ }_{\text {PHL }}$			22		24	ns	
${ }_{\text {tPLH }}$	CLR to Y		39		45	ns	
$\mathrm{t}_{\text {PHL }}$			39		45		
${ }_{\text {P }}{ }_{\text {PLH }}$	$\overline{M E}$ to Y		22		26	ns	
${ }_{\text {t }}{ }_{\text {PHL }}$			19		20		
$\mathrm{tzL}_{\mathrm{ZL}}$	$\overline{\mathrm{OE}}$ to Y		19		24	ns	
${ }_{\text {t }}$			22		29		
t_{Lz}	$\overline{\mathrm{OE}}$ to Y		24		30	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
t_{Hz}			24		30		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$
t_{s}	A, B, C POL	11		12		ns	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
	CE	18		20			
t_{s}	CLR Recovery	6		7		ns	
$t_{\text {pw }}$	Clock	11		12		ns	
	Clear (LOW)	11		12			
t_{H}	A, B, C, POL, CE	3		3		ns	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9 .

DEFINITION OF FUNCTIONAL TERMS

A, B, C Multiplexer Select Lines. One of eight multiplexer data inputs is selected by the A, B and C register outputs.
POL Polarity Control Bit. A HIGH register output causes a true (non-inverted) output and a LOW causes the output to be inverted.
$\overline{\mathrm{ME}} \quad$ Multiplexer Enable. When LOW, it enabled the 8 -input multiplexer. When HIGH, the Y output is determined by only the Polarity Control bit.
$\overline{R E}$
Register Enable. When LOW, the Multiplexer Select and Polarity Control Register is enabled for loading. When HIGH, the register holds its current data.
$\overline{\text { CLR }} \quad$ Clear. A LOW asynchronously resets the Multiplexer Select and Polarity Control Register.
$\mathrm{D}_{1}-\mathrm{D}_{8}$ Data Inputs to the 8-input multiplexer.
CP Clock Pulse. When $\overline{\mathrm{RE}}$ is LOW, the Multiplexer Select and Polarity Control Register changes state on the LOW-to-HIGH transition of CP.
$\overline{\mathbf{O E}} \quad$ Output Enable. When LOW, the output is enabled. When HIGH, the output is in the high impedance state.

Y The chip output.

FUNCTION TABLE

MODE	INPUTS							INTERNAL				INPUTS		OUTPUT
	C	B	A	POL	$\overline{\mathrm{RE}}$	$\overline{C L R}$	CP	O_{C}	O_{B}	$\mathbf{Q}_{\mathbf{A}}$	QPOL	$\overline{\mathrm{ME}}$	$\overline{O E}$	Y
Clear	$\begin{aligned} & x \\ & 1 \end{aligned}$	$\stackrel{L}{L}$	$\begin{aligned} & x \\ & 1 \end{aligned}$	$\stackrel{L}{\downarrow}$	$\begin{aligned} & L \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \downarrow \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \downarrow \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} H \\ \bar{D}_{0} \\ Z \end{gathered}$				
Reg. Disable	X	X	x	X	H	H	X	NC	NC	NC	NC	L	L	$\begin{aligned} & \bar{D}_{i} / D_{i} \\ & (\text { Note } 1) \end{aligned}$
Select (Multiplex)	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & H \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \end{aligned}$	L H L H L H L H	$\begin{gathered} \mathrm{L} / \mathrm{H} \\ \\ \\ \hline \end{gathered}$	L	H \|		$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & H \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$		L I	L	$\begin{aligned} & \overline{\mathrm{D}}_{0} / \mathrm{D}_{0} \\ & \overline{\mathrm{D}}_{1} / \mathrm{D}_{1} \\ & \overline{\mathrm{D}}_{2} / \mathrm{D}_{2} \\ & \overline{\mathrm{D}} 3^{2} / \mathrm{D}_{3} \\ & \overline{\mathrm{D}}_{4} / \mathrm{D}_{4} \\ & \overline{\mathrm{D}}_{5} / \mathrm{D}_{5} \\ & \overline{\mathrm{D}}_{6} / \mathrm{D}_{6} \\ & \overline{\mathrm{D}}_{7} / \mathrm{D}_{7} \end{aligned}$
Multiplexer Disable	X	X	X	x	X	H	X	$\begin{array}{r} \mathrm{x} \\ \mathrm{x} \\ \hline \end{array}$	$\begin{gathered} \mathrm{x} \\ \mathrm{x} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	H
Tri-state Output Disable	\dagger	1	\dagger	\dagger	\dagger	1	\dagger	X	X	X	X		H	Z

$N C=$ No Change \quad Note 1: The output will follow the selected input, D_{i}, or its
$X=$ Don't Care complement depending on the state of the POL flip-flop.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2922PC	$\mathrm{P}-20$	C	C

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak, $F=$ Flat-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Am2923

Eight-Input Multiplexer

Distinctive Characteristics

- Advanced Schottky technology
- Switches one of eight inputs to two complementary outputs
- 3-state output for bus organized systems

MAXIMUM RATINGS (Above which the useful life may be impaired).

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \max$.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Output	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am2923PC, DC, XC	$T_{A}=0$ to $70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%(C O M ' L)$	$M I N=4.75 \mathrm{~V}$	$M A X=5.25 \mathrm{~V}$
Am2923DM, FM, XM	$\mathrm{T}_{\mathrm{A}}=-55$. to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIL})$	$\mathrm{MN}=4.5 \mathrm{~V}$	$\mathrm{MAX}=5.5 \mathrm{~V}$

Am2923DM, $\mathrm{FM}, \mathrm{XM} \quad \mathrm{T}_{\mathrm{A}}=-55$. to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIL}) \quad \mathrm{MIN}=4.5 \mathrm{~V} \quad \mathrm{MAX}=5.5 \mathrm{~V}$

Parameters	Description		Test Conditions (Note 1)		Min	(Note 2)	Max	Units
V_{OH}	Output HIGH Voltage	MIL	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4	3.4		Volts
		COM'L		$\mathrm{I}_{\mathrm{OH}}=-6.5 \mathrm{~mA}$	2.4	3.2		
V_{OL}	Output LOW Voltage		$\begin{aligned} & V_{C C}=M I N, I_{O L}=20 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.5	Volts
V_{IH}	Input HIGH Level		Guaranteed input logical HIGH voltage for all inputs		2			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level		Guaranteed input logical LOW voltage for all inputs				0.8	Volts
V_{1}	Input Clamp Voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$				-1.2	Volts
$\begin{aligned} & I_{1 L} \\ & \text { (Note 3) } \end{aligned}$	Unit Load Input LOW Current		$V_{C C}=M A X, V_{\text {IN }}=0.5$				-2	mA
$\begin{aligned} & \mathrm{I}_{\mathbf{1 H}} \\ & \text { (Note 3) } \end{aligned}$	Unit Load Input HIGH Current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7$				50	$\mu \mathrm{A}$
1	Input HIGH Current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1	mA
10 (off)	Off-State (High-Impedance) Output Current		$\begin{aligned} & V_{C C}=M A X, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & V_{O}=2.4 \mathrm{~V} \\ & V_{O}=0.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 50 \\ -50 \\ \hline \end{gathered}$	$\mu \mathrm{A}$
$I_{\text {SC }}$	Output Short Circuit Current (Note 4)		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OU }}$	$=0.0 \mathrm{~V}$	-40		-100	mA
ICC	Power Supply Current		$\mathrm{V}_{\text {CC }}=$ MAX (Note 5)			55	85	mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents = Unit Load Current x Input Load Factor (see Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
5. I_{C} is measured with all outputs open and all inputs at 4.5 V .

SWITCHING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Parameters	Description	Test Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,	12	18	ns
$t_{\text {PHL }}$				13	19.5	n
$t_{\text {PLH }}$	A, B, or C to $\bar{W} ; 3$ Levels of Delay			10	15	ns
$\mathrm{t}_{\text {PHL }}$				9	13.5	
$\mathrm{tPLH}^{\text {P }}$	Any D to Y			8	12	ns
$\mathrm{t}_{\text {PHL }}$				8	12	
$\mathrm{t}_{\text {PLH }}$	Any D to \bar{W}			4.5	7	ns
$\mathrm{t}_{\mathrm{PHL}}$				4.5	7	
t_{ZH}	Output Enable to Y	$V_{C C}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=280 \Omega, C_{L}=15 \mathrm{pF}$		13	19.5	ns
t_{ZL}				14	21	ns
${ }_{\text {t }}{ }_{\text {L }}$	Output Enable to \bar{W}			13	19.5	ns
t_{ZL}				14	21	
t_{Hz}	Output Enable to Y	$V_{C C}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		5.5	8.5	ns
$\mathrm{t}_{\text {L }} \mathrm{z}$				9	14	ns
t_{Hz}	Output Enable to \bar{W}			5.5	8.5	ns
${ }_{t}{ }_{L}$				9	14	

Am2923

Am2924

Three-Line to Eight-Line Decoder/Demultiplexer

Distinctive Characteristics

- Advanced Schottky technology
- Inverting and non-inverting enable inputs

FUNCTIONAL DESCRIPTION

The Am2924 is a 3 -line to 8 -line decoder/demultiplexer fabricated using advanced Schottky technology. The decoder has three buffered select inputs A, B and C that are decoded to one of eight \bar{Y} outputs.
One active-HIGH and two active-LOW enables can be used for gating the decoder or can be used with incoming data for demultiplexing applications. When the enable input function is in the disable state, all eight \bar{Y} outputs are HIGH regardless of the A, B and C select inputs.

RELATED PRODUCTS	
Part No.	Description
Am25LS2536	8-Bit Decoder
Am2LS2537	1of 10 Decoder
Am25LS2538	1of 8 Decoder
Am25LS2539	Dual 1 of 4 Decoder
Am25LS2548	Chip Select Address Decoder
Am2921	1of 8 Decoder

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2924PC	P-16-1	C	C-1
AM2924DC	$\mathrm{D}-16-1$	C	$\mathrm{C}-1$
AM2924DC-B	$\mathrm{D}-16-1$	C	$\mathrm{B}-1$
AM2924DM	$\mathrm{D}-16-1$	M	$\mathrm{C}-3$
AM2924DM-B	$\mathrm{D}-16-1$	M	$\mathrm{B}-3$
AM2924FM	$\mathrm{F}-16-1$	M	$\mathrm{C}-3$
AM2924FM-B	$\mathrm{F}-16-1$	M	$\mathrm{B}-3$
AM2924LC	$\mathrm{L}-20-1$	C	$\mathrm{C}-1$
AM2924LC-B	L-20-1	C	$\mathrm{B}-1$
AM2924LM	$\mathrm{L}-20-1$	M	$\mathrm{C}-3$
AM2924LM-B	L-20-1	M	$\mathrm{B}-3$
AM2924XC	Dice	C	Visual inspection
AM2924XM	Dice	M	toMIL-STD-883.
			Method 2010B.

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak, $\mathrm{F}=$ Flat-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}$, $V_{C C}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +VCC max.
DC Input Voltage	$-0.5 \mathrm{~V} \mathrm{to}+5.5 \mathrm{~V}$
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

$\begin{aligned} & \text { Am2924PC, DC, XC } \\ & \text { Am2924DM, FM, XM } \end{aligned}$	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \pm 5 \%\left(C O M^{\prime} \mathrm{L}\right) \\ & v_{C C}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIL}) \end{aligned}$		$\begin{aligned} & \text { MIN. }=4.75 \mathrm{~V} \\ & \text { MIN. }=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MAX. }=5.25 \mathrm{~V} \\ & \text { MAX. }=5.5 \mathrm{~V} \end{aligned}$		
Parameters	Description	Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$	MIL	2.5	3.4		Volts
			COM'L	2.7	3.4		
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=20 \mathrm{~mA} \\ & V_{\text {IN }}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.5	Volts
$\mathrm{V}_{1} \mathrm{H}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
IIL (Note 3)	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$				-2	mA
I_{1} (Note 3)	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{\text {CC }}=M A X ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
ISC	Output Short Circuit C (Note 4)	$\mathrm{V}_{\text {CC }}=$ MAX:,, $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$		-40		-100	mA
'cc	Power Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} .($ Note 5)			49	74	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents $=$ Unit Load Current \times Input Load Factor (See Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
5. Outputs enabled and open.

Switching Characteristics ($\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Parameter	Description	Test Conditions	Min.	Typ.	Max.	Units
${ }^{\text {tPLH }}$	Two Level Delay Select to Output	$V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$		4.5	7	ns
tPHL				7	10.5	
tPLH	Three Level Delay Select to Output			7.5	12	ns
tPHL				8	12	
tPLH	$\overline{\text { G2A }}$ or $\overline{\text { G2B }}$ to Output			5	8	ns
tPHL				7	11	
tPLH	G1 to Output			7	11	ns
${ }_{\text {tPHL }}$				7	11	

One-of-Sixteen Derrultiplexer

METALLIZATION AND PAD LAYOUT

Am2925
 Clock Generator and Microcycle Length Controller

DISTINCTIVE CHARACTERISTICS

- Crystal controlled oscillator

Stable operation from 1 MHz to over 31 MHz

- Four microcode controlled clock outputs

Allows clock cycle length control for $15-30 \%$ increase in system throughput. Microcode selects one of eight clock patterns from 3 to 10 oscillator cycles in length

- System controls for Run/Halt and Single Step

Switch debounced inputs provide flexible halt controls

- Slim 0.3" 24-pin package

LSI complexity in minimum board area

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2925DC	D-24-Slim	C	$\mathrm{C}-1$
AM2925DC-B	D-24-Slim	C	$\mathrm{B}-1$
AM2925DM	D-24-Slim	M	$\mathrm{C}-3$
AM2925DM-B	D-24-Slim	M	$\mathrm{B}-3$
AM2925LC	L-28-1	C	$\mathrm{C}-1$
AM2925LC-B	L-28-1	C	$\mathrm{C}-3$
AM2925LM	L-28-1	M	$\mathrm{B}-1$
AM2925LM-B	L-28-1	M	$\mathrm{B}-3$
AM2925XC	Dice	C	Visual inspection
AM2925XM	Dice	M	MIL-STD-883
			Method 2010B.

Notes: 1. $D=$ Hermetic DIP. Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}$, $V_{C C}=4.50$ to 5.50 V .
3. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

FUNCTIONAL DESCRIPTION

The Am2925 is a single-chip general purpose clock generator/ driver. It is crystal controlled, and has microprogrammable clock cycle length to provide significant speed-up over fixed clock cycle approaches and meet a variety of system speed requirements. The Am2925 generates four different simultaneous clock output waveforms tailored to meet the needs of Am2900 and other bipolar and MOS microprocessor based systems. One-of-eight cycle lengths may be generated under microprogram control using the Cycle Length inputs L_{1}, L_{2}, and L_{3}.
The Am2925 oscillator runs at frequencies to over 31 MHz . A buffered oscillator output, F_{0}, is provided for external system timing in addition to the four microcode controlled clock outputs $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}.
System control functions include Run, Halt, Single-Step, Initialize and Ready/Wait controls. In addition, the FIRST/LAST input determines where a halt occurs and the C_{x} input determines the end point timing of wait cycles. $\overline{\text { WAITACK }}$ indicates that the Am2925 is in a wait state.

CONNECTION DIAGRAMS - Top Views
D-24-Slim

Leadless Chip Carrier
L-28-1

Note: Pin 1 is marked for orientation.

DEFINITION OF FUNCTIONAL TERMS (Cont.)			
WAITREQ	The Wait Request active LOW input. When LOW this input will cause the outputs to halt during the next oscillator cycle before the C_{x} input goes LOW.	READY	The $\overline{\text { READY }}$ active LOW input is used to continue normal clock output patterns after a wait stage.
C_{x}	Wait cycle control input. The clock outputs respond to a wait request one oscillator clock cycle after C_{X} goes LOW. C_{X} is normally tied to any one of $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ or C_{4}.	INTT	The Initialize active LOW input. This input is intended for use during power up initialization of the system. When LOW all clock outputs free run regardless of the state of the Halt, Single Step, Wait Request and Ready inputs.
$\overline{\text { WAITACK }}$	The Wait Acknowledge active LOW output. When LOW, this output indicates that all clock outputs are in the "WAIT" state.	$\mathrm{X}_{1}, \mathrm{X}_{2}$	External crystal connections. X_{1} can also be driven by a TTL frequency source.

Am 2925 CLOCK WAVEFORMS

PATTERN	
INPUT CODE $L_{3} L_{2} L_{1}$	WAVEFORMS AND TIMING
$\begin{gathered} \mathrm{F}_{3} \\ \mathrm{LLL} \end{gathered}$	
$\begin{gathered} \mathrm{F}_{4} \\ \mathrm{LLH} \end{gathered}$	
$\begin{gathered} \mathrm{F}_{5} \\ \mathrm{HLLH} \end{gathered}$	
$\begin{gathered} \mathrm{F}_{6} \\ \mathrm{HHH} \end{gathered}$	

PATTERN	
$\begin{aligned} & \text { INPUT } \\ & \text { CODE } \\ & L_{3} L_{2} L_{1} \end{aligned}$	WAVEFORMS AND TIMING
F_{7} LHH	
F_{8} LHL	
F9 HHL	
F_{10} HLL	

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
$\begin{array}{ll}\text { COM'L } & \mathrm{T}_{\mathrm{A}}=0 \text { to } 70^{\circ} \mathrm{C} \\ \text { MIL } & \mathrm{T}_{\mathrm{C}}=-55 \text { to } 125^{\circ} \mathrm{C}\end{array}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \quad(\mathrm{M} \mid \mathrm{N}=4.75 \mathrm{~V}$
MAX $=5.25 \mathrm{~V}$)
MIL $\quad \mathrm{T}_{\mathrm{C}}=-55$ to $125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \quad(\mathrm{MIN}=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.50 \mathrm{~V})$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)						Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units		
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$		$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$				2.5			Voits		
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\overline{\text { WAITACK }}$ C_{i}		$\mathrm{l}^{\mathrm{OL}}=4.0$				0.4	Volts		
								0.45					
				$\mathrm{IOL}=12$				0.5					
				F_{0}		$\mathrm{lOL}=16$				0.5	Volts		
V_{IH}	Input HIGH Level (Note 3)	Guaranteed input logical HIGH voltage for all inputs						2.0			Voits		
V_{IL}	Input LOW level (Note 3)	Guaranteed input logical LOW voltage for all inputs					MIL			0.7	Volts		
							COM'L			0.8			
V_{1}	Input Clamp Voltage (Note 3)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$								-1.5	Volts		
IIL	Input LOW Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{\mathbb{I N}}=0.4 \mathrm{~V} \end{aligned}$					$\overline{\text { READY, }}$ INIT, L_{1}, L_{2}, L_{3}					-0.4	mA
					WAITREQ, X_{1} (See Figure 1)					-0.8	mA		
					SSNO, SSNC, $\overline{R U N}, \overline{H A L T}$					-1.0	mA		
					C_{X}					-1.2	mA		
					FIRST/LAST					-1.5	mA		
$I_{1 H}$	Input HIGH Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \end{aligned}$					$\overline{\text { READY, INI }}$					20	$\mu \mathrm{A}$
					WAITREQ					50	$\mu \mathrm{A}$		
					SSNO, SSNC, $\overline{\text { RUN }}$, $\overline{\text { HALT }}$					-500	$\mu \mathrm{A}$		
					C_{X}					70	$\mu \mathrm{A}$		
					FIRST/LAST					-750	$\mu \mathrm{A}$		
					X_{1} (See Figure 1)					500	$\mu \mathrm{A}$		
1	Input HIGH Current	$V_{C C}=$ MAX			$\overline{\text { READY, }}$ INIT, L_{1}, L_{2}, L_{3}					100	$\mu \mathrm{A}$		
					SSNO, SSNC, $\overline{\text { RUN }}$, $\overline{H A L T}$					100	$\mu \mathrm{A}$		
			$V_{\text {IN }}$		WAITREQ, C_{X}					1.0	mA		
					FIRST/LAST					1.0	mA		
					X_{1} (See Figure 1)					1.0	mA		
${ }^{\text {ISC }}$	Output Short Circuit Current (Note 4)	$V_{C C}=M A X$						-30		-85	mA		
${ }^{\text {I CC }}$	Power Supply Current (Note 5)	$V_{C C}=M A X$							85	120	mA		

Notes: 1. For conditions shown as MIN or MAX use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Does not apply to X_{1} and X_{2}.
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
5. I_{CC} varies with temperature and oscillation frequency as shown in Figure 2. The parameters specified (worst case) applies to $f_{0}=0,+25^{\circ} \mathrm{C}, \mathrm{C}_{1}=$ $\mathrm{C}_{2}=\mathrm{C}_{3}=$ LOW, $\mathrm{C}_{4}=\mathrm{HIGH}, \mathrm{X}_{1}=2.4 \mathrm{~V}, \mathrm{X}_{2}=$ open and $\mathrm{F}_{0}=$ LOW. The variations shown in Figure 2 apply to typical values.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

Am2925
SWITCHING CHARACTERISTICS

TYPICAL EXTERNAL CONNECTIONS

MPR-783

DESIGN CONSIDERATIONS

1. Oscillator external connections should be less than $1^{\prime \prime}$ long wirewrap is not recommended.
2. V_{CC} and GND connections should be less than $1 / 2^{\prime \prime}$ long to power plane.
3. Supply decoupling includes both high frequency and bulk storage elements.
4. The same considerations apply for 3rd overtone configurations.

X_{1} is not a TTL input. It is a crystal connection to an inverting linear oscillator amplifier, and is specified primarily for test convenience.

Figure 1. Am2925 X_{1} Input Characteristics (Typical, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameters		Description	CC	-5\%	Vcc	-10\%	Units	Test Conditions	
		Min	Max	Min	Max				
1	${ }^{\dagger}{ }_{\text {max }}{ }_{1}$		F_{0} Frequency (C_{X} Connected) (Note 6)	31		31		MHz	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$
2	${ }^{\text {max2 }}$	F_{0} Frequency ($\mathrm{C}_{\mathrm{X}}=\mathrm{HIGH}$)							
3	${ }^{\text {t OFFSET }}$	$\mathrm{F}_{0}(\boldsymbol{F})$ to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ or $\overline{\text { WAITACK }}$ (5)		8.5		8.5	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$	
4	$t_{\text {OFFSET }}$	$\mathrm{F}_{0}(-5)$ to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ or WAITAGK (I)		17.0		18.0	ns		
5	$t_{\text {SKEW }}$	$\mathrm{C}_{1}(5)$ to $\mathrm{C}_{2}(5)$		2		2	ns		
6	tSKEW			2		2	ns		
7	$\mathrm{t}_{\text {SKEW }}$	$\mathrm{C}_{1}\left(\boldsymbol{\text { F) }}\right.$ to C_{4} (Z) Opposite Transition		11		11	ns		
8	t_{s}	L_{1}, L_{2}, L_{3} to $C_{1}(5)$	6		7		ns		
9	t_{H}	$\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ to $\mathrm{C}_{1}(5)$	11		11		ns		
10.	t_{5}	C_{X} to F_{0} (5) (Note 7)	25		25		ns		
11	H_{H}	C_{X} to $\mathrm{F}_{0}(5)$ (Note 7)	0		0		ns		
12	t_{5}		25		25		ns		
13	t_{H}	$\overline{\text { WAITREQ }}$ to $\mathrm{F}_{0}(5)$ (Note 8)	0		0		ns		
14	t_{5}	$\overline{\text { READY }}$ to $\mathrm{F}_{0}(5)$ (Note 8)	25		25		ns		
15	t_{H}	$\overline{\text { READY }}$ to $\mathrm{F}_{0}\left(\right.$ - $^{\text {) (}}$ (Note 8)	0		0		ns		
16	t_{5}	$\overline{\mathrm{RUN}}, \overline{\mathrm{HALT}}$ (Z) to F_{0} (5) (Notes 8,9)	25		25		ns		
17	t_{s}	SSNC, SSNO to Fo (5) (Notes 8, 9)	25		25		ns		
18	t_{5}	FIRST/LAST to $\mathrm{F}_{0}\left(5^{-}\right)$(Note 10)	30		35		ns		
19	t_{5}	$\overline{\text { INTT (Z) }}$) to F_{0} (5) (Note 8)	33		35		ns		
20	$t_{\text {PWL }}$	$\overline{\text { INIT L L }}$ W Pause Width	20		25		ns		
21	${ }_{\text {tpLH }}$	$\overline{\text { INIT }}$ to $\overline{\text { WAITACK }}$		25		27	ns		
22	$\mathrm{t}_{\text {PLH }}$	Propagation Delay (Note ${ }^{*} 11$) X_{1} to F_{0}		23		26	ns	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	
23	$\mathrm{t}_{\text {PHL }}$			21		23	ns		

6. The frequency guarantees apply with C_{x} connected to $C_{1}, C_{2}, C_{3}, C_{4}$ or HIGH. The C_{x} input load must be considered part of the $50 \mathrm{pF} / 2.0 \mathrm{k} \Omega$ clock output loading
7. These setup and hold times apply to the F_{0} LOW-to-HIGH transition of the period in which C_{X} goes LOW
8. These inputs are synchronized internally. Failure to meet t_{s} may cause a $1 / F_{0}$ delay but will not cause incorrect operation.
9. These inputs are "debounced" by an internal R-S flip-flop and are intended to be connected to manual break-before-make switches.
10. FIRST/LAST is normally wired HIGH or LOW.
11. Reference point of T offset has been moved forward which has increased T offsets.

Figure 2. Am2925 Icc Normalized vs Frequency ($\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$)
MPR-785

SWITCHING CHARACTERISTICS

NORMAL CYCLE WITHOUT WAIT STATES (Pattern F6 Shown)
MPR-786

Am2925 APPLICATIONS

DETAILED FUNCTIONAL DESCRIPTION

The Am2925 is a dynamically programmable general-purpose clock generator/driver. It can be logically separated into three parts. There is an oscillator, a state machine decoder and a state machine control section.
The oscillator is a linear inverting amplifier which with a minimum of external parts may be configured as a 1st harmonic* crystal oscillator, 3rd harmonic* crystal oscillator, L-C oscillator or used to buffer an external clock. the buffered, inverted output of this oscillator is availavble as F_{0}.
The state machine takes microcode information from the Microcycle Length " L " inputs L_{1}, L_{2} and L_{3} and counts the fundamental frequency of the internal oscillator, F_{0}, to create the clock outputs, $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}.
The clock outputs have a characteristic wave shape relationship for each microcycle length. For example, C_{1} is always LOW only on the last F_{0} clock period of a microcycle and C_{4} is always LOW on the first. C_{3} has an approximately 50% duty cycle, and C_{2} is HIGH for all but the last two periods.
The current state of the machine is contained in a register, part of which is the Clock Generator Register. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} are the outputs of this register. These outputs and the outputs of the Microcycle Control Latch are fed into a set of combinatorial logic to generate the next state. On each falling edge of the internal clock the next state is entered into the current state register. The Microcycle Control Latch is latched when C_{1} is HIGH. This means that it will be loaded during the last state of each microcycle, ($C_{1}=C_{2}=C_{3}=$ LOW, $C_{4}=\mathrm{HIGH}$). This internal latch selects one of eight possible microcycle lengths, F_{3} to F_{10}.
The state machine control logic, which determines the mode of operation of the state machine, is intended to be connected to a front panel. There are four basic modes of operation of the Am2925 comprised of Run, Halt, Wait and Single Step.

SYSTEM TIMING

In the typical computer, the time required to execute different instructions varies. However, the time allotted to each instruction is the time that it takes to execute the longest instruction. The Am2925 allows the user to dynamically vary the time allotted for each instruction, thereby allowing the user to realize a higher throughput.

This application note will cover several aspects of the Am2925. The first topic to be covered is the oscillator section which is responsible for providing the basis of all system timing. Second will be how to operate the Am2925; last will be an example of an Am2925 in a 16 -bit microprogrammed machine.

OSCILLATOR

The Am2925 contains an inverting, linear amplifier which is intended to form the basis of a crystal oscillator. In designing this oscillator it is necessary to consider several factors related to the application.

The first consideration is the desired frequency accuracy. This may be subdivided into several areas. An oscillator is considered stable if it is insensitive to variations in temperature and supply voltage, and if it is unaffected by individual component changes and aging. The design of the Am2925 is such that the degree to
*It is understood that the terms "fundamental mode" and "3rd overtone" are generally regarded as more technically correct, but "1st harmonic" and "3rd harmonic" are used here because of their more generally accepted usage
which these goals are met is determined primarily by the choice of external components. Various types of crystals are available and the manufacturers' literature should be consulted to determine the appropriate type. For good temperature stability, zero temperature coefficient capacitors should be used (Type NPO). For extreme temperature stability, an oven must be used or some other form of temperature compensation applied.

Absolute frequency accuracy must also be considered. The resonant frequency varies with load capacitance. It is therefore important to match the load specified by the crystal manufacturer for a standard crystal (usually 32 pF), or to specify the load when ordering a special crystal. It should then be possible to determine from the crystal characteristics the load tolerance to maintain a given accuracy. If the "set-on" error due to load tolerance is unacceptable, a trimmer capacitor should be incorporated for fine adjustment.

The mechanism by which a crystal resonates is electromechanical. This resonance occurs at a fundamental frequency (1st harmonic) and at all odd harmonics of this frequency (even harmonic resonance is not mechanically possible). Unless otherwise constrained crystal oscillators operate at their fundamental frequency. However, crystals are not generally available with fundamental frequencies above $20-25 \mathrm{MHz}$. At higher frequencies, an overtone oscillator must be used. In this case, the crystal is designed to oscillate efficiently at one of its odd harmonic frequencies and additional components are included in the oscillator circuit to prevent it oscillating at lower harmonics.
Where a high degree of accuracy or stability is not required, the amplifier may be configured as an L-C oscillator. It may also be driven from an external clock source if operation is required in synchronism with that source.

1st Harmonic (Fundamental) Oscillator

The circuit of a typical 1st harmonic oscillator is shown in Figure 1. The crystal load is comprised of the two 68 pF capacitors in series. This 34 pF approximates the standard 32 pF crystal load. If a closer match is required then one of the capacitors should be replaced with a parallel combination of a fixed capacitor and a trimmer. The nominal value of the combination should be 60 pF to provide proper crystal loading.
A typical crystal specification for use in this circuit is:
Frequency Range: $5-20 \mathrm{MHz}$
Resonance: Parallel Mode
Load: 32pF
Stability: $.01 \%$ or to match systems requirements
Case: H-17 - for smaller size
Temp Range: -30 to $+70^{\circ} \mathrm{C}$
Note: Frequency will change over temp

Figure 1. Connections for $5-20 \mathrm{MHz}$

It is good practice to ground the case of the crystal to eliminate stray pick-up and keep all connections as short as possible.
Note: At fundamental frequencies below 5 MHz it is possible for the oscillator to operate at the 3rd harmonic. To prevent this a resistor should be added in series with the X_{2} pin as shown in the circuit diagram.
The resistor value should match the impedance of C_{2} :
$R=X_{C_{2}}=\frac{1}{2 \pi f_{2}}$

3rd Harmonic Oscillator

At frequencies greater than 20 MHz the crystal can be operated at its 3rd harmonic. A typical circuit is shown in Figure 2. Two additional components are included; an inductor, L_{1}, and a capacitor, C_{3}. The purpose of the capacitor is to block the d.c. path through the inductor and thereby maintain the correct amplifier bias. C_{3} should be large ($\geqslant 1000 \mathrm{pF}$).
The inductor forms a parallel tuned circuit with C_{1}. This circuit has its resonance set between the 1st and 3rd harmonics of the crystal and is used to prevent the oscillator operating at the 1st harmonic. In the 1st harmonic oscillator (Figure 1), the crystal appears as an inductor and forms a π-network with the two capacitors, thus providing the necessary phase shift for oscillation. In the 3rd harmonic oscillator, L_{1} and C_{1} are chosen such that at the 3rd harmonic the impedance of circuit is equivalent to that of the capacitor C_{2} in the 1st harmonic oscillator, (Figure 3b). Thus, the same π-network is formed (Figure 3c) and oscillation is possible. At the 1st harmonic the tuned circuit appears as an inductor (Figure 3a), the π-network is not formed and oscillation is not possible.

MPR-793
Figure 2. Connections for Frequencies above $\mathbf{2 0 M H z}$

The following specification is typical for a crystal to be used in a 3rd harmonic oscillator.

Frequency Range: Above 20 MHz

Load: 32pF
Stability: $.01 \%$ or to match systems requirements
Case: $\mathrm{H}-17$ - for smaller size
Temp Range: -30 to $+70^{\circ} \mathrm{C}$
Note: Frequency will change temp
Again it is good practice to ground the crystal case and keep connections short.

Figure 3. Forcing Third Harmonic Oscillation

Design Procedure

(1) Assume $\mathrm{C}_{1}=82 \mathrm{pF}$ and $\mathrm{C}_{2}=68 \mathrm{pF}$ (this gives a sensible inductor value). L_{1} is calculated according to the formula

$$
L_{1}=\frac{1151}{f_{0}^{2}} \quad f_{0}=\text { Operating frequency in } M H z
$$

This sets the resonant frequency of the L-C combination at $0.52 \mathrm{f}_{\mathrm{o}}$.
(2) Select the closest standard value inductor for L_{1}. Using this value calculate C_{1} such that the resulting crystal load at the 3rd harmonic is 32 pF .

$$
C_{1}=60+\frac{25330}{L_{1} \cdot f_{0}^{2}} \quad C_{1} \text { in } p F
$$

Choose the closest standard capacitor value to this.
Using standard values both the resonant frequency of the L-C circuit (f_{r}) and the crystal load are non-optimal. This will cause a slight error in the oscillating frequency. If this is not permissible C_{1} may be a fixed capacitor in parallel with a trimmer such that the range of adjustment includes the calculated value for C_{1}. This is then set to give the desired frequency. In either case the approximate inductor value will cause the resonant frequency to the L-C circuit to change. This frequency, f_{r}, may be computed and should remain approximately midway between the 1st and 3rd harmonic.

$$
\begin{array}{ll}
f_{r}=\frac{159}{\sqrt{L_{1} \cdot C_{1}}} \quad \begin{array}{l}
f_{r} \text { in } M H z \\
L_{1} \text { in } \mu H \\
C_{1} \text { in } p F
\end{array}
\end{array}
$$

L-C Oscillator

The Am2925 can be operated as'an L-C tuned oscillator (Figure 4) and will perform as a stable oscillator within the restrictions of the chosen frequency determining components, i.e., (inductor and capacitors). The circuit chosen is a classical π-network with DC loop isolation. The Am2925 oscillator is a DC biased linear amplifier. This DC bias is necessary and therefore C_{3} is included to block the DC path through the inductor. If a variable slug tuned inductor is used a moderate range of frequency adjustment tuneability (approximately $2: 1$) can be achieved. The range can be enhanced by switching the two resonant capacitors ($\mathrm{C}_{1}, \mathrm{C}_{2}$) to larger or smaller values. The specific frequency of operation can be determined by the formula

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

(where C is C_{1} and C_{2} in series).

MPR-798

Figure 4. L-C Tuned Oscillator

External Clock Drive

The Am2925 can be driven from an external clock source at a signal level of 1.0 V P-P or greater. This is accomplished by reducing the gain of the amplifier, and AC coupling the input signal (Figure 5). The gain is reduced by feeding the amplifier output back to the input through a $4.7 \mathrm{k} \Omega$ resistor. AC coupling is provided by a $0.01 \mu \mathrm{~F}$ capacitor. The controlled gain minimizes ringing caused by the fast rising edges of the driver.
The AC coupling maintains oscillator output symmetry by preserving oscillator DC bias levels. X_{1} can be driven directly by TTL levels meeting the DC input requirements.

MPR-797
Figure 5. External Clock Drive

Am2925 Control Inputs

The control inputs fall into two categories, microcycle length control and clock control. Microcycle length control is provided via the " L " inputs which is intended to be connected to the microprogram memory. The " L " inputs are used to select one of eight cycle lengths ranging from three oscillator cycles for pattern F_{3} to ten oscillator cycles for pattern F_{10}. This information is always loaded at the end of the microcycle into the Microcycle Control Latch. The microcycle latch performs the function of a pipeline register for the microcycle length microcode bits. Therefore, the cycle length goes in the same microword as the instruction that it is associated with.
The clock control inputs are used to synchronize the microprogram machine with the external world and $1 / O$ devices. Inputs like $\overline{\text { RUN }}, \overline{\text { HALT, SSNO and SSNC, which start and stop execu- }}$ tion, are meant to be connected to switches on the front panel of the microprogrammed machine (see Figure 6). These inputs have internal pull-up resistors and are connected to an R-S flip-flop in order to provide switch debouncing. The FIRST/LAST input is used to determine at what point of the microcycle the Am2925 will halt when HALT or a SINGLE STEP is initiated. In most applications the user wires this input HIGH or LOW depending on his design.

Figure 6. Switch Connection for $\overline{\text { RUN }} / \overline{\mathrm{HALT}}$ and Single Step

Figure 7. Am2925 $\overline{\text { WAIT/READY }}$ Timing
MPR-800

When $\overline{\text { HALT }}$ is held low $(\overline{\mathrm{RUN}}=$ HIGH $)$ the state machine will start the halt mode on the last ($C_{1}=$ LOW) or the first ($C_{4}=$ LOW) state of the microcycle as determined by the FIRST/LAST input. When $\overline{\mathrm{RUN}}$ goes low $(\overline{\mathrm{HALT}}=\mathrm{HIGH})$ the state machine will resume the run mode.
The $\overline{\text { WAITREQ }}, C_{X}, \overline{\text { READY }}$ and $\overline{\text { WAITACK }}$ signals are used to synchronize other parts of a computer system (memory, I/O devices) to the CPU by dynamically stretching the microcycle. For example, the CPU may access a slow peripheral that requires the data remain on the data bus for several microseconds in which case the peripheral pulls the WAITREQ line LOW. The C_{X} input lets the designer specify when the WAITREQ line is sampled in the microcycle. This has a direct impact on how much time the peripheral has to respond in order to request a wait cycle (see Figure 7). The $\overline{R E A D Y}$ line is used by the peripheral to signal when it is ready to resume execution of the rest of the microcycle. The WAITACK line goes LOW on the next oscillator cycle after the C_{X} input goes LOW and remains LOW until the second oscillator cycle after $\overline{\text { READY }}$ goes LOW.

The SSNO and SSNC inputs are used to initiate the SINGLE STEP mode. These debounced inputs allow a single microcycle to occur while in the halt mode. SSNO (normally open) and SSNC (normally closed) are intended to be connected to a momentary SPDT switch. After SSNO has been low for one clock edge, the state machine will change to the run mode. The microcycle will end on the first or last state of the microcycle depending on the state of the FIRST/LAST.

AC Timing Signal References

Set-up and hold times in registers and latches are measured relative to the clock signals that drives them. In the Am2925, the crystal oscillator provides a free running clock signal that drives all the registers on the devices. This clock is provided for the user through the buffered output of F_{0}. Therefore, F_{0} is used as the reference for set-up, hold and clock to output times. However for the Microcontrol Latch, the set-up and hold times are referenced to the C_{1} output which is the buffered version of the latch enable. This reference is appropriate for the Microcontrol Latch because in a typical application this latch is considered part of the pipeline register which is also driven by one of the "C" outputs.

Clock Outputs

There are four clock outputs provided for the user which have different duty cycles. The user must make a decision as to which one best fits his purposes. For example, in a three address architecture, with the Am2903 (Figure 8), the C_{3} clock (approximately 50% duty cycle) could be used to drive the clock input while C_{2} (always low last two oscillator cycles) drives Instruction Enable. This guarantees, for microcycle lengths greater than four, that the internal RAM data latches of the Am2903 are closed and the destination address is multiplexed onto the B address bus before the RAM begins the Write cycle (Figure 9).

16-BIT MACHINE WITH Am2925

The block diagram in Figure 10 shows a 16 -bit microprogrammed machine which uses an Am2925 to generate system timing. The design decisions include oscillator frequency and clock pattern selections.

Selecting the Crystal

In order to pick the oscillator frequency, a detailed timing analysis of the machine must be done in order to determine the execution length of every operation to be performed. For each operation there will be several delay paths, which usually include the ALU and the microprogram control.

Figure 8. Am2903 Three Address Architecture

Figure 9. Am2903 Three Address Operation
MPR-802

Figure 10. 16-Bit Microprogrammed Machine

Figure 11 is an example of two of these paths. PATH 1 is a path through the Am2910 (Figure 10) for a microprogram Conditional Jump Subroutine. PATH 2 is a data flow path through the Am2903 for an Add instruction. Therefore, if the operation were an Add with a Conditional Jump Subroutine the maximum delay would be 196ns. If there were a Program Control Unit also, then delays through it would have to be considered.

After the execution times all of the instruction types have been calculated, the oscillator frequency can be selected. It is desirable to minimize the difference between the most commonly used instructions and multiples of the oscillator period. In this way the most efficient use can be made of the variable microcycle scheme.
For example, in the hypothetical machine in Figure 10 there are five instruction types (most machines will have more). Figure 12 is a table which lists each instruction type, corresponding execution time, and anticipated percentage of the typical instruction stream for each instruction. Several possible frequencies are shown which contain the next highest multiple of the corresponding oscillator period for each instruction. 20 MHz is the best choice because it comes closest to matching instructions A and C which compose 90% of the typical instruction stream.

In this example, 20 MHz was chosen. At 20 MHz there is a choice between fundamental or overtone crystals. Fundamental frequency crystals are commonly available up to 25 MHz and 3 rd harmonic crystals are available above 17 MHz . A fundamental crystal was selected for the example machine because the component count for the oscillator design is lower than for the overtone design. However, if it had turned out that 30 MHz was a better choice then overtone operation would be chosen since fundamental crystals above 25 MHz are not generally available.

Fixed Bandwidth Buses

For those designs that require a data bus with fixed bandwidth and fixed time slots for each memory access, the designer should consider using cycle lengths which are a multiple of the shortest cycle length, i.e., cycle lengths 3,6 and 9 or cycle lengths 4 and 8 .

The design could further require that the bus be accessed only during the shortest cycle length. Therefore, by using multiple cycle lengths it can be predicted when the CPU will access the bus and for how long, thereby maintaining the fixed bandwidth.

Performance Comparison

Estimated performance can be calculated directly from Figure 12. For a fixed microcycle machine the longest instruction execution time would have to be used for all instructions, yielding an average instruction time of 228 ns . With a variable microcycle machine the average instruction time is the sum of the products for each instruction, of the percentage of the instruction stream and the next highest multiple. The average instruction for the example machine with a 20 MHz crystal is:

$$
\begin{aligned}
& (0.6 \times 150+.08 \times 200+.3+200+.01 \times 200+.01+250)= \\
& 170.5 \mathrm{~ns}
\end{aligned}
$$

This represents a 25% increase in system performance without requiring any other system speed-ups and without requiring faster devices.

Device No.	Device Path	Path 1	Path 2
Am27S27	CP - Q	27	27
Am2904	INST - CT	58	-
Am2903	I/AB - GP	-	81
Am2910	CC - Y	43	-
Am2902A	GP - CN + Z	-	7
Am27S27	TS	55	-
Am2903	CN - Z	-	64
Am2904	TSZ	-	17
Total	ns	183	196

Figure 11. Delay Path Totals for an Add and a Conditional Jump Subroutine

Instruction Type	A	B	C	D	E	Unit
Execution Time	143	180	184	200	228	ns
Percentage of Instruction Stream	60%	8%	30%	1%	1%	$\%$
Closest Multiple						
Oscillator Period						
$20 \mathrm{MHz} \mathrm{P}=50$	$150(3 P)$	$200(4 P)$	$200(4 P)$	$200(4 \mathrm{P})$	$250(5 \mathrm{P})$	ns
$25 \mathrm{MHz} \mathrm{P}=40$	$160(4 \mathrm{P})$	$200(5 \mathrm{P})$	$200(5 \mathrm{P})$	$200(5 \mathrm{P})$	$240(6 \mathrm{P})$	ns
$30 \mathrm{MHz} \mathrm{P}=33$	$167(5 \mathrm{P})$	$200(6 \mathrm{P})$	$200(6 \mathrm{P})$	$200(6 \mathrm{P})$	$233(7 \mathrm{P})$	ns
$33 \mathrm{MHz} P=30$	$150(5 \mathrm{P})$	$180(6 \mathrm{P})$	$210(7 \mathrm{P})$	$210(7 \mathrm{P})$	$240(8 \mathrm{P})$	ns

Figure 12. Instruction Time Analysis

Am2926•Am2929
 Schottky Three-State Quad Bus Driver/Receiver

Distinctive Characteristics

- Advanced Schottky technology
- 48mA driver sink current
- 3-state outputs on driver and receiver
- PNP inputs
- Am2926 has inverting outputs
- Am2929 has non-inverting outputs
- Driver propagation delay - 14ns max for Am2926; 17ns max for Am2929
- Receiver propagation delay - 14ns max for Am2926; 17ns max for Am2929

FUNCTIONAL DESCRIPTION

The Am2926 and Am2929 are high speed bus transceivers consisting of four bus drivers with three-state outputs and four bus receivers, also with three-state outputs. Each driver output is internally connected to a receiver input. Both the drivers and receivers have PNP inputs.

One buffered common "bus enable" input is connected to the four drivers and another buffered common "receiver enable" input is connected to the receivers. A LOW on the bus enable (B / E) input forces the four driver outputs to the high-impedance state. A HIGH on the bus enable allows input data to be transferred onto the data bus.
A HIGH on the receiver enable ($\overline{\mathrm{R} / E}$) input forces the four receiver outputs to the high-impedance state while a LOW on the receiver enable input allows the received data to be transferred to the output. The complementary design of the bus enable and receiver enable inputs allows these control inputs to be connected together externally such that a single transmit/receive function is derived.

LOGIC SYMBOL

$V_{\text {cC }}=P_{\text {in }} 16$
$\mathrm{GND}=\mathrm{Pin} 8$
BLI-136

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs (Receiver)	30 mA
DC Output Current, Into Outputs (BUS)	80 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The Following Conditions Apply Unless Otherwise Noted:
Am2926PC, DC, XC Am2929PC, DC, XC $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (COM'L) MIN. $=4.75 \mathrm{~V} \quad \mathrm{MAX}=5.25 \mathrm{~V}$
Am2929DM, XM Am2926DM, XM $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (MIL) MIN. $=4.50 \mathrm{~V}$ MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units
Driver						
IIL	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
IIL	Low Level Input Current (Disabled)	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-25	$\mu \mathrm{A}$
I_{H}	High Level Input Current ($\mathrm{IIN}^{\text {, } \mathrm{DE}_{\mathrm{E}} \text {) }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }} \mathrm{MAX}$.			25	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	IOUT $=48 \mathrm{~mA}$ (Note 5)			0.5	Volts
v_{OH}	High Level Output Voltage	$\mathrm{I}^{\text {OUT }}=-10 \mathrm{~mA}, \mathrm{~V}_{C C}=\mathrm{V}_{\text {CC }}$ MIN. $($ Note 6$)$	2.4			Volts
Ios	Short Circuit Output Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {CC }} \mathrm{MAX}$. (Note 4)	-50		-150	mA

$I_{\text {IL }}$	Low Level Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$		-200	$\mu \mathrm{A}$
$1 / \mathrm{H}$	High Level Input Current (R_{E})	$V_{\text {IN }}=V_{C C} M A X$.		25	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\mathrm{I}^{\text {OUT }}=20 \mathrm{~mA}$ (Note 5)		0.5	Volts
$\mathbf{V O H}^{\text {O }}$	High Level Output Voltage	$\mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CC }}=5.0 \mathrm{~V}$	3.5		Volts
		$\mathrm{I}^{\text {OUT }}=-2.0 \mathrm{~mA}$ (Note 6)	2.4		
Ios	Short Circuit Output Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {CC }} \mathrm{MAX}$.	-30	-75	mA

Both Driver and Receiver

$v_{\text {TL }}$	Low Level Input Threshold Voltage			0.85		Volts
$\mathrm{V}_{\text {TH }}$	High Level Input Threshold Voltage				2.0	Volts
10	Low Level Output Off Leakage Current		$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$		-100	$\mu \mathrm{A}$
	High Level Output Off Leakage Current		$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$		100	$\mu \mathrm{A}$
V_{1}	Input Clamp Voitage		$1 \mathrm{IN}=-12 \mathrm{~mA}$		-1.0	Volts
PWR/ ICC	Power/Current Consumption	Am2926	$V_{C C}=V_{C C} M A X$.		457/87	$\mathrm{mW} / \mathrm{mA}$
		Am2929	$\mathrm{V}_{C C}=\mathrm{V}_{\text {CC }} \mathrm{MAX}$.		578/110	

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$)				Am2926			Am2929		
Parameters	Description	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
${ }^{\text {tPLH }}$	Driver Input to Bus	Figure 1		10	14		13	17	ns
tPHL				10	14		13	17	
${ }^{\text {tPLH }}$	Bus to Receiver Output	Figure 2		9.0	14		12	17	ns
tPHL				6.0	14		9.0	17	
${ }^{\text {Z }} \mathrm{L}$ L	Driver Enable to Bus	Figure 3		19	25		21	28	ns
$t_{\text {L }}$				15	20		18	23	
${ }_{\text {I }}^{2} \mathrm{~L}$	Receiver Enable to Receiver Output	Figure 4		15	20		18	23	ns
tLZ				10	15		13	18	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents = Unit Load Current \times Input Load Factor (See Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
5. Output sink current is supplied through a resistor to V_{CC}.
6. Measurements apply to each output and the associated data input independently

DEFINITION OF FUNCTIONAL TERMS

$\mathbf{D}_{\mathbf{0}}, \mathbf{D}_{\mathbf{1}}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}}$ The four driver inputs.
$\overline{\mathbf{B}_{\mathbf{0}}}, \overline{\mathbf{B}_{1}}, \overline{\mathbf{B}_{2}}, \overline{\mathbf{B}_{3}}$ The four driver outputs and receiver inputs (data is inverted).
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}$ The four receiver outputs. Data from the bus is inverted while data from the driver inputs is noninverted.
B/E Bus enable input. When the bus enable input is LOW, the four driver outputs are in the high-impedance state.
$\overline{R / E}$ Receiver enable input. When the receiver enable input is HIGH, the four receiver outputs are in the high-impedance state.

LOADING RULES (In Unit Loads)

Input/Output	Pin No.'s	LOW Input Unit Load	Fa Output HIGH	out Output LOW
$\overline{R / E}$	1	1/8	-	-
R_{0}	2	-	50	10
B_{0}	3	1/16	250	25
D_{0}	4	1/8	-	-
R_{1}	5	-	50	10
$\overline{B_{1}}$	6	1/16	250	25
D_{1}	7	1/8	-	-
GND	8	-	-	-
D_{2}	9	1/8	-	-
$\overline{B_{2}}$	10	1/16	250	25
R_{2}	11	-	50	10
D_{3}	12	1/8	-	-
$\overline{B_{3}}$	13	1/16	250	25
R_{3}	14	-	50	10
B/E	15	1/8	-	-
V_{CC}	16	-	-	-

A TTL Unit Load is defined as -1.6 mA measured at 0.4 V LOW and $40 \mu \mathrm{~A}$ measured at 2.4 V HIGH.

DRIVER FUNCTION TABLE

INPUTS		Am2926 OUTPUT	Am2929 OUTPUT
B / E	D_{i}	$\overline{B_{i}}$	$\overline{B_{i}}$
L	X	Z	Z
H	L	H	L
H	H	L	H

L=LOW
$H=$ HIGH $i=0,1,2$, or 3
:---
$Z=$ High Impedance

RECEIVER FUNCTION TABLE

InPUTS		Am2926 OUTPUT	Am2929 OUTPUT
$\overline{R / E}$	$\overline{B_{\mathbf{i}}}$	$\mathbf{R}_{\mathbf{i}}$	$\mathbf{R}_{\mathbf{i}}$
H	X	Z	Z
L	L	H	L
L	H	L	H

L = LOW $\quad X=$ Don't Care
$H=$ HIGH $\quad Z=$ High Impedance
$i=0,1,2$ or 3

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

AC TEST CIRCUITS AND WAVEFORMS

PROPAGATION DELAY (Data In to Bus)

Figure 1

PROPAGATION DELAY (Bus to Receiver Out)

INPUT PULSE:
$=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
freq $=10 \mathrm{MHz}$ (50% duty cycle)
Amplitude $=2.6 \mathrm{~V}$

Figure 2
BLI-084

PROPAGATION DELAY (Bus Enable to Bus Output)

Figure 3
BLI-085

PROPAGATION DELAY- (Receive Enable to Receive Output)

INPUT PULSE
$t_{r}=t_{f}=5$ ns (10% to 90%)
freq $=5 \mathrm{MHz}(50 \%$ duty cycle)
Amplitude $=2.6 \mathrm{~V}$

Figure 4

Am2926/2929

ORDERING INFORMATION
Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am2926 Order Number	Am2929 Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2929PC	AM2929PC	P-16-1	C	C-1
AM2929DC	AM2929DC	D-16-1	C	C-1
AM2929DC-B	AM2929DC-B	D-16-1	C	B-1
AM2926DM		D-16-1	M	C-3
AM2926DM-B		D-16-1	M	B-3 AM2926XC
'AM2929XC	Dice	C	Visual inspection to MIL-STD-883 AM2926XM	Dice

Notes:

1. $P=$ Molded DIP,$D=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V .
3. See Appendix A for details of screening. Levels $C-1$ and $C-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Metallization and Pad Layouts

Am2929

Am2927•Am2928
 Quad Three-State Bus Transceivers With Clock Enable

- Quad high-speed LSI bus-transceivers
- Three-state bus driver and receiver outputs
- D-type register on drivers
- Latch output on Am2927
- Registered output on Am2928
- Output data to input wrap around gating
- Input register to output transfer gating with or without driving data bus

DISTINCTIVE CHARACTERISTICS

- Clock enabled registers
- Bus driver outputs can sink 48 mA at 0.5 V max.
- Three-state receiver outputs sink 24 mA at 0.5 V max.
- 3.0 V minimum V_{OH} for direct interface to MOS
microprocessors
- Advanced low-power Schottky processing

FUNCTIONAL DESCRIPTION

The Am2927 and Am2928 are high-performance, low-power Schottky, quad bus transceivers intended for use in bipolar or MOS microprocessor system applications.
Both devices feature register enable lines which function as clock enables without introducing gate delay in the clock inputs. The four transceivers share common enables, clock, select and three-state control lines.

The Am2927 consists of four D-type edge-triggered flip-flops. Each flip-flop output is connected to a three-state data bus driver and separately to the input of a corresponding receiver latch input. The receiver latch can select input from the driver or the data bus. The select line determines the source of input data for the bus driver choosing between input data or data recirculated from the receiver output. The receiver output also has a threestate output buffer.
The combination of the select input, S , the driver input enable, $\overline{\text { ENDR, and the receiver latch enable, } \overline{\operatorname{RLE}} \text {, provide seven differ- }}$
ent data path operating modes not available in other transceivers. For example, transmitted data can be stored in the receiver for subsequent retransmission. Also, received data can be output to the system and simultaneously fed back to the driver input.

The Am2928 is similar to the Am2927, but with a D-type edgetriggered register in the receiver and a receiver enable, ENREC, which functions as a common clock enable.

Data from each D input is inverted at the bus output. Likewise, data at the bus input is inverted at the receiver output.
All three-state controls and enable lines are active low (the Am2927 receiver latch is transparent when RLE is LOW). The select input, S, determines whether the enabled driver input accepts data from the data input, D , or from the corresponding receiver output, Y. Similarly, the select line determines whether the receiver accepts input data from the data bus, or the driver output.

Am 2927 CONNECTION DIAGRAM - Top View

Note: Pin 1 is marked for orientation.

Am2927/2928

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +VCC max.
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs (Except BUS)	30 mA
DC Output Current, Into Bus	100 mA
DC Input Current	-30 to +5.0 mA

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	$(\mathrm{MIN}=4.75 \mathrm{~V}$	MAX $=5.25 \mathrm{~V})$
MIL	$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$($ MIN $=4.50 \mathrm{~V}$	MAX $=5.50 \mathrm{~V})$

buS input/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)		Min	Typ (Note 2)	Max	Units
VOL	Bus Output LOW Voltage	$V_{C C}=\mathrm{MIN}$	$\mathrm{IOL}^{2}=24 \mathrm{~mA}$			0.4	Volts
			$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$			0.5	
V_{OH}	Bus Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	COM'L, $\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$	2.4			Volts
			$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4			
V_{IH}	Receiver Input HIGH Threshold	Bus Enable $=2.4 \mathrm{~V}$		2.0			Volts
V_{IL}	Receiver Input LOW Threshold	Bus Enable $=2.4 \mathrm{~V}$				0.8	Volts
IOFF	Bus Leakage Current (Power Off)	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.5 \mathrm{~V}$				100	$\mu \mathrm{A}$
${ }^{\text {l OZL }}$	Bus Leakage Current (HIGH Impedance)	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & \text { Bus Enable }=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-1.4	mA
${ }^{\text {OZZH}}$			$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SC }}$	Bus Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$				-255	mA
C_{B}	Bus Capacitance (Note 4)	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$					pF

2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the thit vites not not exceed one second
4. This parameter is typical of device characterization data and is

ELECTRICAL CHARACTER
The Following Conditions A
COM'L
MIL
DC CHARAC MASTIC OVER OPERATING RANGE (Except Bus Ports)

Parameters	Description	Test Conditions (Note 1)		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
VOH	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	MIL, $\mathrm{IOH}^{\text {O }}=-2.0 \mathrm{~mA}$	2.4	3.4		Volts
			COM'L, $\mathrm{I}_{\mathrm{OH}}=-6.5 \mathrm{~mA}$	2.4	3.4		
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	3.0			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{H}} \end{aligned}$	$\mathrm{lOL}=24 \mathrm{~mA}$			0.5	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs	MIL			0.8 .	Volts
			COM'L			0.8	
v_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	S, ENDR			-2.8	mA
			All other inputs			-1.4	
${ }_{1} \mathrm{H}$	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=2.7 \mathrm{~V}$	S, ENDR			100	$\mu \mathrm{A}$
			All other inputs			50	
1	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
lozh	Off-State Output Current (Receiver Output)	$V_{C C}=M A X$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
lozl			$\mathrm{V}_{\text {Ot }}=0.5 \mathrm{~V}$			-50	
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	$V_{C C}=M A X$	Receiver	-40		-100	mA
I_{cc}	Power Supply Current	$V_{C C}=M A X$	Am2927		150	185	mA
			Am2928		153	190	

Am2927/2928
Am2927
SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Am2927XM			Am2927XC			Units
			Min	Typ	Max	Min	Typ	Max	
${ }_{\text {tPLH }}$	Driver Clock, CP, to $\overline{\mathrm{BUS}}$	$\begin{aligned} & C_{L}(B U S)=50 \mathrm{pF} \\ & R_{L}(B U S)=130 \Omega \end{aligned}$		18	26		18	23	
$\mathrm{t}_{\mathrm{PHL}}$				18	26		18	23	
	Bus Enable, $\overline{\mathrm{BE}}$, to $\overline{\mathrm{BUS}}$			14	26		14	23	ns
$t_{H z} / t_{L}$		$R_{L}=130 \Omega, C_{L}=5 p F$		12	18/30		12	16/23	ns
tPW	Min Clock Pulse Width (HIGH or LOW)		18			15			ns
tPLH	$\overline{\text { BUS }}$ to Receiver Output (Latch Enabled)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=270 \Omega \end{aligned}$			23		16	20	ns
$\mathrm{t}_{\mathrm{PHL}}$					23		16	20	
$t_{\text {PLI }}$	Latch Enable, $\overline{\mathrm{RLE}}$, to Receiver Output				26		18	23	ns
$\mathrm{t}_{\mathrm{PHL}}$					26		18	23	
$\mathrm{t}_{\mathrm{ZH}} \cdot \mathrm{t}_{\mathrm{ZL}}$	Output Enable, $\overline{\mathrm{OE}}$, to Receiver Output				23			21	
$t_{H Z} \cdot t_{L}$		$C_{L}=5 p F, R_{L}=270 \Omega$			21		14	18	S
t_{s}	Driver Enable, $\overline{\text { ENDR, }}$, to Clock		10			9			ns
t_{h}			3			3			ns
t_{s}	Select, S, to Clock ($\overline{\mathrm{RLE}}=\mathrm{HIGH}$)		18			15			ns
t_{h}			3			2			
$\mathrm{t}_{\mathrm{pLH}}$	Select, S, to Receiver Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=270 \Omega$			26			23	ns
tPHL					35			30	ns
$\mathrm{t}_{\text {s }}$	Data Inputs, D, to Clock		9						ns
$t_{\text {h }}$			5		*				ns
$\mathrm{t}_{\text {s }}$	$\overline{\text { BUS }}$ to Latch Enable, $\overline{\text { RLE }}$		1梫	,	,				ns
t_{h}			4			3			

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value spe
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximumbadil
3. Not more than one output should be shorted at a time, Durâra di th. Sh t t uit sh shound not exceed one second.

Am2928

SWITCHING CHARACTERISTICSOVE OPER II TEMPERATURE RANGE

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

DEFINITION OF FUNCTIONAL TERMS

CP	Clock Pulse to internal registers enters data on the LOW-to-HIGH transition.	$\overline{O E}$	Output Enable. When Output Enable is LOW the four receiver outputs Y are active.
$\overline{B E}$	Bus Enable. When Bus Enable is LOW the four drivers drive the $\overline{\mathrm{BUS}}$ outputs.	$\overline{\text { ENDR }}$	Driver Enable. Common clock enable for the input register. Allows the data on the D inputs to be
$\overline{\text { BUS }}_{0}, \overline{\text { BUS }}_{1}$,	The four driver outputs and receiver inputs.		loaded into the driver register on the clock LOW-to-HIGH transition.
BUS_{3}		$\overline{\text { RLE }}$	r Latch Enable (Am2927 only). When Re-
$\begin{aligned} & D_{0}, D_{1}, \\ & D_{2}, \\ & D_{3} \end{aligned}$	The four driver data inputs inverting from D to $\overline{B U S}$.		ceiver Latch Enable is LOW, the four receiver latches are transparent. The latches hold received
			,
$\begin{aligned} & \mathbf{Y}_{0}, Y_{1}, \\ & Y_{2}, \end{aligned},$	The four receiver data outputs inverting from $\overline{B U S}$ to Y .	ENREC	Receiver Enable (Am2928 only). Common clock enable for the receiver register. Allows the BUS
\mathbf{S}	Select input controls data path modes in conjunction with $\overline{E N D R}$ and $\overline{R L E}$ (or $\overline{\text { ENREC }}$).		driver or previous receiver data to enter the receiver register on the rising edge of the clock.

Am2927 FUNCTION TABLES

Driver Register Control

$\overline{\text { ENDR }}$	S	$\overline{\text { RLE }}$	Driver Register
H	X	X	Hold Previous Data
L	L	X	Load from D Input
L	H	L	Load from $\overline{\text { BUS }}$
L	H	H	Load Latched Receiver Data

Receiver Latch Control

$\overline{\text { ENDR }}$	S	$\overline{\text { RLE }}$	Receiver Output
X	X	H	Data Latched
H	H	L	Driver Register Output at Y Output (Latch Transparent)
X	L	L	Bus Data at Y Output (Latch Transparent)
L	X	L	

Am2928 FUNCTION TABLES

Driver Register Control		
ENDR	S	Driver Register
H	X	Hold Previous Data
L	L	Load from D Input
L	H	Load from Receiver Register

Receiver Register Control			
ENDR	S	ENREC	Receiver Output
X	X	H	Hold Previous Data
H	H	L	Load from Driver Register
X	L	L	Load from $\overline{\text { BUS }}$
L	X	L	

ORDERING INFORMATION

Am2927 Order Number	$\begin{gathered} \text { Am2928 } \\ \text { Order Number } \end{gathered}$	Package Type	Operating Range	Screening Level
AM2927DC	AM2928DC	D-20	C	C-1
AM2927DM	AM2928DM	D-20	M	C-3
AM2927LC	AM2928LC	L-28	C	C-1
AM2927LCB	AM2928LCB	L-28	C	B-2
AM2927LM	AM2928LM	L-28	M	C-3
AM2927LMB	AM2928LMB	L-28	M	B-3
AM2927XC	AM2928XC	Dice	C	Visual inspection to MIL-STD-883 method 2010B
AM2927XM	AM2928XM	Dice	M	

The Am2927 and Am2928 can be used to provide Data Bus, Address Bus and Control Bus Interface in a high-speed bipolar microprocessor system.

Am2927 AND Am2928 FUNCTION TABLE

Driver Input From	Receiver Input From	Control Input Condition			Signal Flow	$\overline{B E}$
		S	$\overline{\text { ENDR }}$	*		
$\begin{gathered} \text { D } \\ \text { Input } \end{gathered}$	BUS	L	L	L	$\begin{gathered} \text { हUS } \\ \rightarrow \square L_{\square}-R- \end{gathered}$	H
	(No Load)	L	L	H	\rightarrow 回 1 目	L
Receiver	BUS	H	L	L	[D $\square^{\text {L }}$	H
	(No Load)	H	L	H	$\square^{\left.-1]^{+}\right]^{+}}$	L
(No Load)	BUS	L	H	L	(1) $\square_{\text {- }}^{\text {R }}$	H
	Driver	H	H	L.	[\square^{1} - R -	X
	(No Load)	X	H	H	[1] \square^{1}	L

* $\overline{\text { RLE }}$ for Am2927 (asynchronous) or ENREC for Am2928 (5).

LOAD TEST CIRCUIT

Note: For standard totem-pole outputs, remove $R_{1} ; S_{1}$ and S_{2} closed.

Am2928

Am2930
 Program Control Unit

DISTINCTIVE CHARACTERISTICS

- Powerful, 4-bit slice address controller for memories Useful with both main memory and microprogram memory Expandable to generate any address length
- Executes 32 instructions

Automatic generation of address and update of program counter for fetch cycles, branch cycles, and subroutine call and return

- Contains cascadable full adder

Twelve different relative address instructions are provided; including jump-to-subroutine relative and return-from-subroutine relative

- Built-in condition code input

Sixteen instructions are dependent on external condition control

- Seventeen-level push/pop stack

On-chip storage of subroutine return addresses nested up to 17 levels deep

- Separate incrementer for program counter

A relative address may be computed and PC may be incremented by one on a single cycle

GENERAL DESCRIPTION

The Am2930 is a four-bit wide Program Control Unit intended to perform machine level addressing functions, although the device can also be used as a microprogram sequencer. Four Am2930's may be interconnected to generate a 16 -bit address (64K words). The Am2930 contains a program counter, a subroutine stack, an auxiliary register, and a full adder for computing relative addresses.
The Am2930 performs five types of instructions. These are: 1) Unconditional Fetch; 2) Conditional Jump; 3) Conditional Jump-to-Subroutine; 4) Conditional Return-from-Subroutine; and 5) miscellaneous instructions.
There are four sources of data for the adder which generates the Address outputs $\left(Y_{0} \cdot \mathrm{Y}_{3}\right)$. These are: 1) the Program Counter (PC); 2) the Stack (S); 3) the auxiliary Register (R); and 4) the Direct inputs (D). Under control of the Instruction inputs $\left(I_{0}-I_{4}\right)$, the multiplexers at the adder inputs allow various combinations of these terms to be generated at the threestate Y address outputs. The instruction lines also control the updating of the program counter and the auxiliary register. A condition code input is provided for conditional instructions.

RELATED PRODUCTS

Part No.
Description
Am2902A
Carry Look-Ahead Generator
Am2904
Am2920
Am2922 8-Bit Register Condition Code MUX

For applications information, see Chapter V of Bit Slice Microprocessor Design, Mick \& Brick, McGraw Hill Publications.

Am2930
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $\mathrm{V}_{\text {CC }}$ max.
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

Part Number	Temperature	V $_{\text {CC }}$
Am2930PC, DC	$T_{A}=0$ to $70^{\circ} \mathrm{C}$	4.75 V to 5.25 V
Am2930DM, FM	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$	4.50 V to 5.50 V

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)				Min	(Note 2)	Max	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$\begin{aligned} & Y_{0}, Y_{1}, Y_{2}, Y_{3} \\ & \bar{G}, C_{n+4}, \\ & C_{i+4} \\ & \hline \end{aligned}$		$\mathrm{IOH}=-1.6 \mathrm{~mA}$	2:4			Volts
			$\frac{\overline{\mathrm{P}}, \overline{\mathrm{FU}}}{\mathrm{EMPT}}$		$\mathrm{IOH}=-1.2 \mathrm{~mA}$	2.4			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$Y_{0}, Y_{1}, Y_{2}, Y_{3}$		$\begin{aligned} & \hline \mathrm{IOL}=20 \mathrm{~mA} \\ & \text { (COM'L) } \\ & \hline \end{aligned}$			0.5	Volts
					$\mathrm{IOL}^{\prime}=16 \mathrm{~mA}$ (MIL)			0.5	
			$\begin{aligned} & \overline{\mathrm{G}}, \mathrm{C}_{\mathrm{n}+4} \\ & \mathrm{c}_{\mathrm{i}+4} \\ & \hline \end{aligned}$		$1 \mathrm{OL}=16 \mathrm{~mA}$			0.5	
			$\frac{\overline{\mathrm{P}}, \overline{\mathrm{FULL}}}{\overline{\mathrm{EMPTY}}}$		$\mathrm{IOL}=12 \mathrm{~mA}$			0.5	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level (Note 4)					2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level (Note 4)							0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$						-1.5	Volts
ILI	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		D_{0-3}				-. 360	mA
				$\begin{aligned} & \mathrm{I}_{0}-4, \overline{\operatorname{RE}, \overline{I N},} \\ & \mathrm{CP}, \overline{\mathrm{OE}} \end{aligned}$				-. 702	
				$\overline{\text { CC }}$				-. 657	
				C_{i}				-2.31	
				C_{n}				-3.25	
$I_{\text {IH }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		D_{0-3}				20	$\mu \mathrm{A}$
				$\begin{aligned} & I_{0-4}, \overline{\mathrm{RE}}, \overline{\mathrm{EN}}, \\ & \mathrm{CP}, \overline{\mathrm{OE}} \end{aligned}$				40	
				$\overline{\mathrm{CC}}$				50	
				C_{i}				90	
				C_{n}				250	
1	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$						1.0	mA
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX .				-30		-85	mA
lozl	Output OFF Current	$\begin{aligned} & V_{C C}=M A X ., \\ & O E=2.4 V \end{aligned}$	Y_{0-3}	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$
lozh				$V_{\text {OUT }}$	$=2.4 \mathrm{~V}$			50	
${ }^{\prime} \mathrm{cc}$	Power Supply Current (Note 5)	$V_{C C}=M A X$.		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			150	205	mA
				$T_{\mathrm{C}}=-55 \text { to }+125^{\circ} \mathrm{C}$				239	
				$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$				170	
				$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$				220	
				$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$				185	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. These input levels provide no guaranteed noise immunity and should only be tested in a static-, noise-free environment.
5. Minimum $I_{C C}$ is at maximum temperature.

Am2930 SWITCHING CHARACTERISTICS

Tables A, B, C and D define the timing characteristics of the Am2930. Measurements are made at 1.5 V with $\mathrm{V}_{1 \mathrm{~L}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V}$. For three-state disable tests, $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ and measurement is to 0.5 V change on output voltage level.
I. GUARANTEED PERFORMANCE OVER COMMERCIAL OPERATING RANGE.
$V_{C C}=4.75$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$

TABLE IA Clock Characteristics.

Minimum Clock LOW Time	31ns
Minimum Clock HIGH Time	33ns

TABLE IB Output Enable/Disable Times. All in ns.
$C_{L}=5.0 \mathrm{pF}$ for output disable tests.

From	To	Enable	Disable
$\overline{\text { OE }}$	Y	27	26
$\overline{C C}$ (Note 1)	Y	55	37
$\begin{aligned} & \frac{1}{4}-0.1 \\ & \text { (Note 1) } \end{aligned}$	r	80	55

TABLE IC
Combinational Propagation Delays.
All in ns .
Outputs fully loaded. $C_{L}=50 \mathrm{pF}$.

To Output From Input	\mathbf{Y}	$\overline{\mathbf{G}, \overline{\mathbf{P}}}$	C_{n+4}	$\begin{aligned} & C_{i+4} \\ & I_{4}=L \end{aligned}$	$\begin{aligned} & C_{i+4} \\ & I_{4}=H \end{aligned}$	Full	Empty
${ }^{1} \mathrm{I}_{4-0}$	81	67	77	80	91	69	-
$\overline{\mathrm{CC}}$	63	45	55	-	72	42	-
C_{n}	32	-	25	-	45	-	-
C_{i}	-	-	-	22	22	-	-
CP	69	53	61	43	78	55	55
D	49	33	40	-	59	-	-
IEN	-	-	-	-	-	40	-

TABLE ID Setup and Hold Times. All in ns. All relative to clock LOW-to-HIGH transition.

	CP:	
Input I_{4-0} Time	Hold Time	
$\overline{\mathrm{CC}}$	114	0
$\overline{\mathrm{IEN}}$	75	0
C_{n}	55	0
C_{i}	43	0
$\mathrm{D}(\overline{\mathrm{RE}}=\mathrm{L}$, $\mathrm{I}_{4-0}=0-8$ or 10-15)	25	2
D (All other conditions)	66	2
$\overline{\mathrm{RE}}$	24	4

Note 1: "Suspend" instruction.

II. GUARANTEED PERFORMANCE OVER MILITARY OPERATING RANGE.

$\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

TABLE IIA Clock Characteristics.

Minimum Clock LOW Time	35ns
Minimum Clock HIGH Time	35ns

TABLE IIB
Output Enable/Disable Times. All in ns.
$C_{L}=5.0 \mathrm{pF}$ for output disable tests.

From	To	Enable	Disable
$\overline{\overline{\sigma E}}$	Y	32	31
$\overline{\mathrm{CC}}$ (Note 1)	Y	60	42
I 4 -0 (Note 1)	Y	85	60

TABLE IIC Combinational Propagation Delays. All in ns.
Outputs fully loaded. $C_{L}=50 \mathrm{pF}$.

Output From Input	\mathbf{Y}						
I_{4-0}	88	74	82	87	97	78	-
$\overline{\mathrm{CC}}$	68	52	60	-	78	47	-
C_{n}	37	-	30	-	46	-	-
C_{i}	-	-	-	23	23	-	-
CP	74	58	66	48	84	60	60
D	55	38	45	-	65	-	-
$\overline{\mathrm{IEN}}$	-	-	-	-	-	45	-

TABLE IID
Setup and Hold Times. All in ns.
All relative to clock
LOW-to-HIGH transition.

Input	CP:	
	Set-up Time	Hold Time
1_{4-0}	124	0
$\overline{\mathrm{CC}}$	80	0
IEN	69	0
C_{n}	52	0
C_{i}	37	5
$\begin{aligned} & D(\overline{\mathrm{RE}}=\mathrm{L}, \\ & \left.\mathrm{I}_{4-0}=0-8 \text { or } 10-15\right) \end{aligned}$	30	2
D (All other conditions)	72	2
$\overline{\mathrm{RE}}$	29	4

Note 1: "Suspend" instruction.

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to $V_{C C}$ changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach $\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{I H}$ until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

ARCHITECTURE OF THE Am2930

The Am2930 is a bipolar Program Control Unit intended for use in high-speed microprocessor applications. The device is a cascadable, four-bit slice such that three devices allow addressing of up to 4 K words of memory and four devices allow addressing of up to 64 K words of memory.

As shown in the Block Diagram, the device consists of the following:

1) A full adder with input multiplexers
2) A Program Counter Register with an incrementer and an input multiplexer
3) A 17×4 Last-In, First-Out (LIFO) stack consisting of an input multiplexer, a 17×4 RAM, and a Stack Pointer
4) An auxiliary register with an input multiplexer
5) An instruction decoder
6) Four 3-state output buffers on the address outputs

The following paragraphs describe each of these blocks in detail.

Full Adder

The Full Adder is a binary device with full lookahead carry logic for high-speed addition and provision is made for further lookahead by including both carry propagate (\bar{P}) and carry generate (\bar{G}) outputs. In slower systems, the carry output $\left(C_{n}+4\right)$ can be connected to the next higher C_{n} to provide ripple block arithmetic. The carry input to the adder $\left(C_{n}\right)$ is internally inhibited during those instructions which do not require an addition to be performed. For these instructions; the data is passed directly through the adder, independent of the state of C_{n}.
The multiplexers at the A and B inputs of the adder are controlled by the Instruction decoder which selects the appropriate adder inputs for the selected instruction.

Program Counter

The program counter consists of a register preceeded by an incrementer. The Program Counter Register (PC) is a four-bit, edge-triggered, D-type register which is loaded from the incrementer output on the LOW-to-HIGH transition of the clock input (CP) at the end of every instruction.
The incrementer utilizes full lookahead logic for high speed. For cascading devices, the carry output of the incrementer $\left(C_{i+4}\right)$ is connected to the incrementer carry input (C_{i}) of the next higher device. The output of the incrementer, which is loaded into the PC, is equal to the incrementer input plus C_{j}. Therefore, it is possible to control the entire cascaded incrementer from the C_{i} input of the least significant device; a LOW on the C_{i} input of the least significant device will simply pass the data from the multiplexer output to the inputs of PC; a HIGH will cause the outputs of the multiplexer to be incremented before they are loaded into PC. During three instructions (unconditional Hold and conditional Hold and Suspend when the $\overline{\mathrm{CC}}$ input is LOW), the C_{i} input is internally inhibited; therefore, data is passed from the multiplexer output to the PC without incrementing. The multiplexer selects the input to the incrementer from either PC or the output of the Full Adder, depending upon the instruction being executed. During the Jump, Jump-to-Subroutine, and Return instructions, the multiplexer choosés the Full Adder outputs as the input to the incrementer if the $\overline{\mathrm{CC}}$ input is LOW. The Full Adder output is also selected for the Reset instruction. For all other instructions, the PC is selected as the input to the incrementer.

17×4 LIFO Stack

The 17×4 LIFO stack consists of a multiplexer, a 17×4 RAM, and a Stack Pointer (SP) which address the words in the RAM.

The SP always points to the last word written into the RAM (Top of the Stack). The Top of the Stack (S) is available at the output of the RAM.
Data is pushed onto the Top of the Stack from either D or PC. It is written into memory location SP+1. The SP is incremented on the LOW-to-HIGH clock transition at the end of the cycle so that it still points to the last data written into the RAM.
For a Pop operation, the contents of the RAM are not changed, but the SP is decremented at the end of the cycle so that it then points to the new Top of the Stack.
The SP is an up/down counter which changes state on the LOW-to-HIGH transition of the Clock input. It is internally prevented from incrementing when the stack is full and from decrementing when the Stack is empty. When the Stack is full, the RAM write circuitry is also inhibited.
The active LOW Empty output (EMPTY) is LOW when the stack is empty (after the Reset instruction and after the last word has been Popped from the stack); the active LOW Full output ($\overline{F U L L}$) is LOW either when the stack is full or when the current instruction being executed will fill the stack (during and after the 17th Push).

Auxiliary Register (R)

The Auxiliary Register (R) can be loaded from either the Direct inputs (D) or the output of the Full Adder. It is loaded on the LOW-to-HIGH transition of the clock input (CP) if the Register Enable input ($\overline{\mathrm{RE}}$) is LOW or if the Instruction inputs call for it to be loaded. When $\overline{R E}$ is LOW, R is loaded from the D inputs unless the Instruction dictates that R be loaded from the output of the Full Adder.

Instruction Decoder

The Instruction Decoder generates the signals necessary to establish the data paths and to enable the loading of the PC, $R, S P$, and RAM.
For unconditional instructions, the $\overline{\mathrm{CC}}$ input is not utilized; it may be either HIGH or LOW. For conditional instructions, if $\overline{\mathrm{CC}}$ is LOW, the condition is met and the conditional operation is performed; if $\overline{\mathrm{CC}}$ is HIGH, a Fetch PC is performed.

Output Buffers

The Address outputs $\left(Y_{0}-Y_{3}\right)$ are three-state drivers which may be disabled either under Instruction control or by a HIGH on the Output Enable input ($\overline{\mathrm{OE}})$. Disabling the Y outputs does not affect the execution of instructions inside the Am2930.

Instruction Enable

When HIGH, the Instruction Enable input ($\overline{\mathrm{IEN}}$) forces PC and SP into the hold mode and disables the write circuitry to the RAM. The auxiliary register (R) is under control of the $\overline{\mathrm{RE}}$ input when IEN is HIGH, independent of the state of the Instruction inputs. The IEN input does not affect the combinatorial data paths or Y outputs in the Am2930. The data paths are selected by the Instruction and $\overline{\mathrm{CC}}$ inputs and are not affected by $\overline{I E N}$.

Am2930 INSTRUCTION SET

The Am2930 Instruction set can be divided into five types of instructions. These are:

- Unconditional Fetches
- Conditional Jumps
- Conditional Jumps-to-Subroutine
- Conditional Returns-from-Subroutine
- Miscellaneous Instructions

The following paragraphs describe each of these types in detail.

Unconditional Fetches

As can be seen from Table 1, there are nine unconditional Fetch instructions (Instructions 1-9). Under control of the Instruction inputs, the desired value is placed at the Y outputs. For all Fetch instructions, PC is incremented if C_{i} of the least significant device is HIGH. For Instructions 1 through 7, the auxiliary register is under control of the RE input. For Instructions 8 and 9, R is loaded with PC and $R+D$, respectively. The RAM and Stack Pointer are not changed during a Fetch instruction.

Conditional Jumps

There are six conditional Jump instructions (Instructions 16 through 21). Under control of the Instruction inputs, the desired value is placed at the Y outputs. Additionally, the value is incremented if C_{i} of the least significant device is HIGH and loaded into PC. During these instructions, R is controlled by $\overline{R E}$. The RAM and Stack Pointer are not changed during these instructions. The above operations are performed if the $\overline{\mathrm{CC}}$ input is LOW; if $\overline{\mathrm{CC}}$ is HIGH, a Fetch PC operation is performed.

Conditional Jumps-to-Subroutine

There are six conditional Jump-to-Subroutine instructions (Instructions 22 through 27). Under control of the Instruction inputs, the desired value is placed on the Y outputs. On the rising edge of the clock the value is incremented* and loaded into PC, PC is loaded into the RAM at location $S P+1$; and $S P$ is incremented.

As with Conditional Jump Instructions, R is controlled by $\overline{\mathrm{RE}}$ and whether the Jump-to-Subroutine or Fetch PC is performed depends upon the state of the $\overline{\mathrm{CC}}$ input.

Conditional Returns-from-Subroutine

There are two conditional Return-from-Subroutine instructions (Instructions 28 and 29). Under control of the instruction inputs, either S or $S+D$ is placed at the Y outputs. Additionally, the selected value is incremented* and loaded into PC and SP is decremented at the end of the cycle (on the rising edge of the clock).

* If $\mathrm{C}_{\mathbf{i}}$ of the least significant device is HIGH.

As with the Condition Jump and Jump-to-Subroutine Instructions, R is controlled by $\overline{\mathrm{RE}}$ and whether the Return-fromSubroutine or Fetch PC is performed depends upon the state of the $\overline{\mathrm{CC}}$ input.

Miscellaneous Instructions

Each of the nine miscellaneous instructions is described individually.

Reset (Instruction 0)

The Reset instruction forces the Y outputs to zero, loads either zero or one into PC, depending upon the C_{j} input of the least significant device, and resets SP. The RAM is unchanged and R is controlled by $\overline{R E}$.

Load R (Instruction 10)
This instruction loads the data on the D inputs into R. PC is either incremented or held depending upon C_{i} of the least significant device. The SP and RAM are not changed.

Push PC (Instruction 11)

This instruction is the same as Fetch PC except that PC is loaded into RAM and SP is incremented at the end of the cycle; i.e., the current PC is Pushed onto the stack.

Push D (Instruction 12)

This instruction is the same as Fetch PC except that D is loaded into the RAM and SP is incremented at the end of the cycle; i.e., external data is Pushed onto the stack.

Pop S (Instruction 13)
This instruction places the Top of the Stack (S) at the Y outputs and decrements SP at the end of the cycle. The PC is incremented if the $\mathrm{C}_{\boldsymbol{j}}$ input of the least significant device is HIGH. R is controlled by $\overline{\mathrm{RE}}$.

Pop PC (Instruction 14)

This instruction is the same as Fetch PC except SP is decremented at the end of the cycle, causing the data at the top of the stack to be lost.

Hold (Instruction 15)

This instruction places PC at the Y outputs and inhibits any change in PC, SP, and RAM. R is controlled by $\overline{R E}$.
Conditional Hold (Instruction 30)
This instruction is the same as Hold except $\overline{\mathrm{CC}}$ must be LOW. If $\overline{\mathrm{CC}}$ is HIGH , the Fetch PC instruction is performed.

Suspend (Instruction 31)

The Suspend instruction is the same as th Conditional Hold instruction except the Y outputs are forced into the highimpedance state if $\overline{\mathrm{CC}}$ is LOW.

Mnemonic	Instruction Number	$I_{4} I_{3} I_{2} I_{1} l_{0} \overline{C C}$ TEN		Instruction	$\mathrm{Y}_{0} \cdot \mathrm{Y}_{3}$	Next State lafter CP [$\boldsymbol{\text {) }}$ (Note 3)					
				PC		R		RAM	SP		
				$\overline{\mathrm{RE}}=\mathrm{L}$		$\overline{\mathbf{R E}}=\mathbf{H}$					
-		$\times \times \times \times \times$	H		Instruction Disable	Note 1	-	D	-	-	-
PRST	0	L L L L L \times	L	RESET	" 0 "	'0"' ${ }^{\text {c }}$ i	D	-	-	Reset	
FPC	1	L L L L H X	L	FETCH PC	PC	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	D	-	-	-	
FR	2	L L L H L X	L	FETCH R	R	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	D	-	-	-	
FD	3	L L L H H X	L	FETCH D	D	$\mathrm{PC}+\mathrm{C}_{\mathbf{i}}$	D	-	-	-	
FRD	4	L L H L L	L	FETCH R+D	$\mathrm{R}+\mathrm{D}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	D	-	-	-	
FPD	5	L L H L H X	L	FETCH PC+D	$\mathrm{PC}+\mathrm{D}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{PC}+\mathrm{C}_{i}$	D	- .	-	-	
FPR	6	L L H H L X	L	FETCH PC+R	$\mathrm{PC}+\mathrm{R}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{PC}+\mathrm{C}_{\text {}}$	D	-	-	-	
FSD	7	L L HHHX	L	FETCH S+D	$\mathrm{S}+\mathrm{D}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	D	-	-	-	
FPLR	8	L H L L L X	L	FETCH PC \rightarrow R	PC	$\mathrm{PC}+\mathrm{C}_{\mathbf{i}}$	PC	PC	-	-	
FRDR	9	L HLL H X	L	FETCH R+D \rightarrow R	$\mathrm{R}+\mathrm{D}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{PC}+\mathrm{C}_{\text {i }}$	$R+D+C_{n}$	$R+D+C_{n}$	-	-	
PLDR	10	L HLHLX	L	LOAD R	PC	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	D	D	-	-	
PSHP	11	L HLH H X	L	PUSH PC	PC	$\mathrm{PC}+\mathrm{C}_{\mathbf{i}}$	D	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1	
PSHD	12	L H H L L X	L	PUSH D	PC	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	D	-	D \rightarrow Loc SP+1	SP+1	
POPS	13	L H HLHX	L	POP S	S	$\mathrm{PC}+\mathrm{C}_{\text {i }}$	D	-	-	SP-1	
POPP	14	L HHHLX	L	POP PC	PC	$\mathrm{PC}+\mathrm{C}_{\text {i }}$	D	-	-	SP-1	
PHLD	15	L HHHHX	L	HOLD	PC	-	D	-	-		
	16-31	$\mathrm{H} \times \times \times \times \mathrm{H}$	L	FAIL COND'L TEST (FETCH PC)	PC	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	D	-	-	-	
JMPR	16	H L L L L L	L	JUMP R	R	$\mathrm{R}+\mathrm{C}_{\mathrm{i}}$	D	-	-	-	
JMPD	17	HLLL H L	L	JUMP D	D	$D+\mathrm{C}_{i}$	D	-	_	-	
JMPZ	18	H L L H L L	L	JUMP "0"	" 0 "	${ }^{\prime} 0 \times 1+c_{i}$	D	-	-	-	
JPRD	19	HLLH H L	L	JUMP R+D	$\mathrm{R}+\mathrm{D}+\mathrm{C}_{\mathrm{n}}$	$R+D+C_{n}+C_{i}$	D	-	-	-	
JPPD	20	HL HLL L	L	JUMP PC+D	$P C+D+C_{n}$	$P C+D+C_{n}+C_{i}$	D	-	-	-	
JPPR	21	HL HL H L	L	JUMP PC+R	$\mathrm{PC}+\mathrm{R}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{PC}+\mathrm{R}+\mathrm{C}_{\mathrm{n}}+\mathrm{C}_{\mathbf{i}}$	D	-	-	-	
JSBR	22	HLHHLL	L	JSB R	R	$\mathrm{R}+\mathrm{C}_{\mathbf{i}}$	D	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1	
JSBD	23	HLHHHL	L	JSB D	D	D+Ci	D	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1	
JSBZ	24	H H L L L	L	JSB "0"	" 0 "	${ }^{\prime} 0 \times{ }^{\prime}+\mathrm{C}_{\text {i }}$	D	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1	
JSRD	25	H HLL H L	L	JSB R + D	$\mathrm{R}+\mathrm{D}+\mathrm{C}_{\mathrm{n}}$	R + D $+C_{n}+\dot{C}_{i}$	D	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1	
JSPD	26	H H L H L	L	JSB PC+D	$\mathrm{PC}+\mathrm{D}+\mathrm{C}_{n}$	$P C+D+C_{n}+C_{i}$	D	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1	
JSPR	27	H H L H H L	L	JSB PC+R	$\mathrm{PC}+\mathrm{R}+\mathrm{C}_{\mathrm{n}}$	$P C+R+C_{n}+C_{i}$	D	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1	
RTS	28	H H HLL L	L	RETURNS	S	$\mathrm{S}+\mathrm{C}_{\mathrm{i}}$	D	-	-	SP-1	
RTSD	29	H H HLHL	L	RETURN S+D	$\mathrm{S}+\mathrm{D}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{S}+\mathrm{D}+\mathrm{C}_{\mathrm{n}}+\mathrm{C}_{\mathrm{i}}$	D	-	- .	SP-1	
CHL.D	30	H H H H L	L	HOLD	PC	-	D	-	-	-	
PSUS	31	H H H H H L	L	SUSPEND	Z (Note 2)	-	D	-	-	-	

PC - Program Counter SP - Stack Pointer S - Stack Top
R - Auxiliary Register D - Direct Inputs
Notes: 1. When IEN is HIGH, the $Y_{0}-Y_{3}$ outputs contain the same data as when $\overline{\operatorname{IEN}}$ is LOW, as determined by $I_{0}-I_{4}$ and $\overline{C C}$.
2. $Z=$ High impedance state (outputs "OFF").
3. $-=$ No change.

A. THREE STATE OUTPUTS
 B. NORMAL OUTPUTS

$$
\mathrm{R}_{2}=\frac{2.4 \mathrm{~V}}{\mathrm{I}_{\mathrm{OH}}}
$$

$$
\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{BE}}-V_{\mathrm{OL}}}{\mathrm{lOL}+\mathrm{V}_{\mathrm{OL}} / R_{2}}
$$

Notes: 1. $C_{L}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. S_{1}, S_{2}, S_{3} are closed during function tests and all $A C$ tests except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open for $t_{P Z H}$ test.
S_{1} and S_{2} are closed while S_{3} is open for tPZL test.
4. $C_{L}=5.0 \mathrm{pF}$ for output disable tests.

TEST OUTPUT LOADS FOR Am2930

Pin \# (DIP)	Pin Label	Test Circuit	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
2	$\overline{\text { FULL }}$	B	300	2 K
3	$\overline{\text { EMPTY }}$	B	300	2 K
6	$\mathrm{C}_{\mathrm{i}+4}$	B	240	1.5 K
$8-11$	Y_{0-3}	A	240	1 K
12	$\overline{\mathrm{G}}$	B	240	1.5 K
13	$\mathrm{C}_{\mathrm{n}+4}$	B	240	1.5 K
16	P	B	300	2 K

For additional information on testing, see section
"Guidelines on Testing Am2900 Family Devices."

APPLICATIONS

The Am2930 is shown in a typical 16-bit, 2900 Microcomputer design in Figure 1.
The Direct inputs (D) of the Am2930 are derived from one of three sources: the Instruction Register, the Data Bus via a 16bit register (two Am2920 8-bit Registers), and the output of the Am2901's via a 16 -bit register.
The Address outputs (Y) of the Am2930 are loaded into a 16bit Memory Address Register (MAR). Although the MAR is shown as part of the CPU, in some applications it may be part of the memory.
An Am2902 High-Speed Lookahead Carry Generator is utilized to provide high-speed relative and indexed addressing. In slower systems, the C_{n+4} output can be wired to the next higher C_{n} input to provide ripple block arithmetic.

The Condition Code input ($\overline{\mathrm{CC}}$) is derived from the same condition code multiplexer which generates the condition code input for the microprogram sequencer.

The control inputs of the Am2930 (10-4, $\overline{\operatorname{IEN}}, \overline{\mathrm{RE}}, \overline{\mathrm{OE}}$, and C_{i} and C_{n} of the least significant device) are shown originating at the Pipeline Register. Although it is not shown in Figure 1, it is possible to share the Pipeline Register outputs which go to these pins with another device. This can be accomplished if both the Am2930 and the other device do not operate on the same microcycle. Forcing the $\overline{I E N}$ input HIGH inhibits any changes in the Am2930 internal registers, independent of the state of these seven inputs. This allows the Am2930 to be placed in a hold mode while the other device is using the same Pipeline Register outputs as control signals.

PIN DEFINITIONS

I0-4 The five Instruction control lines to the Am2930, used to establish data paths and enable internal registers.
IEN The Instruction Enable Input, used to enable and disable internal registers. When IEN is LOW, all internal registers are under control of the Instruction inputs. When $\overline{I E N}$ is HIGH, all internal registers except R are inhibited from changing state. R is controlled by the $\overline{R E}$ input. The $\overline{I E N}$ input does not affect the combinatorial data paths and the outputs established by the Instruction inputs.
$\overline{\mathbf{C C}} \quad$ The Condition Code input determines whether or not a conditional instruction (Instructions 16-31) is performed. If $\overline{\mathrm{CC}}$ is LOW, the conditional instruction is executed. If $\overline{\mathrm{CC}}$ is HIGH, Fetch PC (Instruction 1) is executed. The $\overline{\mathrm{CC}}$ input may be either HIGH or LOW for unconditional instructions (Instructions 0-15).
$\overline{\mathbf{R E}} \quad$ The Register Enable input for the Auxiliary Register (R). A LOW on $\overline{R E}$ causes the Auxiliary Register (R) to be loaded from the D inputs unless Instruction 8 or 9 is being executed and IEN is LOW.
$C_{n} \quad$ The carry-in to the Full Adder.
$\mathrm{C}_{\mathrm{n}}+4$ The carry-out of the Full Adder.
$\overline{\mathbf{P}}, \overline{\mathbf{G}} \quad$ The carry generate and propagate outputs of the Full Adder.
$\mathbf{C}_{\mathbf{i}} \quad$ The carry-in to the program counter incrementer.
$\mathrm{C}_{\mathrm{i}+4}$ The carry-out of the program counter incrementer.
Y_{0-3} The four address outputs of the Am2930. These are three-state output lines. When enabled, they display the outputs of the Full Adder.
$\overline{\mathbf{O E}} \quad$ Output Enable. When $\overline{\mathrm{OE}}$ is HIGH, the Y outputs are OFF (high-impedance); when $\overline{\mathrm{OE}}$ is LOW, the Y outputs are active (HIGH or LOW).
Do-3 The four Direct inputs which are used as inputs to the Auxiliary Register, the RAM, and the Full Adder, under instruction control.
Empty The Empty output is LOW when the Stack is empty.
$\overline{\text { Full }}$
The Full output is LOW when the LIFO stack is full - during and after the 17 th push operation.

CP The clock input to the Am2930. All internal registers ($R, S P, P C$) and the RAM are updated on the LOW-to-HIGH transition of the clock input.

5

Am2930

Am2932
 Program Control Unit/Push-Pop Stack

DISTINCTIVE CHARACTERISTICS

- Powerful, 4-bit slice address controller for memories Useful with both main memory and microprogram memory Expandable to generate any address length
- Executes 16 instructions

Automatic generation of address and update of program counter for fetch cycles, branch cycles, and subroutine call and return

- Contains cascadable full adder

Eight relative address instructions are provided, including jump relative and jump-to-subroutine relative

- Seventeen-level push/pop stack

On-chip storage of subroutine return addresses nested up to 17 levels deep

- Separate incrementer for program counter

A relative address may be computed and PC may be incremented by one on a single cycle

RELATED PRODUCTS	
Part No.	Description
Am2902A	Carry Look-Ahead Generator
Am2904	Status and Shift Control Unit
Am2920	8-Bit Register
Am2922	Condition Code MUX

For applications information, see Chapter V of Bit Slice Microprocessor Design, Mick \& Brick, McGraw Hill Publications.

GENERAL DESCRIPTION

The Am2932 is a four-bit wide Program Control Unit intended to perform machine level addressing functions, although the device can also be used as a microprogram sequencer. Four Am2932s may be interconnected to generate a 16 -bit address (64 K words). The Am2932 contains a program counter, a subroutine stack, an auxiliary register, and a full adder for computing relative addresses.
The Am2932 performs five types of instructions. These are: 1) Fetch; 2) Jump; 3) Jump-to-Subroutine; 4) Return-fromSubroutine; and 5) miscellaneous instructions.
There are four sources of data for the adder which generates the Address outputs $\left(\mathrm{Y}_{0}-\mathrm{Y}_{3}\right)$. These are: 1) the Program Counter(PC); 2) the Stack (S); 3) the auxiliary Register(R); and 4) the Direct inputs (D). Under control of the Instruction inputs ($10-13$), the multiplexers at the adder inputs allow various combinations of these terms to be generated at the threestate Y address outputs. The instruction lines also control the updating of the program counter and the auxiliary register.

BLOCK DIAGRAM

* INTERNAL

Am2932

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to V cC max.
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

| Rart Number | Temperature | |
| :--- | :---: | :---: | V $_{\text {CC }}$

DC CHARACTERISTICS OVER OPERATING RANGE

Param	Description	Test Conditions (Note 1)				Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 2) } \end{aligned}$	Max	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$\begin{aligned} & Y_{0}, Y_{1}, Y_{2}, Y_{3} \\ & C_{n+4} \\ & C_{i+4} \end{aligned}$		$\mathrm{IOH}=-1.6 \mathrm{~mA}$	2.4			Volts
			FULL		$\mathrm{IOH}=-1.2 \mathrm{~mA}$	2.4			
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=\operatorname{MIN} . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$Y_{0}, Y_{1}, Y_{2}, Y_{3}$		$\begin{aligned} & 1 \mathrm{OL}=20 \mathrm{~mA} \\ & \left(\mathrm{COM} \mathrm{M}^{\prime}\right) \end{aligned}$			0.5	Volts
					$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$ (MIL)			0.5	
			$C_{n+4,}$		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.5	
			FULL		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$			0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level (Note 4)					2.0			Volts
V_{IL}	Input LOW Level (Note 4)							0.8	Volts
v_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{I N}=-18 \mathrm{~mA}$						-1.5	Volts
$I_{1 L}$	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{1 \mathrm{I}}=0.5 \mathrm{~V}$		D_{0-3}				-. 360	mA
				$\mathrm{I}_{0-3}, \mathrm{CP}$				-. 702	
				C_{i}				-2.0	
				C_{n}				-3.69	
$\mathrm{I}_{\mathbf{H}}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		D_{0-3}				20	$\mu \mathrm{A}$
				I_{0-3}, CP				40	
				C_{i}				90	
				C_{n}				250	
1.	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$						1.0	mA
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$.				-30		-85	mA
lozl	Output OFF Current	$\begin{aligned} & V_{C C}=M A X ., \\ & O E=2.4 \mathrm{~V} \end{aligned}$	Y_{0-3}	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$
Iozh				$V_{\text {OUT }}$	2.4V			50	
${ }^{\text {Icc }}$	Power Supply Current (Note 5)	$V_{C C}=$ MAX.		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			128	176	mA
				$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$				210	
				$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$				145	
				$T_{A}=0$ to $70^{\circ} \mathrm{C}$				190	
				$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$				160	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. These input levels provide no guaranteed noise immunity and should only be tested in a static-, noise-free environment.
5. Minimum I_{CC} is at maximum temperature.

Am 2932 SWITCHING CHARACTERISTICS

Tables A, B, C and D define the timing characteristics of the Am2932. Measurements are made at 1.5 V with $\mathrm{V}_{1 \mathrm{~L}}=0 \mathrm{~V}$ and $\mathrm{V}_{1 H}=3.0 \mathrm{~V}$. For three-state disable tests, $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ and measurement is to 0.5 V change on output voltage level.

I. GUARANTEED PERFORMANCE OVER COMMERCIAL OPERATING RANGE.

$\mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$

TABLE IA Clock Characteristics.

Minimum Clock LOW Time	31ns
Minimum Clock HIGH Time	33ns

TABLE IB
Output Enable/Disable Times.
All in ns.
$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests.

From	To	Enable	Disable
I_{3-0}	Y	80	55

TABLE IC Combinational Propagation Delays. All in ns.
Outputs fully loaded. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

	Y	c_{n+4}	$\begin{gathered} \mathbf{C}_{\mathbf{i}+4} \\ \text { (Note 1) } \end{gathered}$	$\begin{gathered} \mathbf{C}_{\mathbf{i}+4} \\ \text { (Note 2) } \end{gathered}$	$\overline{\text { Full }}$
1_{3-0}	81	77	91	80	69
C_{n}	32	25	45	-	-
C_{i}	-	-	22	22	-
CP	69	61	78	43	55
D	39	-	50	-	-

TABLE ID
Set-up and Hold Times. All in ns. All relative to clock LOW-to-HIGH transition.

	CP:	
Input	Set-up Time	Hold Time
C_{n}	43	0
C_{i}	32	5
D	52	2
I_{3-0}	114	0

2. All instructions except $5,7,11,12,13,14$.

II. GUARANTEED PERFORMANCE OVER MILITARY OPERATING RANGE.
 $V_{C C}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

TABLE IIA Clock Characteristics.

Minimum Clock LOW Time	35 ns
Minimum Clock HIGH Time	35 ns

TABLE IIB
Output Enable/Disable Times. All in ns.
$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests.

From	To	Enable	Disable
I_{3-0}	Y	85	60

TABLE IIC
Combinational Propagation Delays. All in ns.
Outputs fully loaded. $C_{L}=50 \mathrm{pF}$.

Output From Input	\mathbf{Y}	\mathbf{C}_{n+4}	\mathbf{C}_{i+4} (Note 1)	\mathbf{C}_{i+4} (Note 2)	$\overline{\text { Full }}$
I_{3-0}	88	82	97	87	78
C_{n}	37	30	46	-	-
C_{i}	-	-	23	23	-
$C P$	74	66	84	45	60
D	44	-	55	-	-

TABLE IID
Set-up and Hold Times. All in ns. All relative to clock LOW-to-HIGH transition.

Input	CP: Set-up Time	Hold Time
	52	0
	37	5
D	60	2
I_{3-0}	124	0

Notes: 1. Instructions 5, 7, 11, 12, 13, 14.
2. All instructions except $5,7,11,12,13,14$.

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to V_{CC} changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground
cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or V_{IH} until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

ARCHITECTURE OF THE Am2932

The Am2932 is a bipolar Program Control Unit intended for use in high-speed microprocessor applications. The device is a cascadable, four-bit slice such that three devices allow addressing of up to 4 K words of memory and four devices allow addressing of up to 64 K words of memory.

As shown in the Block Diagram, the device consists of the following:

1) A full adder with input multiplexers
2) A Program Counter Register with an incrementer and an input multiplexer
3) A 17×4 Last-In, First-Out (LIFO) stack consisting of an input multiplexer, a 17×4 RAM, and a Stack Pointer
4) An auxiliary register with an input multiplexer
5) An instruction decoder
6) Four 3-state output buffers on the address outputs

The following paragraphs describe each of these blocks in detail.

Full Adder

The Full Adder is a binary device with full lookahead carry logic for high-speed addition. The carry output $\left(C_{n+4}\right)$ can be connected to the next higher C_{n} to provide ripple block arithmetic. The carry input to the adder (C_{n}) is internally inhibited during those instructions which do not require an addition to be performed. For these instructions, the data is passed directly through the adder, independent of the state of C_{n}.
The multiplexers at the A and B inputs of the adder are controlled by the Instruction decoder which selects the appropriate adder inputs for the selected instruction.

Program Counter

The program counter consists of a register preceded by an incrementer. The Program Counter Register (PC) is a four-bit, edge-triggered, D-type register which is loaded from the incrementer output on the LOW-to-HIGH transition of the clock input (CP) at the end of every instruction.
The incrementer utilizes full lookahead logic for high speed. For cascading devices, the carry output of the incrementer $\left(C_{i+4}\right)$ is connected to the incrementer carry input $\left(C_{j}\right)$ of the next higher device. The output of the incrementer, which is loaded into the PC, is equal to the incrementer input plus C_{i}. Therefore, it is possible to control the entire cascaded incrementer from the C_{i} input of the least significant device; a LOW on the C_{i} input of the least significant device will simply pass the data from the multiplexer output to the inputs of PC; a HIGH will cause the outputs of the multiplexer to be incremented before they are loaded into PC. During the suspend
instruction the C_{j} input is internally inhibited; therefore, data is passed from the multiplexer output to the PC without incrementing. The multiplexer selects the input to the incrementer from either PC or the output of the Full Adder, depending upon the instruction being executed: During the Jump, Jump-to-Subroutine, and Return instructions, the multiplexer chooses the Full Adder outputs as the input to the incrementer. The Full Adder output is also selected for the Reset instruction. For all other instructions, the PC is selected as the input to the incrementer.

17×4 LIFO Stack

The 17×4 LIFO stack consists of a multiplexer, a 17×4 RAM, and a Stack Pointer (SP) which address the words in the RAM.
The SP always points to the last word written into the RAM (Top of the Stack). The Top of the Stack (S) is available at the output of the RAM.
Data is pushed onto the Top of the Stack from either D or PC. It is written into memory location SP+1. The SP is incremented on the LOW-to-HIGH clock transition at the end of the cycle so that it still points to the last data written into the RAM.
For a Pop operation, the contents of the RAM are not changed, but the SP is decremented at the end of the cycle so that it then points to the new Top of the Stack.
The SP is an up/down counter which changes state on the LOW-to-HIGH transition of the Clock input. It is internally prevented from incrementing when the stack is full and from decrementing when the Stack is empty. When the Stack is full, the RAM write circuitry is also inhibited.
The active LOW Full output ($\overline{\mathrm{FULL}}$) is LOW either when the stack is full or when the current instruction being executed will fill the stack (during and after the 17th Push).

Auxiliary Register (R)

The Auxiliary Register (R) can be loaded from either the Direct inputs (D) or the output of the Full Adder. It is loaded on the LOW-to-HIGH transition of the clock input (CP) if the Instruction inputs call for it to be loaded.

Instruction Decoder

The Instruction Decoder generates the signals necessary to establish the data paths and to enable the loading of the PC, $R, S P$, and RAM.

Output Buffers

The Address outputs $\left(\mathrm{Y}_{0}-\mathrm{Y}_{3}\right)$ are three-state drivers which may be disabled under Instruction control.

Instruction Number	13	l_{2}	11	1_{0}	Mnemonic	Instruction	$\mathrm{Y}_{0}-\mathrm{Y}_{3}$	Next State (after CP 5) - Note 2			
								PC	R	RAM	SP
0	L	L	L	L	PRST	RESET	"0"	"0"+C ${ }_{\text {i }}$	-	-	Reset
1.	L	L	L	H	PSUS	SUSPEND	Z (Note 1)	-	-	-	-
2	L	L	H	L	PSHD	PUSH D	PC	$\mathrm{PC}+\mathrm{C}_{i}$	-	$\mathrm{D} \rightarrow$ Loc $\mathrm{SP}+1$	SP+1
3	L	L	H	H	POPS	POP S	S	$\mathrm{PC}+\mathrm{C}_{1}$	-	-	SP-1
4	L	H	L	L	FPC	FETCH PC	PC	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	-	-	-
5	L	H	L	H	JMPD	JUMP D	D	$\mathrm{D}+\mathrm{C}_{\text {i }}$	-	-	-
6	L.	H	H	L	PSHP	PUSH PC	PC	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1
7	L	H	H	H	RTS	RETURN S	S	$\mathrm{S}+\mathrm{C}_{\mathrm{i}}$	-	-	SP-1
8	H	L	L	L	FR	FETCH R	R	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	-	-	-
9	H	L	L	H	FPR	FETCH PC+R	$P C+R+C_{n}$	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	-	-	-
10	H	L	H	L	FPLR	FETCH PC \rightarrow R	PC	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	PC	-	-
11	H	L	H	H	JMPR	JUMP R	R	$\mathrm{R}+\mathrm{C}_{\mathrm{i}}$	-	-	-
12	H	H	L	L	JPPR	JUMP PC+R	$P C+R+C_{n}$	$P C+R+C_{n}+C_{i}$	-	-	-
13	H	H	L	H	JSBR	JSB R	R	$\mathrm{R}+\mathrm{C}$ i	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1
14	H	H	H	L	JSPR	JSB PC+R	$P C+R+C_{n}$	$P C+R+C_{n}+C_{i}$	-	$\mathrm{PC} \rightarrow$ Loc SP+1	SP+1
15	H	H	H	H	PLDR	LOAD R	PC	$\mathrm{PC}+\mathrm{C}_{\mathrm{i}}$	D	-	-

Notes: 1. $Z=$ High impedance state (outputs "OFF").
2. $-=$ No change.

$$
\begin{array}{ll}
\text { PC - Program Counter } & \text { SP - Stack Pointer } \\
R \text { - Auxiliary Register } & D \text { - Direct Inputs } \\
S \text { - Stack Top } &
\end{array}
$$

Am 2932 INSTRUCTION SET

The Am2932 Instruction set can be divided into five types of instructions. These are:

- Fetches
- Jumps
- Jumps-to-Subroutine
- Return-from-Subroutine
- Miscellaneous Instructions

The following paragraphs describe each of these types in detail.

Fetches

As can be seen from Table I, there are four Fetch instructions (Instructions 4, 8, 9, 10). Under control of the Instructions inputs, the desired value is placed at the Y outputs. For all Fetch instructions, $P C$ is incremented if C_{i} of the least significant device is HIGH. For Instruction 10 R is loaded with PC. The RAM and Stack Pointer are not changed during a Fetch instruction.

Jumps

There are three Jump instructions (Instructions 5, 11, 12). Under control of the Instruction inputs, the desired value is placed at the Y outputs. Additionally, the value is incremented if C_{i} of the least significant device is HIGH and loaded into PC. The RAM, Stack Pointer and R are not changed during these instructions.

Jumps-to-Subroutine

There are two Jump-to-Subroutine instructions (Instructions 13 and 14). Under control of the Instruction inputs, the desired value is placed on the Y outputs. On the rising edge of the clock the value is incremented* and loaded into PC, PC is loaded into the RAM at location $S P+1$; and $S P$ is incremented.
During these instructions, R is not changed.

Return-from-Subroutine (Instruction 7)

Under control of the instruction inputs, S is placed at the Y
outputs. Additionally, the value of S is incremented* and loaded into PC and SP is decremented at the end of the cycle (on the rising edge of the clock).
During this instruction, R is not changed.

Miscellaneous Instructions

Each of the nine miscellaneous instructions is described individually.

Reset (Instruction 0)

The Reset instruction forces the Y outputs to zero, loads either zero or one into PC, depending upon the C_{j} input of the least significant device, and resets SP. The RAM and R are unchanged.

Load R (Instruction 15)

This instruction loads the data on the D inputs into R. PC is either incremented or held depending upon C_{i} of the least significant device. The SP and RAM are not changed.

Push PC (Instruction 6)

This instruction is the same as Fetch PC except that PC is loaded into RAM and SP is incremented at the end of the cycle; i.e., the current PC is Pushed onto the stack.

Push D (Instruction 2)

This instruction is the same as Fetch PC except that D is loaded into the RAM and SP is incremented at the end of the cycle; i.e., external data is Pushed onto the stack.

Pop S (Instruction 3)

This instruction places the Top of the Stack (S) at the Y outputs and decrements SP at the end of the cycle. The PC is incremented if the C_{i} input of the least significant device is HIGH. R is not changed.

Suspend (Instruction 1)

The Suspend instruction inhibits any change in PC, SP, R and RAM and forces the Y outputs into the high impedance state.

[^11]A. Three state outputs
B. NORMAL OUTPUTS

$$
\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{BE}}-V_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}+\mathrm{V}_{\mathrm{OL}} / 1 \mathrm{~K}}
$$

\[

$$
\begin{aligned}
& \mathrm{R}_{2}=\frac{2.4 \mathrm{~V}}{\mathrm{I}_{\mathrm{OH}}} \\
& \mathrm{R}_{1}=\frac{5.0-\mathrm{V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{lOL}+\mathrm{V}_{\mathrm{OL}} / \mathrm{R}_{2}}
\end{aligned}
$$
\]

Notes: 1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. S_{1}, S_{2}, S_{3} are closed during function tests and all $A C$ tests except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open for tpZH test.
S_{1} and S_{2} are closed while S_{3} is open for tPZL test.
4. $C_{L}=5.0 \mathrm{pF}$ for output disable tests.

TEST OUTPUT LOADS FOR Am2932

Pin \# (DIP)	Pin Label	Test Circuit	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
2	$\overline{\mathrm{FULL}}$	B	300	2 K
4	$\mathrm{C}_{\mathrm{i}+4}$	B	240	1.5 K
$6-9$	Y_{0-3}	A	240	1 K
12	$\mathrm{C}_{\mathrm{n}+4}$	B	240	1.5 K

APPLICATIONS

The Am2932 is shown in a typical 16-bit, 2900 Microcomputer design in Figure 1.
The Direct inputs (D) of the Am2932 are derived from one of three sources: the Instruction Register, the Data Bus via a 16bit register (two Am2920 8-bit Registers), and the output of the Am2901s via a 16 -bit register.
The Address outputs (Y) of the Am2932 are passed to the address bus.
The C_{n+4} output can be wired to the next higher C_{n} input to provide ripple block arithmetic.
The control inputs of the Am2932 ($\mathrm{I}_{0-3}, \mathrm{C}_{\mathrm{i}}$ and C_{n} of the least significant device) are shown originating at the Pipeline Register.

PIN DEFINITIONS

IO-3 The four Instruction control lines to the Am2932, used to establish data paths and enable internal registers.
$\mathbf{C}_{\boldsymbol{n}} \quad$ The carry-in to the Full Adder.
$\mathbf{C}_{\boldsymbol{n}+4}$ The carry-out of the Full Adder.
$\mathbf{C}_{\mathbf{i}} \quad$ The carry-in to the program counter incrementer.
$\mathbf{C}_{\mathbf{i}+4}$ The carry-out of the program counter incrementer.
Y_{0-3} The four address outputs of the Am2932. These are three-state output lines. When enabled, they display the outputs of the Full Adder.
D_{0-3} The four Direct inputs which are used as inputs to the Auxiliary Register, the RAM, and the Full Adder, under instruction control.
Full The Full output is LOW when the LIFO stack is full - during and after the 17th push operation.

CP The clock input to the Am2932. All internal registers ($\mathrm{R}, \mathrm{SP}, \mathrm{PC}$) and the RAM are updated on the LOW-to-HIGH transition of the clock input.

Figure shows the use of four Am2932s as a 17 -word by 16 -bit LIFO stack by grounding I_{2} and I_{3}. The effect of grounding I_{3} is shown in Figure 3.

Note 1. During this instruction, PC is placed on the Y outputs. If C_{i} is held LOW, the Y outputs will be LOW for this instruction after the device is initialized with a Reset instruction.

Figure 2. Application of Four Am2932s as a 17 -Word by 16-Bit LIFO Stack.

$\mathbf{l}_{\mathbf{2}}$	\mathbf{l}_{1}	\mathbf{l}_{0}	INSTRUCTION
L	L	L	RESET
L	L	H	SUSPEND
L	H	L	PUSH D
L	H	H	POP S
H	L	L	FETCH PC
H	L	H	JUMP D
H	H	L	PUSH PC
H	H	H	RETURN S

Figure 3. Equivalent Circuit of Am2932 with I3 Grounded.
BLI-100
ORDERING INFORMATION
Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2932DC	D-20	C	C-1
AM2932DC-B	D-20	C	B-2 (Note 4)
AM2932DM	D-20	M	C-3
AM2932DM-B	D-20	M	B-3
AM2932LC	L-28-2	C	C-1
AM2932LM	L-28-2	M	C-3
AM2932LM-B	L-28-2	M	B-3
AM2932XC AM2932XM	Dice	C M	$\left\{\begin{array}{l} \text { Visual inspection } \\ \text { to MIL-STD-883. } \\ \text { Method 2010B. } \end{array}\right.$

Notes: 1. $\mathbf{P}=$ Moided DIP, $\mathbf{D}=$ Hermetic DIP, $F=$ Flat-Pak. Number following letter is number of leads. See Appendix \mathbf{B} for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

Am2940
 DMA Address Generator

DISTINCTIVE CHARACTERISTICS

- DMA Address Generation

Generates memory address, word count and DONE signal for DMA transfer operation.

- Expandable Eight-bit Slice

Any number of Am2940's can be cascaded to form larger memory addresses - three devices address 16 megawords.

- Repeat Data Transfer Capability Initial memory address and word count are saved so that the data transfer can be repeated.
- Programmable Control Modes

Provides four types of DMA transfer control plus memory address increment/decrement.

- High Speed, Bipolar LSI

Advanced Low-Power Schottky TTL technology provides typical CLOCK to DONE propagation delay of 50 ns and 24 mA output current sink capability.

- Microprogrammable

Executes 8 different instructions.

GENERAL DESCRIPTION

The Am2940, a 28 -pin member of Advanced Micro Devices Am2900 family of Low-Power Schottky bipolar LSI chips, is a high-speed, cascadable, eight-bit wide Direct Memory Access Address Generator slice. Any number of Am2940's can be cascaded to form larger addresses.
The primary function of the device is to generate sequential memory addresses for use in the sequential transfer of data to or from a memory. It also maintains a data word count and generates a DONE signal when a programmable terminal count has been reached. The device is designed for use in peripheral controllers with DMA capability or in any other system which transfers data to or from sequential locations of a memory.
The Am2940 can be programmed to increment or decrement the memory address in any of four control modes, and executes eight different instructions. The initial address and word count are saved internally by the Am2940 so that they can be restored later in order to repeat the data transfer operation.

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V} . \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

CONNECTION DIAGRAMS - Top Views

F-28-2

D-28

MPR-586

Note: Pin 1 is marked for orientation

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $\mathrm{V}_{\mathrm{cC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

OPERATING RANGE

P/N	Range	Temperature		V $_{\text {CC }}$
Am2940DC	COM'L	$T_{A}=0$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$	$($ MIN. $=4.75 \mathrm{~V}$ MAX. $=5.25 \mathrm{~V})$
Am2940DM, FM	MIL	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MIN} .=4.50 \mathrm{~V}$ MAX. $=5.50 \mathrm{~V})$

DC CHARACTERISTICS OVER OPERATING RANGE

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. These input levels provide no guaranteed noise immunity and should only be static tested in a noise-free environment (not functionally tested).
5. IOL limit on A_{i} and $D_{i}\left(i=0\right.$ to 7) applies to either output individually, but not both at the same time. The sum of the loading on A_{i} plus D_{i} is limited to 24 mA MIL or 32 mA COM'L.

See Tables A for t_{s} and t_{h} for various inputs. See Tables B for combinational delays from clock and other inputs to outputs.

Figure 2. Switching Waveforms.

SWITCHING CHARACTERISTICS

The tables below define the Am2940 switching characteristics. Tables A are set-up and hold times relative to the clock LOW-to-HIGH transition. Tables B are combinational delays. Tables C are clock requirements. All measurements are made at 1.5 V with input levels at 0 V or 3 V . All values are in ns with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ except output disable times ($\overline{O E}$ to A and I to D) which are specified or a 5 pF load. All times are in ns.
I. GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

Am2940DC ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)
A. Set-up and Hold Times
(Relative to clock LOW-to-HIGH transition)

Input	$\mathbf{t}_{\mathbf{s}}$	\mathbf{t}_{h}
$\mathrm{D}_{0-7} \mathrm{~F}$	24	4
I_{012}	46	5
$\overline{\mathrm{ACl}}$	30	4
WCl (Note 1)	30	3

C. Clock Requirements

Minimum Clock LOW Time	23	ns
Minimum Clock HIGH Time	34	ns
Maximum Clock Frequency	17	MHz

B. Combinational Delays
\(\left.\begin{array}{|l|c|c|c|c|c|}\hline Input \& \overline{ACO} \& \overline{\mathbf{W}} \overline{\mathbf{C O}} \& \mathbf{A}_{\mathbf{0}-7} \& \mathbf{D O N E} \& \mathbf{D}_{\mathbf{0}-7}

\hline \overline{\mathrm{ACl}} \& 20 \& - \& - \& - \& -

\hline \overline{\mathrm{WCl}}

(Note 2)\end{array}\right)-\)| - | - |
| :---: | :---: |
I_{0-2}	-
CP (Note 3)	58

D. Enable/Disable Times

From	To	Disable	Enable	
I_{012}	D_{0-7}	35	35	ns
$\overline{\mathrm{OE}}$	A_{0-7}	25	25	ns

II. GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE

Am2940DM, FM ($\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

A. Set-up and Hold Times

(Relative to clock LOW-to-HIGH transition)

Input	$\mathbf{t}_{\mathbf{s}}$	$\mathbf{t}_{\mathbf{h}}$
D_{0-7}	27	6
O_{012}	49	5
$\overline{\mathrm{ACl}}$	34	5
WCl (Note 1)	34	5

C. Clock Requirements

Minimum Clock LOW Time	23	ns
Minimum Clock HIGH Time	35	ns
Maximum Clock Frequency	16	MHz

Notes on Testing

incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful.

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to $V_{C C}$ changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable may allow the ground pin at the device to rise by 100's of millivolts momentarily.
B. Combinational Delays

Input	$\overline{\text { ACO }}$	$\overline{\mathrm{WCO}}$	\mathbf{A}_{0-7}	$\mathbf{D O N E}$	\mathbf{D}_{0-7}
$\overline{\mathrm{ACl}}$	21	-	-	-	-
$\overline{\mathrm{WCI}}$ (Note 2)	-	21	-	54	-
$\mathrm{I}_{0}-\mathrm{I}_{2}$	-	-	-	-	41
CP (Note 3)	64	64	62	88	-

D. Enable/Disable Times

From	To	Disable	Enable	
I_{012}	D_{0-7}	42	42	ns
$\overline{\mathrm{OE}}$	A_{0-7}	30	30	ns

Notes: 1. Control modes 0,1 , and 3 only.
2. WCI to Done occurs only in control modes 0 and 1.
3. CP to Done occurs only in control modes 0,1 , and 2.
4. Use extreme care in defining input levels for $A C$ tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or $V_{I H}$ until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

Figure 4. Am2940 Interconnections.

Am 2940 ARCHITECTURE

As shown in the Block Diagram, the Am2940 consists of the following:

- A three-bit Control Register.
- An eight-bit Address Counter with input multiplexer.
- An eight-bit Address Register.
- An eight-bit Word Counter with input multiplexer.
- An eight-bit Word Count Register.
- Transfer complete circuitry.
- An eight-bit wide data multiplexer with three-state output buffers.
- Three-state address output buffers with external output enable control.
- An instruction decoder.

Control Register

Under instruction control, the Control Register can be loaded or read from the bidirectional DATA lines $\mathrm{D}_{0}-\mathrm{D}_{7}$. Control Register bits 0 and 1 determine the Am2940 Control Mode, and bit 2 determines whether the Address Counter increments or decrements. Figure 1 defines the Control Register format.

Address Counter

The Address Counter, which provides the current memory address, is an eight-bit, binary, up/down counter with full look-ahead carry generation. The Address Carry input ($\overline{\mathrm{ACl}}$) and Address Carry Output ($\overline{\mathrm{ACO}}$) allow cascading to accommodate larger addresses. Under instruction control, the Address Counter can be enabled, disabled, and loaded from the DATA inputs, $D_{0}-D_{7}$, or the Address Register. When enabled and the $\overline{A C I}$ input is LOW, the Address Counter increments/decrements on the LOW to HIGH transition of the CLOCK input, CP. The Address Counter output can be enabled onto the three-state ADDRESS outputs $\mathrm{A}_{0}-\mathrm{A}_{7}$ under control of the Output Enable input, $\overline{\mathrm{OE}} \mathrm{A}_{\mathrm{A}}$.

Address Register

The eight-bit Address Register saves the initial address so that it can be restored later in order to repeat a transfer operation. When the LOAD ADDRESS instruction is executed, the Address Register and Address Counter are simultaneously loaded from the DATA inputs, $D_{0}-D_{7}$.

Word Counter and Word Count Register

The Word Counter and Word Count Register, which maintain and save a word count, are similar in structure and operation to the Address Counter and Address Register, with the exception that the Word Counter increments in Control Modes 1 and 3, decrements in Control Mode 0, and is disabled in Control Mode 2. The LOAD WORD COUNT instruction simultaneously loads the Word Counter and Word Count Register.

Transfer Complete Circuitry

The Transfer Complete Circuitry is a combinational logic network which detects the completion of the data transfer operation in three Control Modes and generates the DONE output signal. The DONE signal is a open-collector output, which can be dot-anded between chips.

Data Multiplexer

The Data Multiplexer is an eight-bit wide, 3 -input multiplexer which allows the Address Counter, Word Counter, and Control Register to be read at the DATA lines, $\mathrm{D}_{0}-\mathrm{D}_{7}$. The Data Multiplexer and three-state Data output buffers are instruction controlled.

Address Output Buffers

The three-state Address Output Buffers allow the Address Counter output to be enabled onto the ADDRESS lines, $A_{0}-A_{7}$, under external control. When the Output Enable input, $\overline{\mathrm{OE}} \mathrm{A}_{\mathrm{A}}$, is LOW, the Address output buffers are enabled; when OE_{A} is HIGH, the ADDRESS lines are in the high-impedance state. The address and Data Output Buffers can sink 24 mA output current over the commercial operating range.

Instruction Decoder

The Instruction Decoder generates required internal control signals as a function of the INSTRUCTION inputs, $\mathrm{I}_{0}-\mathrm{I}_{2}$ and Control Register bits 0 and 1.

Clock

The CLOCK input, CP is used to clock the Address Register, Address Counter, Word Count Register, Word Counter, and Control Register, all on the LOW to HIGH transition of the CP signal.

CR ${ }_{1}$	CR_{0}	Control Mode Number	Control Mode Type	Word Counter	DONE Output Signal	
					$\overline{\mathrm{WCl}}=$ LOW	$\overline{\mathrm{WCl}}=\mathrm{HIGH}$
L	L	0	Word Count Equals Zero	Decrement	HIGH when Word Counter $=1$	HIGH when Word Counter $=0$
L	H	1	Word Count Compare	Increment	HIGH when Word Counter + 1 $=$ Word Count Reg.	HIGH when Word Counter = Word Count Reg.
H	L	2	Address Compare	Hold	HIGH when Word Counter = Address Counter	
H	H	3	Word Counter Carry Out	Increment	Always LOW	

$H=H I G H$
L = LOW

CR_{2}	Address Counter
L	Increment
H	Decrement

Figure 1. Control Register Format Definition.

Am2940 CONTROL MODES

Control Mode 0 - Word Count Equals Zero Mode

In this mode, the LOAD WORD COUNT instruction loads the word count into the Word Count Register and Word Counter. When the Word Counter is enabled and the Word Counter Carry-in, WCI, is LOW, the Word Counter decrements on the LOW to HIGH transition of the clock input, CP. Figure 1 specifies when the DONE signal is generated.

Control Mode 1 - Word Count Compare Mode

In this mode the LOAD WORD COUNT instruction loads the word count into the Word Count Register and clears the Word Counter. When the Word Counter is enabled and the Word Counter Carry-in $\overline{\mathrm{WCl}}$, is LOW, the Word Counter increments on the LOW to HIGH transition of the clock input, CP. Figure 1 specifies when the DONE signal is generated.

Control Mode 2 - Address Compare Mode

In this mode, only an initial and final memory address need be specified. The initial Memory Address is loaded into the Address Register and Address Counter and the final memory address is loaded into the Word Count Register and Word Counter. The Word Counter is always disabled in this mode and serves as a holding register for the final memory address. When the Address Counter is enabled and the $\overline{A C l}$ input is LOW, the Address Counter increments or decrements (depending on Control Register bit 2) on the LOW to HIGH transition of the CLOCK input, CP. The Transfer Complete Circuitry compares the Address Counter with the Word Counter and generates the DONE signal during the last word transfer, i.e. when the Address Counter equals the Word Counter.

Control Mode 3 - Word Counter Carry Out Mode

For this mode of operation, the user can load the Word Count Register and Word Counter with the two's complement of the number of data words to be transferred. When the Word Counter is enabled and the WCI input is LOW, the Word Counter increments on the LOW to HIGH transition of the CLOCK input, CP. A Word Counter Carry Out signal, WCO, indicates the last data word is being transferred. The DONE signal is not required in this mode and, therefore, is always LOW.

Am2940 INSTRUCTIONS

The Am2940 instruction set consists of eight instructions. Six instructions load and read the Address Counter, Word Counter and Control Register, one instruction enables the Address and Word counters, and one instruction reinitializes the Address and Word Counters. The function of the REINITIALIZE COUNTERS, LOAD WORD COUNT, and ENABLE COUNTERS instructions varies with the Control Mode being utilized. Table 1 defines the Am2940 Instructions as a function of instruction inputs $\mathrm{I}_{0}-\mathrm{I}_{2}$ and the four Am2940 Control Modes.
The WRITE CONTROL REGISTER instruction writes DATA input $D_{0}-D_{2}$ into the Control Register; DATA inputs $D_{3}-D_{7}$ are "don't care" inputs for this instruction. The READ CONTROL REGISTER instruction gates the Control Register outputs to DATA lines, $D_{0}-D_{2}$. DATA lines $D_{3}-D_{7}$ are in the HIGH state during this instruction.
The Word Counter can be read using the READ WORD COUNTER instruction, which gates the Word Counter outputs to DATA lines $D_{0}-D_{7}$. The LOAD WORD COUNT instruction is Control Mode dependent. In Control Modes 0, 2, and 3, DATA inputs $D_{0}-D_{7}$ are written into both the Word Count Register and Word Counter. In Control Mode 1, DATA inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$ are written into the Word Count Register and the Word Counter is cleared.
The READ ADDRESS COUNTER instruction gates the Address Counter outputs to DATA lines $D_{0}-D_{7}$, and the LOAD ADDRESS instruction writes DATA inputs $D_{0}-D_{7}$ into both the Address Register and Address Counter.

In Control Modes 0, 1, and 3, the ENABLE COUNTERS instruction enables both the Address and Word Counters; in Control Mode 2, the Address Counter is enabled and the Word Counter holds its contents. When enabled and the carry input is active, the counters increment on the LOW to HIGH transition of the CLOCK input, CP. Thus, with this instruction applied, counting can be controlled'by the carry inputs.
The REINITIALIZE COUNTERS instruction also is Control Mode dependent. In Control Modes 0,2, and 3, the contents of the Address Register and Word Count Register are transferred to the respective Address Counter and Word Counter; in Control Mode 1, the content of the Address Register is transferred to the Address Counter and the Word Counter is cleared. The REINITIALIZE COUNTERS instruction allows a data transfer operation to be repeated without reloading the address and word count from the DATA lines.

TABLE I. Am2940 instructions

$\begin{array}{lll}I_{2} & I_{1} & I_{0}\end{array}$	Octal Code	Function	Mnemonic	Control Mode	Word Reg.	Word Counter	Address Reg.	Address Counter	Control Register	$\begin{gathered} \text { Data } \\ D_{0}-D_{7} \end{gathered}$
L L L	0	$\begin{aligned} & \text { WRITE } \\ & \text { CONTROL } \\ & \text { REGISTER } \end{aligned}$	WRCR	0, 1, 2, 3	HOLD	HOLD	HOLD	HOLD	$D_{0}-D_{2} \rightarrow C R$	INPUT
L L H	1	READ CONTROL REGISTER	RDCR	0, 1, 2, 3	HOLD	HOLD	HOLD	HOLD	HOLO	$\begin{aligned} & \mathrm{CR} \rightarrow \mathrm{D}_{0}-\mathrm{D}_{2} \\ & (\text { Note } 1)^{2} \end{aligned}$
L H L	2	$\begin{gathered} \text { READ } \\ \text { WORD } \\ \text { COUNTER } \end{gathered}$	RDWC	0, 1, 2, 3	HOLD	HOLD	HOLO	HOLD	HOLD	WC \rightarrow D
L H H	3	READ ADDRESS COUNTER	RDAC	0, 1, 2, 3	HOLD	HOLD	HOLD	HOLD	HOLD	$A C \rightarrow D$
	4	REINITIALIZE		0,2,3	HOLD	WCR \rightarrow WC	HOLD	$A R \rightarrow A C$	HOLD	z
HLL	4	COUNTERS	REIN	1	HOLD	ZERO \rightarrow WC	HOLD	$A R \rightarrow A C$	HOLD	Z
H L H	5	LOAD ADDRESS	LDAD	0, 1, 2, 3	HOLD	HOLD	$D \rightarrow A R$	$\mathrm{D} \rightarrow \mathrm{AC}$	HOLD	InPUT
H H L	6	LOAD WORD	LDWC	0, 2, 3	$D \rightarrow$ WR	D \rightarrow WC	HOLD	HOLD	HOLD	InPUT
		COUNT		1	$D \rightarrow W R$	ZERO \rightarrow WC	HOLD	HOLD	HOLD	INPUT
				0, 1, 3	HOLD	ENABLE COUNT	HOLD	ENABLE COUNT	HOLD	z
H H	7	COUNTERS	ENCT	2	HOLD	HOLD	HOLD	ENABLE COUNT	HOLD	Z

$\mathrm{CR}=$ Control Reg.
AR = Address Reg.
AC = Address Count

WCR = Word Count Reg.
WC = Word Counter
D = Data
$\mathrm{L}=\mathrm{LOW}$
$\mathrm{H}=\mathrm{HIGH}$
Z = High Impedance

Note 1:
Data Bits $D_{3}-D_{7}$ are high during this instruction.

TEST OUTPUT LOAD CONFIGURATIONS FOR Am2940

A. THREE STATE OUTPUTS
B. NORMAL OUTPUTS
C. OPEN-COLLECTOR OUTPUTS

$\mathrm{R}_{1}=\frac{5.0-\mathrm{V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}+\mathrm{V}_{\mathrm{OL}} / 1 \mathrm{~K}}$

$\mathrm{R}_{2}=\frac{2.4 \mathrm{~V}}{\mathrm{l}_{\mathrm{OH}}}$
$R_{1}=\frac{5.0-V_{O L}}{1 \mathrm{OL}}$

Notes: 1. $C_{L}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. S_{1}, S_{2}, S_{3} are closed during function tests and all $A C$ tests except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open for tPZH test.
S_{1} and S_{2} are closed while S_{3} is open for $t_{P Z L}$ test.
4. $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ for output disable tests.

TEST OUTPUT LOADS FOR Am2940 (DIP)

Pin \# (DIP)	Pin Label	Test Circuit	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
-	A_{0-7}	A	220	1 K
-	D_{0-7}	A	220	1 K
6	$\overline{\mathrm{ACO}}$	B	470	2.4 K
7	DONE	C	270	-
10	$\overline{W C O}$	B	470	2.4 K

APPLICATIONS

The Am2940 is designed for use in peripheral controllers with "DMA capability or in any other system which transfers data to or from sequential locations of a memory. One or more Am2940's can be used in each peripheral controller of a distributed DMA system to provide the memory address and word count required for DMA operation.
Figure 3 shows a block diagram of an example microprogrammed DMA peripheral controller.' The Am2910 Microprogram Sequencer, Microprogram Memory, and the Microinstruction Register form the microprogram control portion of this peripheral controller. The Am2940 generates the memory address and maintains the word count required for DMA operation. An internal three-state bus provides the communication path between the Microinstruction Register, the Am2917 Data Transceivers, the Am2940, the Am2901A Microprocessor, and the Device Interface Circuitry.

The Am2940 interconnections are shown in detail in Figure 4. Two Am2940's are cascaded to generate a sixteen-bit address. The Am2940 ADDRESS and DATA output current sink capability is 24 mA over the commercial operating range. This allows the Am2940's to drive the System Address Bus and Internal ThreeState Bus directly, thereby eliminating the need for separate bus drivers. Three-bits in the Microinstruction Register provide the Am2940 Instruction inputs, $\mathrm{I}_{0}-\mathrm{I}_{2}$. The microprogram clock is used to clock the Am2940's and, when the ENABLE COUNTERS instruction is applied, address and word counting is controlled by the CNT bit of the Microinstruction Register.
Asynchronous interface control circuitry generates System Bus control signals and enables the Am2940 Address onto the System Address Bus at the appropriate time. The open-collector DONE outputs are dot-anded and used as a test input to the Am2910 Microprogram Sequencer.

Figure 3. DMA Peripheral Controller Block Diagram.

Am2942

Programmable Timer/Counter DMA Address Generator

DISTINCTIVE CHARACTERISTICS

- 22-pin version of Am2940 -

Provides multiplexed Address and Data lines plus additional Instruction Input and Instruction Enable pins.

- Can be used as either DMA Address Generator or Programmable Timer Counter.
- Executes 16 instructions -

Eight DMA instructions plus eight Timer/Counter instructions

- Provides two independent programmable 8 -bit up/down counters in a 22-pin package -
Counters can be cascaded to form single-chip 16 -bit up/ down counter.
- Reinitialize capability -

Counters can be reinitialized from on-chip registers.

- Expandable eight-bit slice Any number of Am2942s can be cascaded. Three devices provide a 48 bit counter.
- Programmable control modes Provide four types of control.
- High speed bipolar LSI -

Advanced Low-Power Schottky TTL technology provides typical count frequency of 25 MHz and 24 mA output current sink capability.

GENERAL DESCRIPTION

The Am2942, a 22 -pin version of the Am2940, can be used as a high-speed DMA Address Generator or Programmable Timer/Counter. It provides multiplexed Address and Data lines, for use with a common bus, and additional Instruction Input and Instruction Enable pins. The Am2942 executes 16 instructions; eight are the same as the Am2940 instructions, and eight instructions facilitate the use of the Am2942 as a Programmable Timer/Counter. The Instruction Enable input allows the sharing of the Am2942 instruction field with other devices.

When used as a Timer/Counter, the Am2942 provides two independent, programmable, eight-bit, up-down counters in a 22 -pin package. The two on-chip counters can be cascaded to form a single chip, 16 -bit counter. Also, any number of chips can be cascaded - for example three cascaded Am2942s form a 48-bit timer/counter.

Reinitialization instructions provide the capability to reinitialize the counters from on-chip registers. Am2942 Programmable Control Modes, identical to those of the Am2940, offer four different types of programmable control.

Am2942
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to $+\mathbf{7 . 0 \mathrm { V }}$
DC Voltage Applied to Outputs for High Output State	-0.5 V to $\mathrm{V}_{\text {CC }} \mathrm{max}$.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

OPERATING RANGE

P/N	Range	Temperature		V_{CC}
Am2942DC	COM'L	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$	$(\mathrm{MIN} .=4.75 \mathrm{~V}$ MAX $=5.25 \mathrm{~V})$
Am2942DM, FM	MIL	$\mathrm{T}_{\mathrm{C}}=-55^{\circ}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MIN} .=4.50 \mathrm{~V} \mathrm{MAX} .=5.50 \mathrm{~V})$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	MIL. $\mathrm{IOH}=-1.0 \mathrm{~mA}$		2.4			Volts
			COM'L $\mathrm{IOH}=-2.6 \mathrm{~mA}$					Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	WCO, ACO	MIL $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.5	Volts
				COM'L ${ }_{\text {OL }}=12 \mathrm{~mA}$				
			D $0 \rightarrow 7$, DONE	MIL $\mathrm{IOL}=16 \mathrm{~mA}$				
				COM'L $\mathrm{IOL}=24 \mathrm{~mA}$				
$\mathrm{V}_{1} \mathrm{H}$	Input HIGH Level (Note 4)	Guaranteed Input Logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level (Note 4)	Guaranteed input Logical LOW voltage for all inputs					0.8	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		D_{0-7}			-0.15	mA
				All Others			-0.8	
$I_{1 H}$	Input HIGH Current	$V_{C C}=M A X ., V_{I N}=2.7 \mathrm{~V}$		D_{0-7}			150	$\mu \mathrm{A}$
				All Others			40	
${ }^{\text {ICEX }}$	Output Leakage on DONE	$\mathrm{V}_{\mathrm{CC}}=$ MAX., $\mathrm{V}_{0}=5.5 \mathrm{~V}$					250	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
ISC	Output Short Circuit Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} .+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-30		-85	mA
lozz	Output OFF Current	$\begin{aligned} & V_{C C}=M A X . \\ & O E=2.4 V \end{aligned}$	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$	D_{0-7}			-150	$\mu \mathrm{A}$
lozh			$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$	D_{0-7}			150	
${ }^{1} \mathrm{CC}$	Power Supply Current	$V_{C C}=M A X$.		$=25^{\circ} \mathrm{C}$		155	250	mA
			, $D C$	$=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			265	
			, DC T_{A}	$=+70^{\circ} \mathrm{C}$			220	
			Am2942DM, FM	$=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			285	
				$=+125^{\circ} \mathrm{C}$			205	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. These input levels provide no guaranteed noise immunity and should only be static tested in a noise-free environment (not functional testing).

See Tables A for t_{s} and t_{h} for various inputs. See Tables B for combinational delays from clock and other inputs to outputs.

Figure 5. Switching Waveforms.

SWITCHING CHARACTERISTICS

The tables below define the Am2942 switching characteristics. Tables A are set-up and hold times relative to the clock LOW-to-HIGH transition. Tables B are combinational delays. Tables C are clock requirements. All measurements are made at 1.5 V with input levels at 0 V or 3 V . All values are in ns with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ except output disable times (1 to D) which are specified for a 5 pF load. All times are in ns.

I. GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE Am2942PC, $\mathrm{DC}\left(\mathrm{T}_{\mathrm{A}}=0\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $\left.5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$

A. Set-up and Hold Times (Relative to clock LOW-to-HIGH transition)

Input	$\mathbf{t}_{\mathbf{s}}$	$\mathbf{t}_{\boldsymbol{h}}$
D_{0-7}	24	6
I_{0-3}	46	5
$\overline{\mathrm{ACl}}$	30	4
$\overline{\mathrm{WCl}}$	30	3
I_{E}	46	5

C. Clock Requirements

Minimum Clock LOW Time	23	ns
Minimum Clock HIGH Time	34	ns
Maximum Clock Frequency	17	MHz

B. Combinational Delays

Input	$\overline{\text { ACO }}$	$\overline{\text { WCO }}$	DONE	$\mathbf{D}_{\mathbf{0} \mathbf{- 7}}$
$\overline{\mathrm{ACl}}$	20	-	-	-
$\overline{W C I}$ $($ Note 1)	-	20	46	-
I_{0-3}	-	-	-	37
CP (Note 2)	58	58	85	59
I_{E}	-	-	-	37

D. Enable/Disable Times

From	To	Disable	Enable	
$\overline{\mathrm{OE}}$	D_{0-7}	25	25	ns

II. GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE

 Am2942DM, $F M\left(T_{C}=-55\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to $\left.5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$A. Set-up and Hold Times
(Relative to clock LOW-to-HIGH transition)

Input	$\mathbf{t}_{\mathbf{s}}$	$\mathbf{t}_{\mathbf{h}}$
D_{0-7}	27	7
I_{0-3}	49	5
$\overline{\mathrm{ACI}}$	34	5
$\overline{\mathrm{WCl}}$	34	5
I_{E}	49	5

C. Clock Requirements

Minimum Clock LOW Time	23	ns
Minimum Clock HIGH Time	35	ns
Maximum Clock Frequency	17	MHz

Notes on Testing

incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to V_{CC} changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground
B. Combinational Delays
$\left.\begin{array}{|l|c|c|c|c|}\hline \text { Input } & \overline{\text { ACO }} & \overline{\text { WCO }} & \text { DONE } & \mathrm{D}_{0.7} \\ \hline \overline{\mathrm{ACI}} & 21 & - & - & - \\ \hline \overline{\mathrm{WCl}} & - & 21 & 54 & - \\ \text { (Note 1) }\end{array}\right)$
D. Enable/Disable Times

From	To	Disable	Enable	
$\overline{\mathrm{OE}}$	$\mathrm{D}_{0.7}$	30	30	ns

Notes: $1 . \overline{W C I}$ to Done occurs only in control modes 0 and 1.
2. CP to Done occurs only in control modes 0,1 , and 2.
cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for $A C$ tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach $V_{I L}$ or $\mathrm{V}_{\mathbb{I H}}$ until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

Am2942 ARCHITECTURE

As shown in the Block Diagram, the Am2942 consists of the following:

- A three-bit Control Register.
- An eight-bit Address Counter with input multiplexer.
- An eight-bit Address Register.
- An eight-bit Word Counter with input multiplexer.
- An eight-bit Word Count Register.
- Transfer complete circuitry.
- An eight-bit wide data multiplexer with three-state output buffers.
- An instruction decoder.

Control Register

Under instruction control, the Control Register can be loaded or read from the bidirectional DATA lines $D_{0}-D_{7}$. Control Register bits 0 and 1 determine the Am2942 Control Mode, and bit 2 determines whether the Address Counter increments or decrements. Figure 1 defines the Control Register format.

Address Counter

The Address Counter, which provides the current memory address, is an eight-bit, binary, up/down counter with full lookahead carry generation. The Address Carry input ($\overline{\mathrm{ACI}}$) and Address Carry Output ($\overline{\mathrm{ACO}}$) allow cascading to accommodate larger addresses. Under instruction control, the Address Counter can be enabled, disabled, and loaded from the DATA inputs, $D_{0}-D_{7}$, or the Address Register. When enabled and the $\overline{\mathrm{ACl}}$ input is LOW, the Address Counter increments/ decrements on the LOW to HIGH transition of the CLOCK input, CP.

Address Register

The eight-bit Address Register saves the initial address so that it can be restored later in order to repeat a transfer operation. When the LOAD ADDRESS instruction is executed, the Address Register and Address Counter are simultaneously loaded from the DATA inputs, $D_{0}-D_{7}$.

Word Counter and Word Count Register

The Word Counter and Word Count Register, which maintain and save a word count, are similar in structure and operation to the Address Counter and Address Register, with the exception that the Word Counter increments in Control Modes 1 and 3, and decrements in Control Modes 0 and 2. The LOAD WORD COUNT instruction simultaneously loads the Word Counter and Word Count Register.

Transfer Complete Circuitry

The Transfer Complete Circuitry is a combinational logic network which detects the completion of the data transfer operation in three Control Modes and generates the DONE output signal. The DONE signal is a open-collector output, which can be dot-anded between chips.

Data Multiplexer

The Data Multiplexer is an eight-bit wide, three-input multiplexer which allows the Address Counter, Word Counter and Control Register to be read at DATA lines $\mathrm{D}_{0}-\mathrm{D}_{7}$. The Data Multiplexer output, $Y_{0}-Y_{7}$, is enabled onto DATA lines D_{0-7} if and only if the Output Enable input, $\overline{\mathrm{EE}_{\mathrm{D}}}$, is LOW. (Refer to Figure 2.)

Instruction Decoder

The Instruction Decoder generates required internal control signals as a function of the INSTRUCTION inputs, $I_{0}-I_{3}$ Control Register bits 0 and 1, and the INSTRUCTION ENABLE input, \bar{T}_{E}.

Clock

The CLOCK input, CP is used to clock the Address Register, Address Counter, Word Count Register, Word Counter, and Control Register, all on the LOW to HIGH transition of the CP signal.

CR $_{1}$	CR $_{0}$	Control Mode Number	Control Mode Type	Word Counter		$\overline{\|c\|}$ DONE Output Signal
L	L	0	Word Count Equals Zero	Decrement	HIGH when Word Counter $=1$	HIGH when Word Counter $=0$
L	H	1	Word Count Compare	Increment	WIGH when Word Counter +1 $=$ Word Count Reg.	HIGH when Word Counter $=$ Word Count Reg.
H	L	2	Address Compare	Decrement	HIGH when Word Counter = Address Counter	

$\mathbf{C R}_{2}$	Address Counter
L	Increment
H	Decrement

Figure 1. Control Register Format Definition.

$\overline{\mathbf{O E}_{\mathrm{D}}}$	$\mathbf{D}_{0}-\mathbf{D}_{7}$
L	DATA MULTIPLEXER OUTPUT, $Y_{0}-Y_{7}$
H	HIGH Z

Figure 2. Data Bus Output Enable Function.

Am2942 INSTRUCTIONS

The Am2942 instruction set consists of sixteen instructions. Eight are DMA Instructions and are similar to the Am2940 instructions. The remaining eight instructions are designed to facilitate the use of the Am2942 as a Programmable Timer/ Counter. Figures 3 and 4 define the Am2942 Instructions.
Instructions 0-7 are DMA instructions. The WRITE CONTROL REGISTER instruction writes DATA input $D_{0}-D_{2}$ into the Con-
transition of the CLOCK input, CP. Thus, with this instruction applied, counting can be controlled by the carry inputs.

The REINITIALIZE COUNTERS instruction also is Control Mode dependent. In Control Modes 0, 2, and 3, the contents of the Address Register and Word Count Register are transferred to the respective Address Counter and Word Counter; in Control Mode 1, the content of the Address Register is transferred to the Address Counter and the Word Counter is

$\overline{I_{E}}$	I_{3}	I_{2}	I_{1}	I_{0}	$\begin{aligned} & \text { HEX } \\ & \text { CODE } \end{aligned}$		
0	0	0	0	0	0	WRITE CONTROL REGISTER	
0	0	0	0	1	1	READ CONTROL REGISTER	
0	0	0	1	0	- 2	READ WORD COUNTER	
0	0	0	1	1	3	READ ADDRESS COUNTER	
0	0	1	0	0	4	REINITIALIZE COUNTERS	
0	0	1	0	1	5	LOAD ADDRESS	
0	0	1	1	0	6	LOAD WORD COUNT	
0	0	1	1	1	7	ENABLE COUNTERS	
1	0	X	X	X	0-7	INSTRUCTION DISABLE	
0	1	0	0	0	8	WRITE CONTROL REGISTER, T/C	
0	1	0	0	1	9	REINITIALIZE ADDRESS COUNTER	
0	1	0	1	0	A	READ WORD COUNTER, T/C	
0	1	0	1	1	B	READ ADDRESS COUNTER, T/C	
0	1	1	0	0	C	REINITIALIZE ADDRESS \& WORD COUNTERS	
0	1	1	0	1	D	LOAD ADDRESS, T/C	
0	1	1	1	0	E	LOAD WORD COUNT, T/C	
0	1	1	1	1	F	REINITIALIZE WORD COUNTER	
1	1	X	X	X	8-F	INSTRUCTION DISABLE, T/C	

0 = LOW $\quad 1=$ HIGH $\quad X=$ DON'T CARE
Notes: 1. When I_{3} is tied LOW, the Am2942 acts as a DMA circuit: When I_{3} is tied HIGH, the Am2942 acts as a Timer/Counter circuit.
2. Am2942 instructions 0 through 7 are the same as Am2940 instructions.

Figure 3. Am 2942 Instructions.
trol Register; DATA inputs $D_{3}-D_{7}$ are "don't care" inputs for this instruction. The READ CONTROL REGISTER instruction gates the Control Register to Data Multiplexer outputs $\mathrm{Y}_{0}-\mathrm{Y}_{2}$. Outputs $Y_{3}-Y_{7}$ are HIGH during this instruction.

The Word Counter can be read using the READ WORD COUNTER instruction, which gates the Word Counter to Data Multiplexer outputs, $\mathrm{Y}_{0}-\mathrm{Y}_{7}$. The LOAD WORD COUNT instruction is Control Mode dependent. In Control Modes 0,2 , and 3, DATA inputs $D_{0}-D_{7}$ are written into both the Word Count Register and Word Counter. In Control Mode 1, DATA inputs $D_{0}-D_{7}$ are written into the Word Count Register and the Word Counter is cleared.

The READ ADDRESS COUNTER instruction gates the Address Counter to Data Multiplexer outputs, $Y_{0}-Y_{7}$, and the LOAD ADDRESS instruction writes DATA inputs $D_{0}-D_{7}$ into both the Address Register and Address Counter.

In Control Modes 0, 1, and 3, the ENABLE COUNTERS instruction enables both the Address and Word Counters; in Control Mode 2, the Address Counter is enabled and the Word Counter holds its contents. When enabled and the carry input is active, the counters increment on the LOW to HIGH
cleared. The REINITIALIZE COUNTERS instruction allows a data transfer operation to be repeated without reloading the address and word count from the DATA lines.
When \bar{I}_{E} is HIGH , Instruction inputs, $\mathrm{I}_{0}-\mathrm{I}_{2}$, are disabled. If I_{3} is LOW, the function performed is identical to that of the ENABLE COUNTERS instruction. Thus, counting can be controlled by the carry inputs with the ENABLE COUNTERS instruction applied or with Instruction Inputs $\mathrm{I}_{0}-\mathrm{I}_{2}$ disabled.

Instructions 8-F facilitate the use of the Am2942 as a Programmable Timer/Counter. They differ from instructions 0-7 in that they provide independent control of the Address Counter, Word Counter and Control Register.

The WRITE CONTROL REGISTER, T/C instruction writes DATA input $D_{0}-D_{2}$ into the Control Register. DATA inputs $D_{3}-D_{7}$ are "don't care" inputs for this instruction. The Address and Word Counters are enabled, and the Control Register contents appear at the Data Multiplexer output.
The REINITIALIZE ADDRESS COUNTER instruction allows the independent reinitialization of the Address Counter. The Word Counter is enabled and the contents of the Address Counter appear at the Data Multiplexer output.

The Word Counter can be read, using the READ WORD COUNTER, T/C instruction. Both counters are enabled when this instruction is executed.

When the READ ADDRESS COUNTER, T/C instruction is executed, both counters are enabled and the address counter contents appear at the Data Multiplexer output.

The REINITIALIZE ADDRESS and WORD COUNTERS instruction provides the capability to reinitialize both counters at the same time. The Address Counter contents appear at the Data Multiplexer output.

DATA inputs $D_{0}-D_{7}$ are loaded into both the Address Register and Counter when the LOAD ADDRESS, T/C instruction is
executed. The Word Counter is enabled and its contents appear at the Data Multiplexer output.

The LOAD WORD COUNT, T/C instruction is identical to the LOAD WORD COUNT instruction with the exception that Address Counter is enabled.

The Word Counter can be independently reinitialized using the REINITIALIZE WORD COUNTER instruction. The Address Counter is enabled and the Word Counter contents appear at the Data Multiplexer output.
When the \bar{I}_{E} input is HIGH, Instruction inputs, $\mathrm{I}_{0}-\mathrm{I}_{2}$, are disabled. The function performed when I_{3} is HIGH is identical to that performed when I_{3} is LOW, with the exception that the Word Counter contents appear at the Data Multiplexer output.

T_{E}	$I_{3} I_{2} I_{1} I_{0}$ (Hex)	Function	Mnemonic	Control Mode	Word Reg.	Word Counter	Adr. Reg.	Adr. Counter	Control Reg.	Data Multiplexer Output
L	0	WRITE CONTROL REGISTER	WRCR	0, 1, 2, 3	HOLD	HOLD	HOLD	HOLD	$\mathrm{D}_{0-2} \rightarrow \mathrm{CR}$	$\begin{aligned} & \text { FORCED } \\ & \text { HIGH } \end{aligned}$
L	1	READ CONTROL REGISTER	RDCR	0, 1, 2, 3	HOLD	HOLD	HOLD	HOLD	HOLD	CONTROL REG.
L	2	READ WORD COUNTER	RDWC	0, 1, 2, 3	HOLD	HOLD	HOLD	HOLD	HOLD	WORD COUNTER
L	3	READ ADDRESS COUNTER	RDAC	0, 1, 2, 3	HOLD	HOLD	HOLD	HOLD	HOLD	ADR. COUNTER
L	4	REINITIALIZE COUNTERS	REIN	0, 2, 3	HOLD	WR \rightarrow WC	HOLD	$A R \rightarrow A C$	HOLD	ADR. CNTR.
				1	HOLD	ZERO \rightarrow WC	HOLD	$A R \rightarrow A C$	HOLD	ADR. CNTR.
L	5	LOAD ADDRESS	LDAD	0, 1, 2, 3	HOLD	HOLD	$D \rightarrow A R$	$D \rightarrow A C$	HOLD	WORD COUNTER
L	6	LOAD WORD COUNT	LDWC	0, 2, 3	$\mathrm{D} \rightarrow \mathrm{WR}$	$\mathrm{D} \rightarrow \mathrm{WC}$	HOLD	HOLD	HOLD	FORCED HIGH
				1	$\mathrm{D} \rightarrow$ WR	ZERO \rightarrow WC	HOLD	HOLD	HOLD	FORCED HIGH
L	7	ENABLE COUNTERS	ENCT	0, 1, 3	HOLD	ENABLE	HOLD	ENABLE	HOLD	ADR. CNTR.
				2	HOLD	HOLD	HOLD	ENABLE	HOLD	ADR. CNTR.
H	0-7	INSTRUCTION DISABLE		0, 1, 3	HOLD	ENABLE	HOLD	ENABLE	HOLD	ADR. CNTR.
				2	HOLD	HOLD	HOLD	ENABLE	HOLD	ADR. CNTR.
L	8	WRITE CONTROL REGISTER, T/C	WCRT	0, 1, 2, 3	HOLD	ENABLE	HOLD	ENABLE	$\mathrm{D}_{0-2} \rightarrow \mathrm{CR}$	CONTROL REG.
L	9	REINITIALIZE ADR. COUNTER	REAC	0, 1, 2, 3	HOLD	ENABLE	HOLD	$A R \rightarrow A C$	HOLD	ADR. COUNTER
L	A	READ WORD COUNTER, TC	RWCT	0, 1, 2, 3	HOLD	ENABLE	HOLD	ENABLE	HOLD	WORD COUNTER
L	B	READ ADDRESS COUNTER, T/C	RACT	0, 1, 2, 3	HOLD	ENABLE	HOLD	ENABLE	HOLD	ADR. COUNTER
L	C	$\begin{aligned} & \text { REINITIALIZE } \\ & \text { ADDRESS AND } \\ & \text { WORD COUNTERS } \end{aligned}$	RAWC	0, 2, 3	HOLD	WR \rightarrow WC	HOLD	$A R \rightarrow A C$	HOLD	ADR. CNTR.
				1	HOLD	ZERO \rightarrow WC	HOLD	$A R \rightarrow A C$	HOLD	ADR. CNTR.
L	D	LOAD ADDRESS, T/C	LDAT	0, 1, 2, 3	HOLD	ENABLE	$D \rightarrow A R$	$D \rightarrow A C$	HOLD	WORD COUNTER
L	E	LOAD WORD COUNT, T/C	LWCT	0, 2, 3	$D \rightarrow W R$	$\mathrm{D} \rightarrow \mathrm{WC}$	HOLD	ENABLE	HOLD	FORCED HIGH
				1	$\mathrm{D} \rightarrow$ WR	ZERO \rightarrow WC	HOLD	ENABLE	HOLD	FORCED HIGH
L	F	REINITIALIZE WORD COUNTER	REWC	0, 2, 3	HOLD	WR \rightarrow WC	HOLD	ENABLE	HOLD	WD. CNTR.
				1	HOLD	ZERO \rightarrow WC	HOLD	ENABLE	HOLD	WD. CNTR.
H	8-F	instruction DISABLE, T/C	-	0, 1, 3	HOLD	ENABLE	HOLD	ENABLE	HOLD	WD. CNTR.
				2	HOLD	HOLD	HOLD	ENABLE	HOLD	WD. CNTR.

```
WR = WORD REGISTER
WC = WORD COUNTER
AR = ADDRESS REGISTER
AC = ADDRESS COUNTER
\(C R=\) CONTROL REGISTER
\(A R=A D D R E S S\) REGISTER

Figure 4. Am2942 Function Table.

\section*{Am2942 CONTROL MODES}

\section*{Control Mode 0 - Word Count Equals Zero Mode}

In this mode, the LOAD WORD COUNT instruction loads the word count into the Word Count Register and Word Counter. When the Word Counter is enabled and the Word Counter Carry-in, \(\overline{\text { WCI, }}\), LOW, the Word Counter decrements on the LOW to HIGH transition of the CLOCK input, CP. Figure 1 specifies when the DONE signal is generated in this mode.

\section*{Control Mode 1 - Word Count Compare Mode}

In this mode the LOAD WORD COUNT instruction loads the word count into the Word Count Register and clears the Word Counter. When the Word Counter is enabled and the Word Counter Carry-in, \(\overline{\mathrm{WCI}}\), is LOW, the Word Counter increments on the LOW to HIGH transition of the clock input, CP. Figure 1 specifies when the DONE signal is generated.

\section*{Control Mode 2 - Address Compare Mode}

In this mode, only an initial and final memory address need to be specified. The initial Memory Address is loaded into the Address Register and Address Counter and the final memory
address is loaded into the Word Count Register and Word Counter. The Word Counter is always disabled in this mode and serves as a holding register for the final memory address. When the Address Counter is enabled and the \(\overline{A C I}\) input is LOW, the Address Counter increments or decrements (depending on Control Register bit 2) on the LOW to HIGH transition of the CLOCK input, CP. The Transfer Complete Circuitry compares the Address Counter with the Word Counter and generates the DONE signal during the last word transfer, i.e. when the Address Counter equals the Word Counter.

\section*{Control Mode 3 - Word Counter Carry Out Mode}

For this mode of operation, the user can load the Word Count Register and Word Counter with the two's complement of the number of data words to be transferred. When the Word Counter is enabled and the WCI input is LOW, the Word Counter increments on the LOW to HIGH transition of the CLOCK input, CP. A Word Counter Carry Out signal, WCO, indicates the last data word is being transferred. The DONE signal is not required in this mode and, therefore, is always LOW.

\section*{TEST OUTPUT LOAD CONFIGURATIONS FOR Am2942}
A. THREE STATE OUTPUTS



\(\mathrm{R}_{2}=\frac{2.4 \mathrm{~V}}{\mathrm{IOH}_{\mathrm{OH}}}\)
\[
\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{OL}}}{\mathrm{loL}}
\]
\(R_{1}=\frac{5.0-V_{B E}-V_{O L}}{l_{O L}+V_{O L} / 1 K}\)
\(R_{1}=\frac{5.0-V_{B E}-V_{O L}}{10 L+V_{O L} / R_{2}}\)

Notes: 1. \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) includes scope probe, wiring and stray capacitances without device in test fixture.
2. \(S_{1}, S_{2}, S_{3}\) are closed during function tests and all \(A C\) tests except output enable tests.
3. \(S_{1}\) and \(S_{3}\) are closed while \(S_{2}\) is open for tpZH test.
\(S_{1}\) and \(S_{2}\) are closed while \(S_{3}\) is open for tpZL test.
4. \(C_{L}=5.0 \mathrm{pF}\) for output disable tests.

TEST OUTPUT LOADS FOR Am2942 (DIP)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Pin \# \\
(DIP)
\end{tabular} & Pin Label & \begin{tabular}{c} 
Test \\
Circuit
\end{tabular} & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) \\
\hline- & \(\mathrm{D}_{0-7}\) & A & 220 & 1 K \\
\hline 20 & \(\overline{\mathrm{ACO}}\) & B & 470 & 2.4 K \\
\hline 21 & DONE & C & 270 & - \\
\hline 2 & \(\overline{\mathrm{WCO}}\) & B & 470 & 2.4 K \\
\hline
\end{tabular}

\section*{APPLICATIONS}

Figure 6 shows an Am2942 used as two independent, programmable eight-bit timer/counters. In this example, an Am2910 Microprogram Sequencer provides an address to Am27S27 \(512 \times 8\) Registered PROMs. The on-chip PROM output register is used as the Microinstruction Register.

The Am2942 Instruction input, \(I_{3}\), is tied HIGH to select the eight Timer/Counter instructions. The \(\overline{I_{E}}, \mathrm{I}_{0}-\mathrm{I}_{2}\), and \(\overline{\mathrm{OE}} \mathrm{E}_{\mathrm{D}}\) inputs are provided by the microinstruction, and the \(D_{0}-D_{7}\) data lines are connected to a common Data Bus. GATE WC and GATE \(A C\) are separate enable controls for the respective Word Counter and Address Counter. The DONE, \(\overline{A C O}\) and WCO
output signals indicate that a pre-programmed time or count has been reached.

Figure 7 shows an Am2942 used as a single 16 -bit programmable timer/counter. In this example, the Word Counter carry-out, \(\overline{\mathrm{WCO}}\), is connected to the Address Counter carry-in, \(\overline{\mathrm{ACl}}\), to form a single 16 -bit counter which is enabled by the GATE signal.
Figure 8 shows two Am2942s cascaded to form a 32-bit programmable timer/counter. The two Word Counters form the low order 16 bits, and the two Address Counters form the high order bits. This allows the timer/counter to be loaded and read 16 bits at a time.

Figure 6. Two 8-Bit Programmable Counters/Timers in a 22-Pin Package.
\(\qquad\)


Figure 7. 16-Bit Programmable Counter/Timer Using a Single Am2942.


MPR-236

Figure 8. 32-Bit Programmable Counter/Timer Using Two Am2942s.

\title{
Am2946•Am2947 \\ Octal Three-State Bidirectional Bus Transceivers
}

\section*{distinctive characteristics}
- 8-bit bidirectional data flow reduces system package count
- 3-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- \(\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V}_{\mathrm{OH}}\) interfaces with TTL, MOS and CMOS
- \(48 \mathrm{~mA}, 300 \mathrm{pF}\) bus drive capability
- Am2946 inverting transceivers
- Am2947 noninverting transceivers
- Transmit/Receive and Chip Disable simplify control logic
- 20-pin ceramic and molded DIP package
- Low power - 8mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down

\section*{FUNCTIONAL DESCRIPTION}

The Am2946 and Am2947 are 8-bit state Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 24 mA drive capability on the \(A\) ports and 48 mA bus drive capability on the \(B\) ports. PNP inputs are incorporated to reduce input loading.
One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a 3 -state condition. Chip Disable is functionally the same as an active LOW chip select.

The output high voltage \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) is specified at \(\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V}\) minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

Am2947
LOGIC DIAGRAM


Am2946 has inverting transceivers.


Am2946/2947
Am2946•Am2947
ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline Supply Voltage & 7.0 V \\
\hline Input Voltage & 5.5 V \\
\hline Output Voltage & 5.5 V \\
\hline Lead Temperature (Soldering, 10 seconds) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Noted:
MIL
\(\mathrm{T}_{\mathrm{A}}=-55\) to \(+125^{\circ} \mathrm{C}\)
\(\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}=4.5 \mathrm{~V}\)
\(\mathrm{V}_{C C} \mathrm{MAX}=5.5 \mathrm{~V}\)
COML \(\quad T_{A}=0\) to \(+70^{\circ} \mathrm{C}\)
\(V_{C C} \mathrm{MIN}=4.75 \mathrm{~V}\)
\(V_{C C} M A X=5.25 \mathrm{~V}\)
\(\begin{array}{lllll}\text { DC ELECTRICAL CHARACTERISTICS } & \text { over operating temperature range } \\ \text { Parameters } & \text { Description } & \text { Test Conditions } & \text { Min } \begin{array}{c}\text { Typ } \\ \text { (Note 1) }\end{array} \text { Max Units }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Parameters Description} & \multicolumn{4}{|c|}{Conditions} & Min & (Note 1) & Max & Units \\
\hline \multicolumn{11}{|c|}{A PORT ( \(\mathrm{A}_{0}-\mathrm{A}_{7}\) )} \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Logical "1" Input Voitage} & \multicolumn{4}{|l|}{\(C D=V_{\text {IL }}\) MAX, \(T / \bar{R}=2.0 \mathrm{~V}\)} & 2.0 & & & Volts \\
\hline \multirow[t]{2}{*}{VIL} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Logical "0" input Voltage}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
C D & =V_{1 L} M A X, \\
T / R & =2.0 \mathrm{~V}
\end{aligned}
\]}} & COM'L & & & 0.8 & \multirow[t]{2}{*}{Volts} \\
\hline & & & & & & MIL & & & 0.7 & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Logical "1" Output Voltage}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& C D=V_{/ L} M A X, \\
& T / \bar{R}=0.8 V
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}\)} & \(V_{C C-}-1.15\) & \(\mathrm{V}_{\mathrm{CC}}-0.7\) & & \multirow[t]{2}{*}{Volts} \\
\hline & & & & & \(\mathrm{I}_{\mathrm{OH}}=-3\) & OmA & 2.7 & 3.95 & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Logical "0" Output Voltage}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& C D=V_{\text {IL }} M A X, \\
& T / / R=0.8 \mathrm{~V}
\end{aligned}
\]} & \multicolumn{3}{|c|}{\(\mathrm{IOL}=12 \mathrm{~mA}\)} & & 0.3 & 0.4 & \multirow[t]{2}{*}{Volts} \\
\hline & & & & COM'L & \(\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~m}\) & & & 0.35 & 0.50 & \\
\hline los & \multicolumn{2}{|l|}{Output Short Circuit Current} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& C D=V_{I L} M A X, T / \bar{R}=0.8 \mathrm{~V}, V_{O}=0 \mathrm{~V}, \\
& V_{C C}=\mathrm{MAX}, \text { Note } 2
\end{aligned}
\]} & -10 & -38 & -75 & mA \\
\hline \({ }_{1 H}\) & \multicolumn{2}{|l|}{Logical "1" Input Current} & \multicolumn{4}{|l|}{\(C D=V_{1 L}\) MAX, \(T / \bar{R}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}\)} & & 0.1 & 80 & \(\mu \mathrm{A}\) \\
\hline 1 & \multicolumn{2}{|l|}{Input Current at Maximum Input Voltage} & \multicolumn{4}{|l|}{\(C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C} \mathrm{MAX}, \mathrm{V}_{1}=\mathrm{V}_{C C} \mathrm{MAX}\)} & & & 1 & mA \\
\hline 1 IL & \multicolumn{2}{|l|}{Logical "0" Input Current} & \multicolumn{4}{|l|}{\(C D=V_{\text {IL }}\) MAX, \(T / \bar{R}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}\)} & & -70 & -200 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{C}}\) & \multicolumn{2}{|l|}{Input Clamp Voltage} & \multicolumn{4}{|l|}{\(C D=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}\)} & & -0.7 & -1.5 & Volts \\
\hline \multirow[t]{2}{*}{\({ }^{\prime} \mathrm{OD}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Output/Input 3-State Current}} & \multirow[t]{2}{*}{\(C D=2.0 \mathrm{~V}\)} & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\)} & \(\because\) & & -200 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}\)} & & & 80 & \\
\hline \multicolumn{11}{|c|}{B PORT ( \(\mathrm{B}_{0}-\mathrm{B}_{7}\) )} \\
\hline \(\mathrm{V}_{1 H}\) & \multicolumn{2}{|l|}{Logical "1" Input Voltage} & \multicolumn{4}{|l|}{\(C D=V_{\text {IL }}\) MAX, \(T / \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}\) MAX} & 2.0 & & & Volts \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{IL}}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Logical "0" Input Voltage}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& C D=V_{I L} M A X, \\
& T / \bar{R}=V_{I L} M A X
\end{aligned}
\]} & & & COM'L & & & 0.8 & \multirow[t]{2}{*}{Voits} \\
\hline & & & & & & MIL & & & 0.7 & \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multicolumn{2}{|l|}{\multirow{3}{*}{Logical " 1 " Output Voltage}} & \multicolumn{2}{|l|}{\multirow{3}{*}{\[
\begin{aligned}
& C D=V_{11} M A X, \\
& T / R=2.0 \mathrm{~V}
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}\)} & \(\mathrm{V}_{C C}-1.15\) & \(V_{C C}-0.8\) & \multirow[t]{3}{*}{} & \multirow{3}{*}{Volts} \\
\hline & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-5.0 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}
\end{aligned}
\]}} & 2.7 & 3.9 & & \\
\hline & & & & & & & 2.4 & 3.6 & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Logical "0" Output Voltage}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& C D=V_{I L} M A X, \\
& T / \bar{R}=2.0 \mathrm{~V}
\end{aligned}
\]} & & \multicolumn{2}{|l|}{\(\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}\)} & & 0.3 & 0.4 & \multirow[t]{2}{*}{Volts} \\
\hline & & & & & \(\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~m}\) & & & 0.4 & 0.5 & \\
\hline los & \multicolumn{2}{|l|}{Output Short Circuit Current} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& C D=V_{I I} M A X, T / \bar{R}=2.0 V, V_{O}=0 \mathrm{~V} \\
& V_{C C}=M A X, \text { Note } 2
\end{aligned}
\]} & -25 & -50 & -150 & mA \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Logical "1" Input Current} & \multicolumn{4}{|l|}{\(C D=V_{1 L}\) MAX, \(T / \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}\) MAX, \(\mathrm{V}_{1}=2.7 \mathrm{~V}\)} & & 0.1 & 80 & \(\mu \mathrm{A}\) \\
\hline 1 & \multicolumn{2}{|l|}{Input Current at Maximum Input Voltage} & \multicolumn{4}{|l|}{\(C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \mathrm{MAX}\)} & & & 1 & mA \\
\hline ILL & \multicolumn{2}{|l|}{Logical "0" Input Current} & \multicolumn{4}{|l|}{\(C D=V_{\text {IL }}\) MAX, \(T / \bar{R}=V_{\text {IL }}\) MAX, \(\mathrm{V}_{1}=0.4 \mathrm{~V}\)} & & -70 & -200 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{C}}\) & \multicolumn{2}{|l|}{Input Clamp Voltage} & \multicolumn{4}{|l|}{\(C D=2.0 \mathrm{~V}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}\)} & & -0.7 & -1.5 & Volts \\
\hline \multirow[t]{2}{*}{Iod} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Output/Input 3-State Current}} & \multirow[t]{2}{*}{\(C D=2.0 \mathrm{~V}\)} & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\)} & & & -200 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\) "} \\
\hline & & & & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}\)} & & & 200 & \\
\hline \multicolumn{11}{|c|}{CONTROL INPUTS CD, T//̄} \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Logical "1" Input Voltage} & \multicolumn{4}{|l|}{} & 2.0 & & & Volts \\
\hline \multirow[t]{2}{*}{VIL} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Logical "0" Input Voltage}} & \multirow[t]{2}{*}{} & & & COM'L & & & 0.8 & \multirow[t]{2}{*}{Volts} \\
\hline & & & & & & MIL & & & 0.7 & \\
\hline \(I_{\text {IH }}\) & \multicolumn{2}{|l|}{Logical "1" Input Current} & \multicolumn{4}{|l|}{\(\mathrm{V}_{1}=2.7 \mathrm{~V}\)} & & 0.5 & 20 & \(\mu \mathrm{A}\) \\
\hline 1 & \multicolumn{2}{|l|}{Input Current at Maximum Input Voltage} & \multicolumn{4}{|l|}{\(V_{C C}=M A X, V_{1}=V_{C C} M A X\)} & & & 1.0 & mA \\
\hline \multirow[t]{2}{*}{If} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Logical "0" Input Current}} & \multirow[t]{2}{*}{\(\mathrm{V}_{1}=0.4 \mathrm{~V}\)} & & & \(T / \bar{R}\) & & -0.1 & -0.25 & \multirow[t]{2}{*}{mA} \\
\hline & & & & & & CD & & -0.1 & -0.25 & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{C}}\)} & \multicolumn{2}{|l|}{Input Clamp Voltage} & \multicolumn{4}{|l|}{\(\operatorname{lin}=-12 \mathrm{~mA}\)} & & -0.8 & -1.5 & Volts \\
\hline & \multicolumn{10}{|c|}{- POWER SUPPLY CURRENT} \\
\hline \multirow{4}{*}{\({ }^{\text {cc }}\)} & \multirow{4}{*}{Power Supply Current} & Am2946 & \multicolumn{4}{|l|}{\(C D=V_{1}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}\)} & & 70 & 100 & \multirow[t]{2}{*}{mA} \\
\hline & & & \multicolumn{4}{|l|}{\(C D=0.4 \mathrm{~V}, \mathrm{~V}_{\text {INA }}=T / / \mathrm{R}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}\)} & & 100 & 150 & \\
\hline & & Am2947B & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{CD}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \\
& \mathrm{CD}=\mathrm{V}_{\mathrm{INA}}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}
\end{aligned}
\]}} & & 70 & 100 & \multirow[t]{2}{*}{mA} \\
\hline & & & & & & & & 90 & 140 & \\
\hline
\end{tabular}

\section*{Am2946}

AC ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=5.0 \mathrm{~V}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Description & Test Conditions & \begin{tabular}{l}
Typ \\
(Note 1)
\end{tabular} & Max & Units \\
\hline \multicolumn{6}{|c|}{A PORT DATA/MODE SPECIFICATIONS} \\
\hline tPDHLA & Propagation Delay to a Logical "0" from B Port to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure } 1) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 8 & 12 & ns \\
\hline tpdLHA & Propagation Delay to a Logical " 1 " from B Port to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 1) } \\
& \mathbf{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 11 & 16 & ns \\
\hline \(t_{\text {PLZA }}\) & Propagation Delay from a Logical " 0 " to 3-State from CD to A Port & \[
\begin{aligned}
& B_{0} \text { to } B_{7}=2.4 \mathrm{~V}, T / \bar{R}=0.4 \mathrm{~V} \text { (Figure 3) } \\
& S_{3}=1, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF}
\end{aligned}
\] & 10 & 15 & ns \\
\hline \(t_{\text {PHZA }}\) & Propagation Delay from a Logical " 1 " to 3-State from CD to A Port & \[
\begin{aligned}
& B_{0} \text { to } B_{7}=0.4 \mathrm{~V}, T / \bar{R}=0.4 \mathrm{~V}(\text { Figure } 3) \\
& S_{3}=0, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF}
\end{aligned}
\] & 8 & 15 & ns \\
\hline \({ }^{\text {tPZLA }}\) & Propagation Delay from 3-State to a Logical "0" from CD to A Port & \[
\begin{aligned}
& B_{0} \text { to } B_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \bar{R}=0.4 \mathrm{~V}(\text { Figure } 3) \\
& S_{3}=1, R_{5}=1 \mathrm{k}, C_{4}=30 \mathrm{pF}
\end{aligned}
\] & 19 & 25 & ns \\
\hline \({ }^{\text {t P }}\) [HA & Propagation Delay from 3-State to a Logical "1" from CD to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}\) (Figure 3) \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}\) & 19 & 25 & ns \\
\hline \multicolumn{6}{|c|}{B PORT DATA/MODE SPECIFICATIONS} \\
\hline \multirow[t]{2}{*}{\({ }^{\text {tPDHLB }}\)} & \multirow[t]{2}{*}{Propagation Delay to a Logical " 0 " from A Port to B Port} & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 1) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 12 & 18 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 7 & 12 & ns \\
\hline \multirow[t]{2}{*}{tPDLHB} & \multirow[t]{2}{*}{Propagation Delay to a Logical "1" from A Port to B Port} & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 1) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 15 & 20 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 9 & 14 & ns \\
\hline \(t_{\text {PLZB }}\) & Propagation Delay from a Logical " 0 " to 3-State from CD to B Port & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=2.4 \mathrm{~V}, T / \bar{R}=2.4 \mathrm{~V}(\text { Figure } 3) \\
& S_{3}=1, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF}
\end{aligned}
\] & 13 & 18 & ns \\
\hline \(t_{\text {PHZB }}\) & Propagation Delay from a Logical " 1 " to 3-State from CD to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure 3)
\[
S_{3}=0, R_{5}=1 k, C_{4}=15 p F
\] & 8 & 15 & ns \\
\hline \multirow[t]{2}{*}{\({ }_{\text {t P }}\)} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical " 0 " from CD to B Port} & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 3) \\
& \mathrm{S}_{3}=1, R_{5}=100 \Omega, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & 25 & 35 & ns \\
\hline & & \(\mathrm{S}_{3}=1, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}\) & 16 & 22 & ns \\
\hline \multirow[t]{2}{*}{\({ }_{\text {tPZHB }}\)} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical "1" from CD to B Port} & \[
\begin{aligned}
& \mathrm{A}_{0} \text { to } \mathrm{A}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 3) \\
& \mathrm{S}_{3}=0, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & 22 & 35 & ns \\
\hline & & \(\mathrm{S}_{3}^{\prime}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=45 \mathrm{pF}\) & 14 & 22 & ns \\
\hline \multicolumn{6}{|c|}{TRANSMIT RECEIVE MODE SPECIFICATIONS} \\
\hline \({ }^{\text {t }}\) RL & Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V} \text { (Figure 2) } \\
& S_{1}=1, R_{4}=100 \Omega, C_{3}=5 \mathrm{pF} \\
& S_{2}=1, R_{3}=1 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF}
\end{aligned}
\] & 23 & 33 & ns \\
\hline \({ }^{\text {T TRH }}\) & Propagation Delay from Transmit Mode to Receive a Logical "1", T//R to A Port & \[
\begin{aligned}
& C D=0.4 V \text { (Figure 2) } \\
& S_{1}=0, R_{4}=100 \Omega, C_{3}=5 \mathrm{pF} \\
& S_{2}=0, R_{3}=5 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF}
\end{aligned}
\] & 22 & 33 & ns \\
\hline \(t_{\text {RTL }}\) & Propagation Delay from Receive Mode to Transmit a Logical " 0 ", \(T / \bar{R}\) to B Port & \[
\begin{aligned}
& C D=0.4 V \text { (Figure } 2) \\
& S_{1}=1, R_{4}=100 \Omega, C_{3}=300 \mathrm{pF} \\
& S_{2}=1, R_{3}=300 \Omega, C_{2}=5 \mathrm{pF}
\end{aligned}
\] & 26 & 35 & ns \\
\hline \(t_{\text {RTH }}\) & Propagation Delay from Receive Mode to Transmit a Logical "1", T//̄ to B Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V} \text { (Figure 2) } \\
& \mathrm{S}_{1}=0, \mathrm{R}_{4}=1 \mathrm{k}, \mathrm{C}_{3}=300 \mathrm{pF} \\
& \mathrm{~S}_{2}=0, \mathrm{R}_{3}=300 \Omega, \mathrm{C}_{2}=5 \mathrm{pF}
\end{aligned}
\] & 27 & 35 & ns \\
\hline
\end{tabular}

Notes: 1. All typical values given are for \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
2. Only one output at a time should be shorted.

FUNCTION TABLE
\begin{tabular}{|c|ccc|}
\hline \multicolumn{1}{|c|}{ Inputs } & \multicolumn{3}{|c|}{ Conditions } \\
\hline Chip Disable & 0 & 0 & 1 \\
\hline Transmit/Receive & 0 & 1 & X \\
\hline A Port & Out & In & \(\mathrm{HI}-\mathrm{Z}\) \\
\hline B Port & In & Out & \(\mathrm{HI}-\mathrm{Z}\) \\
\hline
\end{tabular}

AC ELECTRICAL CHARACTERISTICS over operating range
\begin{tabular}{|c|c|c|c|c|c|}
\hline AC EL & CHARACTE & over operating range & Am 2946 COM'L & Am2946 MIL & \\
\hline Paramete & Description & Test Conditions & \[
\begin{gathered}
T_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\
V_{C C}=5.0 \mathrm{~V} \pm 5 \% \\
\text { Max }
\end{gathered}
\] & \[
\begin{gathered}
T_{A}=-55 \text { to }+125^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\
M a x
\end{gathered}
\] & Units \\
\hline & & PORT DATA/MODE SPECIFICAT & & & \\
\hline tPDHLA & Propagation Delay to a Logical " 0 " from B Port to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}, \mathrm{~T} / \widetilde{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 1) } \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 16 & 19 & ns \\
\hline tpdLha & Propagation Delay to a Logical " 1 " from B Port to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } 1) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, C_{1}=30 \mathrm{pF}
\end{aligned}
\] & 20 & 23 & ns \\
\hline \(t_{\text {PLZA }}\) & Propagation Delay from a Logical "0" to 3-State from CD to A Port & \[
\begin{aligned}
& B_{0} \text { to } B_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\
& S_{3}=1, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF}
\end{aligned}
\] & 18 & 21 & ns \\
\hline \(t_{\text {PHZA }}\) & Propagation Delay from a Logical " 1 " to 3-State from CD to A Port & \[
\begin{aligned}
& B_{0} \text { to } B_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\
& S_{3}=0, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}
\end{aligned}
\] & 18 & 21 & ns \\
\hline \({ }^{\text {t PZLA }}\) & Propagation Delay from 3-State to a Logical " 0 " from CD to A Port & \[
\begin{aligned}
& \left.B_{0} \text { to } B_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure } 3\right) \\
& S_{3}=1, R_{5}=1 \mathrm{k}, C_{4}=30 \mathrm{pF}
\end{aligned}
\] & 28 & 33 & ns \\
\hline tPZHA & Propagation Delay from 3-State to a Logical " 1 " from CD to A Port & \[
\begin{aligned}
& B_{0} \text { to } B_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\
& S_{3}=0, R_{5}=5 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}
\end{aligned}
\] & 28 & 33 & ns \\
\hline & & PORT DATA/MODE SPECIFICATIO & NS & & \\
\hline \(t_{\text {PDHLB }}\) & Propagation Delay to a Logical " 0 " from A Port to B Port & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \widetilde{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } 1 \text { ) } \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 24 & 29 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 16 & 19 & ns \\
\hline tpdLhB & Propagation Delay to a Logical "1" from A Port to B Port & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } 1 \text { ) } \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 25 & 30 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 19 & 22 & ns \\
\hline tplzb & Propagation Delay from a Logical " 0 " to 3-State from CD to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure 3)
\[
S_{3}=1, R_{5}=1 k, C_{4}=15 p F
\] & 23 & 26 & ns \\
\hline \(t_{\text {PHZB }}\) & Propagation Delay from a Logical " 1 " to 3-State from CD to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure 3)
\[
S_{3}=0, R_{5}=1 k, C_{4}=15 p F
\] & 18 & 21 & ns \\
\hline \({ }^{\text {tpZLB }}\) & Propagation Delay from 3-State to a Logical "O" from CD to B Port & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 3) \\
& \mathrm{S}_{3}=1, R_{5}=100 \Omega, C_{4}=300 \mathrm{pF}
\end{aligned}
\] & 38 & 43 & ns \\
\hline & & \(S_{3}=1, R_{5}=667 \Omega, C_{4}=45 \mathrm{pF}\) & 26 & 30 & ns \\
\hline \({ }_{\text {t }}\) & Propagation Delay from 3-State to a Logical " 1 " from CD to B Port & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 3) \\
& S_{3}=0, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & - 38 & 43 & ns \\
\hline & & \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=45 \mathrm{pF}\) & 26 & 30 & ns \\
\hline & & NSMIT RECEIVE MODE SPECIFICA & ATIONS & & \\
\hline \({ }^{\text {tTRL }}\) & Propagation Delay from Transmit Mode to Receive a Logical " 0 ", T/Z to A Port & \[
\begin{aligned}
& C D=0.4 V \text { (Figure } 2) \\
& S_{1}=1, R_{4}=100 \Omega, C_{3}=5 p F \\
& S_{2}=1, R_{3}=1 \mathrm{k}, C_{2}=30 \mathrm{pF}
\end{aligned}
\] & 38 & 43 & ns \\
\hline \({ }^{\text {tTRH }}\) & Propagation Delay from Transmit Mode to Receive a Logical "1", T/ \(/ \bar{R}\) to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V} \text { (Figure 2) } \\
& \mathrm{S}_{1}=0, \mathrm{R}_{4}=100 \Omega, C_{3}=5 \mathrm{pF} \\
& \mathrm{~S}_{2}=0, \mathrm{R}_{3}=5 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF}
\end{aligned}
\] & 38 & 43 & ns \\
\hline \(t_{\text {RTL }}\) & Propagation Delay from Receive Mode to Transmit a Logical " 0 ", \(T / \bar{R}\) to B Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V} \text { (Figure 2) } \\
& S_{1}=1, R_{4}=100 \Omega, C_{3}=300 \mathrm{pF} \\
& S_{2}=1, R_{3}=300 \Omega, C_{2}=5 \mathrm{pF}
\end{aligned}
\] & 41 & 47 & ns \\
\hline \(t_{\text {RTH }}\) & Propagation Delay from Receive Mode to Transmit a Logical "1", T//R to B Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V} \text { (Figure 2) } \\
& S_{1}=0, R_{4}=1 \mathrm{k}, \mathrm{C}_{3}=300 \mathrm{pF} \\
& S_{2}=0, R_{3}=300 \Omega, C_{2}=5 \mathrm{pF}
\end{aligned}
\] & 41 & 47 & ns \\
\hline
\end{tabular}

AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Description & Test Conditions & Typ (Note 1) & Max & Units \\
\hline \multicolumn{6}{|c|}{A PORT DATA/MODE SPECIFICATIONS} \\
\hline tPDHLA & Propagation Delay to a Logical " 0 " from B Port to A Port & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 1) } \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 14 & 18 & ns \\
\hline tpolha & Propagation Delay to a Logical " 1 " from B Port to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } 1) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 13 & 18 & ns \\
\hline tplza & Propagation Delay from a Logical " 0 " to 3-State from CD to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}\) (Figure 3) \(S_{3}=1, R_{5}=1 k, C_{4}=15 p F\) & 11 & 15 & ns \\
\hline tPHZA & Propagation Delay from a Logical "1" to 3-State from CD to A Port & \(B_{0}\) to \(B_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}\) (Figure 3) \(S_{3}=0, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF}\) & 8 & 15 & ns \\
\hline tpZLA & Propagation Delay from 3-State to a Logical " 0 " from CD to A Port & \[
\begin{aligned}
& B_{0} \text { to } B_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\
& S_{3}=1, R_{5}=1 \mathrm{k}, C_{4}=30 \mathrm{pF}
\end{aligned}
\] & 19 & 25 & ns \\
\hline tpzha & Propagation Delay from 3-State to a Logical " 1 " from CD to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}\) (Figure 3) \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}\) & 19 & 25 & ns \\
\hline
\end{tabular}

B PORT DATA/MODE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{tPDHLB} & \multirow[t]{2}{*}{Propagation Delay to a Logical " 0 " from A Port to B Port} & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}, \mathrm{~T} / \bar{R}=2.4 \mathrm{~V} \text { (Figure } 1) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 18 & 23 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 11 & 18 & ns \\
\hline \multirow[t]{2}{*}{tpdLhb} & \multirow[t]{2}{*}{Propagation Delay to a Logical "1" from A Port to B Port} & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 1) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 16 & 23 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 11 & 18 & ns \\
\hline \(t_{\text {PLZB }}\) & Propagation Delay from a Logical " 0 " to 3-State from CD to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure 3)
\[
S_{3}=1, R_{5}=1 k, C_{4}=15 p F
\] & 13 & 18 & ns \\
\hline \(t_{\text {PHZB }}\) & Propagation Delay from a Logical "1" to 3-State from CD to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure 3)
\[
S_{3}=0, R_{5}=1 k, C_{4}=15 p F
\] & 8 & 15 & ns \\
\hline \multirow[t]{2}{*}{\({ }^{\text {P P } 2 L B}\)} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical "0" from CD to B Port} & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, T / \bar{R}=2.4 \mathrm{~V}(\text { Figure } 3) \\
& S_{3}=1, R_{5}=100 \Omega, C_{4}=300 \mathrm{pF}
\end{aligned}
\] & 25 & 35 & ns \\
\hline & & \(\mathrm{S}_{3}=1, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}\) & 16 & 22 & ns \\
\hline \multirow[t]{2}{*}{\({ }^{\text {tPZHB }}\)} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical " 1 " from CD to B Port} & \[
\begin{aligned}
& \mathrm{A}_{0} \text { to } \mathrm{A}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 3) \\
& \mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & 26 & 35 & ns \\
\hline & & \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=45 \mathrm{pF}\) & 14 & 22 & ns \\
\hline
\end{tabular}

TRANSMIT RECEIVE MODE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \({ }^{\text {TTRL }}\) & Propagation Delay from Transmit Mode to Receive a Logical " 0 ", \(T / \bar{R}\) to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}(\text { Figure } 2) \\
& \mathrm{S}_{1}=1, \mathrm{R}_{4}=100 \Omega, C_{3}=5 \mathrm{pF} \\
& \mathrm{~S}_{2}=1, \mathrm{R}_{3}=1 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF}
\end{aligned}
\] & 28 & 38 & ns \\
\hline \({ }^{\text {T TRH }}\) & Propagation Delay from Transmit Mode to Receive a Logical "1", T//R to A Port & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V} \text { (Figure 2) } \\
& \mathrm{S}_{1}=1, \mathrm{R}_{4}=100 \Omega, \mathrm{C}_{3}=5 \mathrm{pF} \\
& \mathrm{~S}_{2}=0, R_{3}=5 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF}
\end{aligned}
\] & 28 & 38 & ns \\
\hline \(t_{\text {RTL }}\) & Propagation Delay from Receive Mode to Transmit a Logical " 0 ", \(T / \bar{R}\) to B Port & \[
\begin{aligned}
& C D=0.4 V \text { (Figure 2) } \\
& S_{1}=1, R_{4}=100 \Omega, C_{3}=300 \mathrm{pF} \\
& S_{2}=0, R_{3}=300 \Omega, C_{2}=5 \mathrm{pF}
\end{aligned}
\] & 31. & 40 & ns \\
\hline \(t_{\text {RTH }}\) & Propagation Delay from Receive Mode to Transmit a Logical " 1 ", \(T / \bar{R}\) to B Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}(\text { Figure } 2) \\
& S_{1}=0, R_{4}=1 \mathrm{k}, C_{3}=300 \mathrm{pF} \\
& S_{2}=1, R_{3}=300 \Omega, C_{2}=5 \mathrm{pF}
\end{aligned}
\] & 31 & 40 & ns \\
\hline
\end{tabular}

Notes: 1. All typical values given are for \(V_{C C}=5.0 \mathrm{~V}\) and \(T_{A}=25^{\circ} \mathrm{C}\).
2. Only one output at a time should be shorted.

\section*{DEFINITION OF FUNCTIONAL TERMS}
\(\mathbf{A}_{0}-\mathbf{A}_{7}\) A port inputs/outputs are receiver output drivers when \(T / \bar{R}\) is LOW and are transmit inputs when \(T / \overline{\mathrm{R}}\) is HIGH.
\(\mathbf{B}_{\mathbf{0}}-\mathbf{B}_{7} \mathrm{~B}\) port inputs/outputs are transmit output drivers when \(T / \bar{R}\) is HIGH and receiver inputs when \(T / \bar{R}\) is LOW.

CD Chip Disable forces all output drivers into 3-state when HIGH (same function as active LOW chip select, \(\overline{\mathrm{CS}}\) ).
\(T / \overline{\mathbf{R}} \quad\) Transmit/Receive direction control determines whether \(\mathbf{A}\) port or \(B\) port drivers are in 3 -state. With \(T / \overline{\mathrm{R}}\) HIGH A port is the input and \(B\) port is the output. With \(T / \bar{R}\) LOW A port is the output and \(B\) port is the input.

AC ELECTRICAL CHARACTERISTICS over operating range
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Description & Test Conditions & \begin{tabular}{l}
\[
V_{C C}=5.0 \mathrm{~V} \pm 5 \%
\] \\
Max
\end{tabular} & \begin{tabular}{l}
\[
\widehat{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%
\] \\
Max
\end{tabular} & Units \\
\hline \multicolumn{6}{|c|}{A PORT DATA/MODE SPECIFICATIONS} \\
\hline \({ }^{\text {tPDHLA }}\) & Propagation Delay to a Logical " 0 " from B Port to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 1) } \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 21 & 24 & ns \\
\hline tppleh & Propagation Delay to a Logical "1" from B Port to A Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V}, \mathrm{~T} / \sqrt{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 1) } \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 21 & 24 & ns \\
\hline \({ }^{\text {tpLZA }}\) & Propagation Delay from a Logical "0" to 3-State from CD to A Port & \[
\begin{aligned}
& \left.\mathrm{B}_{0} \text { to } \mathrm{B}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure } 3\right) \\
& \mathrm{S}_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}
\end{aligned}
\] & 18 & 21 & ns \\
\hline \({ }^{\text {t }}\) PHZA & Propagation Delay from a Logical "1" to 3-State from CD to A Port & \[
\begin{aligned}
& \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } 3) \\
& S_{3}=0, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}
\end{aligned}
\] & 18 & 21 & ns \\
\hline \({ }^{\text {t P PLA }}\) & Propagation Delay from 3-State to a Logical " 0 " from CD to A Port & \[
\begin{aligned}
& \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\
& \mathrm{S}_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}
\end{aligned}
\] & 28 & 33 & ns \\
\hline tPZHA & Propagation Delay from 3-State to a Logical " 1 " from CD to A Port & \[
\begin{aligned}
& \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \mathrm{R}=0.4 \mathrm{~V} \text { (Figure 3) } \\
& \mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}
\end{aligned}
\] & 28 & 33 & ns \\
\hline \multicolumn{6}{|c|}{B PORT DATA/MODE SPECIFICATIONS} \\
\hline \multirow[t]{2}{*}{tPDHLB} & \multirow[t]{2}{*}{Propagation Delay to a Logical "0" from A Port to B Port} & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 1) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 28 & 34 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 22 & 25 & ns \\
\hline \multirow[t]{2}{*}{\({ }^{\text {tPDLHB }}\)} & \multirow[t]{2}{*}{Propagation Delay to a Logical "1" from A Port to B Port} & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 1) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 28 & 34 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 22 & 25 & ns \\
\hline \(t_{\text {PILB }}\) & Propagation Delay from a Logical " 0 " to 3-State from CD to B Port & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure 3) } \\
& S_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}
\end{aligned}
\] & 23 & 26 & ns \\
\hline \(t_{\text {PHZB }}\) & Propagation Delay from a Logical "1" to 3-State from CD to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure 3 )
\[
S_{3}=0, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF}
\] & 18 & 21 & ns \\
\hline \multirow[t]{2}{*}{\(t_{\text {PZLB }}\)} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical "0" from CD to B Port} & \[
\begin{aligned}
& \mathrm{A}_{0} \text { to } \mathrm{A}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure 3) } \\
& \mathrm{S}_{3}=1, \mathrm{R}_{5}=100 \Omega, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & 38 & 43 & ns \\
\hline & & \(\mathrm{S}_{3}=1, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}\) & 26 & 30 & ns \\
\hline \multirow[t]{2}{*}{\(t_{\text {PZHB }}\)} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical " 1 " from CD to B Port} & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 3) \\
& S_{3}=0, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & 38 & 43 & ns \\
\hline & & \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=45 \mathrm{pF}\) & 26 & 30 & ns \\
\hline \multicolumn{6}{|c|}{TRANSMIT RECEIVE MODE SPECIFICATIONS} \\
\hline \({ }^{\text {TRRL }}\) & Propagation Delay from Transmit Mode to Receive a Logical "0", \(T / \bar{R}\) to A Port & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V} \text { (Figure 2) } \\
& \mathrm{S}_{1}=0, \mathrm{R}_{4}=100 \Omega, C_{3}=5 \mathrm{pF} \\
& \mathrm{~S}_{2}=1, \mathrm{R}_{3}=1 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF}
\end{aligned}
\] & 42 & 48 & ns \\
\hline \({ }^{\text {t }}\) TRH & Propagation Delay from Transmit Mode to Receive a Logical " 1 ", \(T / \bar{R}\) to A Port & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V} \text { (Figure 2) } \\
& \mathrm{S}_{1}=1, \mathrm{R}_{4}=100 \Omega, C_{3}=5 \mathrm{pF} \\
& \mathrm{~S}_{2}=0, R_{3}=5 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF}
\end{aligned}
\] & 42 & 48 & ns \\
\hline \(t_{\text {RTL }}\) & Propagation Delay from Receive Mode to Transmit a Logical " 0 ", \(T / \bar{R}\) to B Port & \[
\begin{aligned}
& \mathrm{CD}=0.4 \mathrm{~V} \text { (Figure 2) } \\
& \mathrm{S}_{1}=1, \mathrm{R}_{4}=100 \Omega, \mathrm{C}_{3}=300 \mathrm{pF} \\
& \mathrm{~S}_{2}=1, \mathrm{R}_{3}=300 \Omega, \mathrm{C}_{2}=5 \mathrm{pF}
\end{aligned}
\] & 45 & 51 & ns \\
\hline \(t_{\text {RTH }}\) & Propagation Delay from Receive Mode to Transmit a Logical " 1 ", \(T / \bar{R}\) to \(B\) Port & \[
\begin{aligned}
& C D=0.4 \mathrm{~V} \text { (Figure 2) } \\
& S_{1}=0, R_{4}=1 \mathrm{k}, \mathrm{C}_{3}=300 \mathrm{pF} \\
& S_{2}=1, R_{3}=300 \Omega, C_{2}=5 \mathrm{pF}
\end{aligned}
\] & 45 & 51 & ns \\
\hline
\end{tabular}

\section*{SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS}

\(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}\)
10\% to \(90 \%\)


Note: \(C_{1}\) includes test fixture capacitance.

Figure 1. Propagation Delay from A Port to B Port or from B Port to A Port.


Figure 2. Propagation Delay from \(T / \bar{R}\) to \(A\) Port or B Port.


Figure 3. Propagation Delay from CD to A Port or B Port.

\section*{Metallization and Pad Layouts}


DIE SIZE .069" X .089"

\section*{ORDERING INFORMATION}

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.
\begin{tabular}{llccc}
\begin{tabular}{c} 
Am2946 \\
Order Number
\end{tabular} & \begin{tabular}{c} 
Am2947 \\
Order Number
\end{tabular} & \begin{tabular}{c} 
Package Type \\
(Note 1)
\end{tabular} & \begin{tabular}{c} 
Operating \\
(Note 2)
\end{tabular} & \begin{tabular}{c} 
Screening Level \\
(Note 3)
\end{tabular} \\
\hline AM2946PC & AM2947PC & D-20-1 & C & C-1 \\
AM2946DC & AM2947DC & D-20-1 & C & C-1 \\
AM2946DC-B & AM2947DC-B & D-20-1 & C & B-1 \\
AM2946DM & AM2947DM & D-20-1 & M & C-3 \\
AM2946DM-B & AM2947DM-B & D-20-1 & M & \begin{tabular}{c} 
B-3
\end{tabular} \\
AM2946XC & AM2947XC & Dice & C & \begin{tabular}{l} 
Visual inspection \\
to MIL-STD-883 \\
Method 2010B.
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
1. \(P=\) Molded DIP, \(D=\) Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix \(B\) for detailed outline. Where Appendix \(B\) contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. \(\mathrm{C}=0\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) to \(5.25 \mathrm{~V}, \mathrm{M}=-55\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}\) to 5.50 V .
3. See Appendix A for details of screening. Levels \(\mathrm{C}-1\) and \(\mathrm{C}-3\) conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

\title{
Am2948 • Am2949 \\ Octal Three-State Bidirectional Bus Transceivers
}

\section*{DISTINCTIVE CHARACTERISTICS}
- 8-bit bidirectional data flow reduces system package count
- 3-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- \(\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}\) interfaces with TTL, MOS, and CMOS
- \(48 \mathrm{~mA}, 300 \mathrm{pF}\) bus drive capability
- Am2948 has inverting tranceivers
- Am2949 has noninverting transceivers
- Separate TRANSMIT and RECEIVE Enables
- 20 pin ceramic and molded DIP package
- Low power - 8 mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down

\section*{GENERAL DESCRIPTION}

The Am2948 and Am2949 are 8-bit, 3-state Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 24 mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.
Separate \(\overline{\text { TRANSMIT }}\) and RECEIVE Enables are provided for microprocessor system with separated read and write control bus lines.
The output high voltage \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) is specified at \(\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V}\) minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

Am2948/2949
Am2948•Am2949
ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Sorage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline Supply Voltage & 7.0 V \\
\hline Input Voltage & 5.5 V \\
\hline Output Voltage & 5.5 V \\
\hline Lead Temperature (Soldering, 10 seconds) & \(300^{\circ} \mathrm{C}\)
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

The Following Conditions Apply Unless Otherwise Noted:
MIL
\(\mathrm{T}_{\mathrm{A}}=-55\) to \(+125^{\circ} \mathrm{C}\)
\(\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}=4.5 \mathrm{~V}\)
\(V_{C C} M A X=5.5 \mathrm{~V}\)
COM'
\(T_{A}=0\) to \(+70^{\circ} \mathrm{C}\)
\(\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}=4.75 \mathrm{~V}\)
\(V_{C C} M A X=5.25 \mathrm{~V}\)

DC ELECTRICAL CHARACTERISTICS over operating temperature range
Typ
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Param & Description & \multicolumn{4}{|c|}{Test Conditions} & Min & (Note 1) & Max & Units \\
\hline \multicolumn{10}{|c|}{A PORT ( \(\mathrm{A}_{0}-\mathrm{A}_{7}\) )} \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Logical "1" Input Voltage & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=0.8 \mathrm{~V}, \overline{\mathrm{R}}=2.0 \mathrm{~V}\)} & 2.0 & & & Voits \\
\hline \multirow[t]{2}{*}{\(V_{\text {IL }}\)} & \multirow[t]{2}{*}{Logical "0" Input Voltage} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\overline{\mathrm{T}}=0.8 \mathrm{~V}, \overline{\mathrm{R}}=2.0 \mathrm{~V}\)}} & COM'L & & & 0.8 & \multirow[t]{2}{*}{Volts.} \\
\hline & & & & & MIL & & & 0.7 & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow[t]{2}{*}{Logical "1" Output Voltage} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=0.8 \mathrm{~V}\)}} & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}\)} & \(\mathrm{V}_{\mathrm{CC}}-1.15\) & \(\mathrm{v}_{\text {cc }}-0.7\) & & \multirow[t]{2}{*}{Volts} \\
\hline & & & & \multicolumn{2}{|l|}{\(\mathrm{IOH}=-3.0 \mathrm{~mA}\)} & 2.7 & 3.95 & & \\
\hline \multirow[t]{2}{*}{Vol} & \multirow[t]{2}{*}{Logical "0" Output Voltage} & \multirow[t]{2}{*}{\(\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=0.8 \mathrm{~V}\)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{COM'L \(\quad \mathrm{IOL}^{\mathrm{OL}}=24 \mathrm{~mA}\)}} & & 0.3 & 0.4 & \multirow[t]{2}{*}{Volts} \\
\hline & & & & & & & 0.35 & 0.50 & \\
\hline Ios & Output Short Circuit Current & \multicolumn{4}{|l|}{\[
\begin{aligned}
& \bar{T}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \text { Note } 2
\end{aligned}
\]} & -10 & -38 & -75 & mA \\
\hline \(\mathrm{I}_{\text {IH }}\) & Logical "1" Input Current & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=0.8 \mathrm{~V}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}\)} & & 0.1 & 80 & \(\mu \mathrm{A}\) \\
\hline 1 & Input Current at Maximum Input Voltage & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=\mathrm{V}_{C C} \mathrm{MAX}\)} & & & 1 & mA \\
\hline \(I_{\text {IL }}\) & Logical "0" Input Current & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=0.8 \mathrm{~V}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}\)} & , & -70 & -200 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{C}}\) & Input Clamp Voltage & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}\)} & & -0.7 & -1.5 & Volts \\
\hline \multirow[t]{2}{*}{\({ }^{\text {I OD }}\)} & \multirow[t]{2}{*}{Output/Input 3-State Current} & \multirow[t]{2}{*}{\(\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}\)} & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\)} & & & -200 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}\)} & & , & 80 & \\
\hline & & \multicolumn{4}{|l|}{B PORT ( \(\mathrm{B}_{0}-\mathrm{B}_{7}\) )} & & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Logical "1" Input Voltage & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=0.8 \mathrm{~V}\)} & 2.0 & & & Volts \\
\hline \multirow[t]{2}{*}{\(V_{\text {IL }}\)} & \multirow[t]{2}{*}{Logical "0" Input Voltage} & \multirow[t]{2}{*}{\(\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=0.8 \mathrm{~V}\)} & & & COM'L & & & 0.8 & \multirow[t]{2}{*}{Volts} \\
\hline & & & & & MIL & & & 0.7 & \\
\hline \multirow{3}{*}{\(\mathrm{VOH}_{\mathrm{OH}}\)} & \multirow{3}{*}{Logical "1" Output Voltage} & \multicolumn{2}{|l|}{\multirow{3}{*}{\(\overline{\mathrm{T}}=0.8 \mathrm{~V}, \overline{\mathrm{R}}=2.0 \mathrm{~V}\)}} & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}\)} & \(\mathrm{V}_{\mathrm{CC}}-1.15\) & \(\mathrm{V}_{C C}-0.8\) & & \multirow{3}{*}{Volts} \\
\hline & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-5.0 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}
\end{aligned}
\]}} & 2.7 & 3.9 & & \\
\hline & & & & & & 2.4 & 3.6 & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Logical "0" Output Voltage} & \multirow[t]{2}{*}{\(\overline{\mathrm{T}}=0.8 \mathrm{~V}, \overline{\mathrm{R}}=2.0 \mathrm{~V}\)} & & \multicolumn{2}{|l|}{\(\mathrm{IOL}=20 \mathrm{~mA}\)} & & 0.3 & 0.4 & \multirow[t]{2}{*}{Volts} \\
\hline & & & & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\)} & & 0.4 & 0.5 & \\
\hline los & Output Short Circuit Current & \multicolumn{4}{|l|}{\[
\begin{aligned}
& \overline{\mathrm{T}}=0.8 \mathrm{~V}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \text { Note } 2
\end{aligned}
\]} & -25 & -50 & -150 & mA \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & Logical "1" Input Current & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}\)} & & 0.1 & 80 & \(\mu \mathrm{A}\) \\
\hline 1 & Input Current at Maximum Input Voltage & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \mathrm{MAX}\)} & & & 1 & mA \\
\hline \(1 / 12\) & Logical "0" Input Current & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=2.0 \mathrm{~V}, \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}\)} & & -70 & -200 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{C}}\) & Input Clamp Voltage & \multicolumn{4}{|l|}{\(\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}\)} & & -0.7 & -1.5 & Volts \\
\hline \multirow[t]{2}{*}{IOD} & \multirow[t]{2}{*}{Output/Input 3-State Current} & \multirow[t]{2}{*}{\(\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}\)} & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\)} & & & -200 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}\)} & & & 200 & \\
\hline
\end{tabular}

CONTROL INPUTS \(\bar{T}, \bar{R}\)


POWER SUPPLY CURRENT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{\({ }^{\text {cc }}\)} & \multirow{4}{*}{Power Supply Current} & \multirow[t]{2}{*}{Am2948} & \(\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX}\) & 70 & 100 & \multirow[t]{2}{*}{mA} \\
\hline & & & \(\overline{\mathrm{T}}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {INA }}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX}\) & 100 & 150 & \\
\hline & & \multirow[t]{2}{*}{Am2949} & \(\overline{\mathrm{T}}=\overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX}\) & 70 & 100 & \multirow[t]{2}{*}{mA} \\
\hline & & & \(\overline{\mathrm{T}}=\mathrm{V}_{\text {INA }}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{MAX}\) & 90 & 140 & \\
\hline
\end{tabular}

AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Description & Test Conditions & Typ & Max & Units \\
\hline \multicolumn{6}{|c|}{A PORT DATA/MODE SPECIFICATIONS} \\
\hline tpDHLA & Propagation Delay to a Logical " 0 " from B Port to A Port & \[
\begin{aligned}
& \bar{T}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure A) } \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 8 & 12 & ns \\
\hline tpDLHA & Propagation Delay to a Logical " 1 " from B Port to A Port & \[
\begin{aligned}
& \overline{\mathrm{T}}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 11 & 16 & ns \\
\hline tplza & Propagation Delay from a Logical " 0 " to 3-State from \(\bar{R}\) to A Port & \[
\begin{aligned}
& \left.\mathrm{B}_{0} \text { to } \mathrm{B}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V} \text { (Figure } \mathrm{B}\right) \\
& \mathrm{S}_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}
\end{aligned}
\] & 10 & 15 & ns \\
\hline tPHZA & Propagation Delay from a Logical "1" to 3-State from \(\overline{\mathrm{R}}\) to A Port & \[
\begin{aligned}
& \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V} \text { (Figure B) } \\
& \mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}
\end{aligned}
\] & 8 & 15 & ns \\
\hline tpzLA & Propagation Delay from 3-State to a Logical "0" from \(\bar{R}\) to A Port & \[
\begin{aligned}
& \left.\mathrm{B}_{0} \text { to } \mathrm{B}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V} \text { (Figure } \mathrm{B}\right) \\
& \mathrm{S}_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}
\end{aligned}
\] & 20 & 27 & ns \\
\hline tpZHA & Propagation Delay from 3-State to a Logical " 1 " from \(\overline{\mathrm{R}}\) to A Port & \[
\begin{aligned}
& \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V} \text { (Figure B) } \\
& \mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}
\end{aligned}
\] & 20 & 27 & ns \\
\hline \multicolumn{6}{|c|}{B PORT DATA/MODE SPECIFICATIONS} \\
\hline \multirow[t]{2}{*}{tpDHLB} & \multirow[t]{2}{*}{Propagation Delay to a Logical " 0 " from A Port to B Port} & \[
\begin{aligned}
& \bar{T}=0.4 \mathrm{~V}, \overline{\mathrm{~A}}=2.4 \mathrm{~V} \text { (Figure A) } \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 12 & 18 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 8 & 12 & ns \\
\hline \multirow[t]{2}{*}{tpdLHB} & \multirow[t]{2}{*}{Propagation Delay to a Logical " 1 " from A Port to B Port} & \[
\begin{aligned}
& \overline{\mathrm{T}}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure A) } \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 15 & 20 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 9 & 14 & ns \\
\hline \(t_{\text {tPlzB }}\) & Propagation Delay from a Logical " 0 " to 3-State from \(\bar{T}\) to B Port & \[
\begin{aligned}
& \left.A_{0} \text { to } A_{7}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } \mathrm{B}\right) \\
& \mathrm{S}_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}
\end{aligned}
\] & 13 & 18 & ns \\
\hline tPHZB & Propagation Delay from a Logical " 1 " to 3 -State from \(\bar{T}\) to B Port & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, \bar{R}=2.4 \mathrm{~V} \text { (Figure } B \text { ) } \\
& S_{3}=0, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF}
\end{aligned}
\] & 8 & 15 & ns \\
\hline \multirow[t]{2}{*}{\(t_{\text {tPLLB }}\)} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical "0" from \(\bar{T}\) to B Port} & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure B) } \\
& \mathrm{S}_{3}=1, \mathrm{R}_{5}=100 \Omega, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & 25 & 35 & ns \\
\hline & & \(\mathrm{S}_{3}=1, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}\) & 18 & 25 & ns \\
\hline \multirow[t]{2}{*}{\(t_{\text {PZHB }}\)} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical " 1 " from \(\bar{T}\) to B Port} & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } \mathrm{B} \text { ) } \\
& \mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & 25 & 35 & ns \\
\hline & & \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=45 \mathrm{pF}\) & 16 & 25 & ns \\
\hline
\end{tabular}

FUNCTION TABLE
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Control Inputs } & \multicolumn{2}{c|}{ Resulting Conditions } \\
\hline Transmit & Receive & A Port & B Port \\
\hline 1 & 0 & Out & In \\
\hline 0 & 1 & In & Out \\
\hline 1 & 1 & 3 -State & 3-State \\
\hline 0 & 0 & \multicolumn{2}{|c|}{ Both Active* } \\
\hline
\end{tabular}
*This is not an intended logic condition and may cause oscillations.

Am2948/2949
Am2948
AC ELECTRICAL CHARACTERISTICS over operating range
\begin{tabular}{|c|c|c|c|c|c|}
\hline Paramete & Description & Test Conditions & \[
\begin{gathered}
T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\
M a x
\end{gathered}
\] & \[
\begin{gathered}
T_{A}=-55 \text { to }+125^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\
M a x
\end{gathered}
\] & Units \\
\hline \multicolumn{6}{|c|}{A PORT DATA/MODE SPECIFICATIONS} \\
\hline tpdHLA & Propagation Delay to a Logical "0" from B Port to A Port & \[
\begin{aligned}
& \overline{\mathrm{T}}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 19 & 16 & ns \\
\hline tpdLHA & Propagation Delay to a Logical "1" from B Port to A Port & \[
\begin{aligned}
& \bar{T}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 23 & 20 & ns \\
\hline tplza & Propagation Delay from a Logical "0" to 3-State from \(\overline{\mathrm{R}}\) to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=1, R_{5}=1 k, C_{4}=15 \mathrm{pF}
\] & 21 & 18 & ns \\
\hline tPHZA & Propagation Delay from a Logical "1" to 3-State from \(\overline{\mathrm{R}}\) to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=0, R_{5}=1 k, C_{4}=15 p F
\] & 21 & 18 & ns \\
\hline \(t_{\text {PZLA }}\) & Propagation Delay from 3-State to a Logical "0" from \(\overline{\mathrm{R}}\) to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=1, R_{5}=1 \mathrm{k}, C_{4}=30 \mathrm{pF}
\] & 35 & 30 & ns \\
\hline tpzHA & Propagation Delay from 3-State to a Logical " 1 " from \(\overline{\mathrm{R}}\) to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=0, R_{5}=5 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}
\] & 35 & 30 & ns \\
\hline \multicolumn{6}{|c|}{B PORT DATA/MODE SPECIFICATIONS} \\
\hline \multirow[t]{2}{*}{tPDHLB} & \multirow[t]{2}{*}{Propagation Delay to a Logical "0" from A Port to B Port} & \[
\begin{aligned}
& \bar{T}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 29 & 24 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 19 & 16 & ns \\
\hline \multirow[t]{2}{*}{tpdLHB} & \multirow[t]{2}{*}{Propagation Delay to a Logical " 1 " from A Port to B Port} & \[
\begin{aligned}
& \overline{\mathrm{T}}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 30 & 25 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 22 & 19 & ns \\
\hline \(t_{\text {PLZB }}\) & Propagation Delay from a Logical " 0 " to 3-State from \(\bar{T}\) to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=1, R_{5}=1 k, C_{4}=15 p F
\] & 26 & 23 & ns \\
\hline tphzB & Propagation Delay from a Logical "1" to 3-State from \(\bar{T}\) to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure B ) \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}\) & 21 & 18 & ns \\
\hline \multirow[t]{2}{*}{\(t_{\text {PZLB }}\)} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical " 0 " from \(\bar{T}\) to B Port} & \[
\begin{aligned}
& \left.\mathrm{A}_{0} \text { to } \mathrm{A}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } \mathrm{B}\right) \\
& \mathrm{S}_{3}=1, \mathrm{R}_{5}=100 \Omega, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & 43 & 38 & ns \\
\hline & & \(\mathrm{S}_{3}=1, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}\) & 33 & 28 & ns \\
\hline \multirow[t]{2}{*}{tPZHB} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical "1" from \(\bar{T}\) to B Port} & \[
\begin{aligned}
& \left.\mathrm{A}_{0} \text { to } \mathrm{A}_{7}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } \mathrm{B}\right) \\
& \mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=300 \mathrm{pF}
\end{aligned}
\] & 43 & 38 & ns \\
\hline & & \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=45 \mathrm{pF}\) & 33 & 28 & ns \\
\hline
\end{tabular}

Am2949
AC ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Description & Test Conditions & Typ & Max & Units \\
\hline \multicolumn{6}{|c|}{A PORT DATA/MODE SPECIFICATIONS} \\
\hline tPDHLA & Propagation Delay to a Logical " 0 " from B Port to A Port & \[
\begin{aligned}
& \overline{\mathrm{T}}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 14 & 18 & ns \\
\hline tpdLha & Propagation Delay to a Logical "1" from B Port to A Port & \[
\begin{aligned}
& \bar{T}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 13 & 18 & ns \\
\hline \({ }^{\text {tPLZA }}\) & Propagation Delay from a Logical " 0 " to 3-State from \(\bar{R}\) to \(A\) Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=1, R_{5}=1 k, C_{4}=15 p F
\] & 11 & 15 & ns \\
\hline \(t_{\text {PHZA }}\) & Propagation Delay from a Logical " 1 " to 3-State from \(\overline{\mathrm{R}}\) to A Port & \[
\begin{aligned}
& B_{0} \text { to } B_{7}=2.4 \mathrm{~V}, \bar{T}=2.4 \mathrm{~V}(\text { Figure } B) \\
& S_{3}=0, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF}
\end{aligned}
\] & 8 & 15 & ns \\
\hline tPZLA & Propagation Delay from 3-State to a Logical "0" from \(\overline{\mathrm{R}}\) to A Port & \[
\begin{aligned}
& \left.B_{0} \text { to } B_{7}=0.4 \mathrm{~V}, \bar{T}=2.4 \mathrm{~V} \text { (Figure } B\right) \\
& S_{3}=1, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}
\end{aligned}
\] & 20 & 27 & ns \\
\hline  & Propagation Delay from 3-State to a Logical "1" from \(\bar{R}\) to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=0, R_{5}=5 k, C_{4}=30 p F
\] & 20 & 27 & ns \\
\hline \multicolumn{6}{|c|}{B PORT DATA/MODE SPECIFICATIONS} \\
\hline \multirow[t]{2}{*}{\(t_{\text {tPHLB }}\)} & \multirow[t]{2}{*}{Propagation Delay to a Logical " 0 " from A Port to B Port} & \[
\begin{aligned}
& \bar{T}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF} \\
& \hline
\end{aligned}
\] & 18 & 23 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 11 & 18 & ns \\
\hline \multirow[t]{2}{*}{\({ }^{\text {tPDLHB }}\)} & \multirow[t]{2}{*}{Propagation Delay to a Logical " 1 " from A Port to B Port} & \[
\begin{aligned}
& \overline{\mathrm{T}}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF} \\
& \hline
\end{aligned}
\] & 16 & 23 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 11 & 18 & ns \\
\hline \({ }^{\text {t PLZB }}\) & Propagation Delay from a Logical " 0 " to 3-State from \(\bar{T}\) to B Port & \[
\begin{aligned}
& \left.A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } \mathrm{B}\right) \\
& S_{3}=1, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}
\end{aligned}
\] & 13 & 18 & ns \\
\hline \(t_{\text {PHZB }}\) & Propagation Delay from a Logical "1" to 3-State from \(\bar{T}\) to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=0, R_{5}=1 k, C_{4}=15 p F
\] & 8 & 15 & ns \\
\hline \multirow[t]{2}{*}{\({ }^{\text {t }}\) PLLB} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical " 0 " from \(\bar{T}\) to B Port} & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } B \text { ) } \\
& S_{3}=1, R_{5}=100 \Omega, C_{4}=300 \mathrm{pF}
\end{aligned}
\] & 25 & 35 & ns \\
\hline & & \(\mathrm{S}_{3}=1, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}\) & 17 & 25 & ns \\
\hline \multirow[t]{2}{*}{tpZHB} & \multirow[t]{2}{*}{Propagation Delay from 3-State to a Logical "1" from \(\overline{\mathrm{T}}\) to B Port} & \(A_{0}\) to \(A_{7}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure B ) \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=300 \mathrm{pF}\) & 24 & 35 & ns \\
\hline & & \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=45 \mathrm{pF}\) & 17 & 25 & ns \\
\hline
\end{tabular}

\section*{DEFINITION OF FUNCTIONAL TERMS}
\(A_{0}-A_{7} \quad\) A port inputs/outputs are receiver output drivers when Receive is LOW and Transmit is HIGH, and are transmit inputs when \(\overline{\text { Receive }}\) is HIGH and Transmit is LOW.
\(\mathbf{B}_{0}-\mathbf{B}_{7} \quad\) B port inputs/outputs are transmit output drivers when Transmit is LOW and Receive is HIGH, and are receiver inputs when Transmit is HIGH and \(\overline{\text { Receive }}\) is LOW.

Transmit, These controls determine whether A port and B port Receive drivers are in 3-state. With both Transmit and Receive HIGH both ports are in 3-state. \(\overline{\text { Transmit }}\) and \(\overline{\text { Receive }}\) both LOW activate both drivers and may cause oscillations. This is not an intended logic condition. With Transmit HIGH and Receive LOW A port is the output and \(B\) port is the input. With Transmit LOW and Receive HIGHB port is the output and A port is the input.

Am2949
AC ELECTRICAL CHARACTERISTICS over operating range
\begin{tabular}{|c|c|c|c|c|c|}
\hline AC E & CAL CHARACTERIS & S over operating range & Am2949 COM'L & Am2949 MIL & \\
\hline Paramete & Description & Test Conditions & \[
\begin{gathered}
T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\
V_{C C}=5.0 \mathrm{~V} \pm 5 \% \\
M a x
\end{gathered}
\] & \[
\begin{gathered}
T_{A}=-55 \text { to }+125^{\circ} \mathrm{C} \\
V_{C C}=5.0 \mathrm{~V} \pm 10 \% \\
M a x
\end{gathered}
\] & Units \\
\hline & & A PORT DATA/MODE SPECIFICAT & NS & & \\
\hline tpDHLA & Propagation Delay to a Logical "0" from B Port to A Port & \[
\begin{aligned}
& \bar{T}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 24 & 21 & ns \\
\hline tPDLHA & Propagation Delay to a Logical " 1 " from B Port to A Port & \[
\begin{aligned}
& \overline{\mathrm{T}}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF}
\end{aligned}
\] & 24 & 21 & ns \\
\hline tplza & Propagation Delay from a Logical " 0 " to 3-State from \(\overline{\mathrm{R}}\) to A Port & \[
\begin{aligned}
& B_{0} \text { to } B_{7}=0.4 \mathrm{~V}, \bar{T}=2.4 \mathrm{~V}(\text { Figure } B) \\
& S_{3}=1, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF}
\end{aligned}
\] & 21 & 18 & ns \\
\hline \(t_{\text {PHZA }}\) & Propagation Delay from a Logical " 1 " to 3-State from \(\overline{\mathrm{R}}\) to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=0, R_{5}=1 k, C_{4}=15 p F
\] & 21 & 18 & ns \\
\hline \(t_{\text {PZLA }}\) & Propagation Delay from 3-State to a Logical " 0 " from \(\overline{\mathrm{R}}\) to A Port & \(\mathrm{B}_{0}\) to \(\mathrm{B}_{7}=0.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=1, R_{5}=1 k, C_{4}=30 p F
\] & 35 & 30 & ns \\
\hline tpZHA & Propagation Delay from 3-State to a Logical " 1 " from \(\bar{R}\) to A Port & \[
\mathrm{B}_{0} \text { to } \mathrm{B}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{~T}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{B})
\]
\[
\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF}
\] & 35 & 30 & ns \\
\hline & & B PORT DATA/MODE SPECIFICA & NS & & \\
\hline \({ }^{\text {tPDHLB }}\) & Propagation Delay to a Logical " 0 " from A Port to B Port & \[
\begin{aligned}
& \bar{T}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF}
\end{aligned}
\] & 34 & 28 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 25 & 22 & ns \\
\hline \(t_{\text {tpdLhB }}\) & Propagation Delay to a Logical " 1 " from A Port to B Port & \[
\begin{aligned}
& \overline{\mathrm{T}}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } \mathrm{A}) \\
& \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF} \\
& \hline
\end{aligned}
\] & 34 & 28 & ns \\
\hline & & \(\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}\) & 25 & 22 & ns \\
\hline \({ }^{\text {tplZB }}\) & Propagation Delay from a Logical " 0 " to 3-State from \(\bar{T}\) to \(B\) Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=0.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=1, R_{5}=1 k, C_{4}=15 p F
\] & 26 & 23 & ns \\
\hline \(t_{\text {PHZB }}\) & Propagation Delay from a Logical "1" to 3-State from \(\bar{T}\) to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=0, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF}
\] & 21 & 18 & ns \\
\hline \({ }^{\text {tpZLB }}\) & Propagation Delay from 3-State to a Logical " 0 " from \(\bar{T}\) to B Port & \[
\begin{aligned}
& A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, \bar{R}=2.4 \mathrm{~V}(\text { Figure } B) \\
& S_{3}=1, R_{5}=100 \Omega, C_{4}=300 \mathrm{pF}
\end{aligned}
\] & 43 & 38 & ns \\
\hline & & \(\mathrm{S}_{3}=1, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}\) & 33 & 28 & ns \\
\hline \({ }_{\text {t }}{ }^{\text {PHB }}\) & Propagation Delay from 3-State to a Logical "1" from \(\bar{T}\) to B Port & \(\mathrm{A}_{0}\) to \(\mathrm{A}_{7}=2.4 \mathrm{~V}, \overline{\mathrm{R}}=2.4 \mathrm{~V}\) (Figure B )
\[
S_{3}=0, R_{5}=1 k, C_{4}=300 \mathrm{pF}
\] & 43 & 38 & ns \\
\hline & & \(\mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=45 \mathrm{pF}\) & 33 & 28 & ns \\
\hline
\end{tabular}

\section*{SWITCHING TIME WAVEFORMS} AND AC TEST CIRCUITS


Note: \(\mathrm{C}_{1}\) includes test fixture capacitance

Figure A. Propagation Delay from A Port to B Port or from B Port to A Port


Note: \(\mathrm{C}_{4}\) includes test fixture capacitance. Port input is in a fixed logical condition. See \(A C\) table.
Figure B. Propagation Delay to/from Three-State from \(\overline{\mathrm{R}}\) to A Port and \(\overline{\mathrm{T}}\) to B Port


\section*{ORDERING INFORMATION}

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.
\begin{tabular}{llccc}
\begin{tabular}{c} 
Am2948 \\
Order Number
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c} 
Am2949 \\
Order Number
\end{tabular}} & \begin{tabular}{c} 
Package Type \\
(Note 1)
\end{tabular} & \begin{tabular}{c} 
Operating \\
(Note 2)
\end{tabular} & \begin{tabular}{c} 
Screening Level \\
(Note 3)
\end{tabular} \\
\hline AM2948PC & AM2949PC & P-20-1 & C & C-1 \\
AM2948DC & AM2949DC & D-20-1 & C & C-1 \\
AM2948DC-B & AM2949DC-B & D-20-1 & C & B-1 \\
AM2948DM & AM2949DM & D-20-1 & M & C-3 \\
AM2948DM-B & AM2949DM-B & D-20-1 & M & \begin{tabular}{c} 
B-3 \\
AM2948XC
\end{tabular} \\
& AM2949XC & Dice & C & \begin{tabular}{l} 
Visual inspection \\
to MIL-STD-883 \\
Method 2010B.
\end{tabular} \\
\hline
\end{tabular}

Notes:
1. \(P=\) Molded DIP, \(D=\) Hermetic DIP, \(F=\) Flat Pak. Number following letter is number of leads. See Appendix \(B\) for detailed outline. Where Appendix \(B\) contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. \(\mathrm{C}=0\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{M}=-55\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50\) to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

\title{
Am2950•Am2950A Am2951•Am2951A \\ Eight-Bit Bidirectional I/O Ports with Handshake
}

\section*{DISTINCTIVE CHARACTERISTICS}
- Eight-Bit, Bidirectional I/O Port with Handshake -

Two eight-bit, back-to-back registers store data moving in both directions between two bidirectional busses.
- Register Full/Empty Flags -

On-chip flag flip-flops provide data transfer handshaking signals
- Separate Clock, Clock Enable and Three-State Output Enable for Each Register.
- Separate, Edge-Sensitive Clear Control for Each Flag Flip-Flop.
- Inverting and Non-Inverting Versions -

The Am2950 provides non-inverting data outputs. The
Am2951 provides inverting data outputs.
- 24 mA Output Current Sink Capability.
- Fast -

The Am2950A and Am2951A will be \(25-30 \%\) faster than the Am2950 and Am2951.

\section*{GENERAL DESCRIPTION}

The Am2950 and Am2951, members of Advanced Micro Devices Am2900 Family, are designed for use as parallel data I/O ports. Two eight-bit, back to back registers store data moving in both directions between two bidirectional, 3 -state busses. On chip flag flip-flops, set automatically when a register is loaded, provide the handshaking signals required for demand-response data transfer.
Considerable flexibility is designed into the Am2950 - Am2951. Separate clock, clock enable and three-state output enable signals are provided for each register, and edge-sensitive clear inputs are provided for each flag flip-flop. A number of these circuits can be used for wider I/O ports. Both inverting and non-inverting versions are available.
Twenty-four mA output current sink capability, sufficient for most three-state busses, is provided by the Am2950 - Am2951.

The Am2950A and Am2951A feature AMD's ion-implanted micro-oxide (IMOX \({ }^{\text {TM }}\) ) processing. They are plug-in replacements for the Am2950 and Am2951 respectively but will be approximately \(30 \%\) faster.


\section*{REGISTER FUNCTION TABLE} (Applies to R or S Register)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Inputs } & \multirow{2}{*}{ Internal } & \\
\cline { 1 - 3 } \(\mathbf{D}\) & \(\mathbf{C P}\) & \(\overline{\mathbf{C E}}\) & Function \\
\hline X & X & H & NC & Hold Data \\
\hline L & \(\uparrow\) & L & L & Load Data \\
H & \(\uparrow\) & L & H & \\
\hline
\end{tabular}

\section*{OUTPUT CONTROL}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\overline{O E}\)} & \multirow[t]{2}{*}{Internal Q} & \multicolumn{2}{|r|}{Y-Outputs} & \multirow[b]{2}{*}{Function} \\
\hline & & Am2950 & Am2951 & \\
\hline H & X & Z & Z & Disable Outputs \\
\hline L & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & L & \[
\mathrm{H}
\] & Enable Outputs \\
\hline
\end{tabular}

FLAG FLIP-FLOP FUNCTION TABLE
(Applies to R or S Flag Flip-Flop)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Inputs } & & \\
\cline { 1 - 3 }\(\overline{C E}\) & CP & CLR & F-Output & Function \\
\hline\(H\) & \(X\) & \(千\) & NC & Hold Flag \\
\hline\(X\) & \(X\) & \(\uparrow\) & L & Clear Flag \\
\hline\(L\) & \(\uparrow\) & \(千\) & H & Set Flag \\
\hline
\end{tabular}
\[
\begin{array}{lll}
H=\text { HIGH } & \text { NC }=\text { NO CHANGE } \\
\text { L } & =\text { LOW } & \uparrow=\text { LOW-to-HIGH Transition } \\
X & =\text { Don't Care } & \ddagger=\text { NO LOW-to-HIGH Transition } \\
Z & =\text { High Impedance } &
\end{array}
\]

\section*{DEFINITION OF FUNCTIONAL TERMS}

A0-7 Eight bidirectional lines carrying the R Register inputs or S Register outputs.
B0-7 Eight bidirectional lines carrying the S Register inputs or R Register outputs.
CPR The clock for the R Register and FR Flip-Flop. When CER is LOW, data is entered into the R Register and the FR Flip-Flop is set on the LOW to HIGH transition of the CPR signal.
CER The Clock Enable for the R Register and FR Flip-Flop. When CER is LOW, data is entered into the R Register and the FR Flip-Flop is set on the LOW to HIGH transition of the CPR signal. When CER is HIGH, The R Register and FR Flip-Flop hold their contents, regardless of CPR signal transitions.
\(\overline{\text { OEBR }}\) The Output Enable for the R Register. When OEBR is LOW, The R Register three-state outputs are enabled onto the B0-7 lines. When OEBR is HIGH, the R Register outputs are in the high-impedance state.
FR The FR Flip-Flop output.

CLRR The clear control for the FR Flip-Flop. The FR Flip-Flop is cleared on the LOW to HIGH transition of CLRR signal.
CPS The clock for the S Register and FS Flip-Flop. When CES is LOW, data is entered into the S Register and the FS Flip-Flop is set on the LOW to HIGH transtion of the CPS signal.
\(\overline{\text { CES }}\) The clock enable for the S Register and FS Flip-Flop. When \(\overline{C E S}\) is LOW, data is entered into the \(S\) Register and the FS Flip-Flop is set on the LOW to HIGH transition of the CPS signal. When CES is HIGH, the S Register and FS Flip-Flop hold their contents, regardless of CPS signal transitions.
\(\overline{O E A S}\) The output enable for the \(S\) Register. When \(\overline{O E A S}\) is LOW, the S Register three-state outputs are enabled onto the A0-7 lines. When OEAS is HIGH, the S Register outputs are in the high-impedance state.
FS The FS Flip-Flop output.
CLRS The clear control for the FS Flip-Flop. The FS Flip-Flop is cleared on the L.OW to HIGH transition of CLRS signal.

\section*{METALLIZATION AND PAD LAYOUT}


Numbers refer to DIP pin connection DIE SIZE 0.107' \(\times 0.138^{\prime \prime}\)

Am2950/50A/51/51A
MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential Continuous & -0.5 V to +7.0 V \\
\hline DC Voltage Applied to Outputs for High Output State & -0.5 V to +VCC max. \\
\hline DC Input Voltage & -0.5 V to +5.5 V \\
\hline DC Output Current, Into Outputs & 30 mA \\
\hline DC Input Current & -30 mA to +5.0 mA \\
\hline
\end{tabular}

\section*{OPERATING RANGE}
\begin{tabular}{|l|l|l|ll|}
\multicolumn{1}{c}{ Part Number } & \multicolumn{1}{c}{ Range } & \multicolumn{1}{c}{ Temperature } & VCC \\
\hline Am2950/51PC, DC & COM'L \(^{\prime}\) & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%\) & \((\mathrm{MIN} .=4.75 \mathrm{~V}, \mathrm{MAX} .=5.25 \mathrm{~V})\) \\
\hline Am2950/51DM, FM & MIL. & \(\mathrm{TC}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\) & \((\mathrm{MIN} .=4.50 \mathrm{~V}, \mathrm{MAX} .=5.50 \mathrm{~V})\) \\
\hline
\end{tabular}

\section*{Am2950, Am 2951}

\section*{DC CHARACTERISTICS OVER OPERATING RANGE}

Typ.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parame & Description & \multicolumn{3}{|c|}{Test Conditions (Note 1)} & Min. & (Note 2) & Max. & Units \\
\hline \multirow{3}{*}{VOH} & \multirow{3}{*}{Output HIGH Voltage} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathrm{VCC}=\mathrm{MIN} . \\
& \mathrm{VIN}=\mathrm{VIH} \text { or } \mathrm{VIL}
\end{aligned}
\]} & FR, FS & \(1 \mathrm{OH}=-1 \mathrm{~mA}\) & 2.4 & 3.4 & & \multirow{3}{*}{Volts} \\
\hline & & & \multirow[b]{2}{*}{A0-7, B0-7} & MIL, \(\mathrm{IOH}=-2 \mathrm{~mA}\) & 2.4 & 3.4 & & \\
\hline & & & & COM'L, \(10 \mathrm{OH}=-6.5 \mathrm{~mA}\) & 2.4 & 3.4 & & \\
\hline \multirow{3}{*}{VOL} & \multirow{3}{*}{Output LOW Voltage} & \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{VCC}=\mathrm{MIN} . \\
& \mathrm{VIN}=\mathrm{VIH} \text { or } \mathrm{VIL}
\end{aligned}
\]} & FR, FS & \(1 \mathrm{OL}=12 \mathrm{~mA}\) & & & 0.5 & \multirow{3}{*}{Volts} \\
\hline & & & \multirow[b]{2}{*}{A0-7, B0-7} & MIL \(10 \mathrm{~L}=16 \mathrm{~mA}\) & & & 0.5 & \\
\hline & & & & COM'L IOL \(=24 \mathrm{~mA}\) & & & 0.5 & \\
\hline VIH & Input HIGH Level & \multicolumn{3}{|l|}{Guaranteed input logical HIGH voltage for all inputs} & 2.0 & & & Volts \\
\hline VIL & Input LOW Level & \multicolumn{3}{|l|}{Guaranteed input logical LOW voltage for all inputs} & & & 0.8 & Volts \\
\hline vi & Input Clamp Voltage & \multicolumn{3}{|l|}{\(\mathrm{VCC}=\mathrm{MIN} ., \mathrm{IIN}=-18 \mathrm{~mA}\)} & & & -1.5 & Volts \\
\hline \multirow{3}{*}{IIL.} & \multirow{3}{*}{Input LOW Current} & \multicolumn{2}{|l|}{\multirow{3}{*}{\(\mathrm{VCC}=\mathrm{MAX} ., \mathrm{VIN}=0.5 \mathrm{~V}\)}} & A0-7, B0-7 & & & -250 & \(\mu \mathrm{A}\) \\
\hline & & & & CLRR, CLRS & & & -2.0 & mA \\
\hline & & & & Others & & & -360 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{IIH} & \multirow{3}{*}{Input HIGH Current} & \multicolumn{2}{|l|}{\multirow{3}{*}{\(\mathrm{VCC}=\mathrm{MAX} ., \mathrm{VIN}=2.7 \mathrm{~V}\)}} & A0-7, B0-7 & & & 70 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & CLRR, CLRS & & & 100 & \\
\hline & & & & Others & & & 20 & \\
\hline 11 & Input HIGH Current & \multicolumn{3}{|l|}{\(\mathrm{VCC}=\mathrm{MAX} ., \mathrm{VIN}=5.5 \mathrm{~V}\)} & & & 1.0 & mA \\
\hline \multirow[b]{2}{*}{10} & \multirow[t]{2}{*}{Output Off-state Leakage Current} & \multirow[b]{2}{*}{\(V C C=M A X\).} & \multirow[t]{2}{*}{A0-7, B0-7} & \(\mathrm{V} 0=2.4 \mathrm{~V}\) & & & 70 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & \(\mathrm{V} 0=0.4 \mathrm{~V}\) & & & -250 & \\
\hline ISC & Output Short Circuit Current (Note 3) & \multicolumn{3}{|l|}{\(\mathrm{VCC}=\mathrm{MAX}\).} & -30 & & -85 & mA \\
\hline \multirow{5}{*}{ICC} & \multirow{5}{*}{Power Supply Current (Notes 4, 5)} & \multirow{5}{*}{\(V C C=M A X\).} & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 156 & 263 & \multirow{5}{*}{mA} \\
\hline & & & \multirow[t]{2}{*}{COM'L} & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & & & 275 & \\
\hline & & & & \(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\) & & & 228 & \\
\hline & & & & \(\mathrm{T}^{\text {C }}\) = \(=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & & & 309 & \\
\hline & & & & \(\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}\) & & & 202 & \\
\hline
\end{tabular}

\footnotetext{
Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at \(\mathrm{VCC}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. ICC is measured with all inputs at 4.5 V and all outputs open.
5. Worst case ICC is at minimum temperature.
}

\section*{Am2950A • Am2951A SWITCHING CHARACTERISTICS}

The tables below define the Am2950A - Am2951A switching characteristics. Tables A are setup and hold times relative to a clock LOW-to-HIGH transition. Tables B are propagational delays. Tables C are recovery times. Tables D are pulse-width requirements. Tables E are enable/disable times. All measurements are made at 1.5 V with input levels at 0 V or 3 V . All values are in ns with RL on Ai and \(\mathrm{Bi}=220 \Omega\) and RL on FS and \(\mathrm{FR}=300 \Omega . \mathrm{CL}=50 \mathrm{pF}\) except output disable times which are specified at \(\mathrm{CL}=5 \mathrm{pF}\).

\section*{guaranteed characteristics over commercial operating range}
( \(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) )
A. Set-up and Hold Times.
\begin{tabular}{|l|c|c|c|c|}
\hline Input & \begin{tabular}{c} 
With \\
Respect To
\end{tabular} & ts & th \\
\hline\(A 0-7\) & CPR & \(\Gamma\) & & \\
\hline\(B 0-7\) & \(C P S\) & \(\Gamma\) & & \\
\hline\(\overline{C E S}\) & \(C P S\) & \(\Gamma\) & & \\
\hline\(\overline{C E R}\) & \(C P R ~\) & \(\Gamma\) & & \\
\hline
\end{tabular}
B. Propagation Delays
\begin{tabular}{|c|c|c|c|c|}
\hline Input & A0-7 & B0-7 & FS & FR \\
\hline CPS \(\Gamma\) & & & & \\
\hline CPR \(\Gamma\) & & & & \\
\hline CLRS \(\Gamma\) & & & & \\
\hline CLRR I & & & & \\
\hline
\end{tabular}
C. Recovery Times
\begin{tabular}{|l|l|l|}
\hline From & To & tREC \\
\hline CLRS & CPS \(I\) & \\
\hline CLRR & CPR I & \\
\hline
\end{tabular}

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE
\(\left(\mathrm{T}_{\mathrm{C}}=-55\right.\) to \(+125^{\circ} \mathrm{C}, \mathrm{VCC}=4.5\) to \(5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline \multirow[b]{2}{*}{Input} & \multirow[t]{2}{*}{\begin{tabular}{l}
With \\
Respect To
\end{tabular}} & \multirow[b]{2}{*}{ts} & \multirow[b]{2}{*}{th} & Input & A0-7 & B0-7 & FS & FR \\
\hline & & & & CPS I & & & & \\
\hline A0-7 & CPR If & & & CPR I & & & & \\
\hline B0-7 & CPS I & & & CLRS \(]\) & & & & \\
\hline \(\overline{\mathrm{CE}}\) S & CPS I & & & CLRR I & & & & \\
\hline \(\overline{\text { CER }}\) & CPR I & & & & & & & \\
\hline
\end{tabular}
C. Recovery Times
\begin{tabular}{|l|l|l|}
\hline From & To & tREC \\
\hline CLRS \(I\) & CPS I & \\
\hline CLRR \(I\) & CPR I & \\
\hline
\end{tabular}
D. Pulse-Width Requirements
\begin{tabular}{|l|c|c|}
\hline Input & \begin{tabular}{c} 
Min. LOW \\
Pulse Width
\end{tabular} & \begin{tabular}{c} 
Min. HIGH \\
Pulse Width
\end{tabular} \\
\hline CPS & & \\
\hline CPR & & \\
\hline CLRS & & \\
\hline CLRR & & \\
\hline
\end{tabular}
E. Enable/Disable Times
\begin{tabular}{|c|c|c|c|}
\hline From & To & Disable & Enable \\
\hline\(\overline{\mathrm{OE} A S}\) & \(\mathrm{AO}-7\) & & \\
\hline\(\overline{\mathrm{OE}} \mathrm{BR}\) & \(\mathrm{BO}-7\) & & \\
\hline
\end{tabular}

\footnotetext{
*Where two numbers appear, the first is the Am2950A spec, the second is the Am2951A spec.
}

\section*{Am2950 • Am2951 SWITCHING CHARACTERISTICS}

The tables below define the Am2950 • Am2951 switching characteristics. Tables A are set-up and hold times relative to a clock LOW-to-HIGH transition. Tables B are propagational delays. Tables C are recovery times. Tables D are pulse-width requirements. Tables E are enable/disable times. All measurements are made at 1.5 V with input levels at V or 3 V . All values are in ns with RL on Ai and \(\mathrm{Bi}=220 \Omega\) and RL on FS and \(\mathrm{FR}=300 \Omega\). \(\mathrm{CL}=50 \mathrm{pF}\) except output disable times which are specified at \(\mathrm{CL}=5 \mathrm{pF}\).

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE
\[
\left(\mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75 \text { to } 5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)
\]
A. Set-up and Hold Times.
B. Propagation Delays
\begin{tabular}{|c|c|c|c|c|}
\hline Input & \begin{tabular}{c} 
With \\
Respect To
\end{tabular} & ts & th \\
\hline AO-7 & CPR & \(\boldsymbol{\Gamma}\) & 7 & 5 \\
\hline BO-7 & CPS & \(\boldsymbol{\Gamma}\) & 7 & 5 \\
\hline\(\overline{\text { CES }}\) & CPS & \(\boldsymbol{\Gamma}\) & \(* 19 / 15\) & 4 \\
\hline CER & CPR & \(\boldsymbol{\Gamma}\) & \(* 19 / 15\) & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Input & A0-7 & B0-7 & FS & FR \\
\hline CPS \(\boldsymbol{I}\) & \(* 30 / 26\) & - & 20 & - \\
\hline CPR \(I\) & - & \(* 30 / 26\) & - & 20 \\
\hline CLRS \(I\) & - & - & 22 & - \\
\hline CLRR I & - & - & - & 22 \\
\hline
\end{tabular}
C. Recovery Times
\begin{tabular}{|c|c|c|}
\hline From & To & tREC \\
\hline CLRS & CPS \(\mp\) & 31 \\
\hline CLRR & CPR I & 31 \\
\hline
\end{tabular}
D. Pulse-Width Requirements
\begin{tabular}{|c|c|c|}
\hline Input & \begin{tabular}{c} 
Min. LOW \\
Pulse Width
\end{tabular} & \begin{tabular}{c} 
Min. HIGH \\
Pulse Width
\end{tabular} \\
\hline CPS & 20 & 20 \\
\hline CPR & 20 & 20 \\
\hline CLRS & 20 & 20 \\
\hline CLRR & 20 & 20 \\
\hline
\end{tabular}
*Where two numbers appear, the first is the Am2950 spec, the second is the Am2951 spec

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE
( \(\mathrm{T}_{\mathrm{C}}=-55\) to \(+125^{\circ} \mathrm{C}, \mathrm{VCC}=4.5\) to \(5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) )
A. Set-up and Hold Times.
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
With \\
Respect To
\end{tabular} & ts & th \\
\hline A0-7 & CPR I & 11 & 8 \\
\hline B0-7 & CPS I & 11 & 8 \\
\hline \(\overline{\text { CES }}\) & CPS I & *20/15 & 4 \\
\hline \(\overline{\text { CER }}\) & CPR I & *20/15 & 4 \\
\hline
\end{tabular}

\section*{D. Pulse-Width Requirements}
\begin{tabular}{|l|c|c|}
\hline Input & \begin{tabular}{c} 
Min. LOW \\
Pulse Width
\end{tabular} & \begin{tabular}{c} 
Min. HIGH \\
Pulse Width
\end{tabular} \\
\hline CPS & 20 & 20 \\
\hline CPR & 20 & 20 \\
\hline CLRS & 20 & 20 \\
\hline CLRR & 20 & 20 \\
\hline
\end{tabular}
E. Enable/Disable Times
\begin{tabular}{|c|c|c|c|}
\hline From & To & Disable & Enable \\
\hline\(\overline{\text { OEAS }}\) & \(A 0-7\) & 22 & 27 \\
\hline\(\overline{\text { OEBR }}\) & \(B 0-7\) & 22 & 27 \\
\hline
\end{tabular}
\(\qquad\)
C. Recovery Times
\begin{tabular}{|c|c|c|}
\hline From & To & tREC \\
\hline CLRS I & CPS I & 34 \\
\hline CLRR「 & CPR I & 34 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Input & AO-7 & B0-7 & FS & FR \\
\hline CPS \(\Gamma\) & \(* 35 / 28\) & - & 20 & - \\
\hline CPR \(\Gamma\) & - & \(* 35 / 28\) & - & 20 \\
\hline CLRS \(\Gamma\) & - & - & 22 & - \\
\hline CLRR \(\Gamma\) & - & - & - & 22 \\
\hline
\end{tabular}

\section*{TEST OUTPUT LOAD CONFIGURATIONS FOR Am2950/2951}

\section*{A. THREE-STATE OUTPUTS}

\(\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{BE}}-V_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}+\mathrm{V}_{\mathrm{OL}} / 1 \mathrm{~K}}\)
B. NORMAL OUTPUTS

\(R_{2}=\frac{2.4 V}{\mathrm{IOH}}\)
\(\mathrm{R}_{1}=\frac{5.0-V_{\mathrm{BE}}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{I}_{\mathrm{OL}}+\mathrm{V}_{\mathrm{OL}} / R_{2}}\)

TEST OUTPUT LOADS FOR Am2950/2951 (DIP)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Pin \# \\
(DIP)
\end{tabular} & Pin Label & \begin{tabular}{c} 
Test \\
Circuit
\end{tabular} & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) \\
\hline- & \(\mathrm{A}_{0-7}\) & A & 220 & 1 K \\
\hline- & \(\mathrm{B}_{0-7}\) & A & 220 & 1 K \\
\hline 5 & FS & B & 300 & 2.4 K \\
\hline 11 & FR & B & 300 & 2.4 K \\
\hline
\end{tabular}

\section*{Notes on Testing}

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:
1. Insure the part is adequately decoupled at the test head. Large changes in \(V_{C C}\) current as the device switches may cause erroneous function failures due to \(V_{C C}\) changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in \(5-8 \mathrm{~ns}\). Inductance in the ground cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach \(\mathrm{V}_{\mathrm{IL}}\) or \(\mathrm{V}_{I H}\) until the noise has settled. AMD recommends using \(\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}\) for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

\section*{APPLICATIONS}

The Am2950 • Am2951 provides data transfer handshaking signals as well as eight-bit, bidirectional data storage. Its flexibility allows it to be used in any type of computer system, including Am2900, 8080, 8085, 8086, Z80, and Z8000 systems.

Figure 1 shows an Am2950 used to store data moving in both directions between a bidirectional system data bus and a bidirec-
tional peripheral data bus. The on-chip Flag flip-flops provide the data in, data out handshaking signals required for data transfer and interrupt request generation.

Figure 2 shows a multiple I/O port system using Am2950's. Two Am2950's are used at each port to interface the 16 -bit system data bus. The Am2950 flags are used to generate I/O interrupt requests.


Figure 1. A Bidirectional I/O Port with Handshaking Using the Am2950.


Figure 2. Multiple I/O Port System.

\title{
Am2952•Am2952A Am2953•Am2953A
}

\section*{Eight-Bit Bidirectional I/O Ports}

\section*{DISTINCTIVE CHARACTERISTICS}
- Eight-Bit, Bidirectional I/O Port

Two eight-bit, back-to-back registers store data moving in both directions between two bidirectional busses.
- Separate Clock, Clock Enable and Three-State Output Enable for Each Register.
- Inverting and Non-Inverting Versions -

The Am2952 provides non-inverting data ouputs. The Am2953 provides inverting data outputs.
- 24 mA Output Current Sink Capability.
- 24-Pin Slim Package
- Fast -

The Am2952A and Am2953A will be \(25-30 \%\) faster than the Am2952 and Am2953.

\section*{GENERAL DESCRIPTION}

The Am2952 and Am2953, members of Advanced Micro Devices Am2900 Family, are designed for use as parallel data I/O ports. Two eight-bit, back to back registers store data moving in both directions between two bidirectional, 3 -state busses.
Considerable flexibility is designed into the Am2952 • Am2953. Separate clock, clock enable and three-state output enable signals are provided for each register. A number of these circuits can be used for wider I/O ports. Both inverting and non-inverting versions are available.

Twenty-four mA output current sink capability, sufficient for most three-state busses, is provided by the Am2952 - Am2953.
The Am2952A and Am2953A feature AMD's ion-implanted micro-oxide (IMOX \({ }^{\top M}\) ) processing. They are plug-in replacements for the Am2950 and Am2951 respectively but will be approximately \(30 \%\) faster.

Am2952/52A/53/53A


\section*{ORDERING INFORMATION}

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Am2952A Order Number (Note 5) & Am2953A Order Number (Note 5) & \[
\begin{gathered}
\text { Am2952 } \\
\text { Order Number }
\end{gathered}
\] & \[
\begin{gathered}
\text { Am2953 } \\
\text { Order Number }
\end{gathered}
\] & \begin{tabular}{l}
Package Type \\
(Note 1)
\end{tabular} & \begin{tabular}{l}
Operating Range \\
(Note 2)
\end{tabular} & Screening Level (Note 3) \\
\hline AM2952ADC & AM2953ADC & AM2952DC & AM2953DC & D-24 & C & C-1 \\
\hline AM2952ADC-B & AM2953ADC-B & AM2952DC-B & AM2953DC-B & D-24 & C & B-2 (Note 4) \\
\hline AM2952ADM & AM2953ADM & AM2952DM & AM2953DM & D-24 & M & C-3 \\
\hline AM2952ADM-B & AM2953ADM-B & AM2952DM-B & AM2953DM-B & D-24 & M & B-3 \\
\hline AM2952AXC & AM2953AXC & AM2952XC & AM2953XC & Dice & C & Visual inspection to MIL -STD-883 \\
\hline AM2952AXM & AM2953AXM & AM2952XM & AM2953XM & Dice & M & f Method 2010B. \\
\hline
\end{tabular}

Notes: 1. \(P=\) Molded DIP, \(D=\) Hermetic DIP, \(F=\) Flat Pak. Number following letter is number of leads. See Appendix \(B\) for detailed outline. Where Appendix \(B\) contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. \(\mathrm{C}=0\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{M}=-55\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50\) to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.
5. When available.

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential Continuous & -0.5 V to +7.0 V \\
\hline DC Voltage Applied to Outputs for High Output State & -0.5 V to +VCC max. \\
\hline DC Input Voltage & -0.5 V to +5.5 V \\
\hline DC Output Current, Into Outputs & 30 mA \\
\hline DC Input Current & -30 mA to +5.0 mA \\
\hline
\end{tabular}

\section*{OPERATING RANGE}
\begin{tabular}{|l|l|l|ll|}
\multicolumn{1}{c}{ Part Number } & \multicolumn{1}{c}{ Range } & \multicolumn{2}{c}{ Temperature } & V \(_{\text {CC }}\) \\
\hline Am2952/53DC & COM'L & \(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\) & \((\mathrm{MIN}=4.75 \mathrm{~V}, \mathrm{MAX}=5.25 \mathrm{~V})\) \\
\hline Am2952/53DM & MIL & \(\mathrm{T}_{\mathrm{C}}=-55\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%\) & \((\mathrm{MIN}=4.50 \mathrm{~V}, \mathrm{MAX}=5.50 \mathrm{~V})\) \\
\hline
\end{tabular}

\section*{Am2952, Am2953 \\ DC CHARACTERISTICS OVER OPERATING RANGE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameters & Description & \multicolumn{3}{|c|}{Test Conditions (Note 1)} & Min & \begin{tabular}{l}
Typ. \\
(Note 2)
\end{tabular} & Max & Units \\
\hline \multirow{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow{2}{*}{Output HIGH Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M I N \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & \multirow{2}{*}{\(A_{0-7}, B_{0-7}\)} & MIL, \(\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}\) & 2.4 & 3.4 & & \multirow{2}{*}{Volts} \\
\hline & & & & COM'L, \(\mathrm{I}^{\text {OL }}=-6.5 \mathrm{~mA}\) & 2.4 & 3.4 & & \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[b]{2}{*}{Output LOW Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M I N \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & \multirow[b]{2}{*}{\(\mathrm{A}_{0-7}, \mathrm{~B}_{0-7}\)} & \(\mathrm{MIL}, \mathrm{I} \mathrm{OL}=16 \mathrm{~mA}\) & & & 0.5 & \multirow{2}{*}{Volts} \\
\hline & & & & \(\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\) & & & 0.5 & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input HIGH Level & \multicolumn{2}{|l|}{Guaranteed input logical HIGH voltage for all inputs} & & 2.0 & & & Volts \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Input LOW Level & \multicolumn{2}{|l|}{Guaranteed input logical LOW voltage for all inputs} & & & & 0.8 & Volts \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(V_{C C}=M I N, l_{\mathbb{N}}=-18 \mathrm{~mA}\)} & & & & -1.5 & Volts \\
\hline \multirow[b]{2}{*}{ILL} & \multirow[t]{2}{*}{Input LOW Current} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(V_{C C}=M A X, V_{\text {IN }}=0.5 \mathrm{~V}\)}} & \(\mathrm{A}_{0-7}, \mathrm{~B}_{0-7}\) & & & -250 & \(\mu \mathrm{A}\) \\
\hline & & & & Others & & & -360 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{IIH}^{\text {H}}\)} & \multirow[b]{2}{*}{Input HIGH Current} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\)}} & \(\mathrm{A}_{0-7}, \mathrm{~B}_{0-7}\) & & & 70 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & Others & & & 20 & \\
\hline 1 & Input HIGH Current & \(V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}\) & 5.5 V & & & & 1.0 & mA \\
\hline & Output Off-state & & & \(\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}\) & & & 70 & \\
\hline O & Leakage Current & C \(=\) MAX & \(\mathrm{A}_{0-7}, \mathrm{~B}_{0-7}\) & \(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\) & & & -250 & \(\mu \mathrm{A}\) \\
\hline \(I_{\text {SC }}\) & Output Short Circuit Current (Note 3) & \(V_{C C}=\) MAX & & & -30 & & -85 & mA \\
\hline & & & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 156 & 263 & \\
\hline & & & & \(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}\) & & & 275 & \\
\hline \({ }^{\text {ICC }}\) & Power Supply Current & \(V_{C C}=M A X\) & & \(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\) & & & 228 & mA \\
\hline & & M & & \(\mathrm{T}_{\mathrm{C}}=-55\) to \(+125^{\circ} \mathrm{C}\) & & & 309 & \\
\hline & & & & \(\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}\) & & & 202 & \\
\hline
\end{tabular}

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. \(I_{C C}\) is measured with all inputs at 4.5 V and all outputs open.
5. Worst case \(\mathrm{I}_{\mathrm{CC}}\) is at minimum temperature.

\section*{Am2952A • Am2953A SWITCHING CHARACTERISTICS}

The tables below define the Am2952A•Am2953A switching characteristics. Tables A are setup and hold times relative to a clock LOW-to-HIGH transition. Tables B are propagational delays. Tables C are pulse-width requirements. Tables D are enable/disable times. All measurements are made at 1.5 V with input levels at 0 V or 3 V . All values are in ns with \(R_{L}\) on \(A_{i}\) and \(B_{i}=220 \Omega\) and \(R_{L}\) on \(F S\) and \(F R=300 \Omega . C_{L}=50 \mathrm{pF}\) except output disable times which are specified at \(C_{L}=5 \mathrm{pF}\).

\section*{GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE}
( \(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) )
A. Set-up and Hold Times
B. Propagation Delays
\begin{tabular}{|ll|c|c|c|}
\hline Input & \begin{tabular}{c} 
With \\
Respect to
\end{tabular} & \(\mathbf{t}_{\mathbf{s}}\) & \(\mathbf{t}_{\mathbf{h}}\) \\
\hline\(A_{0-7}\) & \(\boldsymbol{F}\) & CPR & & \\
\hline\(B_{0-7}\) & \(\boldsymbol{F}\) & CPS & & \\
\hline\(\overline{C E S}\) & \(\boldsymbol{F}\) & CPS & & \\
\hline\(\overline{C E}\) & \(\boldsymbol{F}\) & CPR & & \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|l|}
\hline Input & & \(\mathbf{A}_{\mathbf{0} \mathbf{- 7}}\) & \(\mathbf{B}_{\mathbf{0}-\mathbf{7}}\) \\
\hline CPS & \(\mathbf{Y}\) & & \\
\hline CPR & \(\mathbf{5}\) & & \\
\hline
\end{tabular}
C. Pulse-Width Requirements
\begin{tabular}{|l|c|c|}
\hline Input & \begin{tabular}{c} 
Min. LOW \\
Pulse Width
\end{tabular} & \begin{tabular}{c} 
Min. HIGH \\
Pulse Width
\end{tabular} \\
\hline CPS & & \\
\hline CPR & & \\
\hline
\end{tabular}
D. Enableloisable Time

*Where two numbers appear, the first is the Am2952A spec, the second is the Am2953A spec.

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5\) to \(\left.5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
With \\
Respect to
\end{tabular} & \(t_{s}\) & \(t_{n}\) \\
\hline \(A_{0-7} 5\) & CPR & & \\
\hline \(\mathrm{B}_{0-7}\) S & CPS & & \\
\hline \(\overline{\text { CES } 5}\) & CPS & & \\
\hline CER 5 & CPR & & \\
\hline
\end{tabular}
B. Propagation Delays
\begin{tabular}{|ll|l|l|}
\hline Input & & \(A_{0-7}\) & \(\mathbf{B}_{\mathbf{0}-\mathbf{7}}\) \\
\hline CPS & \(\boldsymbol{5}\) & & \\
\hline CPR & \(\mathbf{5}\) & & \\
\hline
\end{tabular}
D. Enable/Disable Times
\begin{tabular}{|l|c|c|c|}
\hline From & To & Disable & Enable \\
\hline\(\overline{O E A S}\) & \(A_{0-7}\) & & \\
\hline\(\overline{O E B R}\) & \(B_{0-7}\) & & \\
\hline
\end{tabular}

\section*{Am2952•Am2953 SWITCHING CHARACTERISTICS}

The tables below define the Am2952 - Am2953 switching characteristics. Tables A are set-up and hold times relative to a clock LOW-to-HIGH transition. Tables B are propagational delays. Tables \(C\) are pulse-width requirements. Tables \(D\) are enable/disable times. All measurements are made at 1.5 V with input levels at 0 V or 3 V . All values are in \(n s\) with \(R_{L}\) on \(A_{i}\) and \(B_{i}=220 \Omega\) and \(R_{L}\) on \(F S\) and \(F R=300 \Omega . C_{L}=50 \mathrm{pF}\) except output disable times which are specified at \(C_{L}=5 \mathrm{pF}\).

\section*{GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE}
\[
\left(\mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \text { to } 5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)
\]

\section*{A. Set-up and Hold Times}
\begin{tabular}{|c|c|c|c|}
\hline Input & With Respect to & \(t_{s}\) & \(t_{h}\) \\
\hline \(\mathrm{A}_{0-7}\) 5 & CPR & 7 & 5 \\
\hline \(\mathrm{B}_{0-7}\) F & CPS & 7 & 5 \\
\hline CES 5 & CPS & *19/15 & 4 \\
\hline CER 5 & CPR & *19/15 & 4 \\
\hline
\end{tabular}
B. Propagation Delays
\begin{tabular}{|lc|c|c|}
\hline Input & & \(\mathbf{A}_{\mathbf{0}-\mathbf{7}}\) & \(\mathbf{B}_{\mathbf{0}-\mathbf{7}}\) \\
\hline CPS & \(\boldsymbol{F}\) & \(* 30 / 26\) & - \\
\hline CPR & \(\mathbf{5}\) & - & \(* 30 / 26\) \\
\hline
\end{tabular}
C. Pulse-Width Requirements
\begin{tabular}{|l|c|c|}
\hline Input & \begin{tabular}{c} 
Min. LOW \\
Pulse Width
\end{tabular} & \begin{tabular}{c} 
Min. HIGH \\
Pulse Width
\end{tabular} \\
\hline CPS & 20 & 20 \\
\hline CPR & 20 & 20 \\
\hline
\end{tabular}
D. Enable/Disable Times
\begin{tabular}{|l|c|c|c|}
\hline From & To & Disable & Enable \\
\hline\(\overline{O E} A S\) & \(A_{0-7}\) & 22 & 27 \\
\hline\(\overline{\text { OEBR }}\) & \(\mathrm{B}_{0-7}\) & 22 & 27 \\
\hline
\end{tabular}
*Where two numbers appear, the first is the Am2952 spec, the second is the Am2953 spec

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE
\(\left(T_{C}=-55\right.\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5\) to \(5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) )
A. Set-up and Hold Times
B. Propagation Delays
\begin{tabular}{|ll|c|c|c|}
\hline Input & \begin{tabular}{c} 
With \\
Respect to
\end{tabular} & \(\mathbf{t}_{\mathbf{s}}\) & \(\mathbf{t}_{\boldsymbol{h}}\) \\
\hline\(A_{0-7}\) & \(\mathbf{5}\) & CPR & 11 & 8 \\
\hline\(B_{0-7}\) & \(\mathbf{5}\) & CPS & 11 & 8 \\
\hline\(\overline{\text { CES }}\) & \(\mathbf{5}\) & CPS & \(* 20 / 15\) & 4 \\
\hline CER & \(\mathbf{5}\) & CPR & \({ }^{2} 20 / 15\) & 4 \\
\hline
\end{tabular}
\begin{tabular}{|ll|c|c|}
\hline Input & & \(\mathbf{A}_{\mathbf{0}-\mathbf{7}}\) & \(\mathbf{B}_{\mathbf{0 - 7}}\) \\
\hline CPS & \(\mathbf{5}\) & \(* 35 / 28\) & - \\
\hline CPR & \(\mathbf{5}\) & - & \(* 35 / 28\) \\
\hline
\end{tabular}
C. Pulse-Width Requirements
\begin{tabular}{|l|c|c|}
\hline Input & \begin{tabular}{c} 
Min. LOW \\
Pulse Width
\end{tabular} & \begin{tabular}{c} 
Min. HIGH \\
Pulse Width
\end{tabular} \\
\hline CPS & 20 & 20 \\
\hline CPR & 20 & 20 \\
\hline
\end{tabular}
D. Enable/Disable Times
\begin{tabular}{|c|c|c|c|}
\hline From & To & Disable & Enable \\
\hline\(\overline{\mathrm{OE}} \mathrm{AS}\) & \(\mathrm{A}_{0-7}\) & 24 & 28 \\
\hline\(\overline{\mathrm{OE}} \mathrm{BR}\) & \(\mathrm{B}_{0-7}\) & 24 & 28 \\
\hline
\end{tabular}
*Where two numbers appear, the first is the Am2952 spec, the second is the Am2953 spec

REGISTER FUNCTION TABLE
(Applies to R or S Register)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Inputs} & \multirow[t]{2}{*}{Internal Q} & \multirow[b]{2}{*}{Function} \\
\hline D & CP & \(\overline{\mathbf{C E}}\) & & \\
\hline X & X & H & NC & Hold Data \\
\hline L & \(\uparrow\) & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{L} \\
\mathrm{H}
\end{gathered}
\] & Load Data \\
\hline
\end{tabular}

\section*{DEFINITION OF FUNCTIONAL TERMS}

A0-7. Eight bidirectional lines carrying the R Register inputs or S Register outputs.
B0-7 Eight bidirectional lines carrying the S Register inputs or R Register outputs.
CPR The clock for the R Register. When CER is LOW, data is entered into the R Register on the LOW to HIGH transition of the CPR signal.
\(\overline{\text { CER }}\) The Clock Enable for the R Register. When CER is LOW, data is entered into the R Register on the LOW to HIGH transition of the CPR signal. When CER is HIGH, the R Register holds its contents, regardless of CPR signal transitions.
\(\overline{\text { OEBR }}\) The Output Enable for the R Register. When \(\overline{O E B R}\) is LOW, The R Register three-state outputs are enabled

OUTPUT CONTROL
\begin{tabular}{|c|c|c|c|c|}
\hline & \multirow{2}{|c|}{} & \multirow{2}{|c|}{} & \multirow{2}{*}{ Internal } & \multicolumn{2}{|c|}{ Y-Outputs } & \\
\cline { 3 - 4 } & Q & Am2950 & Am2951 & Function \\
\hline\(H\) & X & Z & Z & Disable Outputs \\
\hline L & L & L & \(H\) & \multirow{2}{*}{ Enable Outputs } \\
L & \(H\) & \(H\) & L & \\
\hline
\end{tabular}
onto the B0-7 lines. When \(\overline{O E} B R\) is HIGH, the R Register outputs.are in the high-impedance state.
CPS
is LOW, data is entered into the S Register on the LOW to HIGH transition of the CPS signal.
\(\overline{\text { CES }}\) The clock enable for the \(S\) Register. When \(\overline{C E S}\) is LOW, data is entered into the \(S\) Register on the LOW to HIGH transition of the CPS signal. When CES is HIGH, the S Register holds its contents, regardless of CPS signal transitions.
OEAS The output enable for the \(S\) Register. When \(\overline{O E A S}\) is LOW, the S Register three-state outputs are enabled onto the A0-7 lines. When OEAS is HIGH, the S Register outputs are in the high-impedance state.


\section*{TEST OUTPUT LOAD CONFIGURATIONS FOR Am2952/Am2953}

\section*{A. THREE-STATE OUTPUTS}

\[
\mathrm{R}_{1}=\frac{5.0-\mathrm{V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}+\mathrm{V}_{\mathrm{OL}} / 1 \mathrm{~K}}
\]
B. NORMAL OUTPUTS


\section*{Notes on Testing}

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:
1. Insure the part is adequately decoupled at the test head. Large changes in \(V_{C C}\) current as the device switches may cause erroneous function failures due to \(\mathrm{V}_{\mathrm{CC}}\) changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in \(5-8 \mathrm{~ns}\). Inductance in the ground cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach \(\mathrm{V}_{\mathrm{IL}}\) or \(\mathrm{V}_{I H}\) until the noise has settled. AMD recommends using \(\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}\) for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

\section*{Am2954•Am2955 \\ Octal Registers with Three-State Outputs}


\section*{FUNCTIONAL DESCRIPTION}

The Am2954 and Am2955 are 8-bit registers built using highspeed Schottky technology. The registers consist of eight D-type flip-flops with a buffered common clock and a buffered 3 -state output control. When the output enable \((\overline{\mathrm{OE}})\) input is LOW, the eight outputs are enabled. When the OE input is HIGH, the outputs are in the 3 -state condition.
Input data meeting the set-up and hold time requirements of the D inputs is transferred to the Y outputs on the LOW-to-HIGH transition of the clock input.
The devices are packaged in a space-saving ( 0.3 -inch row spacing) 20-pin package.

\section*{LOGIC DIAGRAM}

Am2954


Inputs \(D_{0}\) through \(D_{7}\) are inverted on the Am2955.

LOGIC SYMBOLS

\(V_{C C}=\operatorname{Pin} 20\)
GND \(=\operatorname{Pin} 10\)

\section*{CONNECTION DIAGRAMS Top Views}

\section*{D-20, P-20}

Leadless Chip Carrier L-20-1


\section*{ORDERING INFORMATION}

Order the part number according to the table below to obtain the desired package, temperature range and screening level.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Am2954 } \\
\text { Order Number }
\end{gathered}
\] & \[
\begin{gathered}
\text { Am2955 } \\
\text { Order Number }
\end{gathered}
\] & Package Type (Note 1) & Operating Range (Note 2) & Screening Level (Note 3) \\
\hline AM2954PC & AM2955PC & P-20 & C & C-1 \\
\hline AM2954DC & AM2955DC & D-20 & C & C-1 \\
\hline AM2954DC-B & AM2955DC-B & D-20 & C & B-1 \\
\hline AM2954DM & AM2955DM & D-20 & M & C-3 \\
\hline AM2954DM-B & AM2955DM-B & D-20 & M & B-3 \\
\hline AM2954FM & AM2955FM & F-20 & M & C-3 \\
\hline AM2954FM-B & AM2955FM-B & F-20 & M & B-3 \\
\hline AM2954LC & AM2955LC & L-20-1 & C & C-1 \\
\hline AM2954LC-B & AM2955LC-B & L-20-1 & C & B-1 \\
\hline AM2954LM & AM2955LM & L-20-1 & M & C-3 \\
\hline AM2954LM-B & AM2955LM-B & L-20-1 & M & B-3 \\
\hline AM2954XC & AM2955XC & Dice & C & Visual inspection \\
\hline AM2954XM & AM2955XM & Dice & M & Method 2010B. \\
\hline
\end{tabular}

Notes: 1. \(\mathrm{P}=\) Molded DIP, \(\mathrm{D}=\) Hermetic DIP, \(\mathrm{L}=\) Chip-Pak, \(\mathrm{F}=\) Flat-Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. \(\mathrm{C}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{M}=-55\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50\) to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-3 conform to MIL-STD-883, Class B.

\section*{Am2954/2955}

\section*{ELECTRICAL CHARACTERISTICS}

The Following Conditions Apply Unless Otherwise Specified:
\begin{tabular}{llll} 
Am2954XC, DC, PC & Am2955XC, DC, PC & \(T_{A}=0\) to \(70^{\circ} \mathrm{C}\) & \(V_{C C}=4.75\) to 5.25 V \\
Am2954XM, DM, FM & Am2955XM, DM, FM & \(T_{C}=-55\) to \(+125^{\circ} \mathrm{C}\) & \(V_{C C}=4.50\) to 5.50 V
\end{tabular}

\section*{DC CHARACTERISTICS OVER OPERATING RANGE}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Param & Description & \multicolumn{2}{|r|}{Test Conditions (Note 1)} & Min & Typ (Note 2) & Max & Units \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow[t]{2}{*}{Output HIGH Voltage} & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}\) & \(\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}\) & 2.4 & 3.4 & & \multirow[t]{2}{*}{Volts} \\
\hline & & \(V_{\text {IN }}=V_{\text {IH }}\) or \(V_{I L}\) & COM'L, \(\mathrm{I}_{\mathrm{OH}}=-6.5 \mathrm{~mA}\) & 2.4 & 3.1 & & \\
\hline \multirow{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow{2}{*}{Output LOW Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M I N \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & \(\mathrm{IOL}=20 \mathrm{~mA}\) & & & . 45 & \multirow{2}{*}{Volts} \\
\hline & & & \(\mathrm{IOL}=32 \mathrm{~mA}\) & & & . 5 & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input HIGH Level & \multicolumn{2}{|l|}{Guaranteed input logical HIGH voltage for all inputs} & 2.0 & & & Volts \\
\hline \(V_{\text {IL }}\) & Input LOW Level & \multicolumn{2}{|l|}{Guaranteed input logical LOW voltage for all inputs} & & & 0.8 & Volts \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(V_{C C}=M I N, I_{\text {IN }}=-18 \mathrm{~mA}\)} & & & -1.2 & Volts \\
\hline \(I_{1 L}\) & Input LOW Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}\)} & & & -250 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{IIH}^{\text {H}}\) & Input HIGH Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\)} & & & 50 & \(\mu \mathrm{A}\) \\
\hline \(I_{1}\) & Input HIGH Current & \multicolumn{2}{|l|}{\(V_{C C}=M A X, V_{\text {IN }}=5.5 \mathrm{~V}\)} & & & 1.0 & mA \\
\hline \multirow[b]{2}{*}{loz} & \multirow[t]{2}{*}{\begin{tabular}{l}
Off-State (High-Impedance) \\
Output Current
\end{tabular}} & \multirow[b]{2}{*}{\(\mathrm{V}_{C C}=\mathrm{MAX}\)} & \(\mathrm{V}_{0}=0,5 \mathrm{~V}\) & & & -50 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & \(\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}\) & & & 50 & \\
\hline Isc & Output Short Circuit Current (Note 3) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}\)} & -40 & & -100 & mA \\
\hline Icc & Power Supply Current (Note 4) & \multicolumn{2}{|l|}{\(V_{C C}=\) MAX} & & 90 & 140 & mA \\
\hline
\end{tabular}

Notes: 1. For conditions shown as MIN or MAX use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Am2954 measured at CLK \(=\) LOW-to-HIGH, \(\overline{\mathrm{OE}}=\mathrm{HIGH}\), and all data inputs are LOW. Am2955 measured at CLK \(=\) LOW-to-HIGH, OE \(=\) HIGH, and all data inputs are LOW.

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous & -0.5 to +7.0 V \\
\hline DC Voltage Applied to Outputs for HIGH Output State & -0.5 V to \(+\mathrm{V}_{\mathrm{CC}} \mathrm{max}\) \\
\hline DC Input Voltage & -0.5 to +5.5 V \\
\hline DC Output Current, Into Outputs & 30 mA \\
\hline DC Input Current & -30 to +5.0 mA \\
\hline
\end{tabular}

\section*{DEFINITION OF FUNCTIONAL TERMS}
\(\mathbf{D}_{\mathbf{i}}\) The D flip-flop data inputs (Am2954, non-inverting).
\(\overline{\mathbf{D}_{\mathbf{i}}}\) The D flip-flop data inputs (Am2955, inverting).
CP Clock Pulse for the register. Enters data on the LOW-toHIGH transition.
\(\mathbf{Y}_{\mathrm{i}}\) The register three-state outputs (Am2954, non-inverting).
\(\overline{\mathrm{OE}}\) Output Control. An active-LOW three-state control used to enable the outputs. A HIGH level input forces the outputs to the high impedance (off) state.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{FUNCTION TABLE} \\
\hline \multirow[b]{2}{*}{Function} & \multicolumn{4}{|c|}{Inputs} & Internal & Outputs \\
\hline & \(\overline{\text { OE }}\) & Clock & Am2954 Di & Am2955 \(\overline{\mathrm{D}}_{\mathrm{i}}\) & \(\mathrm{a}_{\mathrm{i}}\) & \(\mathrm{r}_{\mathrm{i}}\) \\
\hline \multirow[b]{2}{*}{Hi-Z} & H & L & x & \(\times\) & NC & z \\
\hline & H & H & X & x & NC & z \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { LOAD } \\
& \text { REGISTER }
\end{aligned}
\]} & L & \(\uparrow\) & L & H & L & L \\
\hline & L & \(\uparrow\) & H & L & H & H \\
\hline & H & \(\uparrow\) & L & H & L & \(z\) \\
\hline & H & \(\uparrow\) & H & L & H & \(z\) \\
\hline
\end{tabular}
\begin{tabular}{rlrl}
H & \(=\) HIGH & NC & \(=\) No Change \\
L & \(=\) LOW & Z & \(=\) High Impedance \\
X & \(=\) Don't Care & \(\uparrow\) & \(=\) LOW-to-HIGH transition
\end{tabular}

SWITCHING CHARACTERISTICS
( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Description}} & & 4 - A & & & \multirow[b]{2}{*}{Test Conditions} \\
\hline Parameters & & & Min & Typ & Max & Units & \\
\hline \(\mathrm{t}_{\text {PLH }}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Clock to Output, \(\mathrm{Y}_{\mathrm{i}}\)}} & & 8 & 15 & ns & \multirow{4}{*}{\[
\begin{aligned}
& \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\
& \mathrm{R}_{\mathrm{L}}=280 \Omega
\end{aligned}
\]} \\
\hline \(t_{\text {PHL }}\) & & & & 11 & 17 & ns & \\
\hline \(\mathrm{t}_{\mathrm{ZH}}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\overline{O E}\) to \(Y_{i}\)}} & & 8 & 15 & ns & \\
\hline \(\mathrm{t}_{\mathrm{zL}}\) & & & & 11 & 18 & ns & \\
\hline \(t_{\text {Hz }}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\overline{O E}\) to \(Y_{i}\)}} & & 5 & 9 & ns & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\
& \mathrm{R}_{\mathrm{L}}=280 \Omega
\end{aligned}
\]} \\
\hline \(\mathrm{t}_{\mathrm{LZ}}\) & & & & 7 & 12 & ns & \\
\hline \multirow[b]{2}{*}{\(t_{\text {PW }}\)} & \multirow[t]{2}{*}{Clock Pulse Width} & HIGH & 6 & & & ns & \multirow{5}{*}{\[
\begin{aligned}
& C_{L}=15 p F \\
& R_{L}=280 \Omega
\end{aligned}
\]} \\
\hline & & LOW & 7.3 & & & ns & \\
\hline \(t_{s}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Data to Clock}} & 5 & & & ns & \\
\hline \(t_{H}\) & & & 2 & & & ns & \\
\hline \(\mathrm{f}_{\text {max }}\) & \multicolumn{2}{|l|}{Maximum Clock Frequency (Note 1)} & 75 & 100 & & MHz & \\
\hline
\end{tabular}

Note: 1. Per industry convention, \(t_{\max }\) is the worst case value of the maximum device operating frequency with no constraints on \(t_{r}\), \(t_{f}\), pulse width or duty cycle.



Dual 16 -word by 16 -bit non-inverting high-speed data buffer.

\section*{SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS}


\section*{Am2956•Am2957 \\ Octal Latches with Three-State Outputs}
\begin{tabular}{|l|}
\hline DISTINCTIVE CHARACTERISTICS \\
- 8-bit, high-speed parallel latches \\
- Am2956 has non-inverting inputs \\
- Am2957 has inverting inputs \\
- \(\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}\) (max) at \(\mathrm{I}_{\mathrm{O}}=32 \mathrm{~mA}\) \\
- Hysteresis on latch enable input for improved noise margin \\
- 3-state outputs interface directly with bus organized \\
systems
\end{tabular}

\begin{abstract}
FUNCTIONAL DESCRIPTION
The Am2956 and Am2957 are octal latches with 3-state outputs for bus organized system applications. The latches appear to be transparent to the data (data changes asynchronously) when latch enable, G, is HIGH. When G is LOW, the data that meets the set-up times is latched. Data appears on the bus when the output enable, \(\overline{O E}\), is LOW. When \(\overline{O E}\) is HIGH the bus output is in the high-impedance state.

The Am2956 presents non-inverted data at the outputs while the Am2957 is inverting.
The devices are packaged in a space-saving (0.3-inch row spacing) 20 -pin package.
\end{abstract}


Inputs \(D_{0}\) through \(D_{7}\) are inverted on the Am2957.
BLI-139

\section*{LOGIC SYMBOLS}



ORDERING INFORMATION
Order the part number according to the table below to obtain the desired package, temperature range and screening level.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Am2956 } \\
\text { Order Number }
\end{gathered}
\] & \[
\begin{gathered}
\text { Am2957 } \\
\text { Order Number }
\end{gathered}
\] & Package Type (Note 1) & Operating Range (Note 2) & Screening Level (Note 3) \\
\hline AM2956PC & AM2957PC & P-20 & C & C-1 \\
\hline AM2956DC & AM2957DC & D-20 & C & C-1 \\
\hline AM2956DCB & AM2957DCB & D-20 & C & B-1 \\
\hline AM2956DM & AM2957DM & D-20 & M & C-3 \\
\hline AM2956DMB & AM2957DMB & D-20 & M & B-3 \\
\hline AM2956FM & AM2957FM & F-20 & M & C-3 \\
\hline AM2956FMB & AM2957FMB & F-20 & M & B-3 \\
\hline AM2956LC & AM2957LC & L-20-1 & C & C-1 \\
\hline AM2956LCB & AM2957LCB & L-20-1 & C & B-1 \\
\hline AM2956LM & AM2957LM & L-20-1 & M & C-3 \\
\hline AM2956LMB & AM2957LMB & L-20-1 & M & B-3 \\
\hline AM2956XC & AM2957XC & Dice & C & Visual inspection \\
\hline AM2956XM & AM2957XM & Dice & M & \[
\left\{\begin{array}{l}
\text { to MIL-STD-883 } \\
\text { Method 2010B. }
\end{array}\right.
\] \\
\hline
\end{tabular}

Notes: 1. \(\mathrm{P}=\) Molded DIP, \(\mathrm{D}=\) Hermetic DIP, \(\mathrm{L}=\) Chip-Pak, \(\mathrm{F}=\) Flat-Pak. Number following letter is number of leads.
2. \(\mathrm{C}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{M}=-55\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50\) to 5.50 V .
3. See standard AMD Product Assurance Brochures for details of screening. Levels \(\mathrm{C}-1\) and \(\mathrm{C}-3\) conform to MIL-STD-883, Class C. Levels B-3 conform to MIL-STD-883, Class B.

\section*{ELECTRICAL CHARACTERISTICS}

The Following Conditions Apply Unless Otherwise Specified:
\begin{tabular}{lll} 
Am2956/2957XC, DC, PC & \(T_{\mathrm{A}}=0\) to \(70^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=4.75\) to 5.25 V \\
Am2956/2957XM, DM & \(\mathrm{T}_{\mathrm{A}}=-55\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=4.50\) to 5.50 V \\
Am2956/2957FM & \(\mathrm{T}_{\mathrm{C}}=-55\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=4.50\) to 5.50 V
\end{tabular}

\section*{DC CHARACTERISTICS OVER OPERATING RANGE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameters & \multicolumn{2}{|l|}{Description} & \multicolumn{2}{|r|}{Test Conditions (Note 1)} & Min & Typ
(Note 2) & \multirow[t]{2}{*}{Max} & Units \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Output HIGH Voltage}} & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}\) & MIL, \(\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}\) & 2.4 & 3.4 & & \multirow[t]{2}{*}{Volts} \\
\hline & & & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}\) or \(\mathrm{V}_{\text {IL }}\) & COM'L, \(\mathrm{I}_{\mathrm{OH}}=-6.5 \mathrm{~mA}\) & 2.4 & 3.1 & & \\
\hline \(v_{0}\) & Output LOW Voltage & & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}\) & \(\mathrm{IOL}^{2}=20 \mathrm{~mA}\) & & & . 45 & Volts \\
\hline VoL & Output Low Vorage & & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}\) or \(\mathrm{V}_{\text {IL }}\) & \(\mathrm{loL}^{\text {O }}=32 \mathrm{~mA}\) & & & . 5 & Vons \\
\hline \(\mathrm{V}_{\text {IH }}\) & Input HIGH Level & & Guaranteed input voltage for all inpu & cal HIGH & 2.0 & & & Volts \\
\hline \(\mathrm{V}_{\text {IL }}\) & Input LOW Level & & Guaranteed input voltage for all input & cal LOW & & & 0.8 & Volts \\
\hline \(V_{1}\) & Input Clamp Voltage & & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=\) & 18 mA & & & -1.2 & Volts \\
\hline \(\mathrm{I}_{12}\) & Input LOW Current & & \(\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}\) & 0.5V & & & -250 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{IIH}^{\text {H }}\) & Input HIGH Current & & \(\mathrm{V}_{\text {CC }}=\) MAX, \(\mathrm{V}_{\text {IN }}\) & .7V & & & 50 & \(\mu \mathrm{A}\) \\
\hline I & Input HIGH Current & & \(V_{C C}=\) MAX, \(V_{\text {IN }}\) & . 5 V & & & 1.0 & mA \\
\hline Ioz & Off-State (High-Impeda & & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}\) & \(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}\) & & & -50 & \(\mu \mathrm{A}\) \\
\hline & Output Current & & \(V_{C C}=\) max & \(\mathrm{V}_{0}=2.4 \mathrm{~V}\) & & & 50 & \(\mu \mathrm{A}\) \\
\hline Isc & Output Short Circuit Cur (Note 3) & & \(V_{C C}=\operatorname{MAX}\) & & -40 & & -100 & mA \\
\hline IC & Power Supply Current & 2956 & \(V_{C C}=\) MAX & & & 105 & 160 & mA \\
\hline ICC & (Note 4) & 2957 & \(V_{C C}=\) MAX & & & 110 & 168 & \\
\hline
\end{tabular}

Notes: 1. For conditions shown as MIN or MAX use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Inputs grounded; outputs open.

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous & -0.5 to +7.0 V \\
\hline DC Voltage Applied to Outputs for HIGH Output State & -0.5 V to \(+\mathrm{V}_{\mathrm{CC}} \mathbf{m a x}\) \\
\hline DC Input Voltage & -0.5 to +5.5 V \\
\hline DC Output Current, Into Outputs & 30 mA \\
\hline DC Input Current & -30 to +5.0 mA \\
\hline
\end{tabular}

\section*{Am2956/2957}

Am2956

\section*{SWITCHING CHARACTERISTICS}
( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & Min & Typ & Max & Units & Test Conditions \\
\hline \(\mathrm{t}_{\text {PLH }}\) & \multirow[b]{2}{*}{Enable to Output} & & 7 & 14 & ns & \multirow{12}{*}{\[
\begin{aligned}
& C_{\mathrm{L}}=15 \mathrm{pF} \\
& \mathrm{R}_{\mathrm{L}}=280 \Omega
\end{aligned}
\]} \\
\hline \({ }_{\text {tPHL }}\) & & & 12 & 18 & ns & \\
\hline \(t_{\text {PLH }}\) & \multirow[t]{2}{*}{Data Input to Output} & & 5 & 9 & ns & \\
\hline \(\mathrm{t}_{\text {PHL }}\) & & & 9 & 13 & ns & \\
\hline \(\mathrm{t}_{\mathrm{s}}(\mathrm{H})\) & HIGH Data to Enable & 0 & & & ns & \\
\hline \(t_{s}(L)\) & LOW Data to Enable & 0 & & & ns & \\
\hline \(t_{n}(H)\) & HIGH Data to Enable & 10 & & & ns & \\
\hline \(t_{\text {c }}(\mathrm{L})\) & LOW Data to Enable & 10 & & & ns & \\
\hline \(\mathrm{t}_{\mathrm{pwH}}\) & Enable Pulse Width & 6 & & & ns & \\
\hline \(t_{\text {pwL }}\) & Enable Pulso Widh & 7.3 & & & ns & \\
\hline \(\mathrm{t}_{\mathrm{ZH}}\) & \(\overline{\mathrm{OE}}\) to Y & & 8 & 15 & ns & \\
\hline \({ }^{\text {Z }}\) L & & & 11 & 18 & ns & \\
\hline \(t_{H Z}\) & \(\overline{O E}\) to \(Y\). & & 6 & 9 & ns & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) \\
\hline \(t_{L Z}\) & I & & 8 & 12 & ns & \(R_{L}=280 \Omega\) \\
\hline
\end{tabular}
*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.


Am2957
SWITCHING CHARACTERISTICS
\(\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & Min & Typ & Max & Units & Test Conditions \\
\hline \(t_{\text {PLH }}\) & \multirow{2}{*}{Enable to Output} & & 17 & 24 & ns & \multirow{12}{*}{\[
\begin{aligned}
& C_{\mathrm{L}}=15 \mathrm{pF} \\
& \mathrm{R}_{\mathrm{L}}=280 \Omega
\end{aligned}
\]} \\
\hline \(\mathrm{t}_{\mathrm{PHL}}\) & & & 19 & 26 & ns & \\
\hline \(\mathrm{t}_{\text {PLH }}\) & \multirow[t]{2}{*}{Data Input to Output} & & 10 & 14 & ns & \\
\hline \(\mathrm{t}_{\mathrm{PHL}}\) & & & 14 & 20 & ns & \\
\hline \(\mathrm{t}_{\mathbf{s}}(\mathrm{H})\) & HIGH Data to Enable & 0 & & & ns & \\
\hline \(\mathrm{t}_{\mathrm{s}}(\mathrm{L})\) & LOW Data to Enable & 0 & & & ns & \\
\hline \(t_{h}(\mathrm{H})\) & HIGH Data to Enable & 10 & & & ns & \\
\hline \(t_{\text {h }}(\mathrm{L})\) & LOW Data to Enable & 10 & & & ns & \\
\hline \(\mathrm{t}_{\mathrm{pwH}}\) & \multirow[t]{2}{*}{Enable Pulse Width} & 6 & & & ns & \\
\hline \(t_{\text {pwL }}\) & & 7.3 & & & ns & \\
\hline \({ }_{\text {t }}{ }_{\text {H }}\) & \multirow[t]{2}{*}{\(\overline{O E}\) to \(Y_{i}\)} & & 8 & 15 & ns & \\
\hline \(\mathrm{t}_{\mathrm{ZL}}\) & & & 11 & 18 & ns & \\
\hline \(\mathrm{t}_{\mathrm{Hz}}\) & \multirow[t]{2}{*}{\(\overline{O E}\) to \(Y_{i}\)} & & 6 & 9 & ns & \multirow[t]{2}{*}{\[
\begin{gathered}
C_{L}=5 p F \\
R_{L}=280 \Omega
\end{gathered}
\]} \\
\hline \(t_{\text {LZ }}\) & & & 8 & 10 & ns & \\
\hline
\end{tabular}


DIE SIZE 0.066" \(\times 0.119^{\prime \prime}\)

Am2957


DIE SIZE 0.066" \(\times 0.119^{\prime \prime}\)


Transparent Latches are used in high performance CPU designs. The \(Z\) Latch configuration shown provides overlapped fetch of machine instructions and operand data.

\title{
Am2958 • Am2959 \\ Octal Buffers/Line Drivers/Line Receivers with Three-State Outputs
}

\section*{DISTINCTIVE CHARACTERISTICS}
- Three-state outputs drive bus lines directly
- Advanced Schottky processing
- Hysteresis at inputs improve noise margin
- PNP inputs reduce D.C. loading on bus lines
- \(\mathrm{V}_{\mathrm{OL}}\) of 0.55 V at 65 mA for commercial-range product; 48 mA for military-range product
- Data-to-output propagation delay times: Inverting - 7.0ns MAX
Non-inverting - 9.0ns MAX
- Enable-to-output - 15.0ns MAX
- 20-pin hermetic and molded DIP packages

\section*{FUNCTIONAL DESCRIPTION}

These buffers/line drivers, used as memory-address drivers, clock drivers, and bus oriented transmitters/receivers, provide improved PC board density. The outputs of the commercial temperature range versions have 64 mA sink and 15 mA source capability, which can be used to drive terminated lines down to \(133 \Omega\). The outputs of the military temperature range versions have 48 mA sink and 12 mA source current capability.
Featuring 0.2 V minimum guaranteed hysteresis at each low-current PNP data input, they provide improved noise rejection and high-fan-out outputs to restore Schottky TTL levels completely.
The Am2958 and Am2959 have four buffers enabled from one common line, and the other four buffers enabled from another common line. The Am2958 is inverting, while the Am2959 presents true data at the outputs.

\section*{ORDERING INFORMATION}

Order the part rumber according to the table below to obtain the desired package, temperature range, and screening level.
\begin{tabular}{llccc}
\begin{tabular}{c} 
Am2958 \\
Order Number
\end{tabular} & \begin{tabular}{c} 
Am2959 \\
Order Number
\end{tabular} & \begin{tabular}{c} 
Package Type \\
(Note 1)
\end{tabular} & \begin{tabular}{c} 
Operating Range \\
(Note 2)
\end{tabular} & \begin{tabular}{c} 
Screening Level \\
(Note 3)
\end{tabular} \\
\hline AM2958PC & AM2959PC & P-20-1 & C & C-1 \\
AM2958DC & AM2959DC & D-20-1 & C & C-1 \\
AM2958DC-B & AM2959DC-B & D-20-1 & C & B-1 \\
AM2958DM & AM2959DM & D-20-1 & M & C-3 \\
AM2958DM-B & AM2959DM-B & D-20-1 & M & \begin{tabular}{l} 
B-3 \\
Am2958XC
\end{tabular} \\
Am2959XC & Dice & C & \begin{tabular}{l} 
Visual inspection \\
to MIL-STD-883 \\
Mm2958XM
\end{tabular} & Am2959XM
\end{tabular}

Notes: 1. \(P=\) Molded DIP,\(D=\) Hermetic DIP,\(F=\) Flat Pak. Number following letter is number of leads. See Appendix \(B\) for detailed outline. Where Appendix \(B\) contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. \(\mathrm{C}=0\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) to \(5.25 \mathrm{~V}, \mathrm{M}=-55\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}\) to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883.
LOGIC DIAGRAMS

MAXIMUM RATINGS above which the useful life may be impaired
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential & -0.5 V to +7.0 V \\
\hline DC Voltage Applied to Outputs for HIGH Output State & -0.5 V to \(+\mathrm{V}_{\mathrm{CC}}\) max. \\
\hline DC Input Voltage & -0.5 V to +7.0 V \\
\hline DC Output Current & 150 mA \\
\hline DC Input Current & -30 mA to +5.0 mA \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

The Following Conditions Apply Unless Otherwise Noted:
Am2958 (MIL)
Am2959 (COM'L)
\(T_{A}=-55\) to \(+125^{\circ} \mathrm{C}\)
\(\operatorname{VCC}(\) MIN. \()=4.50 \mathrm{~V}\)
\(V_{C C}(M A X)=.5.50 \mathrm{~V}\)

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE
Typ.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Param & \multicolumn{3}{|c|}{Description} & \multicolumn{2}{|l|}{Test Conditions (Note 1)} & Min. & (Note 2) & Max. & Units \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{3}{|l|}{High-Level Input Voltage} & & & 2.0 & & & Volts \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{3}{|l|}{Low-Level Input Voltage} & & & & 0.8 & & Volts \\
\hline \(\mathrm{V}_{\text {IK }}\) & \multicolumn{3}{|l|}{Input Clamp Voltage} & \multicolumn{2}{|l|}{\(V_{C C}=\) MIN., \(\mathrm{I}=-18 \mathrm{~mA}\)} & & & -1.2 & Volts \\
\hline & \multicolumn{3}{|l|}{Hystersis ( \(\mathrm{V}_{\mathbf{T}}+-\mathrm{V}_{\mathbf{T}}{ }^{-}\))} & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{MIN}\).} & 0.2 & 0.4 & & Volts \\
\hline \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multicolumn{3}{|l|}{\multirow{4}{*}{High-Level Output Voltage}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M I N \\
& V_{C C}=0.8 V
\end{aligned}
\]} & COM'L, \(\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\) & 2.7 & & & \multirow{4}{*}{Volts} \\
\hline & & & & & \(\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}\) & 2.4 & 3.4 & & \\
\hline & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\
& \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}
\end{aligned}
\]} & MIL, \(\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\) & 2.0 & & & \\
\hline & & & & & \(\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\) & 2.0 & & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Low-Level Output Voltage}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\
& \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}
\end{aligned}
\]} & \(\mathrm{MIL}, \mathrm{IOL}=48 \mathrm{~mA}\) & & & 0.55 & \multirow[t]{2}{*}{Volts} \\
\hline & & & & & COM'L, \(\mathrm{IOL}^{\prime}=64 \mathrm{~mA}\) & & & 0.55 & \\
\hline \({ }^{\text {I OZH }}\) & \multicolumn{3}{|l|}{Off-State Output Current, High-Level Voltage Applied} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M A X . \\
& V_{I H}=2.0 \mathrm{~V} \\
& V_{\mathrm{IL}}=0.8 \mathrm{~V}
\end{aligned}
\]} & \(\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}\) & & & 50 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline bozi & \multicolumn{3}{|l|}{Off-State Output Current, Low-Level Voltage applied} & & \(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}\) & & & -50 & \\
\hline 1 & \multicolumn{3}{|l|}{Input Current at Maximum Input Voltage} & \multicolumn{2}{|l|}{\(V_{C C}=M A X ., V_{1}=5.5 \mathrm{~V}\)} & & & 1.0 & mA \\
\hline \(I_{1 H}\) & \multicolumn{3}{|l|}{High-Level Input Current, Any Input} & \multicolumn{2}{|l|}{\(V_{C C}\) MAX., \(V_{\text {IH }}=2.7 \mathrm{~V}\)} & & & 50 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{IIL} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Low-Level Input Circuit}} & Any A & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}\)}} & & & -400 & \(\mu \mathrm{A}\) \\
\hline & & & Any G & & & & & -2.0 & mA \\
\hline Ios & \multicolumn{3}{|l|}{Short-Circuit Output Current (Note 3)} & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{MAX}\).} & \(-50\) & & -225 & mA \\
\hline \multirow{6}{*}{lc} & \multirow{6}{*}{Supply Current} & \multirow{3}{*}{Am2958} & All Outputs HIGH & \multirow{3}{*}{\begin{tabular}{l}
\[
V_{C C}=M A X,
\] \\
Outputs Open
\end{tabular}} & \multirow{3}{*}{MIL and COM'L} & & 37 & 65 & \\
\hline & & & All Outputs LOW & & & & 59 & 90 & mA \\
\hline & & & Outputs at Hi ZZ & & & & 69 & 105 & \\
\hline & & \multirow{3}{*}{Am2959} & All Outputs HIGH & \multirow{3}{*}{\begin{tabular}{l}
\[
V_{C C}=M A X
\] \\
Outputs Open
\end{tabular}} & \multirow{3}{*}{MIL and COM'L} & & 37 & 65 & \\
\hline & & & All Outputs LOW & & & & 63 & 105 & mA \\
\hline & & & Outputs at Hi Z & & & & 72 & 120 & \\
\hline
\end{tabular}

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.
2. All typical values are \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed on second.

SWITCHING CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SWITCHI & ( \({ }^{\text {c }}\) & , \({ }^{\text {a }}\) & \multicolumn{4}{|c|}{Am2958} & \multicolumn{3}{|l|}{Am2959} \\
\hline Parameter & Description & Test Conditions & Min. & Typ. & Max. & Min. & Typ. & Max. & Units \\
\hline tPLH & Propagation Delay Time, Low-to-High-Level Output & \multirow{4}{*}{\(C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=90 \Omega\) (Note 3)} & & 4.5 & 7.0 & & 6.0 & 9.0 & ns \\
\hline tPHL & Propagation Delay Time, High-to-Low-Level Output & & & 4.5 & 7.0 & & 6.0 & 9.0 & ns \\
\hline \(\mathrm{t}_{\mathrm{ZL}}\) & Output Enable Time to Low Level & & & 10 & 15 & & 10 & 15 & ns \\
\hline \({ }^{\text {Z }} \mathrm{H}\) & Output Enable Time to High Level & & & 6.5 & 10 & & 8.0 & 12 & ns \\
\hline \({ }_{t} \mathrm{LZ}\) & Output Disable Time from Low Level & \multirow[t]{2}{*}{\(C_{L}=5.0 p F, R_{L}=90 \Omega(\) Note 3)} & & 10 & 15 & & 10 & 15 & ns \\
\hline \({ }_{\text {t }}^{\mathrm{Hz}}\) & Output Disable Time from High Level & & & 6.0 & 9.0 & & 6.0 & 9.0 & ns \\
\hline
\end{tabular}

LOAD CIRCUIT FOR THREE-STATE OUTPUTS

BLI-117

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS


BLI-118

Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily. PRR \(\leqslant 1 . O M H z, Z O U T \approx 50 \Omega\) and \(\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}\).

\section*{FUNCTION TABLES}
Am2958
\begin{tabular}{|c|c|c|}
\hline INPUTS & OUTPUT \\
\hline\(\overline{\mathbf{G}}\) & A & Y \\
H & X & Z \\
L & H & L \\
L & L & H \\
\hline
\end{tabular}

Am2959
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ INPUTS } & OUTPUT \\
\hline\(\overline{\text { G }}\) & A & \\
H & X & Z \\
L & H & H \\
L & L & L \\
\hline
\end{tabular}


\section*{APPLICATIONS (Cont.)}

INDEPENDENT 4-BIT BUS DRIVERS/RECEIVERS
IN A SINGLE PACKAGE


Metallization and Pad Layout
Am2958 • Am2959


\section*{DISTINCTIVE CHARACTERISTICS}
- Expandable Register File -

Like the Am2901, the Am29203 contains 16 internal working registers arranged in a two-address architecture. But the Am29203 includes the necessary "hooks" to expand the register file externally to any number of registers.
- Built-in Multiplication Logic -

Performing multiplication with the Am2901A requires a few external gates - these gates are contained on-chip in the Am29203. Three special instructions are used for unsigned multiplication, two's complement multiplication and the last cycle of a two's complement multiplication.
- Built-in Division Logic -

The Am29203 contains all logic and interconnects for execution of a non-restoring, multiple-length division with correction of the quotient.
- Built-in Normalization Logic -

The Am29203 can simultaneously shift the \(Q\) register and count in a working register. Thus, the mantissa and exponent of a floating-point number can be developed using a single microcycle per shift. Status flags indicate when the operation is complete.
- Built-in Parity Generation Circuitry -

The Am29203 can supply parity across the entire ALU output for use in error detection.
- Built-in Sign Extension Circuitry -

To facilitate operation on different length two's complement numbers, the Am29203 provides the capability to extend the sign at any slice boundary.
- BCD Arithmetic -

The Am29203 features automatic BCD add and subtract and conversion between binary and \(B C D\).
- Improved Byte Handling -

On the Am29203 zero detection and register writing can be performed on a single byte rather than the whole word.
- Two Bidirectional Data Lines
- Improved I/O Capability -

Both the DA and DB data buses are bidirectional on the Am29203. In addition, the \(Y\) port is also bidirectional.

\section*{RELATED PRODUCTS}
\begin{tabular}{ll} 
Part No. & Description \\
\hline Am2902A & Carry Look-Ahead Generator \\
Am2904 & Status and Shift Control Unit \\
Am2910A & Microprogram Controller \\
Am2914 & Vectored Priority Interrupt Controller \\
Am2917A & Bus Transceiver \\
Am2918 & Pipeline Register \\
Am2920 & Octal Register \\
Am2922 & Condition Code MUX \\
Am2925 & System Clock Generator \\
Am2940 & DMA Address Generator \\
Am2952 & Bidirectional I/O Port \\
Am29707 & Two-Port RAM \\
Am27S35 & Registered PROM \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The Am29203 is a four-bit expandable bipolar microprocessor slice. The Am29203 performs all functions performed by the industry standard Am2901 and, in addition, provides a number of significant enhancements that are especially useful in arithmetic-oriented processors. Infinitely expandable memory and three-port, three-address architecture are provided by the Am29203. In addition to its complete arithmetic and logic instruction set, the Am29203 provides a special set of instructions which facilitate the implementation of multiplication, division, normalization, BCD arithmetic and conversion, and other previously time consuming operations. The Am29203 has three bidirectional ports and features AMD's ion-implanted micro-oxide (IMOX \({ }^{\top M}\) ) technology.


Am29203


\section*{PIN DEFINITIONS}
\(A_{0-3}\) Four RAM address inputs which contain the address of the RAM word appearing at the RAM A output port.
\(\mathrm{B}_{0-3} \quad\) Four RAM address inputs which contain the address of the RAM word appearing at the RAM B output port and into which new data is written when the WE input and the CP input are LOW.
\(\overline{W E} \quad\) The RAM write enable input. If \(\overline{W E}\) is LOW, data at the \(Y\) I/O port is written into the RAM when the CP input is LDW. When WE is HIGH, writing data into the RAM is inhibited.
\(D^{0-3} \quad\) A four-bit external data input which can be selected as one of the ALU operand sources; \(D A_{0}\) is the least significant bit. On the Am29203, the DA path is bidirectional, operating as either an ALU source operand or as an external output for the RAM A-port.
\(\overline{E A} \quad\) A control input which, when HIGH selects \(\mathrm{DA}_{0-3}\) as the ALU R operand, and, when LOW, selects RAM output A as the ALU R operand and the \(\mathrm{DA}_{0-3}\) output data.
\(\mathrm{DB}_{0-3} \mathrm{~A}\) four-bit external data input/output. Under control of the \(\overline{O_{B}}\) input, RAM output port \(B\) can be directly read on these lines, or input data on these lines can be selected as the ALU S operand.
\(\overline{\mathbf{O E}_{\mathrm{B}}} \quad \mathrm{A}\) control input which, when LOW, enables RAM output B onto the \(\mathrm{DB}_{0-3}\) lines and, when HIGH, disables the RAM output B tri-state buffers.
\(C_{n} \quad\) The carry-in input to the Am29203 ALU.
\(\mathrm{I}_{0-8} \quad\) The nine instruction inputs used to select the Am29203 operation to be performed.
IEN The instruction enable input which, when LOW, allows the Q Register and the Sign Compare flip-flop to be written. When IEN is HIGH, the Q Register and Sign Compare flip-flop are in the hold mode. On the Am29203, \(\overline{\text { WRITE }}\) is not affected by \(\overline{\text { IEN, }}\), but internally disables the RAM write enable.
\(\mathbf{C}_{\mathrm{n}+4}\) This output generally indicates the carry-out of the Am29203 ALU. Refer to Table 5 for an exact definition of this pin.
\(\overline{\mathbf{G}} / \mathbf{N} \quad\) A multi-purpose pin which indicates the carry generate, \(\bar{G}\), function at the least significant and intermediate slices, and generally indicates the sign, \(N\), of the ALU result at the most significant slice. Refer to Table 5 for an exact definition of this pin.
\(\overline{\text { P/OVR A multi-purpose pin which indicates the carry prop- }}\) agate, \(\overline{\mathrm{P}}\), function at the least significant and intermediate slices, and indicates the conventional two's complement overflow, OVR, signal at the most significant slice. Refer to Table 5 for an exact definition of this pin,
z An open-collector input/output pin which, when HIGH, generally indicates the outputs are all LOW. For some Special Functions, \(\mathbf{Z}\) is used as an input pin. Refer to Table 5 for an exact definition of this pin.
\(\mathbf{S I O}_{0}\), Bidirectional serial shift inputs/outputs for the
\(\mathrm{SIO}_{3} \quad \mathrm{ALU}\) shifter. During a shift-up operation, \(\mathrm{SIO}_{0}\) is an input and \(\mathrm{SIO}_{3}\) an output. During a
shift-down operation, \(\mathrm{SIO}_{3}\) is an input and \(\mathrm{SIO}_{0}\) is an output. Refer to Tables 3 and 4 for an exact definition of these pins.
\(\mathrm{QIO}_{0}, \quad\) Bidirectional serial shift inputs/outputs for the Q \(\mathrm{ClO}_{3}\) shifter which operate like \(\mathrm{SIO}_{0}\) and \(\mathrm{SIO}_{3}\). Refer to Tables 3 and 4 for an exact definition of these pins.
\(\overline{\text { LSS }} \quad\) An input pin which, when tied LOW, programs the chip to act as the least significant slice (LSS) of an Am29203 array and enables the WRITE output onto the \(\overline{\text { WRITE }} / \overline{M S S}\) pin. When \(\overline{\mathrm{LSS}}\) is tied HIGH, the chip is programmed to operate as either an intermediate or most significant slice and the WRITE output buffer is disabled.
 appears at this pin; the WRITE signal is LOW when an instruction which writes data into the RAM is being executed. When \(\overline{L S S}\) is tied HIGH, WRITE/MSS is an input pin; tying it HIGH programs the chip to operate as an intermediate slice (IS) and tying it LOW programs the chip to operate as the most significant slice (MSS).
\(Y_{0-3} \quad\) Four data inputs/outputs of the Am29203. Under control of the \(\overline{\mathrm{O}} \mathrm{Y}\) input, the ALU shifter output data can be enabled onto these lines, or these lines can be used as data inputs when external data is written directly into the RAM.
\(\overline{\mathbf{O E}_{Y}}\) A control input which, when LOW, enables the ALU shifter output data onto the \(Y_{0-3}\) lines and, when HIGH, disables the \(Y_{0-3}\) threestate output buffers.
CP The clock input to the Am29203. The Q register and Sign Compare flip-flop are clocked on the LOW-toHIGH transition of the CP signal. When enabled by \(\overline{W E}\), data is written in the RAM when CP is LOW.

METALLIZATION AND PAD LAYOUT


Am29203

\section*{ARCHITECTURE OF THE Am29203}

The Am29203 is a high-performance, cascadable, four-bit bipolar microprocessor slice designed for use in CPUs, peripheral controllers, microprogrammable machines, and numerous other applications. The microinstruction flexibility of the Am29203 allows the efficient emulation of almost any digital computing machine. The nine-bit microinstruction selects the ALU sources, function and destination. The Am29203 is cascadable with full lookahead or ripple carry, has three-state outputs, and provides various ALU status flag outputs. Advanced Low-Power Schottky processing is used to fabricate this 48-pin LSI circuit.

All data paths within the device are four bits wide. As shown in the block diagram, the device consists of a 16-word by 4-bit, two-port RAM with latches on both output ports, a high-performance ALU and shifter, a multi-purpose Q Register with shifter input, and a nine-bit instruction decoder.

\section*{Two-Port RAM}

Any two RAM words addressed at the \(A\) and \(B\) address ports can be read simultaneously at the respective RAM A and B output ports. Identical data appear at the two output ports when the same address is applied to both address ports. The latches at the RAM output ports are transparent when the clock input, CP, is HIGH and they hold the RAM output data when CP is LOW. Under control of the \(\overline{\mathrm{OE}_{\mathrm{B}}}\) three-state output enable, RAM data can be read directly at the Am2903 DB I/O port. On the Am29203, \(E_{A}\) provides the same feature at the DA port.

External data at the Am29203 Y I/O port can be written directly into the RAM, or ALU shifter output data can be enabled ontc the Y I/O port and entered into the RAM. Data is written into the RAM at the \(B\) address when the write enable input, \(\overline{W E}\), is LOW and the clock input, CP, is LOW.

\section*{Arithmetic Logic Unit}

The Am29203 high-performance ALU can perform seven arithmetic and nine logic operations on two 4-bit operands. Multiplexers at the ALU inputs provide the capability to select various pairs of ALU source operands. The \(\bar{E}_{A}\) input selects either the DA external data input or RAM output port A for use as one \(A L U\) operand and the \(\overline{O E}_{B}\) and \(I_{0}\) inputs select RAM output port B, DB external data input, or the \(Q\) register content for use as the second ALU operand. Also, during some ALU operations, zeroes are forced at the ALU operand inputs. Thus, the Am29203 ALU can operate on data from two external sources, from an internal and external source, or from two internal sources. Table 1 shows all possible pairs of ALU source operands as a function of the \(\overline{\mathrm{E}_{A}}, \overline{\mathrm{OE}} \bar{B}_{B}\), and \(\mathrm{I}_{0}\) inputs.

TABLE 1. ALU OPERAND SOURCES
\begin{tabular}{|l|l|l|l|l|}
\hline\(\overline{E_{\mathbf{A}}}\) & \(\mathbf{I}_{\mathbf{0}}\) & \(\overline{\mathbf{O} E_{\mathbf{B}}}\) & ALU Operand R & ALU Operand S \\
\hline L & L & L & RAM Output A & RAM Output B \\
L & L & H & RAM Output A & DB \(_{0-3}\) \\
L & \(H\) & X & RAM Output A & Q Register \\
\(H\) & L & L & DA \(_{0-3}\) & RAM Output B \\
\(H\) & L & \(H\) & DA \(_{0-3}\) & DB \(_{0-3}\) \\
\(H\) & \(H\) & X & DA \(_{0-3}\) & Q Register \\
\hline
\end{tabular}

L = LOW \(\quad H=H\) HIGH \(\quad X=\) Don't Care

TABLE 2. Am29203 ALU FUNCTIONS


When instruction bits \(I_{4}, l_{3}, l_{2}, l_{1}\), and \(I_{0}\) are LOW, the Am29203 executes special functions. Table 4 defines these special functions and the operation which the ALU performs for each. When the Am29203 executes instructions other than the 16 special functions, the ALU operation is determined by instruction bits \(\mathrm{I}_{4}\), \(I_{3}, I_{2}\), and \(I_{1}\). Table 2 defines the ALU operation as a function of these four instruction bits.

Am29203s may be cascaded in either a ripple carry or lookahead carry fashion. When a number of Am29203s are cascaded, each slice must be programmed to be a most significant slice (MSS), intermediate slice (IS), or least significant slice (LSS) of the array. The carry generate, \(\overline{\mathrm{G}}\), and carry propagate, \(\bar{P}\), signals required for a lookahead carry scheme are generated by the Am29203 and are available as outputs of the least significant and intermediate slices.
The Am29203 also generates a carry-out signal, \(C_{n}+4\), which is generally available as an output of each slice. Both the carry-in, \(\mathrm{C}_{\mathrm{n}}\), and carry-out, \(\mathrm{C}_{\mathrm{n}+4}\), signals are active HIGH. The ALU generates two other status outputs. These are negative, N , and overflow, OVR. The \(N\) output is generally the most significant (sign) bit of the ALU output and can be used to determine positive or negative results. The OVR output indicates that the arithmetic operation being performed exceeds the available two's complement number range. The \(N\) and OVR signals are available as outputs of the most significant slice. Thus, the multipurpose \(\overline{\mathrm{G}} / \mathrm{N}\) and \(\overline{\mathrm{P}} / \mathrm{OVR}\) outputs indicate \(\overline{\mathrm{G}}\) and \(\overline{\mathrm{P}}\) at the least significant and intermediate slices, and sign and overflow at the most significant slice. To some extent, the meaning of the \(\mathrm{C}_{\mathrm{n}+4}, \overline{\mathrm{P}} / \mathrm{OVR}\), and \(\overline{\mathrm{G}} / \mathrm{N}\) signals vary with the ALU function being performed. Refer to Table 5 for an exact definition of these four signals as a function of the-Am29203 instruction.

\section*{ALU Shifter}

Under instruction control, the ALU shifter passes the ALU output (F) non-shifted, shifts it up one bit position (2F), or shifts it down one bit position ( \(F / 2\) ). Both arithmetic and logical shift operations are possible. An arithmetic shift operation shifts data around the most significant (sign) bit position of the most significant slice, and a logical shift operation shifts data through this bit position (see Figure A). \(\mathrm{SIO}_{0}\) and \(\mathrm{SIO}_{3}\) are bidirectional serial shift inputs/outputs. During a shift-up operation, \(\mathrm{SIO}_{0}\) is generally a serial shift input and \(\mathrm{SIO}_{3}\) a serial shift output. During a shift-down operation, \(\mathrm{SIO}_{3}\) is generally a serial shift input and \(\mathrm{SIO}_{0}\) a serial shift output.

To some extent, the meaning of the \(\mathrm{SIO}_{0}\) and \(\mathrm{SIO}_{3}\) signals is instruction dependent. Refer to Tables 3 and 4 for an exact definition of these pins.

The ALU shifter also provides the capability to sign extend at slice boundaries. Under instruction control, the \(\mathrm{SIO}_{0}\) (sign) input can be extended through \(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}\) and propagated to the \(\mathrm{SIO}_{3}\) output.

A cascadable, five-bit parity generator/checker is designed into the Am29203 ALU shifter and provides ALU error detection capability. Parity for the \(\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3} \mathrm{ALU}\) outputs and \(\mathrm{SIO}_{3}\) input is generated and, under instruction control, is made available at the \(\mathrm{SIO}_{0}\) output. Refer to the Am29203 applications section for a more detailed description of the Am29203 sign extension and parity generation/checking capability.
The instruction inputs determine the ALU shifter operation. Table 4 defines the special functions and the operation the ALU shifter performs for each. When the Am29203 executes instructions other than the special functions, the ALU shifter operation is determined by instruction bits \(\mathrm{I}_{8}, \mathrm{I}_{7}, \mathrm{I}_{6}, \mathrm{I}_{5}\). Table 3 defines the ALU shifter operation as a function of these four bits.

\section*{Q Register}

The Q Register is an auxiliary four-bit register which is clocked on the LOW-to-HIGH transition of the CP input. It is intended primarily for use in multiplication and division operations; however, it can also be used as an accumulator or holding register for some applications. The ALU output, F, can be loaded into the Q Register, and/or the Q Register can be selected as the source for the

Figure A .

\section*{Am29203 Arithmetic Shift Path}


\section*{Am29203 Logical Shift Path}


All
Slice Position

ALU S operand. The shifter at the input to the \(Q\) Register provides the capability to shift the Q Register contents up one bit position (2Q) or down one bit position ( \(\mathrm{Q} / 2\) ). Only logical shifts are performed. \(\mathrm{QIO}_{0}\) and \(\mathrm{QIO}_{3}\) are bidirectional shift serial inputs/ outputs. During a Q Register shift-up operation, \(\mathrm{QIO}_{0}\) is a serial shift input and \(\mathrm{QIO}_{3}\) is a serial shift output. During a shift-down operation, \(\mathrm{QIO}_{3}\) is a serial shift input and \(\mathrm{QIO}_{0}\) is a serial shift output.
Double-length arithmetic and logical shifting capability is provided by the Am29203. The double-length shift is performed by connecting \(\mathrm{QIO}_{3}\) of the most significant slice to \(\mathrm{SIO}_{0}\) of the least significant slice, and executing an instruction which shifts both the ALU output and the Q register.
The \(Q\) register and shifter are controlled by the instruction inputs. Table 4 defines the Am29203 special functions and the operations which the Q register and shifter perform for each. When the Am29203 executes instructions other than the special functions, the \(Q\) register and shifter operation is controlled by instruction bits \(\mathrm{I}_{8}, \mathrm{I}_{7}, \mathrm{I}_{6}, \mathrm{I}_{5}\). Table 3 defines the Q register and shifter operation as a function of these four bits.

\section*{Output Buffers}

The DB, DA, and \(Y\) ports are bidirectional I/O ports driven by three-state output buffers with external output enable controls.

TABLE 3. ALU DESTINATION CONTROL FOR \(I_{0} O R I_{1} O R I_{2} O R I_{3}=H I G H, I E N=\) LOW
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multirow[b]{2}{*}{Hex Code} & \multirow[b]{2}{*}{ALU Shifter Function} & \multicolumn{2}{|l|}{\(\mathrm{SIO}_{3}\)} & \multicolumn{2}{|l|}{\(\mathrm{V}_{3}\)} & \multicolumn{2}{|l|}{\(\mathrm{V}_{2}\)} & \multirow[b]{2}{*}{\(Y_{1}\)} & \multirow[b]{2}{*}{\(\gamma_{0}\)} & \multirow[b]{2}{*}{\(\mathbf{S I O}_{0}\)} & \multirow[b]{2}{*}{\[
\overline{\text { Write }}
\]} & \multirow[t]{2}{*}{Q Reg a Shifter Function} & \multirow[b]{2}{*}{\(\mathrm{ClO}_{3}\)} & \multirow[b]{2}{*}{\(\mathbf{O H O}_{0}\)} \\
\hline \({ }_{8}\) & \(\mathrm{I}_{7}\) & & \(I_{5}\) & & & Most Sig. Slice & Other Slices & Most Sig. Slice & Other Slices & Most Sig. Slice & Other Slices & & & & & & & \\
\hline L & 1 & L & L & 0 & Arith. F/2 \(\rightarrow Y\) & Input & Input & \(\mathrm{F}_{3}\) & \(\mathrm{SHO}_{3}\) & \(\mathrm{SIO}_{3}\) & \(F_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{0}\) & L & Hold & Hi -Z & Hi-Z \\
\hline L & L & L & H & 1 & Log. \(\mathrm{F} / 2 \rightarrow \mathrm{Y}\) & Input & Input & \(\mathrm{SiO}_{3}\) & \(\mathrm{SiO}_{3}\) & \(\mathrm{F}_{3}\) & \(F_{3}\) & \(\mathrm{F}_{2}\) & \(F_{1}\) & \(F_{0}\) & L & Hold & \(\mathrm{Hi}-\mathrm{Z}\) & \(\mathrm{Hi}-\mathrm{Z}\) \\
\hline L & L & H & L & 2 & Arith. F/2 \(\rightarrow\) Y & Input & Input & \(\mathrm{F}_{3}\) & \(\mathrm{SiO}_{3}\) & \(\mathrm{SiO}_{3}\) & \(\mathrm{F}_{3}\) & \(F_{2}\) & \(F_{1}\) & \(F_{0}\) & L & Log. \(\mathrm{Q} / 2 \rightarrow \mathrm{Q}\) & Input & \(\mathrm{Q}_{0}\) \\
\hline L & L & H & H & 3 & Log. \(\mathrm{F} / 2 \rightarrow \mathrm{Y}\) & Input & Input & \(\mathrm{SiO}_{3}\) & \(\mathrm{SIO}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(F_{1}\) & \(F_{0}\) & L & Log. \(\mathrm{Q} / 2 \rightarrow \mathrm{Q}\) & Input & \(Q_{0}\) \\
\hline L & H & L & L & 4 & \(\mathrm{F} \rightarrow \mathrm{Y}\) & Input & Input & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{2}\) & \(F_{1}\) & \(F_{0}\) & Parity & L & Hold & \(\mathrm{Hi}-\mathrm{Z}\) & \(\mathrm{Hi}-\mathrm{Z}\) \\
\hline L & H & L & H & 5 & \(F \rightarrow Y\) & Input & input & \(\mathrm{F}_{3}\) & \(F_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{2}\) & \(F_{1}\) & \(\mathrm{F}_{0}\) & Parity & H & Log. \(\mathrm{Q} / 2 \rightarrow \mathrm{Q}\) & Input & \(Q_{0}\) \\
\hline L & H & H & L & 6 & \(F \rightarrow Y\) & Input & Input & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{0}\) & Parity & H & \(F \rightarrow \mathbf{Q}\) & \(\mathrm{Hi}-\mathrm{Z}\) & \(\mathrm{Hi}-\mathrm{Z}\) \\
\hline L & H & H & H & 7 & \(F \rightarrow Y\) & Input & Input & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{2}\) & \(F_{1}\) & \(\mathrm{F}_{0}\) & Parity & L & \(\mathrm{F} \rightarrow \mathrm{Q}\) & \(\mathrm{Hi}-\mathrm{Z}\) & \(\mathrm{Hi}-\mathrm{Z}\) \\
\hline H & L & L & L & 8 & Arith. \(2 \mathrm{~F} \rightarrow \mathrm{Y}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(F_{1}\) & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{0}\) & \(\mathrm{SIO}_{0}\) & Input & L & Hold & \(\mathrm{Hi}-\mathrm{Z}\) & \(\mathrm{Hi}-\mathrm{Z}\) \\
\hline H & L & L & H & 9 & Log. \(2 \mathrm{~F} \rightarrow \mathrm{Y}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{2}\) & \(F_{1}\) & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{0}\) & \(\mathrm{SIO}_{0}\) & Input & L & Hold & \(\mathrm{Hi}-\mathrm{Z}\) & Hi-Z \\
\hline H & L & H & L & A & Arith. \(2 \mathrm{~F} \rightarrow \mathrm{Y}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(F_{1}\) & \(F_{1}\) & \(F_{0}\) & \(\mathrm{SiO}_{0}\) & Input & L & Log. \(2 \mathrm{Q} \rightarrow \mathrm{Q}\) & \(\mathrm{Q}_{3}\) & Input \\
\hline H & L & H & H & B & Log. \(2 \mathrm{~F} \rightarrow \mathrm{Y}\) & \(\mathrm{F}_{3}\) & \(F_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{2}\) & \(F_{1}\) & \(F_{1}\) & \(\mathrm{F}_{0}\) & \(\mathrm{SiO}_{0}\) & input & L & Log. \(2 \mathrm{Q} \rightarrow \mathrm{Q}\) & \(\mathrm{Q}_{3}\) & Input \\
\hline H & H & L & L & C & \(F \rightarrow Y\) & \(F_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{0}\) & \(\mathrm{Hi}-\mathrm{Z}\) & H & Hold & \(\mathrm{Hi}-\mathrm{Z}\) & \(\mathrm{Hi}-\mathrm{Z}\) \\
\hline H & H & L & H & D & \(F \rightarrow Y\) & \(F_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{0}\) & Hi-Z & H & Log. \(2 \mathrm{Q} \rightarrow \mathrm{Q}\) & \(\mathrm{a}_{3}\) & Input \\
\hline H & H & H & L & E & \(\mathrm{SiO}_{0} \rightarrow \mathrm{Y}_{0}, Y_{1}, Y_{2}, Y_{3}\) & \(\mathrm{SiO}_{0}\) & Input & L & Hold & \(\mathrm{Hi}-\mathrm{Z}\) & \(\mathrm{Hi}-\mathrm{Z}\) \\
\hline H & H & H & H & \(F\) & \(\mathrm{F} \rightarrow \mathrm{Y}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{0}\) & \(\mathrm{Hi}-\mathrm{Z}\) & \(L\) & Hold & Hi-Z & \(\mathrm{Hi}-\mathrm{Z}\) \\
\hline
\end{tabular}
Parity \(=F_{3} \forall \mathrm{~F}_{2} \forall \mathrm{~F}_{1} \forall \mathrm{~F}_{0} \forall \mathrm{SIO}_{3}\)
L \(=\) LOW
\(\mathrm{Hi}-\mathrm{Z}=\) High Impedance
\(\forall=\) Exclusive OR \(H=H I G H\)

TABLE 4. SPECIAL FUNCTIONS (Note 7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
(Hex) \\
\({ }_{8}{ }_{8} 1_{7} 1_{5}\)
\end{tabular}} & \multirow[b]{2}{*}{14} & \multirow[b]{2}{*}{\begin{tabular}{l}
(Hex) \\
\(\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}\)
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Special \\
Function
\end{tabular}} & \multirow[b]{2}{*}{ALU Function} & \multirow[b]{2}{*}{ALU Shifter Function} & \multicolumn{2}{|l|}{\(\mathrm{SIO}_{3}\)} & \multirow[b]{2}{*}{\(\mathrm{SIO}_{0}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Q Reg \& Shifter \\
Function
\end{tabular}} & \multirow[b]{2}{*}{\(\mathbf{O 1 O}_{3}\)} & \multirow[b]{2}{*}{\(\mathrm{OlO}_{0}\)} & \multirow[b]{2}{*}{WRITE} \\
\hline & & & & & & Most Sig Slice & Other Slices & & & & & \\
\hline 0 & L & 0 & Unsigned Multiply & \[
\begin{aligned}
& F=S+C_{n} \text { if } Z=L \\
& F=R+S+C_{n} \text { if } Z=H
\end{aligned}
\] & Log \(F / 2 \rightarrow Y\) (Note 1) & z & Input & F0 & \(\log \mathrm{Q} / 2 \rightarrow \mathrm{Q}\) & Input & \(0_{0}\) & L \\
\hline 1 & L & 0 & \(B C D\) to Binary Conversion & (Note 4) & Log F/2 \(\rightarrow\) Y & Input & Input & \(\mathrm{F}_{0}\) & \(\log \mathrm{Q} / 2 \rightarrow \mathrm{Q}\) & Input & \(Q_{0}\) & L \\
\hline 1 & H & 0 & Multiprecision BCD to Binary & (Note 4) & \(\log \mathrm{F} / 2 \rightarrow \mathrm{Y}\) & Input & Input & \(\mathrm{F}_{0}\) & Hold & z & \(0_{0}\) & L \\
\hline 2 & L & 0 & Two's Complement Multiply & \[
\begin{aligned}
& F=S+C_{n} \text { if } Z=L \\
& F=R+S+C_{n} \text { if } Z=H
\end{aligned}
\] & \[
\begin{gathered}
\log F / 2 \rightarrow Y \\
(\text { Note 2) }
\end{gathered}
\] & z & Input & \(F_{0}\) & \(\log \mathrm{Q} / 2 \rightarrow \mathrm{Q}\) & Input & \(0_{0}\) & L \\
\hline 3 & L & 0 & Decrement by One or Two & \(\mathrm{F}=\mathrm{S}-2+\mathrm{C}_{\mathrm{n}}\) & \(\mathrm{F} \rightarrow \mathrm{Y}\) & z & z & Parity & Hold & z & z & L \\
\hline 4 & L & 0 & Increment by One or Two & \(F=S+1+C_{n}\) & \(F \rightarrow Y\) & Input & Input & Parity & Hold & z & z & L \\
\hline 5 & L & 0 & Sign/Magnitucie Two's Complement & \[
\begin{aligned}
& F=S+C_{n} \text { if } Z=L \\
& F=\bar{S}+C_{n} \text { if } Z=H
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} \rightarrow \mathrm{Y} \\
& \text { (Note 3) }
\end{aligned}
\] & Input & Input & Parity & Hold & z & z & L \\
\hline 6 & L & 0 & Two's Complement Multiply, Last Cycle & \[
\begin{aligned}
& F=S+C_{n} \text { if } Z=L \\
& F=S-R-1+C_{n} \text { if } Z=H
\end{aligned}
\] & \[
\begin{gathered}
\log \mathrm{F} / 2 \rightarrow Y \\
(\text { Note 2) }
\end{gathered}
\] & z & Input & \(\mathrm{F}_{0}\) & \(\log \mathrm{Q} / 2 \rightarrow \mathrm{Q}\) & Input & \(\mathrm{Q}_{0}\) & L \\
\hline 7 & L & 0 & BCD Divide by Two & (Note 4) & \(F \rightarrow Y\) & z & z & Parity & Hold & z & z & L \\
\hline 8 & L & 0 & Single Length Normalize & \(\mathrm{F}=\mathrm{s}+\mathrm{C}_{\mathrm{n}}\) & \(F \rightarrow Y\) & \(F_{3}\) & \(\mathrm{F}_{3}\) & z & \(\log 2 \mathrm{Q} \rightarrow \mathrm{Q}\) & \(Q_{3}\) & Input & L \\
\hline 9 & L & 0 & Binary to BCD Conversion & (Note 5) & Log \(2 \mathrm{~F} \rightarrow \mathrm{Y}\) & \(F_{3}\) & \(F_{3}\) & Input & \(\log 2 \mathrm{Q} \rightarrow \mathrm{Q}\) & \(Q_{3}\) & Input & L \\
\hline 9 & H & 0 & Multiprecision Binary to BCD & (Note 5) & Log \(2 \mathrm{~F} \rightarrow \mathrm{Y}\) & F3 & \(F_{3}\) & Input & Hold & z & Input & L \\
\hline A & L & 0 & Double Length Normalize and First Divide Op & \(\mathrm{F}=\mathrm{S}+\mathrm{C}_{\mathrm{n}}\) & \(\log 2 \mathrm{~F} \rightarrow \mathrm{Y}\) & \(\mathrm{R}_{3} \forall \mathrm{~F}_{3}\) & \(\mathrm{F}_{3}\) & Input & \(\log 2 \mathrm{Q} \rightarrow \mathrm{Q}\) & \(Q_{3}\) & Input & L \\
\hline B & L & 0 & BCD Add & \[
\begin{aligned}
& F=R+S+C_{n} B C D \\
& \text { (Note 6) }
\end{aligned}
\] & \(\mathrm{F} \rightarrow \mathrm{Y}\) & 0 & 0 & z & Hold & z & z & L \\
\hline C & L & 0 & Two's Complement Divide & \[
\begin{aligned}
& F=S+R+C_{n} \text { if } Z=L \\
& F=S-R-1+C_{n} \text { if } Z=H
\end{aligned}
\] & Log \(2 \mathrm{~F} \rightarrow \mathrm{Y}\) & \(\overline{R_{3} \forall F}\) & \(F_{3}\) & Input & \(\log 2 \mathrm{Q} \rightarrow \mathrm{Q}\) & \(Q_{3}\) & input & L \\
\hline D & L & 0. & BCD Subtract & \[
\begin{aligned}
& F=R-S-1+C_{n} B C D \\
& (\text { Note } 6)
\end{aligned}
\] & \(F \rightarrow Y\) & 0 & 0 & z & Hold & z & z & L \\
\hline E & L & 0 & Two's Complement Divide Correction and Remainder & \[
\begin{aligned}
& F=S+R+C_{n} \text { if } Z=L \\
& F=S-R-1+C_{n} \text { if } Z=H
\end{aligned}
\] & \(F \rightarrow Y\) & \(\mathrm{F}_{3}\) & \(F_{3}\) & z & \(\log 2 \mathrm{Q} \rightarrow \mathrm{Q}\) & \(Q_{3}\) & Input & L \\
\hline F & L & 0 & BCD Subtract & \[
\begin{aligned}
& F=S-R-1+C_{n} B C D \\
& (\text { Note } 6 \text { ) }
\end{aligned}
\] & \(F \rightarrow Y\) & 0 & 0 & z & Hold & z & z & L \\
\hline
\end{tabular}

Notes: 1. At the most significant slice only, the \(C_{n+4}\) signal is internally gated to the \(Y_{3}\) output.
2. At the most significant slice only, \(F_{3} \forall O V R\) is internally gated to the \(Y_{3}\) output.
3. At the most significant slice only, \(S_{3} \forall F_{3}\) is generated at the \(Y_{3}\) output.
4. On each slice, \(F=S\) if magnitude of \(S_{0-3}\) is less than 8 and \(F=S\) minus 3 if magnitude of \(S_{0-3}\) is 8 or greater.
5. On each slice, \(F=S\) if magnitude of \(S_{0-3}\) is less than 5 and \(F=S\) plus 3 if magnitude of \(S_{0-3}\) is 5 or greater. Addition is module 16.
6. Additions and subtractions are BCD adds and subtracts. Results are undefined if \(R\) or \(S\) are not in valid \(B C D\) format.
7. The Q Register cannot be used explicitly as an operand for any Special Functions. It is defined implicitly within the functions.
\[
\begin{array}{ll}
\mathrm{L}=\mathrm{LOW} & \mathrm{Hi}-\mathrm{Z}=\text { High Impedance } \\
\mathrm{H}=\mathrm{HIGH} & =\text { Exclusive OR } \\
\mathrm{X}=\text { Don't Care } & \text { Parity }=\mathrm{SIO}_{3} \forall \mathrm{~F}_{3} \forall \mathrm{~F}_{2} \forall \mathrm{~F}_{1} \forall \mathrm{~F}_{0}
\end{array}
\]

The Y output buffers are enabled when the \(\overline{\mathrm{OE}_{Y}}\) input is LOW and are in the high impedance state when \(\overline{\mathrm{O}} \overline{\mathrm{E}}_{Y}\) is HIGH. The DB output buffers are enabled when the \(\overline{\mathrm{OE}} \mathrm{E}_{\mathrm{B}}\) input is LOW and the DA buffers are enabled when \(\overline{E_{A}}\) is LOW.

The zero, \(\mathbf{Z}\), pin is an open collector input/output that can be wire-OR'ed between slices. As an output it can be used as a zero detect status flag and generally indicates that the \(Y_{0-3}\) pins are all LOW. To some extent the meaning of this signal varies with the instruction being performed. Refer to Table 5 for an exact definition of this signal as a function of the Am29203 instructions. On the Am29203, the \(Z\) pin will be HIGH if \(\overline{\mathrm{OE}_{Y}}\) is HIGH, allowing zero detection on less than the full word.

\section*{Instruction Decoder}

The Instruction Decoder generates required internal control signals as a function of the nine Instruction inputs, \(I_{0-8}\); the Instruction Enable input, \(\overline{\operatorname{IEN}}\); the \(\overline{\mathrm{LSS}}\) input; and the \(\overline{\text { WRITE }} / \overline{\mathrm{MSS}}\) input/output.

The WRITE output is LOW when an instruction which writes data into the RAM is being executed. Refer to Tables 3 and 4 for a definition of the WRITE output as a function of the Am29203 instruction inputs.
On the Am29203, when \(\overline{\operatorname{IEN}}\) is HIGH, the \(Q\) register and Sign Compare Flip-Flop contents are preserved. When IEN is LOW, the Q register and Sign Compare Flip-Flop can be written according to the Am29203 instruction. The Sign Compare FlipFlop is an on-chip flip-flop which is used during an Am29203 divide operation (see Figure B). On the Am29203, IEN controls internal writing, but does not affect WRITE. The IEN signal can then be controlled separately at each chip to facilitate byte operations.

\section*{Programming the Am29203 Slice Position}

Tying the \(\overline{\mathrm{LSS}}\) input LOW programs the slice to operate as a least significant slice (LSS) and enables the WRITE output signal onto the WRITE/MSS bidirectional I/O pin. When LSS is tied HIGH, the
\(\overline{\text { WRITE }} / \overline{\text { MSS }}\) pin becomes an input pin; tying the \(\overline{\text { WRITE }} / \overline{M S S}\) pin HIGH programs the slice to operate as an intermediate slice (IS) and tying it LOW programs the slice to operate as a most significant slice (MSS). The \(\bar{W} / \overline{M S S}\) pin must be tied HIGH through a resistor. \(\overline{\mathrm{W}} / \overline{\mathrm{MSS}}\) and \(\overline{\mathrm{LSS}}\) should not be connected together. See Figure 2 of applications.

\section*{Am29203 SPECIAL FUNCTIONS}

The Am29203 provides 16 Special Functions which facilitate the implementation of the following operations:
- Single- and Double-Length Normalization
- Two's Complement Division
- Unsigned and Two's Complement Multiplication
- Conversion Between Two's Complement and Sign/Magnitude Representation
- Incrementation and Decrementation by One or Two
- BCD add, subtract, and divide by two
- Single- and double-precision BCD to Binary and Binary to \(B C D\) conversion.

\section*{Table 4 defines these Special Functions.}

The Single-Length and Double-Length Normalization functions can be used to adjust a single-precision or double-precision floating point number in order to bring its mantissa within a specified range.
Three Special Functions which can be used to perform a two's complement, non-restoring divide operation are provided by the Am29203. These functions provide both single- and doubleprecision divide operations and can be performed in " \(n\) " clock cycles, where " \(n\) " is the number of bits in the quotient.

The Unsigned Multiply Special Function and the two Two's Complement Multiply Special Functions can be used to multiply two n-bit, unsigned or two's complement numbers, respectively, in n clock cycles. These functions utilize the conditional add and shift algorithm. During the last cycle of the two's complement multiplication, a conditional subtraction, rather than addition, is performed because the sign bit of the multiplier carries negative weight.
The Sign/Magnitude-Two's Complement Special Function can be used to convert number representation systems. A number expressed in Sign/Magnitude representation can be converted to the Two's Complement representation, and vice-versa, in one clock cycle.
The Increment by One or Two Special Function can be used to increment an unsigned or two's complement number by one or two. This is useful in 16-bit word, byte-addressable machines, where the word addresses are multiples of two.
The BCD arithmetic special functions can be used to add or subtract two BCD numbers and generate a valid BCD result in one microcycle. In addition a BCD divide by two adjust instruction can be used to obtain a valid BCD representation after shifting a number down by one bit.
The \(B C D / B i n a r y\) conversion special function instructions facilitate single- and double-precision algorithms to convert from \(B C D\) to Binary and from Binary to BCD.
Refer to Am29203 applications section for a more detailed description of these Special Functions.

Figure B. Sign Compare Flip-Flop


The sign compare signal appears at the \(\mathbf{Z}\) output of the most significant slice during special functions C, D and E, F. Refer to Table 5.

TABLE 5. Am29203 STATUS OUTPUTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { (Hex) } \\
\mathbf{I}_{8} 1_{7} 1_{6} 1_{5} \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { (Hex) } \\
I_{4} l_{3} I_{2} l_{1} \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{\(\mathrm{I}_{0}\)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{GI} \\
(\mathrm{i}=0 \text { to } 3)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
P I \\
(1=0 \text { to } 3)
\end{gathered}
\]} & \multirow[b]{2}{*}{\(\mathrm{C}_{\mathrm{n}+4}\)} & \multicolumn{2}{|l|}{\(\overline{\text { P/OVR }}\)} & \multicolumn{2}{|l|}{\(\overline{\mathrm{G}} / \mathrm{N}\)} & \multicolumn{3}{|c|}{\(\mathbf{Z}\) ( \(\overline{\mathrm{OE}}_{\mathrm{Y}}=\) LOW \()\)} \\
\hline & & & & & & Most Sig Slice & Other Slices. & Most Sig Slice & \begin{tabular}{l}
Other \\
Slices
\end{tabular} & Most Sig Slice & Intermediate Slice & Least Sig Slice \\
\hline x & 0 & x & 0 & 1 & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline X & 1 & x & \(\overline{\bar{R}_{i}} \wedge s_{i}\) & \(\overline{R_{i}} \vee S_{i}\) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline X & 2 & x & \(\mathrm{R}_{\mathrm{i}} \wedge \mathrm{S}_{\mathrm{i}}\) & \(R_{i} \vee S_{i}\) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\bar{P}}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline X & 3 & x & \(\mathrm{R}_{\mathrm{i}} \wedge \mathrm{S}_{\mathrm{i}}\) & \(\mathrm{R}_{\mathrm{i}} \vee \mathrm{S}_{\mathrm{i}}\) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\bar{p}\) & \(\mathrm{F}_{3}\) & \(\bar{G}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline x & 4 & X & 0 & \(\mathrm{S}_{\mathrm{i}}\) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\bar{p}\) & \(F_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline X & 5 & X & 0 & \(\overline{\mathrm{S}}\) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\bar{p}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline x & 6 & X & 0 & \(\mathrm{R}_{\mathrm{i}}\) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\text { p}}\) & \(F_{3}\) & \(\bar{G}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{\gamma}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline x & 7 & X & 0 & \(\overline{\mathrm{R}} \mathrm{i}^{\text {i }}\) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{\gamma}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline x & 8 & x & 0 & 1 & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline X & 9 & x & \(\overline{\mathrm{R}_{i}} \wedge \mathrm{~S}_{\mathrm{i}}\) & 1 & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline X & A & x & \(\mathrm{R}_{\mathrm{i}} \wedge \mathrm{S}_{\mathrm{i}}\) & \(\mathrm{R}_{\mathrm{i}} \vee \mathrm{S}_{\mathrm{i}}\) & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\bar{G}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline X & B & X & \(\bar{R}_{i} \wedge S_{i}\) & \(\overline{\mathrm{R}_{\mathrm{i}}} \vee \mathrm{S}_{\mathrm{i}}\) & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline x & C & x & \(\mathrm{B}_{\mathrm{i}} \wedge \mathrm{S}_{\mathrm{i}}\) & 1 & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline x & D & x & \(\bar{R}_{i} \wedge \bar{S}_{i}\) & 1 & 0 & 0 & 0 & \(F_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\overline{Y_{0}} \overline{\bar{Y}_{1}} \overline{Y_{2}} \bar{Y}_{3}\) \\
\hline x & E & X & \(\mathrm{R}_{\mathrm{i}} \wedge \mathrm{S}_{\mathrm{i}}\) & 1 & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\bar{G}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline x & F & X & \(\overline{\mathrm{R}}_{\mathrm{i}} \wedge \overline{\mathrm{S}}_{\mathrm{i}}\) & 1 & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline 0 & 0 & L & \[
\begin{aligned}
& 0 \text { if } Z=L \\
& R_{i} \wedge S_{i} \text { if } Z=H
\end{aligned}
\] & \[
\begin{aligned}
& S_{i} \text { if } Z=L \\
& R_{i} \vee S_{i} i f Z=H
\end{aligned}
\] & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & Input & Input & \(Q_{0}\) \\
\hline 1 & 0 & L & 0 & \(\mathrm{S}_{\mathrm{i}}\) & \(\mathrm{G} V \mathrm{PC}_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & \(F_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1}{\overline{\gamma_{2}}}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \overline{\bar{r}}_{1} \bar{\gamma}_{2} \bar{\gamma}_{3}\) \\
\hline 1 & 8 & L & 0 & \(\mathrm{S}_{\mathrm{i}}\) & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{Y}_{0} \bar{Y}_{4} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{\gamma}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline 2 & 0 & L & \[
\begin{aligned}
& 0 \text { if } Z=L \\
& R_{i} \wedge S_{i} \text { if } Z=H
\end{aligned}
\] & \[
\begin{aligned}
& S_{i} \text { if } Z=L \\
& R_{i} \vee S_{i} \text { if } Z=H
\end{aligned}
\] & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & \(F_{3}\) & \(\bar{G}\) & Input & Input & \(0_{0}\) \\
\hline 3 & 0 & L & (Note 6) & (Note 7) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\text { P }}\) & \(\mathrm{F}_{3}\) & \(\bar{G}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{Y_{1}} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline 4 & 0 & L & (Note 1) & (Note 2) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\bar{p}\) & \(\mathrm{F}_{3}\) & \(\bar{G}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{\gamma}_{2} \bar{\gamma}_{3}\) & \(\bar{\gamma}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{\gamma}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline 5 & 0 & L & 0 &  & \(\mathrm{G} \vee \mathrm{PC}_{\mathrm{n}}\) & \(c_{n+3} \forall c_{n+4}\) & \(\bar{p}\) & \[
\begin{gathered}
F_{3} \text { if } Z=L \\
F_{3} \forall S_{3} \text { if } Z=H
\end{gathered}
\] & \(\overline{\mathrm{G}}\) & \(\mathrm{S}_{3}\) & Input & Input \\
\hline 6 & 0 & L & \[
\begin{aligned}
& 0 \text { if } Z=L \\
& \bar{R}_{\mathrm{i}} \wedge \mathrm{~S}_{\mathrm{i}} \text { if } Z=H
\end{aligned}
\] & \[
\begin{aligned}
& S_{i} \text { if } Z=L \\
& R_{i} \vee S_{i} \text { if } Z=H
\end{aligned}
\] & \(\mathrm{G} \vee \mathrm{PC}_{\mathrm{n}}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & \(F_{3}\) & \(\overline{\mathrm{G}}\) & Input & Input & \(Q_{0}\) \\
\hline 7 & 0 & L & 0 & \(\mathrm{S}_{\mathrm{i}}\) & \(\mathrm{G} \vee \mathrm{PC}_{\mathrm{n}}\) & \(c_{n+3} \forall c_{n+4}\) & \(\bar{p}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\bar{\gamma}_{0} \bar{\gamma}_{1} \bar{Y}_{2} \bar{\gamma}_{3}\) & \(\bar{\gamma}_{0} \bar{\gamma}_{1} \bar{\gamma}_{2} \bar{\gamma}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{\gamma}_{3}\) \\
\hline 8 & 0 & L & 0 & \(\mathrm{s}_{\mathrm{i}}\) & (Note 3) & \(\mathrm{Q}_{2} \mathrm{Q}_{1}\) & \(\bar{p}\) & \(Q_{3}\) & \(\overline{\mathrm{G}}\) & \(\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{a}}_{2} \overline{\mathrm{Q}}_{3}\) & \(\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{Q}}_{2} \overline{\mathrm{Q}}_{3}\) & \(\overline{\mathrm{a}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{a}}_{2} \overline{\mathrm{a}}_{3}\) \\
\hline 9 & 0 & L & 0 & \(\mathrm{S}_{\mathrm{i}}\) & \(\mathrm{G} \vee P \mathrm{C}_{\mathrm{n}}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & \(\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{a}}_{2} \overline{\mathrm{Q}}_{3}\) & \(\overline{\mathrm{a}}_{0} \overline{\mathrm{a}}_{1} \overline{\mathrm{a}}_{2} \overline{\mathrm{a}}_{3}\) & \(\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{Q}}_{2} \overline{\mathrm{a}}_{3}\) \\
\hline 9 & 8 & L & 0 & \(\mathrm{s}_{\mathrm{i}}\) & 0 & 0 & 0 & \(\mathrm{F}_{3}\) & \(\bar{G}\) & \(\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{a}}_{2} \overline{\mathrm{Q}}_{3}\) & \(\overline{\mathrm{Q}}_{0} \overline{\mathrm{a}}_{1} \overline{\mathrm{a}}_{2} \overline{\mathrm{a}}_{3}\) & \(\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{1} \overline{\mathrm{Q}}_{2} \overline{\mathrm{a}}_{3}\) \\
\hline A & 0 & L & 0 & \(\mathrm{s}_{\mathrm{i}}\) & (Note 4) & \(\mathrm{F}_{2} \mathrm{~F}_{1}\) & \(\overline{\mathrm{P}}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & (Note 5) & (Note 5) & (Note 5) \\
\hline B & 0 & L & \(R_{i} \wedge S_{i}\) & \(\mathrm{R}_{\mathrm{i}} \quad \mathrm{S}_{\mathrm{i}}\) & GVPC \({ }_{n}\) & (Note 8) & (Note 8) & (Note 9) & (Note 9) & \(\bar{Y}_{0} \bar{y}_{1} \overline{\bar{r}}_{2} \bar{y}_{3}\) & \(\bar{Y}_{0} \bar{\gamma}_{1} \bar{\gamma}_{2} \bar{\gamma}_{3}\) & \(\bar{Y}_{0} \overline{\mathrm{Y}}_{1} \bar{Y}_{2} \overline{\mathrm{Y}}_{3}\) \\
\hline C & 0 & L & \[
\begin{aligned}
& R_{i} \wedge S_{i} \text { if } Z=L \\
& \bar{R}_{i} \wedge S_{i} i f Z=H
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{i}} \vee \mathrm{~S}_{\mathrm{i}} \text { if } Z=\mathrm{L} \\
& \bar{R}_{\mathrm{i}} \vee \mathrm{~S}_{\mathrm{i}} \mathrm{fi} Z=\mathrm{H}
\end{aligned}
\] & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & \(F_{3}\) & \(\overline{\mathrm{G}}\) & Sign Compare FF Output & Input & Input \\
\hline D & 0 & L & \(\mathrm{R}_{\mathrm{i}} \wedge \overline{\mathrm{S}}_{\mathrm{i}}\) & \(\mathrm{R}_{\mathrm{i}} \vee \bar{S}_{i}\) & \(\mathrm{G} \vee \mathrm{PC} \mathrm{C}_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & F3 & \(\overline{\mathrm{G}}\) & \(\bar{\gamma}_{0} \bar{\gamma}_{1} \bar{\gamma}_{2} \bar{\gamma}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline E & 0 & L & \[
\begin{aligned}
\frac{R_{i}}{} \wedge S_{i} \text { it } Z=L \\
R_{i} \wedge S_{i} \text { if } Z=H
\end{aligned}
\] & \[
\begin{aligned}
& R_{i} \vee S_{i} \text { if } Z=L \\
& R_{i} \vee S_{i} \text { if } Z=H
\end{aligned}
\] & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\overline{\mathrm{P}}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{G}}\) & Sign Compare FF Output & Input & Input \\
\hline F & 0 & L & \(\overline{\mathrm{R}_{\mathrm{i}}} \wedge \mathrm{s}_{\mathrm{i}}\) & \(\overline{\mathrm{B}}_{\mathrm{i}} \vee \mathrm{s}_{\mathrm{i}}\) & \(G \vee P C_{n}\) & \(c_{n+3} \forall c_{n+4}\) & \(\bar{p}\) & \(\mathrm{F}_{3}\) & \(\overline{\mathrm{a}}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{\gamma}_{2} \bar{Y}_{3}\) & \(\bar{Y}_{0} \bar{Y}_{1} \bar{Y}_{2} \bar{Y}_{3}\) \\
\hline
\end{tabular}

Notes: 1. If LSS is LOW, \(\mathrm{G}_{0}=\mathrm{S}_{0}\) and \(\mathrm{G}_{1,2,3}=0\). If LSS is HIGH, \(\mathrm{G}_{0,1,2,3}=0\).
2. SS is LOW, \(\mathrm{P}_{0}=1\) and \(P_{1,2,3}=S_{1,2,3}\). If \(\overline{\mathrm{LSS}}\) is HIGH, \(\mathrm{P}_{\mathrm{i}}=\mathrm{S}_{\mathrm{i}}\).
3. At the most significant slice, \(C_{n+4}=Q_{3} \forall Q_{2}\). At other slices, \(C_{n+4}=G \vee P C_{n}\).
4. At the most significant slice, \(C_{n+4}=F_{3} \forall F_{2}\). At other slices, \(C_{n+4}=G \vee P C_{n}\).
5. \(Z=\bar{Q}_{0} \bar{Q}_{1} \bar{Q}_{2} \bar{Q}_{3} \bar{F}_{0} \bar{F}_{1} \bar{F}_{2} \bar{F}_{3}\).
6. If \(\overline{\mathrm{LSS}}\) is LOW, \(\mathrm{G}_{0}=0\) and \(\mathrm{G}_{1,2,3}=\mathrm{S}_{1,2,3}\). If \(\overline{\mathrm{LSS}}\) is HIGH, \(\mathrm{G}_{0,1,2,3}=\mathrm{S}_{0,1,2,3}\).
7. If \(\overline{L S S}\) is LOW, \(\mathrm{P}_{0}=\mathrm{S}_{0}\) and \(\mathrm{P}_{1,2,3}=1\). If \(\overline{\mathrm{LSS}}\) is \(\mathrm{HIGH}, \mathrm{P}_{0,1,2,3}=1\).
8. On all slices \(\bar{P}=\left(\bar{P}_{0}+\bar{P}_{3}\right)\left(\bar{P}_{0}+\bar{G}_{2}\right)\left(\bar{P}_{0}+\bar{G}_{1}+\bar{P}_{2}\right)\).
9. On all slices \(\bar{G}=\bar{G}_{3}\left(\bar{G}_{0}+\bar{G}_{1}+\bar{P}_{2}\right)\left(\bar{G}_{0}+\bar{G}_{1}\right)\left(\bar{P}_{1}+\bar{G}_{2}\right)\left(\bar{P}_{3}+\bar{P}_{1} \cdot \bar{P}_{2} \cdot \bar{G}_{0}\right)\).

L \(=\) LOW \(=0\)
\(H=H I G H=1\)
\(V=O R\)
\(\wedge=\) AND
\(\forall=\) EXCLUSIVE OR
\(\mathrm{P}=\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}\)
\(G=G_{3} \vee G_{2} P_{3} \quad G_{1} P_{2} P_{3} \vee G_{0} P_{1} P_{2} P_{3}\)
\(C_{n+3}=G_{2} \vee G_{1} P_{2} \vee G_{0} P_{1} P_{2} \vee C_{n} P_{0} P_{1} P_{2}\)

\section*{TEST OUTPUT LOAD CONFIGURATIONS FOR Am29203}
A. THREE-STATE OUTPUTS

\section*{C. OPEN-COLLECTOR OUTPUTS}



\[
\mathrm{R}_{2}=\frac{2.4 \mathrm{~V}}{\mathrm{IOH}^{\mathrm{OH}}}
\]
\(\mathrm{R}_{1}=\frac{5.0-\mathrm{V}_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}}\)
\[
R_{1}=\frac{5.0-V_{B E}-V_{O L}}{1 O L+V_{O L} / 1 K}
\]
\[
\mathrm{R}_{1}=\frac{5.0-\mathrm{V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{lOL}+\mathrm{V}_{\mathrm{OL}} / \mathrm{R}_{2}}
\]

Notes: 1. \(C_{L}=50 \mathrm{pF}\) includes scope probe, wiring and stray capacitances without device in hand in test fixture.
2. \(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}\) are closed during function tests and all A.C. tests except output enable tests.
3. \(S_{1}\) and \(S_{3}\) are closed while \(S_{2}\) is open for tpZH test.
\(S_{1}\) and \(S_{2}\) are closed while \(S_{3}\) is open for \(t_{P Z L}\) test.
4. \(\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}\) for output disable tests.

TEST OUTPUT LOADS FOR Am29203
\begin{tabular}{|c|l|c|c|c|}
\hline Pin\# & Pin Label & \begin{tabular}{c} 
Test \\
Circuit
\end{tabular} & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) \\
\hline 1 & \(\mathrm{QIO}_{0}\) & A & 458 & 1 K \\
\hline 11 & \(\mathrm{C}_{n}+4\) & B & 478 & 3 K \\
\hline 12 & \(\overline{\mathrm{P} / O V R}\) & B & 383 & 3 K \\
\hline 14 & \(\overline{\mathrm{G}} / \mathrm{N}\) & B & 212 & 1.5 K \\
\hline \(16-19\) & \(\mathrm{Y}_{0-3}\) & A & 241 & 1 K \\
\hline 20 & \(\mathrm{SIO}_{0}\) & A & 458 & 1 K \\
\hline 21 & \(\mathrm{SIO}_{3}\) & A & 458 & 1 K \\
\hline 22 & Z & C & 281 & - \\
\hline \(23-26\) & \(\mathrm{DB}_{0-3}\) & A & 458 & 1 K \\
\hline 40 & \(\overline{\mathrm{WRITE} / \overline{\mathrm{MSS}}}\) & A & 458 & 1 K \\
\hline 48 & \(\mathrm{QIO}_{3}\) & A & 458 & 1 K \\
\hline
\end{tabular}

For additional information on testing, see section
"Guidelines on Testing Am2900 Family Devices."

OPERATING RANGES (over which DC, switching, and functional specifications apply)
\begin{tabular}{|c|c|c|c|}
\hline Range & Part Number Suffix & Temperature & Vcc \\
\hline COM'L & \[
\begin{aligned}
& \mathrm{PC}, \mathrm{PCB}, \\
& \mathrm{DC}, \mathrm{DCB}, \mathrm{XC}
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}=0\) to \(70^{\circ} \mathrm{C}\) & 4.75 to 5.25 V \\
\hline MIL & \begin{tabular}{l}
DM, DMB, \\
FM, FMB, XM
\end{tabular} & \(T_{C}=-55\) to \(+125^{\circ} \mathrm{C}\) & 4.50 to 5.50 V \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential Continuous & -0.5 to +7.0 V \\
\hline DC Voltage Applied to Outputs for High Output State & -0.5 to \(+\mathrm{V}_{\mathrm{CC}} \mathrm{max}\). \\
\hline DC Input Voltage & -0.5 to +5.5 V \\
\hline DC Output Current, Into Outputs & 30 mA \\
\hline DC Input Current & -30 to +5.0 mA \\
\hline
\end{tabular}

Am2903 Burn-in and Life Test Circuit


All registers are \(1 / 4\) watt \(\pm 5 \%\)
This circuit conforms to MIL-STD-883, Methods 1005 and 1015, Condition D.
One Am9316 Can Drive Maximum of Five Am2903s.

\section*{Notes on Testing}

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:
1. Insure the part is adequately decoupled at the test head. Large changes in \(V_{C C}\) current as the device switches may cause erroneous function failures due to \(\mathrm{V}_{\mathrm{CC}}\) changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in \(5-8 \mathrm{~ns}\). Inductance in the ground cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for \(A C\) tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach \(\mathrm{V}_{11}\) or \(\mathrm{V}_{\mathrm{IH}}\) until the noise has settled. AMD recommends using \(\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}\) for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

Am29203
DC CHARACTERISTICS OVER OPERATING RANGE


Notes: 1. For conditiohs shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. \(\mathrm{Y}_{0-3}, \mathrm{DB}_{0-3}, \mathrm{SIO}_{0,3}, \mathrm{QIO}_{0,3}\) and WRITE/MSS are three state outputs internally connected to TTL inputs. Z is an open-collector output internally connected to a TTL input. Input characteristics are measured under conditions such that the outputs are in the OFF state.
5. Worst case ICC is at minimum temperature.
6. These input levels provide zero noise immunity and should only be static tested in a noise-free environment (not functionally tested).

\section*{I. Am29203 Guaranteed Commercial}

\section*{Range Performance}

The tables below specify the performance of the Am29203 over the commercial operating range of 0 to \(+70^{\circ} \mathrm{C}\), with \(V_{\mathrm{CC}}\) from 4.75 to 5.25 V . All data are in ns, with inputs switching between 0 and 3 V at \(1 \mathrm{~V} / \mathrm{ns}\) and measurements made at 1.5 V . All outputs have maximum DC load.

Clock and Write Pulse Characteristics
All Functions
\begin{tabular}{|l|c|c|}
\hline Minimum Clock LOW Time & 30 & ns \\
\hline Minimum Clock HIGH Time & 30 & ns \\
\hline \begin{tabular}{l} 
Minimum Time CP and WE \\
both LOW to Write
\end{tabular} & 30 & ns \\
\hline
\end{tabular}

Enable/Disable Times
All Functions
\begin{tabular}{|l|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ From } & \multicolumn{1}{|c|}{ To } & Enable & Disable & \\
\hline OEY & \(\mathrm{Y}_{\mathrm{i}}\) & 27 & 25 & ns \\
\hline OEB & \(\mathrm{DB}_{\mathrm{i}}\) & 31 & 25 & ns \\
\hline \(\mathrm{I}_{8}\) & \(\mathrm{SIO}_{0}, \mathrm{SIO}_{3}\) & & 25 & ns \\
\hline \(\mathrm{I}_{8765}\) & \(\mathrm{QIO}_{0}, \mathrm{QIO}_{3}\) & & 60 & ns \\
\hline \(\mathrm{I}_{43210}\) & \(\mathrm{QIO}_{0}, \mathrm{QIO}_{3}\) & 65 & 60 & ns \\
\hline\(\overline{\mathrm{LSS}}\) & \(\bar{W} I T E\) & 31 & 25 & ns \\
\hline
\end{tabular}
1. \(\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}\) for output disable tests. Measurement is made to a 0.5 V change on the output.

Combinational Delays
All Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
To Output \\
From Input
\end{tabular} & \(\mathbf{Y}\) & \(C_{n+4}\) & \(\overline{\mathbf{G}, \overline{\mathbf{P}}}\) & Z (s) & N & OVR & DB & \(\overline{\text { WRITE }}\) & \[
\begin{aligned}
& \mathbf{Q I O}_{0} \\
& \mathbf{Q I O}_{3}
\end{aligned}
\] & \(\mathrm{SIO}_{0}\) & \(\mathrm{SIO}_{3}\) & \[
\begin{gathered}
\mathrm{SIO}_{0} \\
\text { Parity }
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{A Address (Arith. Mode) B Address} & 86 & 81 & 69 & 110 & 86 & 108 & - & - & - & 84 & 94 & 115 \\
\hline & 99 & 88 & 81 & 123 & 99 & 112 & 49 & - & - & 94 & 104 & 140 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
A Address (Logic Mode) \\
B Address
\end{tabular}} & 87 & - & 68 & 111 & 89 & - & - & - & - & 79 & 94 & 115 \\
\hline & 84 & - & 73 & 108 & 84 & - & 49 & - & - & 84 & 90 & 120 \\
\hline \multirow[t]{2}{*}{DA Inputs (Arith. Mode) DB Inputs} & 63 & 60 & 49 & 87 & 64 & 89 & - & - & - & 60 & 70 & 101 \\
\hline & 61 & 59 & 47 & 85 & 62 & 84 & - & - & - & 62 & 68 & 98 \\
\hline \multirow[t]{2}{*}{DA Inputs (Logic Mode) DB Inputs} & 64 & - & 48 & 88 & 66 & - & - & - & - & 61 & 72 & 101 \\
\hline & 55 & - & 32 & 79 & 57 & - & - & - & - & 52 & 61 & 93 \\
\hline \(\overline{E A}\) & 59 & 53 & 42 & 83 & 59 & 83 & - & - & - & 57 & 64 & 98 \\
\hline \(\mathrm{C}_{\mathrm{n}}\) & 40 & 30 & - & 64 & 40 & 58 & - & - & - & 38 & 46 & 67 \\
\hline 10 & 52 & 48 & 36 & 76 & 52 & 63 & - & 49 & * & 50* & 58* & 93* \\
\hline 14321 & 71 & 65 & 72 & 95 & 69 & 84 & - & 49 & * & 66* & 73* & 105* \\
\hline \(\mathrm{I}_{8765}\) & 42 & - & - & 66 & - & - & - & 50 & 60* & 42* & 45* & 42* \\
\hline IEN & - & - & - & - & - & - & - & 22 & - & - & - & - \\
\hline \(\mathrm{SIO}_{3}, \mathrm{SIO}_{0}\) & 26 & - & - & 50 & - & - & - & - & - & - & 29 & 36 \\
\hline Clock & 87 & 87 & 71 & 111 & 88 & 108 & 37 & - & 40 & 84 & 92 & 105 \\
\hline \(Y\) & - & - & - & 24 & - & - & - & - & - & - & - & - \\
\hline \(\overline{\text { MSS }}\) & 44 & - & 44 & 68 & 44 & 44 & - & - & - & 44 & 46 & 44 \\
\hline
\end{tabular}

Note: A "*" means the output is enabled or disabled by the input. See enable and disable times. A number shown with a * is the delay to correct data on an enabled output. A * shown without a number means the output is disabled by the input or it is enabled but the delay to correct the data is determined by something else.

\section*{Setup and Hold Times}

All Functions
CAUTION: READ NOTES. NA = Not Applicable; no timing constraint.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
To Output \\
From Input
\end{tabular}} & \multirow[b]{2}{*}{With Respect to this Signal} & \multicolumn{2}{|l|}{HIGH-to-LOW} & \multicolumn{2}{|l|}{LOW-to-HIGH} & \multirow[b]{2}{*}{Comment} \\
\hline & & Set-up & Hold & Set-up & Hold & \\
\hline \(Y\) & Clock & NA & NA & 20 & 3 & To store \(Y\) in RAM or Q \\
\hline WE HIGH & Clock & 25 & Note 2 & Note 2 & 0 & To Prevent Writing \\
\hline WE LOW & Clock & NA & NA & 30 & 0 & To Write into RAM \\
\hline A, B as Sources & Clock & 27 & 3 & NA & NA & See Note 3 \\
\hline B as a Destination & Clock and WE both LOW & 6 & Note 4 & Note 4 & 3 & To Write Data only into the Correct B Address \\
\hline \(\mathrm{QiO}_{0}, \mathrm{QiO}_{3}\) & Clock & NA & NA & 21 & 3 & To Shift Q \\
\hline \(\mathrm{I}_{8765}\) & Clock & 24 & Note 5 & Note 5 & 0 & \\
\hline IEN HIGH & Clock & 30 & Note 2 & Note 2 & 0 & To Prevent Writing \({ }^{\text {i }}\) \\
\hline IEN LOW & Clock & NA & NA & 30 & 0 & To Write into O \\
\hline 143210 & Clock & 24 & - & 68 & 0 & See Note f \\
\hline
\end{tabular}

Notes:
1. For setup times from all inputs not specified, the setup time is computed by calculating the delay to stable \(Y\) outputs and then allowing the \(Y\) setup time. Even if the RAM is not being loaded, the \(Y\) setup time is necessary to setup the \(Q\) register. All unspecified hold times are less than or equal to zero relative to the clock LOW-to-HIGH edge.
2. \(\overline{W E}\) controls writing into the RAM. IEN controls writing into \(Q\) and, indirectly, controls \(\bar{W}\) through the write output. To prevent writing, IEN and WE must be HIGH during the entire clock LOW time. They may go LOW after the clock has gone LOW to cause a write provided the WE LOW and IEN LOW set-up times are met. Having gone LOW, they should not be returned HIGH until after the clock has gone HIGH.
3. \(A\) and \(B\) addresses must be set-up pri tion to capture data in latches at \(P\)
4. Writing occurs when CP and \(\overline{W^{\prime}}\) dress should be stable durin
5. Because \(\mathrm{I}_{8765}\) control the RAM and \(Q\), they shoulr time unless IEN is HIL
6. The set-up time prior to occurs in parallel with the st to-LOW transition and the cloc. time requirement on \(\mathrm{I}_{43210}\), relativ transition, is the longer of (1) the s \(L \rightarrow H\), and (2) the sum of the set\(\mathrm{H} \rightarrow \mathrm{L}\) and the clock LOW time.

\section*{Am29203}

\section*{II. Am29203 Guaranteed Military Range Performance}

The tables below specify the performance of the Am29203 over the military operating range of -55 to \(+120^{\circ} \mathrm{C}\), with \(\mathrm{V}_{\mathrm{CC}}\) from 4.50 to 5.50 V . All data are in ns, with inputs switching between 0 and 3 V at \(1 \mathrm{~V} / \mathrm{ns}\) and measurements made at 1.5 V . All outputs have maximum DC load.

Clock and Write Pulse Characteristics All Functions
\begin{tabular}{|l|c|c|}
\hline Minimum Clock LOW Time & 40 & ns \\
\hline Minimum Clock HIGH Time & 40 & ns \\
\hline \begin{tabular}{l} 
Minimum Time CP and WE \\
both LOW to Write
\end{tabular} & 40 & ns \\
\hline
\end{tabular}

Combinational Delays All Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline To Output From Input & Y & \(\mathrm{C}_{\mathrm{n}+4}\) & \(\overline{\mathbf{G}}, \overline{\mathbf{P}}\) & Z (s) & N & OVR & DB & \(\overline{\text { WRITE }}\) & \[
\begin{aligned}
& \mathrm{QIO}_{0} \\
& \mathrm{QIO}_{3}
\end{aligned}
\] & \(\mathrm{SIO}_{0}\) & \(\mathrm{SIO}_{3}\) & \begin{tabular}{l}
\(\mathrm{SIO}_{0}\) \\
Parity
\end{tabular} \\
\hline \multirow[t]{2}{*}{A Address (Arith. Mode) B Address} & 91 & 85 & 72 & 116 & 92 & 115 & - & - & - & 89 & 98 & 120 \\
\hline & 101 & 93 & 84 & 126 & 102 & 118 & 52 & - - & - & 97 & 106 & 148 \\
\hline \multirow[t]{2}{*}{A Address (Logic Mode) B Address} & 92 & - & 72 & 117 & 93 & - & - & - & - & 84 & 98 & 120 \\
\hline & 86 & - & 73 & 111 & 89 & - & 52 & - & - & 86 & 92 & 125 \\
\hline \multirow[t]{2}{*}{DA Inputs (Arith. Mode) DB Inputs} & 64 & 62 & 51 & 89 & 66 & 94 & - & - & - & 62 & 71 & 107 \\
\hline & 63 & 60 & 48 & 88 & 63 & 89 & - & - & - & 64 & 68 & 100 \\
\hline \multirow[t]{2}{*}{DA Inputs (Logic Mode) DB inputs} & 65 & - & 51 & 90 & 67 & - & - & . - & - & 62 & 72 & 108 \\
\hline & 56 & - & 32 & 81 & 57 & - & - & - & - & 52 & 63 & 100 \\
\hline \(\overline{E A}\) & 60 & 56 & 43 & 85 & 60 & 87 & - & - & - & 58 & 64 & 103 \\
\hline \(\mathrm{C}_{n}\) & 40 & 30 & - & 65 & 40 & 59 & - & - & - & 38 & 46 & 69 \\
\hline 10 & 52. & 50 & 36 & 77 & 52 & 66 & - & 53 & * & 51* & 58* & 96 * \\
\hline \({ }_{4321}\) & 72 & 69 & 73 & 97 & 71 & 88 & - & 53 & * & \(66 *\) & 75* & 111* \\
\hline \(\mathrm{l}_{8765}\) & 44 & - & - & 69 & - & - & - & 50 & 65* & 42 * & 45 * & 42 * \\
\hline IEN & - & - & - & - & - & - & - & 24 & - & - & - & - \\
\hline \(\mathrm{SIO}_{3}, \mathrm{SIO}_{0}\) & 26 & - & - & 51 & - & - & - & - & - & - & 29 & 36 \\
\hline Clock & 89 & 90 & 74 & 114 & 89 & 116 & 39 & - & 42 & 91 & 96 & 110 \\
\hline \(Y\) & - & - & - & 25 & - & - & - & - & - & - & - & - \\
\hline \(\overline{\text { MSS }}\) & 45 & - & 44 & 70 & 44 & 44 & - & - & - & 44 & 46 & 44 \\
\hline
\end{tabular}

Note: A "*" means the output is enabled or disabled by the input. See enable and disable times, A number shown with a * is the delay to correct data on an enabled output. A * shown without a number means the output is disabled by the input or it is enabled but the delay to correct the data is determined by something else.

Setup and Hold Times
All Functions
CAUTION: READ NOTES. NA = Not Applicable; no timing constraint.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Input} & \multirow[b]{2}{*}{With Respect to this Signal} & \multicolumn{2}{|l|}{HIGH-to-LOW} & \multicolumn{2}{|l|}{LOW-to-HIGH} & \multirow[b]{2}{*}{Comment} \\
\hline & & Set-up & Hold & Set-up & Hold & \\
\hline Y & Clock & NA & NA & 23 & 3 & To store \(Y\) in RAM or Q \\
\hline \(\overline{\text { WE }}\) HIGH & Clock & 25 & Note 2 & Note 2 & 0 & To Prevent Writing \\
\hline \(\overline{W E}\) LOW & Clock & NA & NA & 35 & 0 & To Write into RAM \\
\hline A, B as Sources & Clock & 38 & 3 & NA & NA & See Note 3 \\
\hline B as a Destination & Clock and WE both LOW & 6 & Note 4 & Note 4 & 3 & To Write Data only into the Correct B Address \\
\hline \(\mathrm{QIO}_{0}, \mathrm{QlO}_{3}\) & Clock & NA & NA & 23 & 3 & To Shift Q \\
\hline \(\mathrm{I}_{8765}\) & Clock & 24 & Note 5 & Note 5 & 0 & \\
\hline \(\overline{\text { ENN HIGH }}\) & Clock & 30 & Note 2 & Note 2 & 0 & To Prevent Writing into Q \\
\hline IEN LOW & Clock & NA & NA & 30 & 0 & To Write into Q \\
\hline 143210 & Clock & 24 & - & 74 & 0 & See Note 6 \\
\hline
\end{tabular}

\section*{Notes:}
1. For setup times from all inputs not specified, the setup time is computed by calculating the delay to stable Y outputs and then allowing the \(Y\) setup time. Even if the RAM is not being loaded, the \(Y\) setup time is necessary to setup the \(Q\) register. All unspecified hold times are less than or equal to zero relative to the clock LOW-to-HIGH edge.
2. WE controls writing into the RAM. IEN controls writing into \(Q\) and, indirectly, controls \(\bar{W} E\) through the write output. To prevent writing, IEN and \(\overline{W E}\) must be HIGH during the entire clock LOW time. They may go LOW after the clock has gone LOW to cause a write provided the WE LOW and IEN LOW set-up times are met. Having gone LOW, they should not be returned HIGH until after the clock has gone HIGH.
3. \(A\) and \(B\) addresses must be set-up prior to clock LOW transition to capture data in latches at RAM output.
4. Writing occurs when CP and WE are both LOW. The B address should be stable during this entire period.
5. Because \(l_{8765}\) control the writing or not writing of data into RAM and \(Q\), they should be stable during the entire clock LOW time unless IEN is HIGH, preventing writing.
6. The set-up time prior to the clock LOW-to-HIGH transition occurs in parallel with the set-up time prior to the clock HIGH-to-LOW transition and the clock LOW time. The actual set-up time requirement on \(\mathrm{I}_{43210}\), relative to the clock LOW-to-HIGH transition, is the longer of (1) the set-up time prior to clock \(\mathrm{L} \rightarrow \mathrm{H}\), and (2) the sum of the set-up time prior to clock \(H \rightarrow L\) and the clock LOW time.

\section*{Am29203 Guaranteed Commercial} Range Performance
The tables below specify the guaranteed performance of the Am29203 over the commercial operating range of 0 to \(+70^{\circ} \mathrm{C}\), with \(V_{C C}\) from 4.75 to 5.25 V . All data are in ns , with inputs switching between 0 and 3 V at \(\mathrm{V} / \mathrm{ns}\) and measurements made at 1.5 V . All outputs have maximum DC load.

Output disable tests performed with \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) and measured to 0.5 V change of output voltage level.
\begin{tabular}{|l|l|c|c|c|}
\hline From & \multicolumn{1}{|c|}{ To } & Enable & Disable & \\
\hline OEY & \(Y_{i}\) & 27 & 25 & ns \\
\hline OEB & \(\mathrm{DB}_{\mathrm{i}}\) & 31 & 25 & ns \\
\hline \(\mathrm{I}_{8}\) & \(\mathrm{SIO}_{0}, \mathrm{SIO}_{3}\) & & 25 & ns \\
\hline \(\mathrm{I}_{8765}\) & \(\mathrm{QIO}_{0}, \mathrm{QIO}_{3}\) & & 60 & ns \\
\hline \(\mathrm{I}_{43210}\) & \(\mathrm{QIO}_{0}, \mathrm{QIO}_{3}\) & 65 & 60 & ns \\
\hline\(\overline{\mathrm{LSS}}\) & \(\overline{\mathrm{WRITE}}\) & 31 & 25 & ns \\
\hline
\end{tabular}

Combinational Propagation Delays \(C_{L}=50 \mathrm{pF}\)
Standard Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline To Output From Input & \(Y\) & \(C_{n+4}\) & \(\overline{\mathbf{G}}, \overline{\mathbf{P}}\) & z & N & OVR & DA & DB & \(\overline{W R}\) & \(\mathbf{Q 1 O}_{0}\) & \(\mathrm{OlO}_{3}\) & \(\mathrm{SiO}_{0}\) & \(\mathrm{SIO}_{3}\) & \[
\begin{gathered}
\mathrm{SIO}_{0} \\
\text { Parity } \\
\hline
\end{gathered}
\] \\
\hline A Addr & 68 & 56 & 52 & 72 ' & 61 & 67 & 24 & - & - & - & - & 42 & 62 & 78 \\
\hline B Addr & 65 & 52 & 49 & 70 & 60 & 64 & - & 24 & - & - & - & 38 & 60 & 76 \\
\hline DA & 55 & 40 & 43 & 62 & 50 & 53 & - & - & - & - & - & 30 & 53 & 65 \\
\hline DB & 59 & 49 & 44 & 65 & 54 & 55 & - & - & - & - & - & 32 & 56 & 60 \\
\hline \(\mathrm{C}_{n}\) & 40 & 18 & - & 32 & 26 & 24 & - & -. & - & - & - & 21 & 27 & 38 \\
\hline \(\mathrm{I}_{8-0}\) & 64 (1) & 65 & 50 & 72 (1). & 59 & 68 & - & - & 26 & 21 (2) & 20 (2) & 53 (2) & 60 (2) & 74 (2) \\
\hline Clock & 60 & 43 & 43 & 62 & 55 & 59 & 21 & 21 & - & 21 & 21 & 36 & 55 & 60 \\
\hline IEN & - & - & - & - & - & - & - & - & 22 & - & - & - & - & - \\
\hline \(\overline{\text { MSS }}\) & 44 & - & 44 & 68 & 44 & 44 & - & - & - & - & - & 44 & 46 & 44 \\
\hline \(\mathrm{SIO}_{0-3}\) & 23 & - & - & 29 & - & - & - & - & - & - & - & - & 29 & 17 \\
\hline
\end{tabular}

\section*{Notes:}
1. A (1) means the output depends on the other input disabled or enabled by the controlling inputs. The number shown is based on all other inputs enabled with valid data applied.
2. \(A(2)\) means the output is enabled or disabled by the input. See Output Enable/Disable times. A number shown with a (2) is the delay to correct data on an enabled output.
3. \(A\) "-" means the delay path does not exist.

\section*{Setup and Hold Times}

All Funstions
CAUTION: READ NOTES. NA = Not Applicable; no timing constraint.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{With Respect to this Signal} & \multicolumn{2}{|l|}{HIGH-to-LOW} & \multicolumn{2}{|l|}{LOW-to-HIGH} & \multirow[b]{2}{*}{Comment} \\
\hline & & Setup & Hold & Setup & Hold & \\
\hline \(Y\) & Clock & NA & NA & 18 & 3 & To Store Y in RAM or Q \\
\hline WE HIGH & Clock & 10 & Note 2 & Note 2 & 0 & To Prevent Writing \\
\hline WE LOW & Clock & NA & NA & 16 & 0 & To Write into RAM \\
\hline A, B as Sources & Clock & 17 & 3 & NA & NA & See Note 3 \\
\hline \(B\) as a Destination & Clock and WE both LOW & 6 & Note 4 & Note 4 & 3 & To Write Data Only into the Correct B Address \\
\hline \(\mathrm{QlO}_{0}, \mathrm{QlO}_{3}\) & Clock & NA & NA & 14 & 3 & To Shift Q \\
\hline 18765 & Clock & 12 & Note 5 & Note 5 & 0 & \\
\hline IEN HIGH & Clock & 20 & Note 2 & Note 2 & 0 & To Prevent Writing into Q \\
\hline IEN LOW & Clock & NA & NA & 18 & 0 & To Write into Q \\
\hline \(1_{43210}\) & Clock & 12 & - & 35 & 0 & See Note 6 \\
\hline
\end{tabular}

\section*{Notes:}
1. For setup times from all inputs not specified in Table B, the setup time is computed by calculating the delay to stable \(Y\) outputs and then allowing the Y setup time. Even if the RAM is not being loaded, the Y setup time is necessary to setup the \(\dot{Q}\) register. All unspecified hold times are less than or equal to zero relative to the clock LOW-to-HIGH edge.
2. \(\overline{W E}\) controls writing into the RAM. IEN controls writing into Q. To prevent writing, IEN and WE must be HIGH during the entire clock LOW time. They may go LOW after the clock has gone LOW to cause a write provided the WE LOW and IEN LOW setup times are met. Having gone LOW, they should not be returned HIGH until after the clock has gone HIGH.
3. \(A\) and \(B\) addresses must be setup prior to clock LOW transition to capture data in latches at RAM output.
4. Writing occurs when CP and \(\overline{W E}\) are both LOW. The B address should be stable during this entire period.
5. Because \(I_{8765}\) control the writing or not writing of data into RAM and \(Q\), they should be stable during the entire clock LOW time unless IEN is HIGH, preventing writing.
6. The setup time prior to the clock LOW-to-HIGH transition occurs in parallel with the setup time prior to the clock HIGH-to LOW transition and the clock LOW time. The actual setup time requirement on \(\mathbf{I}_{43210}\), relative to the clock LOW-to-HIGH transition, is the longer of (1) the setup time prior to clock \(L \rightarrow H\), and (2) the sum of the setup time prior to clock \(H \rightarrow L\) and the clock LOW time.

\section*{Am29203 Guaranteed Commercial Range Performance}

The Am29203 switching characteristics are a function of the power supply voltage, the temperature, and the operating mode of the device. The data has been condensed onto the tables on the following pages. These tables define the speeds of the combinational paths for each of the special functions.

Data is shown in bold type where different from the timing specifications for the standard functions. Except where otherwise noted, data is taken with inputs switching between 0 and 3.0 V at \(1 \mathrm{~V} / \mathrm{ns}\), with the measurement point at 1.5 V . Outputs are measured at 1.5 V and are loaded with \(C_{L}=50 \mathrm{pF}\) and maximum DC load.

SPECIAL FUNCTIONS
\begin{tabular}{|c|c|c|c|l|}
\hline \begin{tabular}{c} 
(Hex) \\
\(\mathbf{I}_{\mathbf{8}} \mathbf{I}_{\mathbf{6}} \mathbf{I}_{\mathbf{5}}\)
\end{tabular} & \(\mathbf{I}_{\mathbf{4}}\) & \begin{tabular}{c} 
(Hex) \\
\(\mathbf{I}_{\mathbf{3}} \mathbf{I}_{\mathbf{2}} \mathbf{I}_{\mathbf{0}}\)
\end{tabular} & \begin{tabular}{c} 
Available \\
On
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Special \\
Function
\end{tabular}} \\
\hline 0 & L & 0 & \begin{tabular}{l} 
Am2903 \\
Am29203
\end{tabular} & Unsigned Multiply \\
\hline 1 & L & 0 & Am29203 & \begin{tabular}{l} 
BCD to Binary \\
Conversion
\end{tabular} \\
\hline \(\mathbf{1}\) & H & 0 & Am29203 & \begin{tabular}{l} 
Multiprecision \\
BCD to Binary
\end{tabular} \\
\hline 2 & L & 0 & \begin{tabular}{l} 
Am2903 \\
Am29203
\end{tabular} & \begin{tabular}{l} 
Two's Complement \\
Multiply
\end{tabular} \\
\hline 3 & L & 0 & Am29203 & \begin{tabular}{l} 
Decrement by \\
One or Two
\end{tabular} \\
\hline 4 & L & 0 & \begin{tabular}{l} 
Am2903 \\
Am29203
\end{tabular} & \begin{tabular}{l} 
Increment by \\
One or Two
\end{tabular} \\
\hline 5 & L & 0 & \begin{tabular}{l} 
Am2903 \\
Am29203
\end{tabular} & \begin{tabular}{l} 
Sign/Magnitude \\
Two's Complement
\end{tabular} \\
\hline 6 & L & 0 & \begin{tabular}{l} 
Am2903 \\
Am29203
\end{tabular} & \begin{tabular}{l} 
Two's Complement \\
Multiply Last Cycle
\end{tabular} \\
\hline 7 & L & 0 & Am29203 & \begin{tabular}{l} 
BCD Divide by Two \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
(Hex) \\
\(\mathrm{I}_{8} \mathrm{I}_{7} \mathrm{I}_{6} \mathrm{I}_{5}\)
\end{tabular} & \(\mathrm{I}_{4}\) & \begin{tabular}{l}
(Hex) \\
\(I_{3} I_{2} I_{1} I_{0}\)
\end{tabular} & Available On & Special Function \\
\hline 8 & L & 0 & \[
\begin{aligned}
& \text { Am2903 } \\
& \text { Am29203 }
\end{aligned}
\] & Single Length Normalize \\
\hline 9 & L & 0 & Am29203 & Binary to BCD Conversion \\
\hline 9 & H & 0 & Am29203 & Multiprecision Binary to BCD \\
\hline A & L & 0 & \[
\begin{aligned}
& \text { Am2903 } \\
& \text { Am29203 }
\end{aligned}
\] & Double Length Normalize and First Divide Op \\
\hline B & L & 0 & Am29203 & BCD Add \\
\hline C & L & 0 & \[
\begin{aligned}
& \text { Am2903 } \\
& \text { Am29203 }
\end{aligned}
\] & Two's Complement Divide \\
\hline D & L & 0 & Am29203 & BCD Subtract \\
\hline E & L & 0 & \[
\begin{aligned}
& \text { Am2903 } \\
& \text { Am29203 }
\end{aligned}
\] & Two's Complement Divide Correction and Remainder \\
\hline F & L & 0 & Am29203 & BCD Subtract \\
\hline
\end{tabular}

BCD Functions
\(\mathbf{S F}_{\mathbf{1}}, \mathrm{SF}_{\mathbf{7}}, \mathrm{SF}_{9}, \mathrm{SF}_{\mathrm{B}}, \mathrm{SF}_{\mathrm{D}}, \mathrm{SF}_{\mathrm{F}}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline To Output From Input & Y & \(\mathrm{C}_{\mathrm{n}+4}\) & \(\overline{\mathbf{G}}, \overline{\mathbf{P}}\) & Z & N & OVR & DA & DB & WR & \(\mathrm{QIO}_{0}\) & \(\mathrm{QIO}_{3}\) & \(\mathrm{SIO}_{0}\) & \(\mathrm{SIO}_{3}\) & \begin{tabular}{l}
\(\mathrm{SIO}_{0}\) \\
Parity
\end{tabular} \\
\hline A, Addr & 76 & 65 & 76 & 84 & 76 & 76 & 24 & - & - & - & - & 76 & 52 & 85 \\
\hline B, Addr & 82 & 65 & 76 & 83 & 76 & 76 & - & 24 & - & - & - & 76 & 52 & 85 \\
\hline DA & 60 & 41 & 53 & 58 & 53 & 53 & - & - & - & - & - & - & - & - \\
\hline DB & 59 & 41 & 50 & 50 & 50 & 50 & - & - & - & - & - & 58 & 41 & 79 \\
\hline \(\mathrm{C}_{n}\) & 40 & 22 & - & 32 & 34 & 34 & - & - & - & - & - & 38 & 44 & 43 \\
\hline \(\mathrm{l}_{8-0}\) & 77 (1) & 55 & 44 & 70 (1) & 59 & 62 & - & - & 26 & \(21(2)\) & 21 (2) & 81 (2) & 55 (2) & 86 (2) \\
\hline Clock & 76 & 59 & 70 & 78 & 70 & 70 & 21 & 21 & - & 21 & 21 & 70 & 46 & 83 \\
\hline IEN & - & - & - & - & - & - & - & - & 22 & - & - & - & - & - \\
\hline \(\overline{\text { MSS }}\) & 44 & - & 44 & 68 & 44 & 44 & - & - & - & - & - & 44 & 46 & 44 \\
\hline \(\mathrm{SIO}_{0-3}\) & 23 & - & - & 29 & - & - & - & - & - & - & - & - & - & 17 \\
\hline
\end{tabular}

\section*{Notes:}
1. A (1) means the output depends on the other input disabled or enabled by the controlling inputs. The number shown is based on all other inputs enabled with valid data applied.
2. \(A(2)\) means the output is enabled or disabled by the input.

See Output Enable/Disable times. A number shown with a (2) is the delay to correct data on an enabled output.
3. A "-" means the delay path does not exist.

Guaranteed Combinational Delays \(T_{A}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to 5.25 V

Special Functions 0, 2, 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline To Output From Input & & Y & \(C_{n+4}\) & \(\overline{\mathbf{G}}, \overline{\mathbf{P}}\) & 2 & N & OVR & \(\mathrm{SIO}_{0}\) & DA, DB & \(\mathrm{QlO}_{0-3}\) & \(\overline{W R}\) \\
\hline \multirow{3}{*}{A, B Addr} & MSS & 68 & 56 & - & - & 61 & 67 & 42 & 24 & - & - \\
\hline & IS & 68 & 56 & 52 & - & - & - & 42 & 24 & - & - \\
\hline & LSS & 68 & 56 & 52 & - & - & - & 42 & 24 & - & - \\
\hline \multirow{3}{*}{DA, DB} & MSS & 59 & 49 & - & - & - & - & 32 & - & - & - \\
\hline & is & 59 & 49 & 48 & - & - & - & 32 & - & - & - \\
\hline & LSS & 59 & 49 & 48 & - & - & - & 32 & - & - & - \\
\hline \multirow{3}{*}{\(C_{n}\)} & MSS & 40 & 18 & - & - & - & - & 21 & - & - & - \\
\hline & IS & 40 & 18 & - & - & - & - & 21 & - & - & - \\
\hline & LSS & 40 & 18 & - & - & - & - & 21 & - & - & - \\
\hline \multirow{3}{*}{10-5} & MSS & 84 (1) & 67 & - & - & 74 & 74 & 68 & - & 21 & - \\
\hline & IS & 84 (1) & 67 & 74 & - & - & - & 68 & - & 21 & - \\
\hline & LSS & 84 (1) & 67 & 74 & 31 & - & - & 68 & - & 21 & 26 \\
\hline \multirow{3}{*}{Clock} & MSS & 60 & 43 & - & - & 55 & 59 & 36 & 21 & 21 & - \\
\hline & IS & 60 & 43 & 43 & - & - & - & 36 & 21 & 21 & - \\
\hline & LSS & 60 & 43 & 43 & 29 & - & - & 36 & 21 & 21 & - \\
\hline \multirow[t]{2}{*}{z} & MSS & 71 & 52 & - & - & 64 & 60 & 42 & - & - & - \\
\hline & IS & 71 & 52 & 50 & - & -. & - & 42 & - & - & - \\
\hline \(\overline{\text { IEN }}\) & & - & - & - & - & - & - & - & - & - & 22 \\
\hline \(\mathrm{SIO}_{0-3}\) & & 23 & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { SF 0: } \\
& \begin{aligned}
F= & S+C_{n} \text { if } Z=0 \\
& S+R+C_{n} \text { if } Z=1 \\
Y_{3}= & C_{n+4} \text { (MSS) } \\
Z= & Q_{0} \text { (LSS) }
\end{aligned}
\end{aligned}
\]
SF 2:
\[
F=S+C_{n} \text { if } Z=0
\]

SF 6:
\[
R+S+C_{n} \text { if } Z=1
\]
\(F=S+C_{n}\) if \(Z=0\)
\(S-R-1+C_{n}\) if \(Z=1\)
\(Y_{3}=O V R \oplus F_{3}(M S S)\)
\(Y_{3}=F_{3} \oplus O V R(M S S)\)
\(Z=Q_{0}\) (LSS)

Guaranteed Combinational Delays \(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to 5.25 V

Special Functions 3 and 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
To Output \\
From Input
\end{tabular} & . & Y & \(C_{n+4}\) & \(\overline{\mathbf{G}}, \overline{\mathbf{P}}\) & Z & N & OVR & \begin{tabular}{l}
\(\mathrm{SIO}_{3}\) \\
Parity
\end{tabular} & DA, DB & \(\mathrm{QlO}_{0-3}\) & \(\overline{W R}\) \\
\hline \multirow{3}{*}{A, B Addr} & MSS & 68 & 56 & - & 72 & 61 & 67 & 78 & 24 & - & - \\
\hline & IS & 68 & 56 & 52 & 72 & - & - & 78 & 24 & - & - \\
\hline & LSS & 68 & 56 & 52 & 72 & - & - & 78 & 24 & - & - \\
\hline \multirow{3}{*}{DA, DB} & MSS & 59 & 49 & - & 65 & 54 & 55 & 65 & - & - & - \\
\hline & IS & 59 & 49 & 48 & 65 & - & - & 65 & - & - & - \\
\hline & LSS & 59 & 49 & 48 & 65 & - & - & 65 & - & - & - \\
\hline \multirow{3}{*}{\(c_{n}\)} & MSS & 40 & 18 & - & 32 & 26 & 24 & 38 & - & - & - \\
\hline & IS & 40 & 18 & - & 32 & - & - & 38 & - & - & - \\
\hline & LSS & 40 & 18 & - & 32 & - & - & 38 & - & - & - \\
\hline \multirow{3}{*}{\({ }^{1}-5\)} & MSS & 54 & 52 & - & 54 & 52 & 64 & 74 & - & 21 & - \\
\hline & IS & 54 & 52 & 40 & 54 & - & - & 74 & - & 21 & - \\
\hline & LSS & 54 & 52 & 40 & 54 & - & - & 74 & - & 21 & - \\
\hline \multirow{3}{*}{Clock} & MSS & 60 & 43 & - & 62 & 55 & 59 & 60 & 21 & 21 & - \\
\hline & IS & 60 & 43 & 43 & 62 & - & - & 60 & 21 & 21 & - \\
\hline & LSS & 60 & 43 & 43 & 62 & - & - & 60 & 21 & 21 & - \\
\hline z & \multicolumn{11}{|c|}{\(\mathbf{Z}\) is an Output for all Slices} \\
\hline IEN & & - & - & - & - & - & - & - & - & - & 22 \\
\hline \(\mathrm{SIO}_{0-3}\) & & 23 & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

SF 3:
\(F=S-2+C_{n}\)

SF 4:
\(F=S+1+C_{n}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline To Output From Input & & Y & \(c_{n+4}\) & \(\overline{\mathbf{G}, \overline{\mathbf{P}}}\) & Z & N & OVR & \(\mathrm{SIO}_{3}\) & DA, DB & \(\mathrm{QlO}_{0-3}\) & \(\overline{W R}\) \\
\hline \multirow{3}{*}{A, B Addr} & MSS & 96 & 56 & - & 43 & 96 & 67 & 78 & 24 & - & - \\
\hline & ISS & 68 & 56 & 52 & - & - & - & 78 & 24 & - & - \\
\hline & LSS & 68 & 56 & 52 & - & - & - & 78 & 24 & - & - \\
\hline \multirow{3}{*}{DA, DB} & MSS & 90 & 49 & - & - & 89 & 55 & 65 & - & - & - \\
\hline & ISS & 59 & 49 & 48 & - & - & - & 65 & - & - & - \\
\hline & LSS & 59 & 49 & 48 & - & - & - & 65 & - & - & - \\
\hline \multirow{3}{*}{\(c_{n}\)} & MSS & 40 & 18 & - & - & 28 & 24 & 38 & - & - & - \\
\hline & ISS & 40 & 18 & \(-\) & - & \(=\) & - & 38 & - & - & - \\
\hline & LSS & 40 & 18 & - & - & - & - & 38 & - & - & - \\
\hline \multirow{3}{*}{\({ }^{10-5}\)} & MSS & 94 & 64 & - & 31 & 94 & 88 & 97 & - & 21 & - \\
\hline & ISS & 83 & 64 & 64 & - & - & - & 86 & - & 21 & - \\
\hline & LSS & 83 & 64 & 64 & - & - & - & 86 & - & 21 & 26 \\
\hline \multirow{3}{*}{Clock} & MSS & 97 & 43 & - & 38 & 89 & 59 & 60 & 21 & 21 & - \\
\hline & ISS & 60 & 43 & 64 & - & - & - & 60 & 21 & 21 & - \\
\hline & LSS & 60 & 43 & 64 & - & - & - & 60 & 21 & 21 & - \\
\hline \multirow[t]{2}{*}{\(z\)} & Is & 62 & 44 & 43 & - & - & - & 85 & - & - & - \\
\hline & LSS & 62 & 44 & 43 & - & - & - & 85 & - & - & - \\
\hline IEN & & - & - & - & - & - & - & - & - & - & - \\
\hline \(\mathrm{SIO}_{0-3}\) & & 23 & - & - & - & - & - & - & - & - & 22 \\
\hline
\end{tabular}

SF 5:
\(F=\begin{aligned} & S \\ & S_{n} \text { if } Z\end{aligned}=0\)
\(Y_{3}=S_{3} \oplus F_{3}(M S S)\)
\(Z=S_{3}\) (MSS)
Guaranteed Combinational Delays
\(T_{A}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to 5.25 V
Special Function 8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
To Output \\
From Input
\end{tabular} & & \(\mathbf{Y}\) & \(C_{n+4}\) & \(\overline{\mathbf{G}}, \overline{\mathbf{P}}\) & Z & N & OVR & \(\mathrm{SIO}_{3}\) & DA, DB & \(\mathrm{QIO}_{0-3}\) & \(\overline{W R}\) \\
\hline \multirow{3}{*}{A, B Addr} & MSS & 68 & - & - & - & - & - & 62 & 24 & - & - \\
\hline & IS & 68 & 56 & 52 & - & - & - & 62 & 24 & - & - \\
\hline & LSS & 68 & 56 & 52 & - & - & - & 62 & 24 & - & - \\
\hline \multirow{3}{*}{DA, DB} & MSS & 59 & - & - & - & - & - & 56 & - & - & - \\
\hline & IS & 59 & 49 & 48 & - & - & - & 56 & - & - & - \\
\hline & LSS & 59 & 49 & 48 & - & - & - & 56 & - & - & - \\
\hline \multirow{3}{*}{\(\mathrm{C}_{n}\)} & MSS & 40 & - & - & - & - & - & 27 & - & - & - \\
\hline & IS & 40 & 18 & - & - & - & - & 27 & - & - & - \\
\hline & LSS & 40 & 18 & - & - & - & - & 27 & - & - & -- \\
\hline \multirow{3}{*}{\(\mathrm{I}_{0-5}\)} & MSS & 61 & 43 & - & 28 & 23 & 24 & 60 & - & 21 & - \\
\hline & IS & 52 & 66 & 40 & 28 & - & - & 60 & - & 21 & - \\
\hline & LSS & 52 & 66 & 40 & 28 & - & - & 60 & - & 21 & 26 \\
\hline \multirow{3}{*}{Clock} & MSS & 60 & 27 & - & 29 & 23 & 28 & 55 & 21 & 21 & - \\
\hline & IS & 60 & 43 & 43 & 29 & - & - & 55 & 21 & 21 & - \\
\hline & LSS & 60 & 43 & 43 & 29 & - & - & 55 & 21 & 21 & - \\
\hline Z & IS & \multicolumn{10}{|c|}{Z is an Output for all Slices.} \\
\hline \(\overline{\text { IEN }}\) & & - & - & - & - & - & - & - & - & \(\cdots\) & 22 \\
\hline \(\mathrm{SiO}_{0-3}\) & & 23 & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

SF 8:
\(F=S+C_{n}\)
\(C_{n+4}=Q_{3} \oplus Q_{2}\) (MSS)
\(O V R=Q_{2} \oplus Q_{1}\) (MSS)
\(N=Q_{3}(M S S)\)
\(=\bar{Q}_{0} \bar{Q}_{1} \bar{Q}_{2} \bar{Q}_{3}\)

Guaranteed Combinational Delays
\(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to 5.25 V
Special Function A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline To Output From Input & & Y & \(C_{n+4}\) & \(\overline{\mathbf{G}}, \overline{\mathbf{P}}\) & Z & N & OVR & \(\mathrm{SIO}_{3}\) & DA, DB & \(\mathrm{QIO}_{0-3}\) & WR \\
\hline \multirow{3}{*}{A, B Addr} & MSS & 68 & 56 & - & 72 & 43 & 64 & 62 & 24 & - & - \\
\hline & ISS & 68 & 56 & 52 & 72 & - & - & 62 & 24 & - & - \\
\hline & LSS & 68 & 56 & 52 & 72 & - & - & 62 & 24 & - & - \\
\hline \multirow{3}{*}{DA, DB} & MSS & 59 & 50 & - & 72 & 43 & 58 & 56 & - & - & - \\
\hline & ISS & 59 & 49 & 48 & 72 & - & - & 56 & - & - & - \\
\hline & LSS & 59 & 49 & 48 & 72 & - & - & 56 & - & - & - \\
\hline \multirow{3}{*}{\(\mathrm{C}_{n}\)} & MSS & 40 & 37 & - & 27 & 25 & 28 & 27 & - & - & - \\
\hline & ISS & 40 & 18 & - & 27 & - & - & 27 & - & - & - \\
\hline & LSS & 40 & 18 & - & 27 & - & - & 27 & - & - & - \\
\hline \multirow{3}{*}{10-5} & MSS & 61 (1) & 70 & - & 52 & 52 & 66 & 67 & - & 21 & - \\
\hline & ISS & 52 (1) & 66 & 40 & 52 & - & - & 60 & - & 21 & - \\
\hline & LSS & 52 (1) & 66 & 40 & 52 & - & - & 60 & - & 21 & - \\
\hline \multirow{3}{*}{Clock} & MSS & 60 & 44 & - & 42 & 38 & 49 & 43 & 21 & 21 & - \\
\hline & ISS & 60 & 43 & 43 & 42 & - & - & 55 & 21 & 21 & - \\
\hline & LSS & 60 & 43 & 43 & 42 & - & - & 55 & 21 & 21 & - \\
\hline Z & \multicolumn{11}{|c|}{Z is an Output for all Slices} \\
\hline IEN & & 23 & - & - & - & - & - & - & - & - & 22 \\
\hline \(\mathrm{SiO}_{0-3}\) & & 23 & - & - & - & - & - & - & - & - & - \\
\hline \multicolumn{12}{|l|}{SF A:} \\
\hline \[
\begin{aligned}
& \mathrm{F}=\mathrm{S}+\mathrm{C}_{\mathrm{n}} \\
& \mathrm{~N}=\mathrm{F}_{3}(\mathrm{MSS}) \\
& \mathrm{SIO}_{3}=\mathrm{F}_{3} \oplus \mathrm{R}_{3} \text { (MSS) } \\
& \mathrm{C}_{\mathrm{n}+4}=\mathrm{F}_{3} \oplus \mathrm{~F}_{2} \text { (MSS) } \\
& \mathrm{OVR}=\mathrm{F}_{2} \oplus \mathrm{~F}_{1}(\mathrm{MSS}) \\
& \mathrm{Z} \\
& \mathrm{Z} \\
& =\bar{Q}_{0} \bar{Q}_{1} \bar{Q}_{2} \bar{Q}_{3} \bar{F}_{0} \bar{F}_{1} \overline{\mathrm{~F}}
\end{aligned}
\] & & & & & & & & & & & \\
\hline
\end{tabular}

Guaranteed Combinational Delays
\(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to 5.25 V
Special Function C
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline From Input & & Y & \(C_{n+4}\) & \(\overline{\mathbf{G}}, \overline{\mathbf{P}}\) & Z & N & OVR & \(\mathrm{SIO}_{3}\) & DA, DB & \(\mathrm{QIO}_{0-3}\) & \(\overline{W R}\) \\
\hline \multirow{3}{*}{A, B Addr} & MSS & 68 & 56 & - & - & 61 & 67 & 62 & 24 & - & - \\
\hline & IS & 68 & 56 & 52 & - & - & - & 62 & 24 & - & - \\
\hline & LSS & 68 & 56 & 52 & - & - & - & 62 & 24 & - & - \\
\hline \multirow{3}{*}{DA, DB} & MSS & 59 & 49 & - & - & 54 & 55 & 56 & - & - & - \\
\hline & IS & 59 & 49 & 48 & -- & - & - & 56 & - & - & - \\
\hline & LSS & 59 & 49 & 48 & - & - & - & 56 & - & - & - \\
\hline \multirow{3}{*}{\(\mathrm{C}_{n}\)} & MSS & 40 & 18 & - & - & 26 & 24 & 40 & - & - & - \\
\hline & IS & 40 & 18 & - & - & - & - & 27 & \(-\) & - & - \\
\hline & LSS & 40 & 18 & - & - & - & '- & 27 & - & -- & -- \\
\hline \multirow{3}{*}{\({ }^{1} 0\)} & MSS & 91 (1) & 70 & - & 28 & 77 & 72 & 89 & - & 21 & - \\
\hline & IS & 68 (1) & 65 & 61 & - & -. & - & 66 & - & 21 & - \\
\hline & LSS & 68 (1) & 65 & 61 & - & - & - & 66 & - & 21 & 26 \\
\hline \multirow{3}{*}{Clock} & MSS & 60 & 43 & -- & 30 & 55 & 59 & 88 & 21 & 21 & - \\
\hline & IS & 60 & 43 & 43 & - & - & - & 55 & 21 & 21 & - \\
\hline & LSS & 60 & 43 & 43 & - & - & - & 55 & 21 & 21 & - \\
\hline \multirow[t]{2}{*}{z} & IS & 62 & 44 & 46 & - & - & - & 65 & - & - & - \\
\hline & LSS & 62 & 44 & 46 & - & - & - & 65 & - & - & - \\
\hline \(\overline{\text { IEN }}\) & & - & - & - & - & - & - & - & \(-\) & - & 22 \\
\hline \(\mathrm{SIO}_{0-3}\) & & 23 & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\(F=R+S+C_{n}\) if \(Z=0\)
\[
S-R-1+C_{n} \text { if } Z=1
\]
\(\mathrm{SIO}_{3}=\overline{\mathrm{F}_{3} \oplus \mathrm{R}_{3}}\) (MSS)
\(Z=\overline{F_{3} \oplus R_{3}}\) (MSS) from previous cycle

Guaranteed Combinational Delays
\(T_{A}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to 5.25 V
Special Function E
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
To Output \\
From Input
\end{tabular} & & Y & \(C_{n+4}\) & \(\overline{\mathbf{G}}, \overline{\mathbf{P}}\) & z & N & OVR & \(\mathrm{SIO}_{3}\) & DA, DB & \(\mathrm{QlO}_{0-3}\) & \(\overline{W R}\) \\
\hline \multirow{3}{*}{A, B Addr} & MSS & 68 & 56 & - & - & 61 & 67 & 62 & 24 & - & - \\
\hline & is & 68 & 56 & 52 & - & - & - & 62 & 24 & - & - \\
\hline & LSS & 68 & 56 & 52 & - & - & - & 62 & 24 & - & - \\
\hline \multirow{3}{*}{DA, DB} & MSS & 59 & 49 & - & - & 54 & 55 & 56 & - & - & - \\
\hline & IS & 59 & 49 & 48 & - & - & - & 56 & - & - & - \\
\hline & LSS & 59 & 49 & 48 & - & - & - & 56 & - & - & - \\
\hline \multirow{3}{*}{\(C_{n}\)} & MSS & 40 & 18 & - & - & 26 & 24 & 27 & - & - & - \\
\hline & Is & 40 & 18 & - & - & - & - & 27 & - & - & - \\
\hline & LSS & 40 & 18 & - & - & - & - & 27 & - & - & - \\
\hline \multirow{3}{*}{\({ }^{10-5}\)} & MSS & 91 & 70 & - & 28 & 77 & 72 & 79 & - & 21 & - \\
\hline & IS & 68 & 65 & 61 & - & - & - & 66 & - & 21 & - \\
\hline & LSS & 68 & 65 & 61 & - & - & - & 66 & - & 21 & 26 \\
\hline \multirow{3}{*}{Clock} & MSS & 60 & 43 & - & 30 & 55 & 59 & 55 & 21 & 21 & - \\
\hline & is & 60 & 43 & 43 & - & - & - & 55 & 21 & 21 & - \\
\hline & LSS & 60 & 43 & 43 & - & - & - & 55 & 21 & 21 & - \\
\hline \multirow[t]{2}{*}{z} & IS & 62 & 44 & 46 & - & - & - & 65 & - & - & - \\
\hline & LSS & 62 & 44 & 46 & - & - & - & 65 & - & - & - \\
\hline \(\overline{\text { IEN }}\) & & - & - & - & - & - & - & - & - & - & 22 \\
\hline \(\mathrm{SiO}_{0-3}\) & & 23 & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

SF E:
\(F=R+S+C_{n}\) if \(Z=0\)
\(Z=\frac{S-R-1+C_{n} \text { if } Z=1}{F_{3} \oplus R_{3}(M S S) \text { from previous cycle }}\)

\section*{USING THE Am29203}

\section*{Am29203 APPLICATIONS}

The Am29203 is designed to be used in microprogrammed systems. Figure 1 illustrates a recommended architecture. The control and data inputs to the Am29203 normally will all come from registers clocked at the same time as the Am29203. The register inputs come from a ROM or PROM - the "microprogram store." This memory contains sequences of microinstructions which apply the proper control signals to the Am29203s and other circuits to execute the desired operation.

The address lines of the microprogram store are driven from the Am2910 Microprogram Sequencer. This device has facilities for storing an address, incrementing an address, jumping to any address, and linking subroutines. The Am2910 is controlled by some of the bits coming from the microprogram store. Essentially, these bits are the "next instruction" control.

Figure 1. Typical Microprogram Architecture.


One Level Pipeline Based System

Note that with the microprogram register in between the microprogram memory store and the Am29203s, a microinstruction accessed on one cycle is executed on the next cycle. As one microinstruction is executed, the next microinstruction is being read from microprogram memory. In this configuration, system speed is improved because the execution time in the Am29203s occurs in parallel with the access time of the microprogram store. Without the "pipeline register," these two functions must occur serially.

\section*{Expansion of the Am29203}

The Am29203 is a four-bit CPU slice. Any nutmber of Am29203s can be interconnected to form CPUs of \(8,16,32\), or more bits, in four-bit increments. Figure 2 illustrates the interconnection of four Am29203s to form a 16 -bit CPU, using ripple carry.

With the exception of the carry interconnection, all expansion schemes are the same. The \(\mathrm{QIO}_{3}\) and \(\mathrm{SIO}_{3}\) pins are bidirectional left/right shift lines at the MSB of the device. For all devices except the most significant, these lines are connected to the \(\mathrm{QIO}_{0}\) and \(\mathrm{SIO}_{0}\) pins of the adjacent more significant device. These connections allow the Q registers of all Am29203s to be shifted left or right as a contiguous \(n\)-bit register, and also allow the ALU output data to be shifted left or right as a contiguous \(n\)-bit word prior to storage in the RAM. At the LSB and MSB of the CPU, the shift pins should be connected to a shift multiplexer which can be controlled by the microcode to select the appropriate input signals to the shift inputs.
Device 1 has been defined as the least significant slice (LSS) and its \(\overline{L S S}\) pin has accordingly been grounded. The Write/Most Significant Slice (WRITE/MSS) pin of device 1 is now defined as being the Write output, which may now be used to drive the write enable ( \(\overline{W E}\) ) signal common to the four devices. Devices 2 and 3 are designated as intermediate slices and hence the \(\overline{L S S}\) and \(\overline{\text { WRITE }} / \overline{M S S}\) pins are tied HIGH. Caution: \(\overline{\text { W }} / \overline{\mathrm{MSS}}\) must be tied to \(V_{C C}\) through a resistor; \(\overline{\mathrm{W}} / \overline{\mathrm{MSS}}\) and \(\overline{\mathrm{LSS}}\) may not be shorted directly together. Device 4 is designated the most significant slice ( \(\overline{\mathrm{MSS}}\) ) with the \(\overline{\mathrm{LSS}}\) pin tied HIGH and the WRITE \(/ \overline{\mathrm{MSS}}\) pin held LOW. The open collector, bidirectional Z pins are tied together for detecting zero or for inter-chip communication for some special instruction. The Carry-Out ( \(\mathrm{C}_{\mathrm{n}+4}\) ) is connected to the Carry-In \(\left(C_{n}\right)\) of the next chip in the case of ripple carry. For a faster carry scheme, an Am2902 may be employed (as shown in Figure 3) such that the \(\bar{G}\) and \(\overline{\mathrm{P}}\) outputs of the Am2903 are connected to the appropriate \(\bar{G}\) and \(\bar{P}\) inputs of the Am2902, while the \(C_{n+x}, C_{n+y}\), and \(C_{n+z}\) outputs of the Am2902 are connected to the \(C_{n}\) input of the appropriate Am2903. Note that \(\overline{\mathrm{G}} / \mathrm{N}\) and \(\overline{\mathrm{P}} / \mathrm{OVR}\) pin functions are device dependent. The most significant slice outputs N and OVR while all other slices output \(\bar{G}\) and \(\bar{P}\).

Figure 2. 16-Bit CPU with Ripple Carry.


The \(\overline{\text { IEN }}\) pin of the Am29203 allows the option of conditional instruction execution. If IEN is LOW, all internal clocking is enabled, allowing the latches, RAM, and Q Register to function. If IEN is HIGH, the RAM and Q Register are disabled. The RAM is controlled by \(\overline{\mathbb{E N}}\) if \(\overline{\mathrm{WE}}\) is connected to the WRITE output.
It would be appropriate at this point to mention that the Am29203 may be microcoded to work in either two-or three-address architecture modes. The two-address modes allow \(A+B \rightarrow B\) while the three-address mode makes possible \(A+B \rightarrow C\). Implementation of a three-address architecture is made possible by varying the timing of IEN in relationship to the external clock and changing the \(B\) address as shown in Figure 4. This technique is discussed in more detail under Mernory Expansion.

\section*{Parity}

The Am29203 computes parity on a chosen word when the instruction bits \(\mathrm{I}_{5-8}\) have the values of \(4_{16}\) to \(\mathbf{7}_{16}\) as shown in Table 3. The computed parity is the result of the exclusive OR of the individual ALU outputs and \(\mathrm{SIO}_{3}\). Parity output is found on \(\mathrm{SIO}_{\mathrm{O}}\). Parity between devices may be cascaded by the interconnection of the \(\mathrm{SIO}_{0}\) and \(\mathrm{SIO}_{3}\) ports of the devices as shown in Figure 3. The equation for the parity output at \(\mathrm{SIO}_{0}\) port of device 1 is given by \(\mathrm{SIO}_{0}=\mathrm{F}_{15} \vee \mathrm{~F}_{14} \vee \mathrm{~F}_{13} \vee \ldots \vee \mathrm{~F}_{1}\) \(\vee \mathrm{F}_{0} \vee \mathrm{SIO}_{15}\).

Figure 3. 16-Bit CPU with Carry Look Ahead.


Figure 4. Relationship of \(\overline{I E N}\) and Clock During Two Address and Three Address Modes.


Figure 5. Sign Extend.


\section*{Sign Extend}

Sign extension across any number of Am29203 devices can be done in one microcycle. Referring again to the table of instructions (Table 3), the sign extend instruction (Hex instruction E) on \(\mathrm{I}_{5-8}\) causes the sign present at the \(\mathrm{SiO}_{0}\) port of a device to be extended across the device and appear at the \(\mathrm{SIO}_{3}\) port and at the \(Y\) outputs. If the least significant bit of the instruction (bit \(\mathrm{I}_{5}\) ) is HIGH, Hex instruction F is present on \(\mathrm{I}_{5-8}\), commanding a shifter pass instruction. At this time, \(\mathrm{F}_{3}\) of the ALU is present on the \(\mathrm{SIO}_{3}\) output pin. It is then possible to control the extension of the sign across chip boundaries by controlling the state of \(\mathrm{I}_{5}\) when \(\mathrm{I}_{6-8}\) are HIGH. Figure 5 outlines the Am29203 in sign extend mode. With \(\mathrm{I}_{6-8}\) held HIGH, the individual chip sign extend is controlled by \(\mathrm{I}_{5 \mathrm{~A}-\mathrm{D}}\). If, for example, \(I_{5 A}\) and \(I_{5 B}\) are HIGH while \(I_{5 C}\) and \(I_{5 D}\) are LOW, the signal present at the boundaries of devices 2 and 3 ( \(F_{3}\) of device 2) will be extended across devices 3 and 4 at the \(\mathrm{SiO}_{3}\) pin of device 4. The output of the four devices will be available at their respective \(Y\) data ports. The next positive edge of the clock will load the \(Y\) outputs into the address selected by the \(B\) port. Hence, the results of the sign extension is stored in the RAM.

\section*{SPECIAL FUNCTIONS}

When \(\mathrm{I}_{0-4}=0\); the Am2903 is in the Special Function mode. In this mode, both the source and destination are controlled by \(\mathrm{I}_{5-8}\). The Special Functions are in essence special microinstructions that are used to reduce the number of microcycles needed to execute certain functions in the Am29203.

\section*{NORMALIZATION, SINGLE- AND DOUBLE-LENGTH}

Normalization is used as a means of referencing a number to a fixed radix point. Normalization strips out all leading sign bits such that the two bits immediately adjacent to the radix point are of opposite polarity.
Normalization is commonly used in such operations as fixed-tofloating point conversion and division. The Am2903 provides for normalization by using the Single-Length and Double-Length Normalize commands. Figure 6a represents the Q Register of a 16 -bit processor which contains a positive number. When the Single-Length Normalize command is applied, each positive edge of the clock will cause the bits to shift toward the most significant bit (bit 15) of the Q Register. Zeros are shifted in via the \(\mathrm{QIO}_{0}\) port. When the bits on either side of the radix point (bits 14 and 15) are of opposite value, the number is considered to be normalized as shown in Figure 6b. The event of normalization is externally indicated by a HIGH level on the \(\mathrm{C}_{\mathrm{n}+4}\) pin of the most significant slice \(\left(C_{n+4}\right.\) MSS \(=Q_{3}\) MSS \(\forall Q_{2}\) MSS).

Figure 6.

b) Normalized Positive Number.

There are also provisions made for a normalization indication via the OVR pin one microcycle before the same indication is available on the \(C_{n+4}\) pin ( \(O V R=Q_{2}\) MSS \(\forall Q_{1}\) MSS). This is for use in applications that require a stage of register buffering of the normalization indication.
Since a number comprised of all zeros is not considered for normalization, the Am29203 indicates when such a condition arises. If the Q Register is zero and the Single-Length Normalization command is given, a HIGH level will be present on the Z line. The sign output, N , indicates the sign of the number stored in the \(Q\) register, \(Q_{3}\) MSS. An unnormalized negative number (Figure 7a) is normalized in the same manner as a positive number. The results of single-length normalization are shown in Figure 7 b . The device interconnection for single-length normalization is outlined in Figure 8. During single length normalization, the number of shifts performed to achieve normalization can be counted and stored in one of the working registers. This can be achieved by forcing a HIGH at the \(C_{n}\) input of the least significant slice, since during this special function the \(A L U\) performs the function \([B]+C_{n}\) and the result is stored in \(B\).
Normalizing a double-length word can be done with the DoubleLength Normalize command which assumes that a user-selected RAM Register contains the most significant portion of the word to be normalized while the Q Register holds the least significant half (Figure 9). The device interconnection for double-length normalization is shown in Figure 10. The \(\mathrm{C}_{\mathrm{n}+4}\), OVR, N , and Z outputs of the most significant slice perform the same functions in doublelength normalization as they did in single-length normalization except that \(\mathrm{C}_{n+4}\), OVR, and Nare derived from the output of the ALU of the most significant slice in the case of double-length normalization, instead of the Q Register of the most significant

\section*{Figure 7.}

a) Unnormalized Negative Single Length Number.

b) Normalized Negative Single Length Number.

Figure 8. Single Length Normalize.


Figure 9. Double Length Word.


Figure 10. Double Length Normalize.

slice as in single-length normalization. A high-level \(Z\) line in double-length normalization reveals that the outputs of the ALU and Q Register are both zero, hence indicating that the doublelength word is zero.

When double-length normalization is being performed, shift counting is done either with an extra microcycle or with an external counter.

\section*{SIGN MAGNITUDE, TWO'S COMPLEMENT CONVERSION}

As part of the special instruction set, the Am2903 can convert between two's complement and sign/magnitude representations. Figure 11 illustrates the interconnection needed for sign magnitude/two's complement conversion. The word to be converted is applied to the \(S\) input port of the ALU (from the RAM B port or the DB I/O port). The \(C_{n}\) input of device 1 is connected to the \(Z\) pin. The sign bit \(\left(S_{3} M S S\right)\) is brought out on the \(Z\) line and informs the other ALU's if the conversion is being performed on a negative or positive number. If the number to be converted is the most negative number in two's complement [i.e., \(100 \ldots 00\left(-2^{n}\right)\) ], an overflow indication will occur. This is because \(-2^{n}\) is one greater than any number that can be represented in sign magnitude notation and hence an attempted conversion to sign magnitude from \(-2^{n}\) will cause an overflow. When minus zero in sign magnitude notation (100 . . 0) is converted to two's complement notation, the correct result is obtained (0...0).

\section*{INCREMENT BY ONE OR TWO}

Incrementation by One or Two is made possible by the Special Function of the same name. This command is quite useful in the case of byte addressable words. Referencing Figure 12, a word may be incremented by one if \(\mathrm{C}_{\mathrm{n}}\) is LOW or incremented by two if \(\mathrm{C}_{\mathrm{n}}\) is HIGH.

\section*{UNSIGNED MULTIPLY}

This Special Function allows for easy implementation of unsigned multiplication. Figure 13 is the unsigned multiply flow chart. The algorithm requires that initially the RAM word addressed by Address port B be zero, that the multiplier be in the Q Register, and that the multiplicand be in the register addressed by Address port \(A\). The initial conditions for the execution of the algorithm are that: 1) register \(R_{0}\) be reset to zero; 2) the multiplicand be in \(R_{1}\); and 3) the multiplier be in \(R_{2}\). The first operation transfers the multiplier, \(R_{2}\), to the \(Q\) Register. The Unsigned Multiply instruction is then executed 16 times. During the Unsigned Multiply instruction, \(\mathrm{R}_{0}\) is addressed by RAM address port \(B\) and the multiplicand is addressed by RAM address port A.
When the unsigned Multiply command is given, the \(Z\) pin of device 1 becomes an output while the \(Z\) pins of the remaining devices are specified as inputs as shown in Figure 15. The \(\mathbf{Z}\) output of device 1 is the same state as the least significant bit of the multiplier in the Q Register. The \(Z\) output of device 1 informs the ALU's of all the slices, via their \(Z\) pins, to add the partial product (referenced by the \(B\) address port) to the mul-

Figure 11. 2's Complement \(\longrightarrow\) Sign/Magnitude.


Figure 12. Increment by \(2 / 1\).

Figure 13. Unsigned \(16 \times 16\) Multiply Flowchart.

ti id (referenced by the \(A\) address port) if \(Z=1\). If \(Z=0\), ti put of the ALU is simply the partial product (referenced by B address port). Since \(\mathrm{C}_{\mathrm{n}}\) is held LOW, it is not a factor he computation. Each positive-going edge of the clock will it mrnally shift the ALU outputs toward the least significant bit ar I simultaneously store the shifted results in the register selected by the B address port, thus becoming the new partial sum. During the down shifting process, the \(\mathrm{C}_{\mathrm{n}+4}\) generated in device 4 is internally shifted into the \(Y_{3}\) position of device 4 . At this time, one bit of the multiplier will down shift out of the \(\mathrm{QIO}_{0}\) ports of each device into the \(\mathrm{QIO}_{3}\) port of the next less significant slice. The partial product is shifted down between chips in a like manner, between the \(\mathrm{SIO}_{0}\) and \(\mathrm{SIO}_{3}\) ports, with \(\mathrm{SIO}_{0}\) of device 1 being connected to \(\mathrm{QIO}_{3}\) of device 4 for purposes of constructing a 32 -bit long register to hold the 32 -bit product. At the finish of the \(16 \times 16\) multiply, the most significant 16 bits of the product will be found in the register referenced by the \(B\) address lines while the least significant 16 bits are stored in the Q Register. Using a typical Computer Control Unit (CCU), as shown in Figure 16, the unsigned multiply operation requires only two lines of microcode, as shown in Figure 17, and is executed in 17 microcycles.

\section*{TWO'S COMPLEMENT MULTIPLICATION}

The algorithm for two's complement multiplication is illustrated by Figure 14. The initial conditions for two's complement multiplication are the same as for the unsigned multiply operation. The Two's Complement Multiply Command is applied for 15 clock cycles in the case of a \(16 \times 16\) multiply. During the down shifting process the term \(N \forall O V R\) generated in device 4 is internally shifted into the \(Y_{3}\) position of device 4. The data flow shown in Figure 15 is still valid. After 15 cycles, the sign bit of the multiplier is present at the \(Z\) output of device 1. At this time, the user must place the Two's Complement Multiply Last cycle command on the instruction lines. The interconnection for this instruction is shown in Figure 18. On the next positive edge of the clock, the Am2903 will adjust the partial product, if the sign of the multiplier is negative, by subtracting out the two's complement representation of the multiplicand. If the sign bit is positive, the partial product is not adjusted. At this point, two's complement multiplication is completed. Using a typical CCU, as shown in Figure 16, the two's complement multiply operation requires only three lines of microcode, as shown in Figure 19, and is executed in 17 microcycles.

Figure 14. 2's Complement \(16 \times 16\) Multiply.


Figure 15. Multiply.
\(F=[B]+C_{n}\) if \(Z=0\)
\(F=[B]+[A]+C_{n}\) if \(Z=1 \quad\) Log. \(F / 2 \rightarrow Y, B \quad Q / 2 \rightarrow C\)


\footnotetext{
ed multiply, \(\mathrm{C}_{n+4}\) MSS is internally shifted into position \(Y_{3}\) MSS; 2's complement multiply \(N V\) OVR is internally shifted into
} USS.

Figure 16. Typical Computer Control Unit (CCU).


Figure 17. Micro Code for Unsigned \(16 \times 16\) Multiply.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Micro Memory Address & \begin{tabular}{l}
Am2910 \\
Inst
\end{tabular} & Data Pipeline Reg. & \(\mathrm{I}_{0}\) & \(\mathrm{I}_{4}-\mathrm{I}_{1}\) & \(\mathrm{I}_{8}-\mathrm{I}_{5}\) & OEB & OEY & \(A_{3}-A_{0}\) & \(\mathrm{B}_{3}-\mathrm{B}_{0}\) & \(\mathrm{C}_{\mathrm{n}}\) & Comment \\
\hline \(n\) & LDCT & \(00 \mathrm{~F}_{16}\) & H & 6 & 6 & X & X & \(\mathrm{R}_{2}\) & X & 0 & Load Counter \& \(\mathrm{R}_{2} \rightarrow \mathrm{Q}\) \\
\hline \(\mathrm{n}+1\) & RPCT & \(\mathrm{n}+1\) & 0 & 0 & 0 & 0 & 0 & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{0}\) & 0 & Unsigned Multiply \\
\hline
\end{tabular}

Figure 18. 2's Complement Multiply, Last Cycle.


Figure 19. Microcode for 2's Complement \(16 \times 16\) Multiply.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Memory Address & \[
\begin{gathered}
\text { Am2910 } \\
\text { Inst }
\end{gathered}
\] & Data Pipeline Reg. & ㅇ & \[
\underset{=}{1}
\] & \[
\underset{\sim}{\infty}
\] & \[
\left\lvert\, \begin{aligned}
& \infty \\
& \mathbf{u}
\end{aligned}\right.
\] & 学 & \[
\begin{aligned}
& 8 \\
& 1 \\
& 1 \\
& 8
\end{aligned}
\] &  & \(j^{\text {c }}\) & Comment \\
\hline n & LDCT & \(00 E_{16}\) & X & 6 & 6 & X & X & \(\mathrm{R}_{2}\) & X & 0 & Load Counter \& R \(\mathbf{2} \rightarrow \mathbf{0}\) \\
\hline \(n+1\) & RPCT & n+1 & 0 & 0 & 2 & 0 & 0 & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{0}\) & 0 & 2's Complement Multiply \\
\hline \(n+2\) & X & X & 0 & 0 & 6 & 0 & 0 & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{0}\) & Z & 2's Complement Multiply (Last Cycle) \\
\hline
\end{tabular}

\section*{TWO'S COMPLEMENT DIVISION}

Three instructions on the Am29203 can be used to microcode signed integer division. The algorithm is a non-restoring fourquadrant division, with different preamble and postamble microcode for single- and double-precision integer division.
Single-precision signed integer divide is the most straightforward. Other than division by zero, there is only one case when an overflow results, namely when the most negative number \(\left(-2^{n-1}\right)\) is divided by -1 . This case is detected by the postamble, and does not require separate tests of dividend and divisor in the preamble.
Single-precision division begins by loading the Q register with the dividend. Following this, the negative bit of the status register is tested and the dividend register is loaded with all ones or all zeros so as to sign extend the Q register. The dividend is now a double-precision integer, with the least significant half in the Q register and the most significant half in the dividend register. This double-precision integer is then shifted up one position in preparation for the divide.
The division starts with the First Divide Operation applied to the divisor register ( \(A\) address) and the dividend register ( \(B\) address). This operation computes the quotient sign as the exclusive OR of dividend and divisor sign, and shifts it into the least significant position of the Q register while simultaneously upshifting the double-precision dividend one bit. The First Divide Operation also updates the Sign Compare Flip-Flop (in the MSS) with the exclusive NOR of the dividend and divisor sign, which determines whether the next operation will be an add or a subtract.
The stage is now set for repeated execution of the divide step. Provided correct shift linkages externally \(\left(\mathrm{SIO}_{3}\right.\) on the MSS to \(\mathrm{QIO}_{0}\) on the LSS, and \(\mathrm{QlO}_{3}\) on MSS to \(\mathrm{SIO}_{0}\) on the LSS), each execution of the divide step computes a new quotient bit by either adding the divisor to the dividend (if the sign compare flip-flop is HIGH) or subtracting the divisor from the dividend (if the sign compare flip-flop is LOW), and then producing the exclusive NOR of the sign of the result and the divisor sign as the new quotient bit and the new value of the sign compare flipflop. The upshifted result replaces the partial remainder in the dividend register. The divide step must be repeated \(n-2\) times for \(n\) bit signed integers. Note that the sign compare flip-flop resides on the most.significant slice, and controls the other slices through the zero pin which becomes an input on the intermediate and least significant slices for this operation.

The divide correction step also adds or subtracts the divisor from the partial remainder in the dividend register, but does not upshift the result. The quotient bit shifted into the \(Q\) register by this step is always a 1. This means that the quotient produced by the divide algorithm is always odd; in half the cases, of course, this guess is wrong, and must be corrected. At each step of the divide algorithm, the result of the previous guess is
corrected and a new guess is made. Since correction lags computation of the quotient bits by one step, after the last step there is still one correction needed.

After the divide correction step, the product of quotient and divisor plus the remainder is guaranteed to be equal to the dividend. However, the magnitude of the quotient may be off by one, the sign of the remainder may be wrong, and the magnitude of the remainder may lie between the magnitude of the divisor and zero.

In general, correction is needed when the sign of the remainder and initial dividend differ. For positive quotients, the correction is performed by subtracting one from the quotient and adding the divisor back to the remainder. For negative quotients, the correction is performed by adding one to the quotient and subtracting the divisor from the remainder.
A special case arises when the dividend is negative and the remainder at the end of the division is exactly zero. Since zero appears to be positive in two's complement, it appears that correction is necessary, whereas in fact it is not. This case is easily detected by testing the remainder for zero after the last divide step, and terminating the algorithm if it is. A related problem arises with negative dividends when the partial remainder becomes exactly zero in an intermediate step of the division. Once again, the algorithm sees this as a change of sign, and records the wrong quotient bit. However, in such cases, the final remainder always has the same magnitude as the divisor but has the same sign as the dividend. Since the multiplicative rule is still satisfied, this means that the quotient is too small in magnitude by one. This case is detected by adding the magnitude of the divisor to the remainder and testing for zero, and the correction is the opposite of the "normal" correction: positive quotients are incremented, and negative quotients are decremented. (The remainder should be made exactly zero). Note that the single case that produces overflow for singleprecision signed integer divide may be detected by checking the overflow in this correction step.

The complete algorithm is shown in Figure 20. It is important to remember that the zero status available at the end of the divide correction step is the sign compare flip-flop output, and does not reflect whether the final partial remainder is zero or not. Also, in interruptible systems, the division steps must not be interrupted, because the sign compare flip-flop cannot be saved or restored on the interrupt. However, division can be stopped and resumed provided no instruction in between affects the state of the sign compare flip-flop. Some examples of the correction for single-precision signed divide are shown in Figure 21.
The shift linkage requirements for the divide steps are summarized in Figures 22, 23 and 24. These figures should be used as guidelines when microcoding the fields controlling the shift multiplexers in the 2904 for the divide steps.

Except for the overflow problem, the same algorithm with minor variations in the preamble implements double-precision division. Of course, in this case, sign extension is not needed; instead, the least significant half of the double-precision dividend is loaded in the Q register, the most significant half remains in the "dividend" registers, and, after the initial upshift by one bit, the divide steps are executed exactly as before.
When a double-precision signed integer is divided by a singleprecision signed integer, overflow occurs when the quotient requires more than \(n\) bits to represent. For example \(2^{2 n-2}\) divided by 1 requires \(2 n\) bits to represent. A subset of these cases of overflow is the case where the magnitude of the quotient requires exactly \(n\) bits to represent, leaving no bits for the sign; and a special case of this is where the quotient magnitude is \(2^{n-1}\). The preamble to the divide presented below detects the first two cases in that order, and the postamble detects the last case.
The principle of overflow detection used here is to first calculate the quotient sign, and then calculate \(n+1\) bits of quotient. There is an overflow when bits \(n+1\) and \(n\) differ from the sign. This detects cases where the quotient requires more than \(n+1\) bits to represent (quotient bit \(\mathrm{n}+1\) differs from the quotient sign), and where the quotient requires exactly \(n+1\) bits to represent (quotient bit \(\mathrm{n}+1\) is the same as the quotient sign but quotient bit n differs from the quotient sign). Unfortunately quotients with a magnitude of \(2^{n-1}\) do not fit this scheme: when the quotient is \(-2^{n-1}\), this test indicates an overflow, and when the quotient is \(2^{n-1}\) (an overflow), this test does not show an overflow. In other words, when there is a disagreement between the \(n^{\text {th }}\) quotient bit and the quotient sign, it does not necessarily indicate an overflow; and it is not until all the quotient bits are calculated that it can be decided whether there was an overflow or not. This irregularity is a consequence of the asymmetry of the two's complement number system.
The implementation of this algorithm on the Am29203 is simplified by using a flip-flop on the \(\mathrm{SIO}_{3}\) line out of the MSS to store a copy of the new quotient bit calculated each cycle. If this flip-flop output is connected to a sequencer test multiplexer input, then testing of quotient bits can be pipelined. This is useful in the preamble for overflow detection and in the postamble for the correction steps.
The microcode for the double-precision divide is outlined in Figure 25. The divide operation is first applied to the dividend and divisor without the initial upshift of the dividend. This calculates the quotient sign and updates the sign compare flipflop. At the end of the cycle, the complement of the quotient sign is setup at the input to the external flip-flop, which can be tested in the next cycle to determine the quotient sign. However, the divide first operation has the side-effect of upshifting the dividend. This side-effect is undesirable because it prevents the divide step from calculating the \(n+1^{\text {th }}\) quotient bit. For this reason, the dividend is shifted down again with the sign bit of the status register selected as the linkage in. Following this, a divide step is executed and the algorithm terminated on overflow if the quotient bit calculated by the divide steps is different from the sign bit. The algorithm proceeds to calculate the
\(n^{\text {th }}\) quotient bit. If the \(n^{\text {th }}\) quotient bit agrees with the quotient sign, there still may be an overflow if the quotient turns out to be \(2^{n-1}\); and if the \(n\)th quotient bit disagrees with the quotient sign, there still may not be an overflow if the quotient turns out to be \(-2^{n-1}\). So at this stage the algorithm cannot decide whether there is an overflow or not based on the quotient bit; instead, it proceeds to calculate the remaining quotient bits, retaining the information about potential overflow in the control flow.

After the last divide step (which performs "divide correction"), the algorithm again tests the state of the external flip-flop, "storing" it in the control flow. This last state of the divide flipflop would be lost without the external flip-flop, since the quotient bit shifted in is always a \(i\) in this case. The two's complement divide op is used instead of the divide correction so as to have access to the sign compare on the \(\mathrm{SIO}_{3}\) line. (The state of the external flip-flop after this cycle determines whether the correction requires incrementing or decrementing of the quotient). Note that the remainder now needs to be shifted down by one bit; this is done concurrently with the testing of the external flip-flop, and the microcode also updates the \(Z\) bit of the status register. In the next cycle, the Z bit is tested and the algorithm terminates if it is set. This is followed by a test for negative remainder and dividend. If the test fails, a branch is taken to the test for positive dividend and remainder. Concurrently, the remainder is added to the divisor with IEN high and the \(Z\) flag again updated. This is the first part of the test for the absolute value of the remainder being equal to the divisor. In the next cycle, the Z flag is tested; if it is set, a branch is taken to the correction step. Again, in the same cycle, the divisor is subtracted from the remainder with IEN high to complete the magnitude test.

In the following cycle, the Z flag is tested as before. If it is not set, the algorithm terminates. The test for positive dividend and remainder computes the OR of the remainder and initial dividend with EN high, and updates the N flag of the status register. In the next cycle the algorithm tests the N flag and exits if it is low, indicating that the dividend and remainder signs agreed. Otherwise, the correction steps are executed.

The algorithm has been written for fastest execution, not shortest possible microcode. The technique of using the control flow to "remember" states of flags leads to duplication of code but saves cycles on testing flags and branching. At the end of the algorithm, there are two places where the quotient is incremented. One of these sequences corresponds to the "normal" case (quotient bit n agreed with quotient sign). This microcycle produces an overflow when the quotient is \(2^{n-1}\). The other sequence where the quotient is incremented corresponds to the case where the \(n^{\text {th }}\) bit of quotient disagreed with the quotient sign. This case is an overflow unless the quotient is \(-2^{n-1}\); however, then an overflow is produced by the correction, when \(2^{n-1}-1\) is incremented. Hence, in this case, if the correction does not produce an overflow, then there is an overflow.


Figure 20b. Single-Precision Divide Microcode
```

 . Y\leftarrowR_RIVSR, UPDATE Z FLAG;
 2..IF Z GOTO OVERFLOW, Q\leftarrowRDIVDND, UPDATE N
 3. IF NOT N GOTO UPSH, RREM }\leftarrow
 4. R
 5. UPSHIFT RREM.Q
 6. FOR (}n-3\mathrm{), FIRST DIVIDE OP (RREM, RDIVSR);
 7. ENDFOR, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
 8. DIVIDE "CORRECTION" OP (RREM, RDIVSR);
 9. Y\leftarrowRRRM, UPDATE Z,V
 10. IF Z GOTO DONE, Y\leftarrowRREM AND RDIVDND, UPDATE N:
 11. IF NOT N GOTO NORMCHK, Y\leftarrowRDIVSR - RREM, UPDATE Z;
 12. IF Z GOTO EQMAG, Y\leftarrowRDIISR + RREM, UPDATE Z;
 13. IF Z GOTO EQMAGNXT, Y\leftarrowQ, UPDATEN;
 DONE: 14. IF NOT V RETURN, RQUOT \leftarrowQ;
15. GOTO OVERFLOW;
NORMCHK: 16. Y\leftarrowRRREM OR RDIVDND, UPDATE N;
17. IF NOT N GOTO DONE, Y\leftarrowQ, UPDATE N;
18. IFN GOTO ADDONE;
SUBONE: 19. R
19. RREM\leftarrowRRREM + RDIVSR;
EQMAG: 21. Y\leftarrowQ,UPDATE N;
EQMAGNXT: 22. IFNGOTO SUBONE;
ADDONE: 23. RREM\leftarrowRRREM - RDIVSR;
OVERFLOW: 25. (....)OVERFLOW MICROCODE)

```

Test for divisor \(=0\)
Test quotient sign for sign extension
zero extend into RREM
One extend if negative
Logic upshift R REM and \(Q\), zero fill
Loop setup: load 2910 counter and push PC
RREM on \(B\) address; repeat \(n-2\) times
Shift in ' 1 ' into \(\mathrm{QIO}_{0}\) of LSS
Test remainder for zero
Done if remainder \(=0\), check for dividend
and remainder being negative
First half of magnitude check
First half of magnitude check
Other half of magnitude check
If magnitude equal, then go test
sign of \(Q\) else return
Check if remainder and dividend positive
If yes, exit
increment negative quotients
This can never overflow since \(Q\) is odd
Decrement negative quotients
This could overflow for positive Q

Note: Where Y is specified as destination, use \(\overline{\mathrm{IEN}}=\mathrm{HIGH}\).

Figure 21. Examples of Single-Precision Signed Divide
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Operation } & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Before \\
Correction
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c} 
After \\
Correction
\end{tabular}} & \multirow{3}{*}{ Comments } \\
\cline { 2 - 4 } & Q & REM & Q & REM & \\
\hline \(12 \div 5\) & 3 & -3 & 2 & 2 & \multirow{3}{*}{ Normal correction: decrement positive } \\
quotients, increment negative quotients
\end{tabular}

Figure 22. Double Length Normalize/First Divide Operation


Figure 23. Two's Complement Divide


\section*{Figure 24. Two's Complement Divide Correction}


Figure 25. Double-Precision Signed Division Microcode
```

 Q}\leftarrow\mp@subsup{R}{\mathrm{ DIVDNDLSH}}{
 RREM}\leftarrowR\mathrm{ RIVDNDMSH
 DIVIDE FIRST OP (RREM, RDIVSR), UPDATE N;
 . IF EXTQFF GOTO NEGQUOT, DOWNSH RREM - Q WITH N FILL
 4. TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
 6. IF EXTQFF GOTO OVERFLOW, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
 7. IF EXTQFF GOTO POSSBLOVF, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR)
 LOOP: 8. FOR (}n-5\mathrm{), TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR)
. ENDFOR, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
10. TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR), UPDATE N, QIO }
11. IF EXTQFF GOTO SUB, RREM }\leftarrowDOWNSH RREM, SIO O \& N, UPDATE Z
12. IF Z GOTO DONE, Y\leftarrow RREM AND RDIVDNDMSH, UPDATE Z,V;
13. IF NOT N GOTO NORMCHK1, Y \leftarrowRRREM + RDIVSR, UPDATE Z;
14. IF Z GOTO CORRECT1, Y\leftarrowR REM - RDIVSR, UPDATE Z;
15. IF Z GOTO CORRECT1;
DONE: 16. IF NOT V RETURN, RQUOT }\leftarrow Q
17. GOTO OVERFLOW
NORMCHK1: 18. Y\leftarrow RREM OR RDIVDNDMSH, UPDATE N, V
18. Y }\leftarrow\mathrm{ RREM OR RDIVDND
CORRECT1: 19. R NOT N GOTO DONE;
20. RREM }\leftarrow\mp@subsup{R}{\mathrm{ REM }}{+}+\mp@subsup{R}{\mathrm{ DIVSR;}}{\mathrm{ 2 }
SUB: 22. IF Z GOTO DONE, Y\leftarrowR;REM AND RDIVDNDMSH: UPDATE Z, V;
23. IF NOT N GOTO NORMCHK2, Y \leftarrow RREM + RDIVSR, UPDATE Z;
24. IF Z GOTO CORRECT2, Y\leftarrow RREM - RDIVSR, UPDATE Z;
25. IF Z GOTO CORRECT2;
26. GOTO DONE;
NORMCHK2: 27. Y \leftarrow RREM OR RDIVDNDMSH, UPDATE N, V
28. IF NOTN GOTO DONE;
ll
30. Q}\leftarrowQ+1, UPDATE V
31. GOTO DONE;
NEGQUOT: 32. TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
33. IF NOT EXTQFF GOTO OVERFLOW, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
34. IF EXTQFF GOTO LOOP, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
POSSBLOVF: 35. FOR (n-5), TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
36. ENDFOR, TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR);
37. TWO'S COMPLEMENT DIVIDE OP (RREM, RDIVSR), UPDATE N, QIO O}\leftarrow1
38. IF NOT EXTQFF GOTO OVERFLOW, RREM }\leftarrow
39. Q}\leftarrow\textrm{Q}+1, UPDATE V
40. IF V GOTO DONE;
41. GOTO OVERFLOW;

```

\section*{BYTE SWAP}

The multi-port architecture of the Am2903 allows for easy implementation of high- and low-order byte swapping. Figure 26 outlines a byte swap implementation utilizing two data ports. Initially, the lower order 8-bit byte is stored in devices 1 and 2, while the high-order byte is in devices 3 and 4 . When the user wishes to exchange the two bytes, the register location of the desired word is placed on the B address port. When the byte swap line is brought LOW, the bytes to be swapped will be flowing from the DB ports of the Am2903 through the Am2958/2959 Three-state Buffers. The outputs of the threestate buffers are permuted such that the byte swap is achieved.

The resultant permuted data is presented to the DA ports of the Am2903 where it is re-loaded into the memories of the Am2903 on the next positive edge of \(C P\) using the source and function commands of \(F=A\) plus \(C_{n}\left(C_{n}=0\right)\) for the Am2958 or \(F=A\) plus \(C_{n}\left(C_{n}=0\right)\) for the Am2959 and the destination command F Y, B.

A higher speed technique for achieving the byte swap operation is illustrated in Figure 27. Instead of inputting the permuted data via the DA ports, the permuted data is entered via the \(Y\) input/output ports with \(\bar{O} E_{Y}\) held HIGH. This technique bypasses the ALU, thus allowing faster operation. The Am2903 destination command \(\mathrm{F} \rightarrow \mathrm{Y}, \mathrm{B}\) should be used.

Figure 26. Byte Swap.


Figure 27. High Speed Byte Swap.


\section*{BCD OPERATIONS WITH \\ THE Am29203}

\section*{BCD FUNCTIONS}

Binary Coded Decimal (BCD) numbers are a means to represent decimal numbers in binary form such that each digit is represented by four bits of its equivalent binary value. They are useful in applications where there is a considerable amount of interaction with the decimal number representation. The value of the four binary bits corresponding to each BCD digit does not exceed nine.

As part of the special instruction set, the Am29203 can convert numbers between binary and BCD representations. It also performs basic arithmetic operations on BCD numbers.

\section*{BINARY TO BCD CONVERSION}

This instruction, when executed several times, allows conversion from binary to BCD numbers. Using the same number of bits, the binary representation of numbers has a larger range of values than a \(B C D\) representation. Hence, care must be taken to see that the value of the binary number does not exceed the BCD range before using this instruction. Multiprecision representations where the width of the BCD number is larger than the width of the system, allows a larger range on numbers. The binary number may be stored as multiprecision as well. Usually multiprecision representations are integer multiples of the width of the system.

Figure 28 shows a flow chart for a single precision conversion in a 16 -bit wide system. It involves executing the Binary to BCD conversion instruction 16 times.
In case of single-precision, this instruction requires that the binary number be present in the Q register and uses one of the RAM registers for storing the \(B C D\) number during and after the conversion. The RAM register is cleared before use. Each instruction is composed of two steps. The first step adds a binary value of three to each BCD digit which is five or greater as a preadjustment for a shift which follows. This addition is performed independently over each slice and the carry bits from each slice are ignored. The second step shifts up the Q register and the RAM register with the interconnections as in Figure 29, for a 16 -bit system. The Am29203 executes both the steps in one microcycle. The number of shifts have to be a multiple of four to obtain a meaningful result.

The Am29203 also has another special instruction to facilitate multiprecision Binary to \(B C D\) conversions. This instruction referred to as "Multiprecision Binary to BCD Conversion" does the same action as the "Binary to BCD Conversion" except for the shifting of the Q register.

The flow chart for the simplest double precision Binary to \(B C D\) conversion algorithm in a 16 -bit system is shown in Figure 30. Initially the Q register stores the most significant half of the binary number. Two registers R0 and R1, which are both cleared initially, are used for storing the most significant and least significant half of the BCD number after conversion respectively. The shift for each binary bit requires two microcycles. The Binary to BCD conversion instruction is executed first of R1 and the most significant bit from R1 that is shifted out is stored as the Mc or carry bit of the Am2904. The shift linkages for this step are shown in Figure 31. Next the Multiprecision Binary to BCD conversion instruction is executed so that R0 is also adjusted and the Mc or carry bit is shifted in. These two instructions together account for one equivalent shift of the double precision number as a whole. After 16 such shifts, the \(Q\) register is loaded with the least significant half of the binary number and the same operations are performed again 16 times. Once the single precision binary number is converted to a double precision \(B C D\) number, then the algorithm can be terminated after 16 shifts of the binary number.

Figure 28. Binary to BCD Conversion - Single Precision


Figure 29. Binary to BCD Conversion


Figure 30. Double Precision 16-Bit Binary to BCD Conversion

* - Operations occur in same cycle in microcode.

Figure 31. Shift Linkages During Double Precision Binary to BCD Conversion
a) Binary to BCD on R 1

b) Multiprecision Binary to BCD on RO


The above algorithm can be made more efficient by noting that the shifting of R0 is not necessary for the first few cycles.
This is because mostly zeros are shifted into the already cleared register for the most part of the first 16 shifts of the double precision number. The flow chart for implementing this on double precision representations in a 16 -bit system is shown in Figure 32. The most significant half of the binary number is first loaded in the Q register. For the first 13 cycles it is sufficient to shift only the

Figure 32. 16-Bit Double Precision Binary to BCD Conversion

* - Operations occur in same cycle in microcode.

R1 register during conversion. After this both R0 and R1 have to be shifted as cascaded registers. This is because the value of the largest unsigned 16 -bit binary number is 65535 and thus requires 19 bits for representing in BCD. As a result, a non-zero bit may be shifted out of R1 after 13 shifts and it is necessary to start shifting \(R 0\) as well after this. After the first 16 shifts on the \(Q\) register, the least significant binary number is loaded in \(Q\) and 16 more double precision shifts are done. The shift-linkages while shifting R0 and R1 are same as the previous case and are shown in Figure 31.

\section*{BCD TO BINARY CONVERSIONS}

The BCD to Binary conversion instruction essentially reverses the steps of the Binary to BCD instruction described earlier. The \(B C D\) number is initially present in one of the RAM registers and the \(Q\) register is used during the conversion to store the binary equivalent. The BCD to Binary conversion algorithm requires that the BCD number first be shifted one bit down and then an adjustment done on the BCD digits, which subtracts three from each BCD digit which is eight or greater. However, since the Am29203 has its shifter after the ALU section, the BCD to Binary conversion instruction first performs the adjustment for a previous shift and then performs the shift in preparation for the next instruction. A flow chart for this conversion is shown in Figure 33. The BCD number in R0 is first shifted down one bit to load its least significant bit into the most significant bit of the Q register. After this, the BCD to Binary conversion instruction is executed 15 times to perform the necessary adjustments and shifts successively. The interconnections are shown in Figure 34. Thus, 16 shifts and 15

Figure 33. BCD to Binary Conversion - Single Precision

adjustments are performed on the 16 -bit number. The adjustment on the final shift is not required as the binary number is fully formed anyway and the BCD number is zero at this stage.
As in the case of the Binary to BCD conversion instruction, it may be noted that the adjustment is done independently over each slice and the carry bits play no role in this adjustment.
The scheme for converting multiprecision \(B C D\) numbers to binary is similar to the one outlined in the Binary to BCD conversion section. The simplest, but not the most efficient scheme, uses the flow chart shown in Figure 35 for a double precision number in a 16 -bit system. The shift linkages are shown in Figure 36. Initially, the most significant half of the BCD number is stored in R0 and the least significant half is in R1. The Q register is used for storing a part of the binary equivalent during and after the conversion. The BCD number as a whole has to be first shifted down one bit. First RO is downshifted with the linkages shown in Figure 36a so that its least significant bit is collected in the Mc or carry flip-flop of the Am2904. Then R1 and Q are shifted down as shown in Figure 36 b so that Mc is loaded in the MSB of R1. The next two instructions perform the adjustment on this shift and also downshift the adjusted numbers by one bit in preparation for the next adjust and shift. The Multiprecision BCD to Binary conversion instruction is executed on R0 so as to adjust and downshift RO and its LSB is stored in Mc as shown in Figure 36c. The BCD to Binary conversion instruction following this adjusts R1 and downshifts R1 and Q with Mc being loaded into the MSB of R1 as shown in Figure 36d. These two instructions are performed 15 times in a loop. As a result, R0 and Q get shifted 16 times including the initial shift. Since the contents of R0 are now zeros, it is no longer necessary to shift it further. The Q register contains the least significant half of the binary result which is transferred to R2. After this the BCD to Binary conversion is performed on R1, 16 times with the linkages shown in Figure 36e, so that a zero is input in the MSB of R1. The most significant half of the binary number is available in the Q register at the end of the operation. The double precision BCD to Binary Conversion Algorithm can be made more efficient for certain statistical distribution of numbers. This is possible when it is recognized that the most significant half of the BCD number is equal to zero in the beginning and only a single precision conversion is required on the least significant half. Also when the contents of RO, which initially contains the most significant half of the BCD number, become zero before the first 16 cycles, it is no longer necessary to perform a shifting on it.
One such algorithm is outlined in Figure 37. The initial and final contents of the registers are the same as in Figure 35. Initially, it is tested to see if RO is equal to zero. If it is, then a single precision conversion is performed on R1 so that the least significant half of the binary equivalent is available in the \(Q\) register. This is then transferred to R2 and Q is loaded with a zero. If R0 is not zero, then it is downshifted into Mc as shown in Figure 36a, and the status is loaded in this step to see if the shifted number had reached zero. R1 cascaded with \(Q\) is then downshifted into MC as shown in Figure 36b, and the status is not loaded in this step so

Figure 34. BCD to Binary Conversion


Figure 35. Simple 16-Bit Double Precision BCD to Binary Conversion


Figure 36. Shift Linkages for Double-Precision BCD to Binary Conversion

a)

c)

a) Shift RO
b) Shift R1
c) Multiprecision BCD to BIN on RO
d) BCD to BIN on R1 with MC input
d)

BCD to BIN on R1 with Zero Input
that the previously set status can be used for a conditional branch later on while executing a loop. The Multiprecision BCD to binary conversion is performed on RO and a simultaneous branch is taken if the previously loaded status indicated R0 to be zero. If RO is non-zero then the algorithm does a double precision conversion on R0 and R1 15 times. The status is set while shifting R0 and is left unchanged while shifting R1 so that a branch can be taken when RO becomes zero. If it does, the conversion is performed on R1 alone for the remaining cycles. After the first 16 shifts on R1 it may be necessary to unload the \(Q\) register in to R2 before completing the last 16 cycles of conversion. This algorithm trades off the number of lines of microcode for a statistically faster conversion. This happens whenever small numbers are being dealt with more frequently in a system where multiprecision numbers may also be required less often. The advantage increases with wider systems.

\section*{DIVIDE BY TWO ADJUST}

This instruction is useful in dividing BCD numbers by two. It should be used after an instruction which shifts the number down by one bit. The instruction essentially performs a correction on the downshifted number to obtain a valid BCD representation again. The correction performed is identical to the \(B C D\) to Binary conversion instruction, but no shifting is done.

\section*{DECREMENT BY ONE OR TWO}

This function available in the Am29203 does not require the storing of commonly used constants such as one or two in the RAM registers or memory. The instruction decrements by one when Cn is high and by two when Cn is low. The instruction is also useful for addressing byte addressable memories in a 16-bit wide system.

\section*{BCD ADD AND SUBTRACT}

The Am29203 provides instructions to add or subtract two BCD numbers in one microcycle. There are two subtract instructions whereby the \(R\) and \(S\) operands can be subtracted from each other. When the BCD addition or subtraction is performed on \(B C D\) numbers the result is a valid \(B C D\) number. The result is undefined if either of the operands is an invalid BCD representation, so considered when any of the groups of four bits over a slice has a value greater than nine.
The Carry, Propagate and. Generate signals have a different significance in BCD arithmetic as compared to binary arithmetic. During addition, the Carry output from a slice indicates that the result of the addition was greater than nine over the slice and that a one should be added to the next BCD digit. In order to speed up the addition process, the Look-Ahead Carry Generator, Am2902, can stili be used as before. In case of BCD additions, Propagate signifies that the result equals nine and if there is a carry input to the slice then the carry will have to be propagated out of the slice. The Generate signal while performing additions signifies that the result is already greater than nine and a carry output needs to be generated whether or not the carry input exists. The state of the Propagate signal for results greater than nine does not matter because the Generate signal produces a carry output anyway. In case of subtract operations, the Carry output may be interpreted as a "borrow". Borrowing is necessary in BCD arithmetic when the digit to be subtracted is larger than the digit it is subtracted from. If both the digits are equal then a borrow from a higher digit is not necessary unless the previous digit borrows too. This is equivalent to a propagation of the borrow signal and is indicated on the Propagation line. Whenever borrowing is necessary, irrespective of the previous digit, then the Generate signal is active.
Generate overrides the Propagate and whenever Generate is active and the state of the Propagate does not matter. The Carry output signal, \(\mathrm{Cn}+4\), goes low whenever a borrowing is done from a higher order digit.

\section*{BCD MULTIPLICATION AND DIVISION}

Most general purpose machines do not have hardwired combinatorial logic to perform multiplication and division because of cost trade-offs. In most applications the multiplications are performed at least one order of magnitude or more less lower case often than adds, division being at least another order of magnitude again. Therefore, the small frequency of use and high hardware cost of combinatorial methods justify implementing divide and multiply with microcode algorithms. Algorithms for BCD multiply and divide parallel some of the more classical binary methods with little change. These algorithms are built of simple operation, such as shift, add, and subtract which the Am29203 provides in both binary and BCD.

\section*{MULTIPLY}

In its most simple form, multiplication can be performed by repeatedly adding the multiplicand to itself as numbered in the multiplier. This method however is very costly in CPU cycles. With a slight modification in concept the computation time can be reduced significantly.

An improved method starts by zeroing the accumulator and adding to it the multiplicand as many times as numbered by the least significant digit (LSD) of the multiplier. The multiplicand is then multiplied by ten (a shift of 4 bits left) and added to the accumulator as numbered by the next least significant digit of the multiplier. The algorithm iterates until the most significant digit of the multiplier is used. This method achieves an improvement ratio of approximately \(10^{n}-1 / n \times 9\) (where \(n\) is the number of digits in the multiplier).

The previous method can be further improved by precomputing and holding the nine multiples of the multiplicand in a register file. The correct multiple can be selected by routing the multiplier digit onto the register file address bus. Multiply by ten of the multiplicand can be performed by adding it to a shifted accumulator rather than shifting the multiplicand. The improvement ratio over the previous method is approximately \(\mathrm{n} \times 9 / \mathrm{n}+10\) (where n is related to the number of digits in the multiplier).

\section*{MULTIPLICATION HARDWARE IMPLEMENTATION}

The preceding paragraphs have discussed the theoretical algorithm and hardware for BCD multiplication. Figure 37 shows a particular implementation of hardware using the Am29203 which will do ten's complement BCD multiplication using the last method discussed.

The purpose of the hardware around the Am29203 can best be described by grouping it into three sections. In the lower left corner is the logic which detects overflow conditions during BCD adds and subtracts. The buffers over the MSD (Most Significant Device) are used for sign fill during BCD shift. When a BCD shift is being performed the BCD number is brought out on the DB bus and passed to the next lower digit via the DA port and then passed through the ALU into the RAM. However, on the MSD the sign digit is wrapped around from \(\mathrm{DB}_{\text {MSD }}\) to DAMSD. The final group of logic is the register A which holds a link digit in order to implement multiprecision BCD shifts. Register A also serves to hold the LSD (Least Significant Digit) of the multiplier so it can be presented to the A address bus.

Figure 38 shows a flow chart of the ten's complement multiply microcode.

The top box in the chart contains instructions to clear the accumulator and generate the multiples of the multiplicand. It takes eleven cycles to execute. The next box initializes the counter in the sequencer to one less than the desired number of iterations. It also loads the LSD of the multiplier into register A.
The main part of the multiplication code is the inner loop. Register A selects which multiple of the multiplicand will be added to the partial product in the accumulator. The next two instructions perform a BCD shift of the accumulator (R12, R13) with sign fill. The last instruction BCD-shifts the multiplier, loads link register A with the LSD, while checking the loop counter. The loop is executed seven times.
The last group of instructions performs an adjust according to the sign digit which is now in the LSD and register A. In radix complement forms of numbers (such as ten's complement), the

Figure 37. Ten's Complement BCD Multiplication Implementation


Figure 38. Ten's Complement BCD Multiplication

sign digit has a numeric weight of \(-1 \times \mathrm{rn}^{n}\) where \(r\) is the radix and n is the number of digits including the sign. Therefore, register \(\mathbf{A}\) is used to select 0 or the multiplier and subtract it from the multiplicand.
In this multiply algorithm there is a buffer digit between the sign digit and the digit with the first significant data. The buffer digit prevents an overflow from happening during the addition in the multiply loop. This condition could be ignored if overflow was detected after addition and a routine were conditionally called to handle the case. The overflow condition can be corrected by subtracting one from the sign digit after the BCD shift. The buffer digit can also be avoided by converting the numbers to positive sign magnitude numbers, multiplying them, and then adjusting the result according to the product of original signs of multiplier and multiplicand. The final option is to use the hardware shown in Figure 39. This hardware, during shift, shifts in the sign, if it was an overflow a 1 is subtracted from the sign.

\section*{DIVISION IN BCD}

As pointed out previously, the algorithms for binary can be applied to BCD. BCD division can be accomplished with repeated subtractions of the divisor from the dividend and keeping count. This method can be very costly if the dividend is big and the divisor very small. However, it helps to explain the method below which called a restoring radix ten division.
Without loss of generality, it will be assumed that both the dividend and the divisor are fractions, as well as the generated quotient. Also assumed is that the dividend and divisor are normalized (which implies keeping track of exponents implicitly or explicitly) and that both are positive.
The restoring division algorithm starts by subtracting the divisor from the dividend until a negative partial dividend is created. The divisor is then added back to the partial dividend to restore to a positive partial dividend. A count is kept of how many divisors went into the dividend before there was a negative dividend. This count is the most significant digit of the quotient. The partial dividend is then shifted up one digit (multiply by radix ten). The procedure of subtracting the divisor and counting is repeated for each digit in the quotient. This method is
similar to the scheme which is taught in grade school where trial divisors are tested and finally subtracted from the dividend. After each division the trial divisor is moved over one column.
On the average the restoring algorithm must perform five subtracts and one addition for each digit in the quotient. The addition may be eliminated by performing a non-restoring algorithm. This makes approximately \(20 \%\) improvement in execution time.

The non-restoring division algorithm proceeds like the restoring algorithm until the negative partial dividend at which point the dividend is shifted up one BCD digit without restoring. The count which was kept is placed into the most significant digit of the quotient. The counter is then set to 9 and is decremented each time the divisor is added to the dividend. The adding and decrementing is continued until the partial dividend is positive. The contents of the counter is then placed in the second most significant digit of the quotient and the partial dividend is shifted up on BCD digit. At this point the algorithm is started over with the subtracting and counting.

\section*{HARDWARE IMPLEMENTATION OF DIVISION}

Of the shift and subtract class of algorithms discussed above, non-restoring was the best because it eliminated the restoration step. A further improvement can be made on the algorithm. Instead of repeatedly subtracting the divisor from the dividend, binary weighted multiples may be subtracted in a successive approximation sequence.
The algorithm starts by subtracting eight times the divisor from the dividend, then four times the divisor, two times divisor, and finally the divisor. Each time a multiple is subtracted, the sign of the result is inspected. If the sign does not change, then a one is placed in the corresponding bit of the quotient digit. For example, if eight times the divisor worked, then a one would be placed in the most significant bit of the quotient digit ( \(2^{3}\) ). If the sign changes, then a 0 is placed in the corresponding bit position. When the sign changes during operations with the next lower binary weighted multiples, the algorithm continues in a similar fashion but addition is performed rather than subtraction. As long as the result of each addition is negative, 0 is entered into the appropriate quotient digit. The algorithm continues adding whenever the partial dividend is negative and subtracting when it is positive.

Whenever one times the divisor multiple has been added or subtracted from the partial dividend, the partial dividend is shifted up (times ten) by one BCD digit and calculation of the next significant digit of the quotient begins.
Calculation of the next quotient digit starts with subtracting eight times the divisor from the partial dividend if the partial dividend is positive. If the partial dividend is negative, it is an indication that the divisor was subtracted from the partial dividend once too often. A correction must therefore be added to the partial dividend. Since the partial dividend is shifted up by one digit, the correction is performed by adding in ten times the divisor. These steps however, can be combined into one step by adding two times the divisor rather than adding ten times and then subtracting eight times the divisor.
The flow chart in Figure \(4 \uparrow\) is an implementation of the above algorithm. This implementation assumes that the numbers are positive signed normalized fractions to begin with. It first generates the multiples of the divisor and stores them in the register file. Next, the counter in the sequencer is loaded with two less than the desired number of times through the loop.
The major block of the flow chart that follows, peiforms the division. This flow chart can be viewed as a state diagram which not only instructs the Am29203 what to perform, but also contains the sign of the dividend as state information. The left hand column represents the states where the dividend is positive and the right hand column is where the dividend is negative. When the dividend is positive, subtractions are performed and when it is negative, additions are performed. Switching between the two columns is performed by checking the carryout of the MSD. If the dividend is positive and the subtraction results in no carry-out, then the new partial dividend is negative at which point the algorithm flow is switched right to the column. If the dividend is negative and the subtraction results in a carry-out, then the new partial dividend is positive at which point the algorithm flow switches to the left column.
The last box which is a BCD shift left (times ten) of the dividend also shifts in the quotient digit which was assembled in a shift register. During the last shift instruction, the counter can be tested and the algorithm terminated on zero count.
Figure 40 shows the hardware to perform the division. Besides the Am29203, there are two other important groups of logic

Figure 40. BCD Division Implementation


Figure 41. BCD Division

shown in the diagram. The carry (sign) is fed into a shift register which assembles each quotient digit. When the dividend is shifted up one digit, the new quotient digit is shifted into the LSD of the least significant half of the dividend as the MSD is shifted into a link register. The link register can then be shifted into the LSD of the most significant half of the dividend.
In a non-pipelined system, the total algorithm takes 5 cycles per quotient digit and 5 cycles to set up. Therefore, 16 digits divided by 8 digits in an 8 digit machine will take 45 cycles to execute.
In a pipelined system the status flags, (such as carry-out) are registered in order to break up long delay paths. This results in shorter microprogram instruction cycle time which is set in accordance with the longest delay path in the machine. A branch based on the carry-out cannot be performed in the same cycle as the arithmetic operation and therefore an extra cycle must be added for each conditional branch. The CTR conditional branch, decrement and BCD shift happens in one cycle because the CTR zero flag is not registered in the Am2910. The algorithm, therefore, takes 85 cycles to execute in a single pipelined system.

The execution time, in a pipelined system, may be substantially decreased by implementing a conditional \(B C D\) ADD or SUBTRACT, thereby eliminating the need for a separate conditional branch. In order to achieve such, a multiplexer is placed in the Am29203 instruction path. During normal operation instructions are passed through it from the pipeline register to the Am29203. During BCD DIVISION the multiplexer is used to select between BCD ADD or SUBTRACT based on the registered carry-out of the previous ADD or SUBTRACT.
The resulting algorithm, shown in Figure 42, executes in 5 cy cles for each BCD digit. Although it takes just as many cycles as the non-pipelined system, there is a net gain because the pipelined system has a faster cycle time than the non-pipelined system.

\section*{WORD/BYTE OPERATIONS}

The Am29203 allows for Word/Byte Operations. Figure 45 pictures a 16-bit system which is capable of doing word or byte (lower half of word) operations.
In the Byte mode the BYTE/WORD line is HIGH which in turn asserts a LOW on the \(\overline{\mathrm{W}} / \overline{\mathrm{MSS}}\) input of Device 2 making it the MSS device. At the same time the multiplexer selects the status flags of Device 2. The \(\overline{\mathbb{E N N}}\) and \(\overline{\mathrm{OE}_{Y}}\) of Devices 4 and 3 are forced HIGH which disables them from writing into RAM or onto the Y bus.
In the word mode Device 4 is the MSS device and the multiplexer selects its status flags. The \(\overline{\operatorname{EN}}\) inputs are brought low which enables writing in to RAM. The \(\overline{\mathrm{OE}_{Y}}\) is also allowed to go low.

\section*{MEMORY EXPANSION}

The Am29203 allows for a theoretically infinite memory expansion. Figure 44, Am29203 and Am29707, pictures a 4-bit slice of a system which has 48 words of RAM and 16 words of ROM. RAM storage is provided by the Am29203 and the Am29707s. The Am29707 RAM is functionally identical to the Am29203 RAM. The Ain27S19 is used to store constants and masks and is addressable from address port A only. The system is organized around five data buses. Inter-bus communication may be done through the Am29707 or the Am29203. The memory addressing scheme specifies the data source for the R input of the ALU eminating from the register locations specified by address field \(A . A_{0-3}\) addresses 16 memory locations in each
chip while address bits \(\mathrm{A}_{4-6}\) are decoded and used for the output enable for the desired chip. The B address field is used to select the S input of the ALU and the C field is used to specify the register location where the result of the ALU operation is to be stored.
Bits \(\mathrm{B}_{0-3}\) are for source register addressing in each chip. Bits \(B_{4}\) and \(B_{5}\) are used for chip output enable selection. \(C_{0-3}\) access the 16 destination addresses on each chip while bits \(C_{4}\) and \(\mathrm{C}_{5}\) control the Write Enable of the desired chip. The source and destination register address are multiplexed such that when the clock is HIGH, the source register address is presented to the B address ports of the RAMs. The Instruction Enable (IEN) is HIGH at this time. The data flows from the \(Y\) port or the internal B port as selected by the decoder whose inputs are \(B_{4}\) and \(B_{5}\). When the clock goes LOW, the data eminating from the selected \(Y\) outputs of the Am29707s and the RAM outputs of the Am29203 are latched and the destination address is now selected for use by the RAM address lines.

Figure 42. BCD Division (Pipelined System Configuration)

*EXECUTES IN TWO CYCLES

When the destination address stabilizes on the address lines, the IEN pin is brought LOW. When the WRITE output goes LOW as part of a write data instruction execution, address bits \(\mathrm{C}_{4}\) and \(\mathrm{C}_{5}\) of the corresponding decoder are enabled. The selected decoder line will go LOW, allowing the desired memory location to be written into. To switch between two- and three-address architecture, the user simply makes the source and destination addresses the same; i.e., \(\mathrm{B}_{0-3}=\mathrm{C}_{0-3}\) and \(B_{4-5}=C_{4-5}\). For two-address architecture, the MUX is removed from the circuit.

The advantage of separating the write signal from the \(\overline{\operatorname{IEN}}\) signal is that writing can be controlled over less than the full word length. For example, in a 16 -bit system, the lower two devices can have one IEN signal and the upper two devices a second \(\overline{I E N}\) signal. Controlling these two signals separately allows data to be written in either byte without disturbing the other byte. The 2- and 3-address architecture is handled in the same way as with the Am2903.

Figure 43. Statistically Efficient 16-Bit Double Precision BCD to Bin Conversion


Figure 44. Expanded Memory for Am29203/29707


Figure 45. Connections for Word/Byte Operations (Am29203 Only)


\title{
MICROPROGRAMMED SYSTEM DESIGN \\ A family of bit-slice chips provides modules for customizing processors and microcode
}

\section*{by Sunil Joshi and \\ Deepak Mithani}

Microprogramming is used in systems with large and very large scale integration building blocks, as well as within the integrated circuits themselves for implementing the control sections. In systems, the technique is applied wherever conventional microprocessors fall short of speed and adaptability requirements. With microprogrammable large scale integration building blocks, customizing computer architecture to suit various applications becomes easier, faster, and more efficient. Larger systems that use a microprogrammed approach can remove speed bottlenecks and increase throughput. Embedding the most frequently used software in microcode provides a speed advantage. Possibilities include word processing routines, compilers, database managers, and interpreters. To cut software size, microcode can directly execute higher level languages, such as Pascal or C. Moreover, developing powerful customized instructions substantially improves throughput.

A custom designed computer has two options: a random logic hardwired approach or a microprogrammed approach. With random logic, the control section of the machine is reduced to a state machine design that can be

\footnotetext{
Sunil Joshi is a senior product planning and applications engineer at Advanced Micro Devices, 901 Thompson Pl, Sunnyvale, CA 94086, where he is currently involved in the design of microprogrammable products for local area networks. He has also been involved in the design of ICS in the Am2900 family of bit-slice processors. Mr Joshi has a BSEE from the Indian Institute of Technology, Bombay, India, and an MSEE from Rensselaer Polytechnic Institute, Troy, NY.
}
implemented in hardware. Microprogramming provides a more modular and systematic method of implementing the control mechanism of a machine, because the control sequence is stored in an array that can be accessed systematically. Modularization of the random logic to reside in an array makes it as easy to change as if it were software; this firmware pattern usually resides in a programmable read only memory (PROM). A sequencer then addresses different locations of the PROM to execute different controls to the other sections of the machine. PROM microcoding is not as fast as hardwired logic for the same level of technology because of its slower access time. However, microprogramming is typically used for building high speed systems that are several times faster than those built using general purpose microprocessors. This is possible because most building blocks for microprogrammed systems use bipolar technology, which is faster than metal oxide semiconductor (MOS).

Although the concept of bit slicing is independent of microprogramming, bit-slice processors are commonly used in microprogrammed systems. The flexibility of microprogramming can be used effectively for cascading and controlling several bit-slice processors to form larger-width systems. Together with bit slicing, microprogramming achieves high performance through variable data widths, customized instruction sets, and novel architectures. Typically, this technique requires more hardware than microprocessor designs. Because of

\footnotetext{
Deepak Mithani is also a senior product planning and applications engineer at Advanced Micro Devices. He is involved in designing new products for the Am 2900 family of microprogrammable devices. Before joining aMD, Mr Mithani designed very high speed data processing systems. He holds a BSEE from M. S. University, Baroda, India, and an MSEE from the University of Wisconsin, Madison.
}


Fig 1 Generalized computer architecture. Control path occupies key path position, influencing throughput.
their flexibility, microprogrammed systems can be optimized for various considerations such as speed, power dissipation, chip count, and design time. Cost and design time, for example, are not easy to estimate. Although it may take longer and cost more to design a new system, only minor microcode changes may be necessary to upgrade to the next version, reflecting a lower overall cost. The Am 2900 family of large and very large scale integration building blocks for microprogrammed systems is used here to illustrate the architectural issues and design tradeoffs involved in selecting and configuring microprogrammed devices.

\section*{Control path}

The heart of the microprogrammed machine, the control path comprises a sequencer, the microprogram memory where the control bits are stored, and a pipeline register at the


Fig 2 Typical 16-bit CPU. Here control path also occupies key position and influences throughput.


Fig 3 Single-pipelined architecture (b). If there is much branching in mierocode flow (a), siagle pipeline will not waste cycles branching, and therefore have fast ciock time.
output of the memory. (See Fig 1 and Fig 2.) The sequencer provides the addresses to the PROM for the control word, which must execute next, and controls the program flow and branching. This is the only hardware required for a controller that does not require an arithmetic and logic unit (ALU).
Pipelining. The pipeline (PL) register at the output of the PROM breaks the address path to prevent race conditions. The microinstruction in the PL register executes in the current cycle while the next microaddress is simultaneously computed in the sequencer, which then accesses

\section*{An important consideration in choosing between single and double pipelining is the throughput, as opposed to raw speed.}
the contents of this address in the PROM. Several bits in the microword act as an instruction field for the sequencer. This field tells the sequencer to continue to the next address, and whether or not a conditional branch or subroutine access is required. When a branch on a condition is desired, the appropriate condition is selected through the condition code multiplexer, which causes the sequencer to branch if the condition is met (Fig 3). That is, if a branch is performed while instruction at address 50 is in the PL, then either 51 or the branch address 70 is at the output of the sequencer for PROM access. Other controls specified in address 50 execute whether the branch is taken or not.

Critical speed path for this architecture, called single pipelining, consists of the sequencer propagation delay in series with the PROM access time. This path may limit the fastest cycle time of the machine. When a faster cycle time is necessary, a double-pipelined architecture breaks the critical path into two smaller paths by placing a second PL register at the output of the sequencer (Fig 4). When the contents of address 50 are in the PL1 register and the instruction is a branch, address 51 is present in PL2. If the branch is taken, address 70 is at the output of the sequencer. Thus, when a branch is taken, the contents of address 51 execute before the contents in
the branch address 70 appear in the PL1. Because the PL register has to be "flushed," a latency of one clock cycle is added before the required branch instruction executes. Double-pipelined architectures require two cycles to take a branch of any kind, including subroutine jumps, returns, and so forth. In most cases this extra instruction cannot perform a useful operation in the ALU, and becomes a "no operation."

One important consideration when choosing between a single- and double-pipelined scheme is the throughput that can be achieved, as opposed to raw speed. Because of shorter critical paths, double pipelining allows faster clocking speeds. However, if considerable branching exists in the microcode flow, it may take two cycles to execute every branch. One cycle may not function usefully in the ALU, thereby reducing the machine's overall throughput. Double pipelining is more useful when the program flow consists of very few branches. When much branching is required, more functions can be performed in a fixed amount of time using single pipelining, even though the clock speed is slower. Double pipelining for applications using frequent branching results in extra code space, which increases the length of the code and may call for more PROMs. The microcode may also be difficult to read and debug, increasing the design time.

The PL register shown for the single-pipelined architecture may not be required for some bits of the microword (Fig 5). This happens when a register is built at the input of the controlled device for the purpose of synchronization, as in the case of the Am2925. In such a case a registered PROM cannot be used for these bits.

Horizontal and vertical microprogramming. In horizontal code, the microword bits are assigned so that all the devices controlled by the microcode have their control bits allocated in the same word, allowing them to be controlled simultaneously. With dedicated bit control for all the devices, parallelism is at a maximum, and many events can be initiated in a single cycle. In vertical microcoding several devices are assigned for a 1 -bit field with only one device selected per cycle. Since only one device can be controlled at a time, several lines of code may be required to control all the devices sequentially.


Fig 4 Double-pipelined architecture (b) can achieve shorter critical paths and use faster clocking than single pipelining when branching oceurs (a).


Fig 5 Single-pipelined architecture with bypassed PL register. Some bits of microword are input directly into Am295 when pipelining is not required for entire microword.

Vertical microcoding is so called because the width of the code is reduced by field sharing but the length increases; additional instruction enable bits in the microword indicate which device is selected. Since the total amount of PROM adds to the cost of the system, it is important to minimize the width and length of the microcode. In many cases vertical microprogramming reduces the chip count for the PROMs, as those with a larger addressing space or depth are more common than those having a greater data width. Horizontal code, on the other hand, allows maximum parallelism and hence maximum throughput. The desirable approach, therefore, is to share fields where parallelism is not required. This is possible for example, while controlling the Am2914, which is an interrupt controller. In central processing unit (CPU) emulations it is checked for interrupts only at the end of every machine cycle but its four instruction lines can share code with some other device.
One commonly shared field for the sequencer is the branch address field of the Am2910, which is also used for loading the register/counter. With the restriction that no branching will be allowed while loading the counter, several bits of code can be shared. Other fields that can be shared with ALU fields are the interrupt controller (Am2914), the status controller (Am2904) and the program control unit (Am2930) fields. The direct memory access (DMA) controller (Am2940, Am2942) fields are usually not shared with the ALU fields because the ALU is used for loading the DMA device. The Am2910 branch address field can also be shared with the Am2904. Most of the Am2900 family devices have an instruction enable IEN pin to permit field sharing.

Microprogram memory. The microprogram memory is usually a PROM or an electrically programmable read only memory (EPROM). Sometimes a random access memory (RAM) may be used, which is referred to as a writable control store (WCS). The WCS is not only useful
for program debugging, but can also be used for context switching between different microcodes. A WCS can be built using a dual-ported RAM that can be written into by one address port and read via the sequencer address port. The use of a WCS, however, complicates the hardware around the sequencer because extra logic is required to bootstrap the WCS during startup. A WCS is typically used for development system design and for machines which change their personality by reloading a different microcode.
Sequencers. A commonly used sequencer is the Am2910 because it has a 12 -bit wide address path to access 4 k words of microcode, and a 5 -deep stack for subroutine nesting. It also contains a counter that executes microcode loops. The 4 -bit wide Am2909 or Am2911 may sometimes be preferred, because they are faster and less complex than the Am2910. Each requires either external small scale integration or an Am29811 and a counter to control them, but they can cascade to form address widths larger than 12 bits, making them suitable for specialized applications. The Am2911 is a 20 -pin version of the 28 -pin Am2909 and saves board space, while the Am 2909 offers a degree of parallelism in that its register can be loaded while a branch is being taken via the D input. Both allow a custom designed instruction set.

\section*{Data path}

Most microprogrammed systems have an ALU selected on the basis of the numerical computation required by the desired applications. Some applications need the emulation of an existing CPU while others involve new designs. A major consideration for CPU's is the ALU's number crunching capability. The other class of application is general purpose, such as disk or communication controllers. Controllers usually do not require much arithmetic capability but must be efficient for high speed data transfer and bit manipulations.
The Am2901 and the Am2903 have been used widely as ALUS in the past, and two new introductions to the family constitute the Am29203 and the Am29116. The first three are 4-bit slices and can be used for variable data widths, while the Am29116 is a 16 -bit fixed width ALU. The Am2901 is the simplest of the 4-bit ALU slices and has a basic instruction set for logical and arithmetic operations, and also has a 16 -word dual-ported RAM and a shifter. This device allows the fastest cycle time among alus and is used for simple but high speed controller designs.

As opposed to the raw speed that can be achieved using the Am2901, the Am2903 allows for a higher throughput. The Am2903 has its shifter after the ALU, several data entry ports (DA, DB, and Y) and an expandable register file. Its special instructions include unsigned and 2's complement multiply, divide, normalize, and sign extend. Thus, multiply and divide routines can be written for both integer and floating point operations. The normalize instruction allows incrementing the exponent and the shift operation in the same cycle using a single line of microcode.
Am29203 is an enhancement of the Am2903. In addition to the Am2903 instruction set, the Am29203 has instructions for binary coded decimal ( \(B C D\) ) arithmetic. BCD numbers are useful in applications that may be input/output (I/O) intensive and need to input or output data in decimal or ASCII formats. Retaining this data as
\(B C D\), instead of converting it to binary, has the advantage of not requiring overhead in converting data types for input and output.

Machines using BCD representations tend to perform more additions and subtractions on these numbers than multiplications and divisions. Therefore, the Am29203 instruction set has single-cycle BCD add and subtract instructions, with mechanisms provided for BCD multiply and divide in multiple cycles. The Am29203 also has bidirectional data buses DA and DB, so that they are symmetrical. This is unlike the Am2903, in which only the DB bus is bidirectional. The architectural impact of this is that data could be output on both DA and DB simultaneousiy from the dual-ported RAM, and could also be used internally by the ALU for computation. Data output on DA and DB could be used to provide a parallelism in the data paths or even to implement fault tolerant alU schemes. In the latter case, an external parity checking circuit verifies the parity of the data both before and after the ALU operation. The Am 29203 also provides multiprecision arithmetic capability for BCD numbers. Since each BCD digit occupies 4 bits, a \(16-\) or 24 -bit machine may be able to store only 4 or 6 BCD digits, respectively, using single precision. However, double- or triple-precision representations allow the use of many more BCD digits for accuracy without adding to the cost of the system by adding more slices.

Am2903 and Am29203 are suited for designing CPUs that are either accumulator based or general register based. In general register architecture it is possible to have 1 -, 2 -, or 3 -register addressing. The 3 -address machine is implemented by multiplexing the third address on the B address port. Some CPU designs require more than 16 registers. Even this can be achieved by adding the expander register file Am2970S or Am29707 to the AlUs. These AlUs can also be used for designing stack oriented CPUS by adding an address control section that treats the register file as a stack and keeps track of the pointers.


Fig 6 External multiplier with Am2903. Bidirectional DB port allows use of hardware multipliers with external PROMs for applications requiring large amount of fast multiplication.

If the Am2903 or the Am29203 are used for CPUs, the Am2904 status and control chip can be used for compressing most of the small scale integration around them into one chip. The Am 2904 incorporates all the multiplexers, status registers, and linkage control hardware in a single chip; it is also useful for, several CPU emulations because its instructions allow efficient manipulation of status bits. For example, some machines either store a borrow on subtraction, or just store a carry. The Am2904 can convert between the two schemes because it has both a micro and machine status register. The micro status register is particularly useful where interrupts can occur at microcycle boundaries, and saving of micro status is essential.

Another consideration in CPU design is interfacing with various buses and peripherals. The ALUs described here interface to both multiplexed and demultiplexed data and address buses on the backplane. Three separate buses (DA, DB, and Y) on the Am 2903 and the Am 29203 permit a variety of architectures. Reliability of the data path can be improved by adding error detection and correction capability in the paths to and from the memory to the ALU. Error detection and correction can be implemented by using schemes such as Hamming codes, which add redundancy to the data paths by adding extra check bits. The Am 2960 error detection and correction chip uses modified Hamming code for detection and correction of single-bit errors and detection of double-bit and some multiple-bit errors. It is cascadable and can handle data width from 8 to 64 bits when used with bit-slice AlUs.
In spite of the extremely fast speeds that can be obtained by using bit-slice parts, these AlUs may still be slow for some specialized applications. Examples of these are in signal processing where a great deal of multiplication using complex numbers has to be performed. The Am2903 and the Am29203 have been designed with the necessary hooks for configuring them with a hardware multiplier or an external PROM for fast table lookups. Fig 6 shows how the bidirectional DB port can be used as an advantage for hooking up to a \(16 \times 16\) multiplier. This achieves an order of magnitude improvement in throughput.

Although the Am2901 and Am2903 were designed and optimized for CPU applications, they have also been commonly used for controller designs. Intelligent controllers must be very efficient in the movement of data, manipulation of status, and response to events and interrupts. They are characterized more by bit manipulation and logical operations than by number crunching and complex arithmetic. The Am29116 is a 16-bit fixed width processor optimized for controllers. Its architecture is characterized by a single-port RAM, an accumulator and a data latch for temporary storage of data, and a 3 -input ALU for performing an operation on three operands simultaneously.

The Am 29116 has a bidirectional bus for the input and output of data. A 16 -bit barrel shifter is provided to rotate a word by up to 16 bits in one microcycle. The combination of a 3-input ALU and a barrel shifter allows operations such as rotate and merge, where one operand is rotated up to 16 places, and selectively merged with another operand using a third operand as a mask for the selection. In addition, the Am29116 has features such as priority encoding, cyclic redundancy check computation,


Fig 7 Pipelined architecture at machine level. Placing address generation in separate hardware, relieving ALU, allows increased parallelism.
and the capability to execute immediate instructions where constants can be brought in on the instruction inputs using two cycles. It also improves the power dissipation and the chip count compared to an implementation using the Am2901 or the Am2903.

\section*{Address path}

System performance is largely determined by the addressing mechanisms and modes employed. Need for efficient memory addressing becomes more evident with the availability of the faster and more efficient processors. To access random information from the memory, different addressing techniques are used. In general register architecture, one register is designated as the program counter and others may be assigned tasks such as index register, stack pointer, upper bound and lower bound for stack, and so on. Using these registers, different addressing techniques such as program counter relative, indexed, immediate, base register relative, and indirect addressing can be implemented very efficiently. In addition, ability to manage stacks for subroutine linkage and for expression evaluation enhances the flow of control though a system.
A system that does not use a separate program control subsystem usually uses a general register architecture for addressing. In this situation, address for the main memory is generated by the ALU. If all the registers associated with main memory addressing are removed from the ALU and placed in the program control subsystem, then the address computation for the next macroinstruction can be done concurrently with the alU operation. Thus, the use of separate hardware allows more parallelism in a system at the macroinstruction level.
Such a program control unit can be implemented using the Am2901s or Am2930s. In this system (Fig 7), the nth instruction is executed in the alU during a register to register instruction. The instruction register is loaded
with the \(\mathrm{n}+1\) st instruction from the z latch, and the starting address is generated in the sequencer. The \(\mathrm{n}+\) 2nd instruction is read into the \(z\) latch from the main memory, and the address for the \(\mathrm{n}+3\) rd instruction is loaded into the memory address register (MAR).

The most general purpose type of program control unit can be implemented with Am2901s. Its 16 -register, 2-port file structure provides several advantages in terms of stack pointer control, stack pointer boundary checking, program control, and implementation of different addressing modes. For a simple program control unit, the Am2930 provides 17 -deep subroutine linkage stack, index register, program counter, and an alU for relative addressing. Both devices are 4 -bit slices and are cascadable up to any width of address required, which makes the expansion of the main memory easy.

\section*{System timings}

Clock speed, which increases the performance, is determined by the delays through the various paths, the longest being the critical path. In a conventionally microprogrammed system, the slowest microinstruction execution time determines the microcycle time, even if it is the only slow microinstruction. In such a system, much microcycle time goes unused during the execution of all other microinstructions. To improve the microcycle time, these functions are sometimes broken into several shorter instructions, but this is cumbersome and adds to the amount of microcode. An alternative solution is to vary the microcycle time and stretch the cycle whenever the slow microinstructions are executed (Fig 8). This solution provides maximum usage of the microcycle time for all microinstructions.

The Am292s clock generator and microcycle length controller can vary microcycle length depending upon the microinstruction being executed. The Am 2925 takes the oscillator output as basic clock, (FO), and generates four clock outputs, each with a different duty cycle. The output clocks can have a period from three to ten times the basic FO clock period. Information about the microcycle length is extracted from the microcode in the preceding microcycle (Fig 5). For simple applications, the Am2925 generates a clock with approximately \(50 \%\) duty cycles. For special applications, like the 3 -address architecture with the Am29203, the Am2925 also generates an appropriate clock (always low during the last two FO cycles) to drive the instruction enable input for proper write timing into the 2 -port RAM. In addition, the Am 2925 can insert wait states to synchronize other parts of the computer system, such as memory and I/O devices, with the CPU. For debugging a system, the Am2925 also permits single-stepping of the microcycle. In general, the throughput of a system can be improved by \(10 \%\) to \(25 \%\), using the Am2925, depending upon the instruction mix over the fixed length system.


Fig 8 Microcycle stretching. Varying microcycie time improves overall microinstruction efficiency.

\section*{Microprogrammed System Design}


Fig 1 HP 1000 A600 sequencer. Registered PROMs contain A600 microstore and pipeline register in only seven packages.

HP-1000 architecture permits referencing registers as memory location 0 or 1. An FPLA detects this condition, and the ALU source or destination is selected as either memory, or the alU register file accordingly. An additional FPLA is part of the status register and determines, based on the status register contents and the instruction register contents, whether conditional instructions will skip the next instruction.

A600 memory is both a memory controller and a memory array. The array portion can be either 128 k or 512 k bytes, with additional array cards able to increase main memory to 4 M bytes. Memory has a cycle time of 454 ns and uses simple parity for error detection. A dynamic mapping system is also part of the memory controller. It consists of 32 sets of 32 page-mapping registers, and maps logical addresses into physical addresses as shown in Fig 3.

Every memory cycle is a mapped memory access. The address extension register is loaded by the processor or direct memory access (DMA) and selects one of the 32 sets of maps. Each 15 -bit logical address is divided into two parts: a page number and an offset. The page number selects one of the 32 page-mapping registers. Since each page is 1024 words, the 32 map registers provide a


Fig 2 HP 1000 A600 arithmetic unit. Implementing ALU with bit-slice LSI chips delivers outstanding price/performance while minimizing board space.

32k logical address space. Each register contains a write protection bit and a 14 -bit physical page number. If the write protection bit is set, any write cycle to this page will not be permitted and will generate a processor interrupt. The 14 -bit physical page number is combined with the logical address offset to provide a 24 -bit physical address. This allows the microcomputer to address 32 M bytes of physical memory.

Standard HP 1000 minicomputer input/output (I/O) interface cards, which were introduced with the HP 1000 L-series computer, are also used with the A600. Each interface card contains a custom complementary metal oxide semiconductor (CMOS) I/O processor capable of executing 1/O instructions to communicate with the processor board, and of performing DMA transfers with memory on a cycle stealing basis. The microcomputer provides a memory page map for each I/O interface, permitting DMA transfers to any page or combination of pages in physical memory. Its memory cycle time of 454 ns provides a backplane bandwidth of 4.3 M bytes \(/ \mathrm{s}\).

Software compatibility guarantees that a correctly written application program for a member of the minicomputer family will execute correctly on the A600 microcomputer. For the microcomputer design, software compatibility meant that the macro level machine characteristics had to be fixed. Thus, the microcomputer has the same register set, instruction set, time base generator, memory mapping, memory protection, and powerfail capabilities as the minicomputer members of the family.

Rather than a limitation, the software compatibility requirement was actually a benefit. Instead of requiring months of effort to invent a new architecture, the microcomputer architecture was well defined from the start. This permitted the design team to concentrate on features to improve the computer price/performance


Fig 3 Logical address to physical address transiation. Mapping hardware allows A600 microcomputer to access 32M bytes of memory with read and write protection.

\section*{Interrupts}

Interdevice communication efficiency depends on the ability of the CPU to handle asynchronous events. Polling is one way of interdevice communication in which the CPU interrogates each device by asking it if service is required, starting with the highest priority device. This approach is slow and inefficient, causing more overhead. The more efficient way of servicing asynchronous events is the interrupt method. Whenever a device needs service from the CPU it generates an interrupt request signal to it. If the requesting device is of the highest priority, then the CPU suspends the program currently executing and services the requesting device as soon as it receives the interrupt request. After servicing the device, the CPU resumes the previously suspended program if there are no other devices requesting service. If more than one device requests service at the same time, then the device with the highest priority will be serviced first. When an interrupt request is being serviced, only another interrupt request with a higher priority can interrupt the routine; this allows nesting of interrupts within interrupts. These functions are usually performed by an interrupt controller that may also have features to selectively mask certain interrupts.
Interrupt handling can be efficiently implemented by the Am2914 vectored priority interrupt controller. Cascadable to any number of priority levels, it can be microprogrammed to meet the requirements of specific applications. For example, interrupts can be handled at two levels by the microprogrammed CPU-the macrolevel interrupt or microlevel interrupt. In the macrolevel interrupt, the CPU checks for any interrupt request after
completing the execution of every macroinstruction. If any request is pending, the CPU services the device and then returns to the interrupted program. As soon as the device request is granted by the controller, the CPU completes the current microinstruction and jumps to the service routine for that particular device. The Am2914 can be used for both types of interrupts.

\section*{Direct memory access}

High speed techniques are required for transferring blocks of data between the main memory and the I/O devices. The three most widely used techniques are programmed \(1 / 0\), memory mapped \(1 / 0\), and direct memory access I/O. The DMA technique uses a direct path between the main memory and the I/O device to perform data transfers, thus relieving the CPU for other tasks. The CPU initializes the DMA device by sending a memory address and the number of words to be transferred. Actual data transfer is done directly between the I/O devices and the memory through the DMA interface. DMA transfer can be implemented by three methods. In the first method, the CPU is put on halt, while the DMA data transfer is being performed. The second method time slices each memory cycle into halves; one for the CPU and the other for DMA transfer. But the most commonly used technique is cycie stealing, which is also the most. efficient way to utilize the available resources. In this method, the DMA device steals a CPU memory cycle whenever the CPU is not using one, and performs a DMA transfer.
Am2940 DMA address generator is partitioned into 8 -bit slices cascadable to form large memory addresses. With the Am2950 I/O port, it can handle over 5M words/s. The Am 2940 generates sequential addresses for block transfer. Word count for block transfer can be programmed by the CPU, and the Am2940 also maintains the word count and generates a signal when the block transfer is complete. One or more Am2940s can be used in each peripheral controller of a distributed DMA system. Microprogrammability of this part provides complete flexibility for the desired architecture.

\section*{Bibliagraphy}

Advanced Micro Devices, Bipolar Microprocessor Logic and Interface Data Book, 1981
V. Coleman, "Implementing Interrupts for Bit-Slice Processors," Electronics, Apr 24, 1980, p 159
S. Joshi, D. Mithani, and S. Stephansen, "Bipolar VLSI Builds 16-Bit Controller Handling Many Fast Peripherais at Once," Electronics, Nov 30, 1981, pp 98-102
J. Mick and J. Brick, Bit-Slice Microprocessor Design, MeGraw Hill, New York, NY, 1980
M. Miller and S. Joshi, "Bit-Slice Processor Speeds Through BCD Math," Electronic Design, Dec 10, 1981, pp 104-112
W. Miller, D. Mithani, and S. Joshi, "An Error Correcting Memory Design with the Am2960 Family," Electronic Design Conference Proceedings, vol M4, 1981, p 171

\section*{Design}

\title{
Combining the speed of bipolar 4-bit-slice architecture with new decimalarithmetic capability, a microprocessor takes aim at business-system applications formerly dominated by large computers.
}

\section*{Bit-slice processor speeds through BCD math}

For the first time, binary-coded-decimal (BCD) arithmetic will be brought to minicomputer-class systems. The vehicle is the Am29203 microprocessor slice, which calculates directly in the decimal system. As a result, such systems will be able to make inroads into a growing number of business applications, including distributed satellite office machines and point-of-sale terminals. Previously, BCD data handling was dominated by large computers of the IBM \(360 / 370\) variety and desktop calculators.

Taking up where the Am2901 and 2903 left off, the 29203 continues the tradition of flexible, microprogrammed building blocks with low package count (see "Benefits of a Microprogrammed Machine"). Like its predecessors, the 29203 is a 4 -bit-slice ALU and shifter with two operands entering from a two-port register file. Although it features the standard ALU functions of the Am2903, the Am29203 has twice the number of special instruc-tions-the 2903 instructions are a subset of the 29203 instruction set. A major portion of the expanded instructions allows designers to manipulate the new BCD-type numbers.

The 29203 adds BCD arithmetic capability to TTL processors, along with the speed and flexibility for which the Am 2900 family is already known. Behind the new processor's performance is the combination of AMD's proprietary LSI technology, called the Imox process, and internal ECL circuitry.

A processor that operates directly on decimal numbers offers many benefits in business applications, notably processing numbers created by and for the business community. Compared with "scientific" numbers-data produced for engineering or scientific use-"business" numbers have limited precision

\footnotetext{
Michael J. Miller, Applications Engineer
Sunil Joshi, Applications Engineer
Advanced Micro Devices Inc.
901 Thompson PI., Sunnyvale, CA 94086
}
(about eight or nine decimal digits). A business number begins in ASCII format, is changed to BCD, where addition and subtraction are done-there are few divisions and multiplications-and is displayed or stored after being converted into a form readable by humans (ASCII). This type of cycle is I/Ointensive, whereas scientific applications are computation-intensive.

Most of the benefits of business processing stem from not having to convert input data to binary, as required by scientific applications. Performing arithmetic directly on BCD data has two advantages: speed and accuracy. Significant processing time is saved by eliminating base con-

processors communicate data to terminals and printers in alphanumeric code such as ASCII or EBCDIC. But the data must first be converted into a computable form such as BCD or binary. Whether or not the final encoding is BCD or binary, alphanumeric code must first be converted into BCD. This conversion is simple because there is a one-toone correspondence between ASCII or EBCDIC characters and BCD. It is equivalent to a look-up table procedure followed by packing operations.

When the target encoding is binary, a packed number must be converted from BCD into binary with an iterative algorithm using four operations per digit. In machines without special BCD capabilities, converting into and from binary requires an order of magnitude more time than conversions between alphanumeric code and BCD.

Since it is sometimes necessary to convert between BCD and binary as in scientific applications, the 29203 has instructions for this purpose. Such instructions reduce conversion time by a factor of \(75 \%\) or better over
machines with no BCD capabilities. These instructions handle both single- and double-precision calculations.

One benefit of not having to convert into binary concerns round-off problems When a number is converted from one base into another, it may not be possible to represent it in the new base with a finite number of digits. For example, converting \(\$ 0.30\) in base 10 into binary gives the infinite series 0.01001101 . . . Now the converted number must be truncated and rounded off to fit the limited storage range. Unfortunately, converting from binary back into base 10 does not give the original value. Thus, a computer that performs calculations in the nativebase representation is able to eliminate round-off errors. For this purpose, the 29203 has built-in BCD arithmetic capabilities. These include single-cycle addition, subtraction, and BCD division by two, used to adjust downshifted numbers to obtain valid rep-resen-

\section*{Bit-slice processor for BCD}
tations in the binary-coded-decimal format.
The 29203's overall structure consists of a RAM connected to the inputs of an ALU, the output of which is passed through a shifter and back into the RAM (Fig. 1). The ALU is optimized to execute powerful logic and arithmetic operations on unsigned, two's-complement, and BCD numbers. The ALU, shifters, and RAM all can be cascaded to form larger words and more temporary storage registers can also be added.

\section*{Three buses give flexibility}

Using three bidirectional buses, the 29203 is highly suitable for microprogrammed systems that require considerable data-flow flexibility. Buses DA and DB bring external data or constants directly into the ALU for computation. The R and S multiplexers provide the selection between external data and the dual-ported RAM as data sources for the ALU. The result of an ALU operation can be either loaded into the temporary \(Q\) register or made available at the Y port after shifting (if necessary). In this case, the Y port may be used as an output port. The result of an ALU operation can be written into any RAM location during this same cycle.

Another way to bring data into the ALU is through the bidirectional Y bus. Under these conditions, output buffers on the Y bus go into three-state operation and data on the \(Y\) bus is written into the internal RAM. While this is occuring, the ALU can perform an operation that involves writing into the Q register but does not require the Y bus as an ouput. Buses DA and DB also provide added flexibility when used as outputs. In the simplest case, one or both operands can be put onto these buses, with the result of the operation appearing on the \(Y\) bus. Because these outputs are available, they can be used by a fault-tolerant computer for performing external parity checks on the data paths preceding the ALU. Then the parity or check bits can be matched with those derived from the ALU's output-including the Y bus and shifted data-to indicate a fault.

When used as outputs, the DA and DB buses allow an external processor to operate on data stored in the RAM. This increases the effective instruction set of the ALU section. Moreover, it is advantageous for configuring a parallel multiplier for fast multiplication. The multiplier accepts data from the DA and DB ports, multiplies it, and loads the result back into the RAM, using the Y bus as an input.

The 2903's multiport architecture makes the implementation of high- and low-order byte swapping simple. Figure 2a shows a byte swap using two data ports. Initially, the low-order byte is stored in devices 1 and 2 , and the high-order byte in devices 3 and 4. To make an exchange, the register location of the

1. Designed around an ALU and an on-board RAM, the Am29203 4-bit-slice processor relies on a bidirectional threebus architecture to bring external data and constants into the ALU for computation. It can be cascaded to form larger words.

2. Using multiport architecture, the 29203 allows high- and low-order byte swapping (a) and fast byte swapping (b).
Permutations of the three-state buffers (Am2958/59) produce any combination of output data. The high-speed byte swap bypasses the processor's ALU, permitting faster operation.

\section*{Bit-Slice Processor for BCD}
desired word is placed on the B-address port. When the byte swap line is brought low, the bytes to be swapped flow from the DB ports of the 29203 through the 2958/2959 three-state buffers. Permutations of the three-state buffer outputs achieve the byte swap. The resulting permuted data are presented to the DA ports of the 29203 , where they are reloaded into memory on the next positive edge of the clock (CP). That is accomplished using the source and function command, \(F=A+C_{n}\left(C_{n}=0\right)\), for the 2958, or \(F=A+C_{n}\left(C_{n}=0\right)\) for the 2959 , and the destination command, \(\mathrm{F} \rightarrow \mathrm{Y}, \mathrm{B}\).

A faster circuit for byte swapping is illustrated in Fig. 2b. Instead of being entered via the DA ports, permuted data are entered through the Y I/O ports of \(O E_{y}\) (held high). This technique bypasses the ALU, allowing faster operation. The 29203 destination command, \(\mathrm{F} \rightarrow \mathrm{Y}, \mathrm{B}\), should be used in this mode.

3. The 29203's \(\mathbf{1 6}\)-word RAM can be expanded in multiples of 16 words to form long register files. The ALU draws data from any two register locations.

The 29303 contains a 16 -word, dual-ported, RAM for temporary data storage. The RAM, which serves as a register file, can be expanded in multiples of 16 words to accommodate as many registers as necessary, using the 29707 (Fig. 3). In addition, the 29203 permits a three-address architecture so that ALU operands may be selected from any two register locations, including the extended registers.

These operations can be achieved in a single microcycle by switching the port- \(B\) address in the middle of the cycle. Latches at the RAM output capture the source operands during the first half of the cycle. With the instruction-enable signal (IEN) held inactive to prevent writing into RAM, the third address can be multiplexed-when it stabilizes, writing takes place by activating IEN. Using IEN as a control also permits a partial word to be written into the RAM. Thus, in a 16 -bit system, the upper or lower byte of a word can be independently written by providing an IEN control signal for each half of the word.

\section*{System handles 16 -bit words as well as bytes}

In a 16 -bit system, both word and byte operations may have to be performed. Apart from the ALU result, status conditions must be available in the word and byte modes. The 29203 forces the opencollector zero-detection \(\operatorname{pin}(\mathrm{Z})\) to a high whenever the output buffers on the Y bus are three-stated. Thus, a zero-detecting flag is detected only on the byte that is selected. As shown in Fig. 4; the byte-word-selection line turns off the \(\overline{\text { IEN }}\) and \(\overline{O E Y}\) signals on the upper two bit-slices and forces the third slice to act as the most significant slice (MSS). As a result, the carry, negative, overflow, and zero flags then apply to the byte mode.

In most ALUs, the zero-detection flag is the last flag to stabilize. This indicates that a microcycle can

4. Word/Byte operations among four 29203 processors are possible using the circuit illustrated. The byteword selection line determines which 29203 acts as the most significant slice (MSS).

\section*{Bit-slice processor for BCD}
be completed only after this flag stabilizes at the input of the status register. In the 29203, zero detection is performed at the output of the ALU shifter, before the Y-bus output buffers. In that way, the zero-detection flag is available simultaneously with data on the \(Y\) bus. Propagation delays are
shortened through one of the critical paths by performing zero detection in parallel, with data going through the output buffers, which are also responsible for translating ECL into TTL levels. Special design techniques have been used in the 29203 to increase the speed of the zero-detection circuitry

\section*{Benefits of a microprogrammed machine}

Many current processors are designed using microprogramming techniques, in which a large part of the system control is performed by read-only memory-usually PROMs-rather than by arrays of gates and flip-flops. The technique often reduces the package count of the controller, gives it a highly ordered structure, unlike random logic systems. Moreover, because firmware, rather than hardware, is altered, microprogramming simplifies changes to a machine's instruction set, substantially reducing postproduction engineering costs. This is vital in extending the product life cycle and allows devices to be changed rapidly to suit user demands.

Although the concept of microprogramming has existed for 25 years, it was not until Advanced Micro Devices introduced its Am2900 family that it came into
widespread use. Today, in new system design, a designer can choose between microprocessors with a fixed instruction set--the 8080,8086 , and Z8000 are examples -and microprogrammable devices. The benefits of the former include a very low package count -three or four devices-and predesigned instruction sets. Thus designers can begin at a higher design level with respect to the total system solution. With a microprogrammable processor, a designer can define a custom instruction set that is executed much faster than a fixed set, but at the expense of a larger package count.

Because firmware implements specialized functions, it can also be used for self-testing. Tests such as system verification and diagnosties speed production testing, in addition to aiding repair personnel in testing the system.


Each device in the 2900 family performs a basic system function and is driven by a set of control lines from a microinstruction. The figure illustrates a typical system architecture. The system has two "sides": The left contains control circuitry, and the right contains data-manipulation circuits. The ALU-array block composes the ALU, scratchpad registers, datasteering logic, left-and right-shiftcontrol, and a carry-look-ahead circuit. Data are processed by moving it from main memory (not shown) into the scratchpad registers, performing operations, and returning the results to main memory. Memory addresses can also be transferred in and out through the memory-address register (MAR). Four status bits from the ALU are captured in the status register after each operation.
In operation, a sequence of microinstructions stored in ROM is executed to fetch an instruction from main memory. This requires that program-counter datastored in an ALU working register -be sent to the MAR and incremented. The data returned from memory are loaded into the instruction register. Then the instruction register's contents are passed through a PROM or programmable logic array to generate the address of the first microinstruction that must be executed to perform the required function. A branch to this address occurs through the sequencer.

Several microinstructions can be executed to fetch data from memory, perform ALU operations, test for overflows, and so on. Then a branch is made back to the instruction-fetch cycle. There may also be branches to other sections of microcode.

\section*{Bit-Slice Processor for BCD}

5. Both binary-to-BCD (a) and BCD-to-binary (b) conversions can be performed by the 29203, with either single or double precision. This gives the processor the flexibility to handle business calculations with decimal numbers or scientific work in binary.
(see "Taking Advantage of ECL Technology").
To maintain software compatibility with the 2903, the 29203's instruction set is a complete superset of the 2903 's and has the same op-code assignments. The set provides powerful instructions for performing single- and double-length normalization of floating-point numbers, sign extension, and multiplication and division of integers as well as floating-point numbers. Instructions for incrementing and decrementing operands by one or two are included, making it unnecessary to store constants such as one or two. The shift instructions permit both arithmetic and logical shifts. The processor also has a provision for computing the parity of a number that is present in several cascaded slices.

\section*{Decimal applications abound}

The 29203 is an excellent choice for highperformance, I/O-intensive systems found in a wide variety of applications. They can be small or medium-sized processors that perform word processing, data retrieval and processing, accounting, data management, and inventory control. On the other hand, I/O-intensive systems can also be large, distributed multistation systems having a large control CPU, mass disk storage, and several intelligent terminals-such as for point-of-sale terminals in department stores. Other I/O-intensive uses include high-end data acquisition and control systems that must interface to off-the-shelf programmable instrumentation as well as with analog and digital interfaces.

6. Converting from binary to BCD (a) requires a series of addition and shift operations, essentially the reverse of BCD-to-binary conversion (b). The instructions must be performed several times on a number to yield the correct result.

All these applications require decimal arithmetic capability, plus the ability to handle ASCII formats and binary numbers efficiently. They also require fast responses to events, since a real-time application or human interface may be involved. Human-interface devices, in particular, must have response times no longer than a few seconds, even under maximum load conditions in systems that can be tied up by file look-ups, calculations, and file scans. Such applications necessitate a bit-slice microprogrammed approach, in which the system width can be tailored and the throughput maximized to handle large amounts of data efficiently and quickly.
The 29203 has instructions for converting between

\section*{Bit-slice processor for BCD}

BCD and binary formats and for performing the basic arithmetic functions in both formats. BCD addition and subtraction are the most commonly used arithmetic instructions when calculating with decimal numbers. The 29203 has instructions for adding or subtracting two BCD numbers in one microcycle. The external connections for these operations are the same as for binary addition and subtraction.

A internal carry-look-ahead scheme enables a BCD operation to be executed as fast as a binary one. There are two subtraction instructions in which the \(R\) and \(S\) operands can be subtracted from each other. When BCD addition or subtraction is performed on BCD numbers, the result is a valid BCD number-
but the result is undefined if either operand is an invalid BCD number. An invalid number exists when any group of 4 bits over a slice has a value greater then 9 . During addition, the carry output indicates that the result of the addition was greater than 9 over the slice, and that a 1 must be added to the next BCD digit.
The addition process can be speeded up by using a 2902 carry-look-ahead generator. In BCD additions, the propagation signal signifies that the result must be propagated out of the slice. The generation signal indicates that a result is already greater than 9 , and that a carry output must be generated regardless of whether the carry input exists. The state of the propagation signal for results greater than 9 is

7. Flowcharts for double-precision BCD-to-binary conversion (a) and binary-to-BCD conversion (b) are similar to those for single-precision except for special shifting operations involved in multiprecision operation.

\section*{Bit-Slice Processor for BCD}

\section*{Bit-slice processor for BCD}
of shifts must be a multiple of 4 to yield a meaningful result.

Another special instruction facilitates multiprecision binary-to-BCD conversions. Called a multiprecision binary-to-BCD conversion, it acts like a normal binary-to-BCD conversion except for shifting of the Q register. Figure 7 shows the flowchart for the simplest double-precision binary-to-BCD conversion algorithm in a 16 -bit system. Initially, the Q register stores the most significant half of the binary number after conversions, two registers, \(R_{0}\) and \(R_{1}\)-both initially cleared-store the most significant and least significant halves, respectively, of the \(B C D\) number.
The shift for each binary bit requires two microcycles. The binary-to-BCD conversion is executed first on \(R_{1}\), and the most significant bit shifted out of \(R_{1}\) is stored as the carry bit \(\left(M_{c}\right)\) of the 2904 (Fig. 8). Then the multiprecision binary-to-BCD

8. Shift linkages between registers allow the 29203 to perform binary-to-BCD conversions (a), and multiprecision binary-toBCD conversions. Usually, 16 shifts between registers are required to convert a number correctly from one base into another. Each bit takes two microcycles.
conversion instruction is executed so the \(R_{0}\) is adjusted as \(M_{c}\) is shifted on. Together, the two instructions account for one equivalent shift of the doubleprecision number as a whole. After 16 such shifts, the Q register is loaded with the least significant half of the binary number and the same operations are performed again 16 times. Once the single-precision binary number is converted into a double-precision BCD number, the algorithm can be terminated after 16 shifts of the binary number.

The BCD-to-binary-conversion instruction essentially reverses the steps of the binary-to-BCD conversion (Fig. 6b). The BCD number initially resides in one of the RAM registers and the \(Q\) register stores the binary equivalent during conversion. The BCD-to-binary algorithm requires that the \(B C D\) number first be shifted 1 bit down. Then 3 is subtracted from any BCD digit having a value of 8 or greater. However, since the 2903's shifter comes after the

ALU, the BCD-to-binary conversion instruction first performs the adjustment for a previous shift and then performs the shift in anticipation of the next instruction. The BCD number in \(\mathrm{R}_{0}\) is first shifted down 1 bit to load its least significant bit into the most significant bit of the Q register. Then BCD-to-binary conversion is executed 15 times to perform the necessary adjustments and shift successively (Fig. 7). Ultimately, 16 shifts and 15 adjustments are performed on the binary number. An adjustment of the final shift is not required, since the binary number is fully formed, and the BCD number is zero at this point. As in the binary-to-BCD conversion instruction, the adjustment is done independently over each slice, and the carry bits play no role.
Converting multiprecision BCD numbers to binary is similar to binary-to-BCD conversions. The simplest, but not the most efficient, scheme operates according to the flowchart in Fig. 5b for a doubleprecision number in a 16 -bit system.
Initially, the most significant half of the BCD number is stored in \(R_{0}\), and the least significant half in \(R_{1}\). The \(Q\) register stores a part of the binary equivalent during and after conversion. The \(B C D\) number as a whole must first be shifted down by 1 bit. Register \(R_{0}\) is shifted down as shown so that its least significant bit is collected in the \(M_{c}\) or carry flip-flop of the 2904. Next, \(\mathrm{R}_{1}\) and Q are shifted down, allowing \(M_{c}\) to be loaded into the most significant bit of \(R_{1}\). The following two instructions perform the adjustments on this shift and downshift the adjusted numbers by 1 bit in preparation for the next adjustment and shift cycle.
The multiprecision BCD-to-binary conversion instruction is executed in \(R_{0}\), which allows adjustment, downshifting, and storage of the least significant bit in \(\mathrm{M}_{\mathrm{c}}\). The following conversion instruction adjusts \(R_{1}\) and downshifts both \(R_{1}\) and \(Q\), with \(M_{c}\) being loaded into the most significant bit of \(R_{1}\). These two instructions are performed 15 times in a loop. As a result, \(\mathrm{R}_{0}\) and Q are shifted 16 times.
Since the contents in \(\mathrm{R}_{0}\) are now all 0 s, there is no need for further shifting. The Q register contains the least significant half of the binary result, which is transferred to \(R_{2}\). Then the BCD-to-binary conversion is performed 16 times on \(R_{1}\)-using the linkages-so that a 0 is entered into the most significant bit of \(R_{1}\). The most significant half of the binary number is available in the \(Q\) register at the end of the operation.
inconsequential, since the generation signal produces a carry output anyway.
In subtractions, the carry output can be interpreted as a borrow. Borrowing is necessary in BCD arithmetic when the digit to be subtracted is larger than the digit from which it is subtracted. If both digits are equal, a borrow from a higher digit is necessary only if the previous digit borrows. This is equivalent to a borrow signal and is indicated on the propagation line. When borrowing is necessary, regardless of the previous digit, the generation line is active.
A generation signal overrides a propagation, and when it is active, the state of the propagation does not matter. The carry-output signal, \(\mathrm{CN}+4\), goes low when a borrow occurs from a high-order digit. Thus, when a larger number is subtracted from a smaller one, the absence of a carry-output signal from the most significant slice indicates that the result is available as a ten's-complement number. The information then can be used for adjusting the sign of the number. There are several ways to store the sign of BCD numbers; usually they involve a tag bit or a digit to provide sign information.

\section*{Binary to BCD and vice-versa}

The binary-to-BCD conversion instruction must be performed several times for a conversion. For the same number of bits, a binary representation of a number has a larger range of values than a BCD representation. Designers must therefore ensure that the binary number value does not exceed the BCD range before using the instruction. Multiprecision representations, in which the width of the \(B C D\) number is larger than the width of the system, permit a larger number range. A binary number can also be stored as a multiprecision number. Usually, multiprecision representations are integer multiples of the width of the system. Figure 5 shows a flowchart for a single-precision conversion in a 16 -bitwide system. In this case, the binary-to- BCD conversion instruction must be executed 16 times.
In single-precision conversion, an instruction requires that the binary number be present in the \(Q\) register. The instruction uses one of the RAM registers for storing the BCD number during and after conversion; the RAM register must be cleared before use. Each instruction consists of two steps: The first adds a binary value of 3 to any BCD digit having a value of 5 or greater, as a preadjustment for a shift operation that follows. Addition is performed independently over each slice, and the carry bits from each slice are ignored. The second step shifts up the Q register and the RAM register-interconnections are shown in Fig. 6a for a 16-bit system. The 29203 executes both steps in one microcycle. The number

\section*{Taking advantage of ECL technology}

Zero-detection logic exemplifies the methods used to improve the system performance of the Am29203 4 -bit-slice processor. The device was analyzed in a typical system configuration to identify critical-speed paths both in the chip and in the system. This analysis was performed by modeling various important buses and pins as nodes of a network and assigning realistic delay times for the paths connected by the nodes.
A computer program identified the critical paths in the system. The 29203's ECL technology was used to shorten the delays. For example, the speed of individual ECL gates may be changed merely by varying the gate's power consumption. The more power supplied, the higher the speed, or the shorter the delay time through the gate. ECL designs have an advantage over TTL in that the speed-power curve is linear over a larger range of power. Thus, a wide variation in gate power consumption and speed is possible with ECL; with TTL, in contrast, a substantial change in power may not significantly increase gate speed.
Because the total system power is a limited resource, it must be used efficiently; more power must flow to gates in critical paths than to those in noncritical paths. Using this criterion, the critical paths in the 29203 have been optimized for the greatest possible speed with the technology. Examples of critical paths are the carry, propagation, and generation signals, which need maximum speed for interfacing with an external Am29202 when several chips are cascaded.
ECL design provides other important features that optimize logic for high speed. TTL design often requires an inverter in a signal path to obtain the desired polarity of a signal. To obtain the true and complementary forms of a signal, the TTL inverter introduces delay into one of the paths. But ECL design, through its differential amplifier circuits, automatically generates both polarities of a signal. That helps reduce gate delays in critical paths. What's more, ECL allows design techniques such as wired-or and wired-and, which aid in generating the \(O R\) and AND functions without consuming significant power or introducing a full gate delay. Aside from reducing delay, the technique makes more power available for speeding up other critical paths. Through this advanced technology, as well as architectural improvements, the 29203 achieves greater overall speed than other members of the 2900 family.

\title{
The International Standard of Quality
} guarantees these electrical AQLs on all parameters over the operating temperature range: \(0.1 \%\) on MOS RAMs \& ROMs; \(0.2 \%\) on Bipolar Logic \& Interface; 0.3\% on Linear, Lsjsts ogic \& other memories.

\section*{Am29705•Am29705A•Am29707}

16-Word by 4-Bit 2-Port RAM

\section*{DISTINCTIVE CHARACTERISTICS}
- 16-word by 4-bit, 2-port RAM
- Two output ports, each with separate output control
- Separate four-bit latches on each output port (Am29707 has separate output control)
- Data output is noninverting with respect to data input
- Chip select and write enable inputs for ease in cascading
- Am29707 offers \(20 \%\) improved cycle time over Am29705A when used with Am29203 in three address architecture
- Am29705A is a pin-for-pin replacement for the Am29705 with about a \(30 \%\) speed improvement on the critical paths
\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{} \\
RELATED PRODUCTS \\
Part No. & Description \\
\hline Am29751A & Bipolar PROM \\
Am2921 & One-of-Eight Decoder \\
Am25LS138 & One-of-Four Decoder \\
Am25LS139 & Dual One-of-Four Decoder \\
Am25LS157 & Quad 2-by-1 MUX \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The Am29705 is a 16 -word by 4 -bit, two-port RAM built using advanced Low-Power Schottky processing. This RAM features two separate output ports such that any two 4 -bit words can be read from these outputs simultaneously. Each output port has a four-bit latch but a common Latch Enable (LE) input is used to control all eight latches. The device has two Write Enable ( \(\overline{\mathrm{WE}}\) ) inputs and is designed such that the Write Enable \(1(\overline{\mathrm{WE}}\) ) and Latch Enable (LE) inputs can be wired together to make the operation of the RAM appear edge triggered.
The device has a fully decoded four-bit A-address field to address any of the 16 memory words for the A-output port. Likewise, a four-bit B -address input is used to simultaneously select any of the 16 words for presentation at the B-output port. New incoming data is written into the four-bit RAM word selected by the B-address. The D inputs are used to load new data into the device.

The Am29705 features three-state outputs so that several devices can be cascaded to increase the total number of memory words in the system. The A-output port is in the high-impedance state when the \(\overline{O E-A}\) input is HIGH. Likewise, the B-output port is in the high-impedance state when the \(\overline{\mathrm{OE}-\mathrm{B}}\) input is HIGH. Four devices can be paralleled using only one Am25LS139 decoder for output control.
The Write Enable inputs control the writing of new data into the RAM. When both Write Enable inputs are LOW, new data is written into the word selected by the B -address field. When either Write Enable input is HIGH, no data is written into the RAM.
The Am29707 is an identical circuit to the Am29705, except each output port has a separate Latch Enable (LE) input: An extra write enable input ( \(\overline{\mathrm{WE}} \mathrm{E}_{2}\) ) may be connected directly to the IEN of the Am29203 for improved cycle times over the Am29705A. The \(\overline{W E} / B L E\) input can then be connected directly to system clock.
The Am29705A is a plug-in replacement for the Am29705, but is about \(30 \%\) faster. The Am29705A and Am29707 feature AMD's advanced ion-implanted micro-oxide (IMOX \({ }^{\text {TM }}\) ) processing.


\section*{ORDERING INFORMATION}

Order the part number according to the table below to obtain the desired package, temperature range and screening level.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Am29707 } \\
\text { Order Number }
\end{gathered}
\] & Am29705A Order Number & \[
\begin{gathered}
\text { Am29705 } \\
\text { Order Number }
\end{gathered}
\] & Package Type (Note 1) & Operating Range (Note 2) & Screening Level (Note 3) \\
\hline AM29707PC & AM29705APC & AM29705PC & P-28 & C & C-1 \\
\hline AM29707DC & AM29705ADC & AM29705DC & D-28 & C & C-1 \\
\hline AM29707DC-B & AM29705ADC-B & AM29705DC-B & D-28 & C & B-2 (Note 4) \\
\hline AM29707DM & AM29705ADM & AM29705DM & D-28 & M & C-3 \\
\hline AM29707DM-B & AM29705ADM-B & AM29705DM-B & D-28 & M & B-3 \\
\hline AM29707FM & AM29705AFM & AM29705FM & F-28-1 & M & C-3 \\
\hline AM29707FM-B & AM29705AFM-B & AM29705FM-B & F-28-1 & M & B-3 \\
\hline AM29707LC & AM29705ALC & AM29705LC & L-28 & C & C-1 \\
\hline AM29707LM & AM29705ALM & AM29705LM & L-28 & M & C-3 \\
\hline AM29707LM-B & AM29705ALM-B & AM29705LM-B & L-28 & M & B-3 \\
\hline AM29707XC & AM29705AXC & AM29705XC & Dice & C & Visual inspection to MIL-STD-883 \\
\hline AM29707XM & AM29705AXM & AM29705XM & Dice & M & \(\int\) Method 2010B. \\
\hline
\end{tabular}

Notes: 1. \(P=\) Molded DIP,\(D=\) Hermetic DIP, \(F=\) Flat Pak. Number following letter is number of leads. See Appendix \(B\) for detailed outline. Where Appendix \(B\) contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. \(\mathrm{C}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{M}=-55\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50\) to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

\section*{PIN DEFINITIONS}
\begin{tabular}{|c|c|}
\hline \(\mathrm{D}_{0}-\mathrm{D}_{3}\) & \begin{tabular}{l}
Data Inputs \\
New data is written into the RAM through these inputs.
\end{tabular} \\
\hline \(\mathrm{A}_{0}-\mathrm{A}_{3}\) & \begin{tabular}{l}
The A-Address Inputs \\
The four-bit field presented at the A inputs selects one of the 16 memory words for presentation to the A-Data Latch.
\end{tabular} \\
\hline \(B_{0}-B_{3}\) & \begin{tabular}{l}
The B-Address Inputs \\
The four bit field presented at the B inputs selects one of the 16 memory words for presentation to the B-Data Latch. The B address field also selects the word into which new data is written.
\end{tabular} \\
\hline \(\mathrm{YA}_{0}-\mathrm{YA}_{3}\) & The Four A-Data Latch Outputs \\
\hline \(\mathrm{YB}_{0}-\mathrm{YB}_{3}\) & The Four B-Data Latch Outputs \\
\hline \(\overline{W E}_{1}, \overline{W E}_{2}\) & \begin{tabular}{l}
Write Enables \\
When both Write Enables are LOW, new data is written into the word selected by the B -address field. If either Write Enable input is HIGH, no new data can be written into the memory.
\end{tabular} \\
\hline \(\overline{O E-A}\) & \begin{tabular}{l}
A-Port Output Enable \\
When \(\overline{\mathrm{OE}-\mathrm{A}}\) is LOW, data in the A-Data Latch is present at the \(\mathrm{YA}_{i}\) outputs. If \(\overline{\mathrm{OE}-\mathrm{A}}\) is HIGH, the \(\mathrm{YA}_{;}\)outputs are in the high-impedance (off) state.
\end{tabular} \\
\hline \(\overline{O E-B}\) & \begin{tabular}{l}
B-Port Output Enable \\
When \(\overline{\mathrm{OE}-\mathrm{B}}\) is LOW, data in the B-Data Latch is present at the \(\mathrm{YB}_{i}\) outputs. When \(\overline{\mathrm{OE}-\mathrm{B}}\) is HIGH the \(\mathrm{YB}_{\mathrm{i}}\) outputs are in the high-impedance (off) state.
\end{tabular} \\
\hline LE & \begin{tabular}{l}
Latch Enable \\
The LE input controls the latches for both the RAM A-output port and RAM B-output port. When the
\end{tabular} \\
\hline
\end{tabular}
parent) and data from the RAM, as selected by the \(A\) and \(B\) address fields, is present at the outputs. When LE is LOW, the latches are closed and they retain the last data read from the RAM independent of the current \(A\) and \(B\) address field inputs. (Am29705A • Am29705A only.)

\section*{Force A Zero}

This input is used to force the outputs of the A-port latches LOW independent of the Latch Enable input or A-address field select inputs. Thus, the A-output bus can be forced LOW using this control signal. When the \(\overline{A-L O}\) input is HIGH, the \(A\) latches operate in their normal fashion. Once the \(A\) latches are forced LOW, they remain LOW independent of the \(\overline{A-L O}\) input if the latches are closed. (Am29705•Am29705A only.)

\section*{A-Output Port Latch Enable}

When ALE is HIGH, the A latch is open (transparent) and data from the RAM, as selected by the A address field, is present at the A output. When ALE is LOW, the A latch is closed and retains the last data read from the RAM independent of the current A address field input. (Am29707 only.)

\section*{WE/BLE Write Enable/B-Output Port Latch Enable}

When WE/BLE is LOW together with \(\overline{W E_{1}}\) and \(W_{2}\), new data is written into the word selected by the \(B\) address field. When \(\overline{W E} / B L E\) or any Write Enable input is HIGH, no data is written into the RAM.
\(\overline{W E} / B L E\) also controls the \(B\) output port. When WE/BLE is HIGH, the B latch is open (transparent), and when this input is LOW, the B latch is closed (Am29707 only).

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS


Am29705/29705A/29707


Am29707
WRITE CONTROL
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\overline{W E}\)} & \multirow[b]{2}{*}{\(\overline{W E}\)} & \multirow[b]{2}{*}{WE/BLE} & \multirow[b]{2}{*}{Function} & \multicolumn{2}{|l|}{RAM Outputs at Latch Inputs} \\
\hline & & & & A-Port & B-Port \\
\hline L & L & L & Write D into B & A Data ( \(A=B\) ) & Not Specified \\
\hline X & X & H & No Write & A Data & B Data \\
\hline X & H & X & No Write & A Data & B Data \\
\hline H & X & X & No Write & A Data & B Data \\
\hline = HIG & & & \(\mathrm{L}=\mathrm{LOW}\) & & \(x=\) Don't \\
\hline
\end{tabular}

YA READ
YB READ
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Inputs } & & \\
\cline { 1 - 1 }\(\overline{O E-A}\) & ALE & YA Output & Function \\
\hline H & X & Z & \begin{tabular}{c} 
High Impedance \\
Latches Transparent \\
L
\end{tabular} \\
H & A-Port RAM Data & NC & Latches Retain Data
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Inputs} & \multirow[b]{2}{*}{YB Output} & \multirow[b]{2}{*}{Function} \\
\hline \(\overline{\text { OE-B }}\) & WE/BLE & & \\
\hline H & X & Z & High Impedance \\
\hline L & H & B-Port RAM Data & Latches Transparent \\
\hline L & L & NC & Latches Retain Data \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& H=H I G H \\
& L=L O W
\end{aligned}
\]}} & \(=\) Don't Care & NC \(=\) No Change \\
\hline & & \(=\) High Impedance & \\
\hline
\end{tabular}

\section*{LOADING RULES (In Unit Loads)}

Fan-out
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Input/Output} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{t Pin No.'s}} & \multirow[b]{2}{*}{Input Unit Load} & \multicolumn{2}{|l|}{Fan-out} \\
\hline & & & & Output HIGH & Output LOW \\
\hline \(\mathrm{D}_{1}\) & & 1 & 1 & - & - \\
\hline \(\mathrm{D}_{0}\) & & 2 & 1 & - & -- \\
\hline \(\overline{\mathrm{WE}}_{1}\) & & 3 & 1 & - & - \\
\hline \(\mathrm{B}_{0}\) & & 4 & 0.55 & -- & - \\
\hline \(\mathrm{B}_{1}\) & & 5 & 0.55 & - & - \\
\hline \(\mathrm{B}_{2}\) & & 6 & 0.55 & - & - \\
\hline \(\mathrm{B}_{3}\) & & 7 & 0.55 & - & - \\
\hline \[
\overline{A-L O}
\] & (29705
Only) & 8 & 1 & - & - \\
\hline LE 129705 & 5 Only) & y) 9 & 1 & - & - \\
\hline \[
\begin{array}{ll}
\text { ALE } & (2) \\
& 0
\end{array}
\] & \[
\begin{aligned}
& (29707 \\
& \text { Only) }
\end{aligned}
\] & 8 & 1 & - & - \\
\hline \(\overline{\text { WE/BLE }}\) & \[
\begin{aligned}
& \text { (29707 } \\
& \text { Only) }
\end{aligned}
\] & 7 & 1 & - & \(\cdots\) \\
\hline \(Y B_{0}\) & & 10 & - & 100/200 & 33 \\
\hline \(Y A_{0}\) & & 11 & - & 100/200 & 33 \\
\hline \(\mathrm{YB}{ }_{1}\) & & 12 & - & 100/200 & 33 \\
\hline
\end{tabular}

Fan-out Input Output Output
\begin{tabular}{ccccc} 
Input/Output & Pin No.'s & \begin{tabular}{c} 
Input \\
Unit Load
\end{tabular} & \begin{tabular}{c} 
Output \\
HIGH
\end{tabular} & \begin{tabular}{c} 
Output \\
LOW
\end{tabular} \\
\hline \(\mathrm{YA}_{1}\) & 13 & - & \(100 / 200\) & 33 \\
\hline GND & 14 & - & - & - \\
\hline \(\mathrm{YB}_{2}\) & 15 & - & \(100 / 200\) & 33 \\
\hline \(\mathrm{YA}_{2}\) & 16 & - & \(100 / 200\) & 33 \\
\hline \(\mathrm{YB}_{3}\) & 17 & - & \(100 / 200\) & 33 \\
\hline \(\mathrm{YA}_{3}\) & 18 & - & \(100 / 200\) & 33 \\
\hline\(\overline{\mathrm{OE}-\mathrm{B}}\) & 19 & 1 & - & - \\
\hline\(\overline{\mathrm{OE}-\mathrm{A}}\) & 20 & 1 & - & - \\
\hline \(\mathrm{A}_{3}\) & 21 & 0.55 & - & - \\
\hline \(\mathrm{A}_{2}\) & 22 & 0.55 & - & - \\
\hline \(\mathrm{A}_{1}\) & 23 & 0.55 & - & - \\
\hline \(\mathrm{A}_{0}\) & 24 & 0.55 & - & - \\
\hline\(\overline{\mathrm{WE}_{2}}\) & 25 & 1 & - & - \\
\hline \(\mathrm{D}_{3}\) & 26 & 1 & - & - \\
\hline \(\mathrm{D}_{2}\) & 27 & 1 & - & - \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & 28 & - & - & - \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
OPERATING RANGE

\section*{Part Number}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{c}{ Suffix } & VCC & Temperature \\
\hline \begin{tabular}{l} 
PC, PC-B \\
DC, DC-B \\
XC
\end{tabular} & 4.75 to 5.25 V & \(T_{A}=0\) to \(+70^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
DM, DM-B \\
FM, FM-B \\
XM
\end{tabular} & 4.5 to 5.5 V & \(T_{A}=-55\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential Continuous & -0.5 V to +7.0 V \\
\hline DC Voltage Applied to Outputs for HIGH Output State & -0.5 V to \(+\mathrm{V}_{\mathrm{CC}}\) max \\
\hline DC Input Voltage & -0.5 V to +5.5 V \\
\hline DC Output Current, Into Outputs & 30 mA \\
\hline DC Input Current & -30 mA to +5.0 mA \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)}


Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. All inputs grounded except \(\overline{\mathrm{OE}-\mathrm{A}}\) and \(\overline{\mathrm{OE}-\mathrm{B}}=2.4 \mathrm{~V}\).

Am29705/29705A/29707
Am29705A SWITCHING CHARACTERISTICS
(Output levels \(=0\) and 3.0 V , transitions measured at 1.5 V )
( \(\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters & From & To & Test Conditions & \[
\begin{gathered}
T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\
V_{C C}=4.75 \text { to } 5.25 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
T_{A}=-55 \text { to }+125^{\circ} \mathrm{C} \\
V_{C C}=4.5 \text { to } 5.5 \mathrm{~V}
\end{gathered}
\] \\
\hline Access Time & A Address Stable or B Address Stable & YA Stable or YB Stable & \(L E=H I G H\) & 28 & 30 \\
\hline Turn-On Time & \(\overline{\mathrm{OE}-\mathrm{A}}\) or \(\overline{\mathrm{OE}-\mathrm{B}}\) LOW & YA or YB Stable & & 20 & 20 \\
\hline Turn-Off Time & \(\overline{\mathrm{OE}-\mathrm{A}}\) or \(\overline{\mathrm{OE}-\mathrm{B}} \mathrm{HIGH}\) & YA or YB Off & & 20 & 20 \\
\hline Reset Time & A-LOLOW & YA LOW & & 20 & 25 \\
\hline Enable Time & LEHIGH & YA and YB Stable & & 20 & 25 \\
\hline \multirow[t]{2}{*}{Transparency} & \(\overline{\mathrm{WE}}\) or \(\overline{W E_{2}}\) & YA or YB & & 35 & 40 \\
\hline & D & YA or YB & & 35 & 40 \\
\hline
\end{tabular}

MINIMUM SETUP AND HOLD TIME (in ns)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters & From & To & Test Conditions & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\
\text { Max }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=4.5 \text { to } 5.5 \mathrm{~V}
\end{gathered}
\] \\
\hline Data Setup Time & D Stable & Either \(\overline{\text { WE }}\) HIGH & & 12 & 15 \\
\hline Data Hold Time & Either \(\overline{\text { WE }}\) HIGH & D Changing & & 3 & 0 \\
\hline Address Setup Time & B Stable & Both WE LOW & & 0 & 3 \\
\hline Address Hold Time & Either \(\overline{\text { WE }}\) HIGH & B Changing & & 3 & 0 \\
\hline Latch Close Before & LELOW & \(\overline{W E}_{1}\) LOW & \(\overline{W E}_{2}\) LOW & 0 & 0 \\
\hline Write Begins. & LELOW & \(\overline{\mathrm{WE}} \mathrm{L}_{2}\) LOW & \(\overline{\mathrm{WE}} \mathrm{E}_{1}\) LOW & 0 & 0 \\
\hline Address Setup Before Latch Closes & A or B Stable & LE LOW & & 15 & 20 \\
\hline
\end{tabular}

\section*{MINIMUM PULSE WIDTHS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters & Input & Puise & Test Conditions & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\
\operatorname{Max}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=4.5 \text { to } 5.5 \mathrm{~V}
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Write Pulse Width} & \(\overline{W E}_{1}\) & HIGH-LOW-HIGH & \(\overline{W E}_{2}\) LOW & 20 & 20 \\
\hline & \(\overline{W E}\) & HIGH-LOW-HIGH & \(\overline{W^{\prime}}{ }_{1}\) LOW & 20 & - 20 \\
\hline A Latch Reset Pulse & \(\overline{\text { A-LO }}\) & HIGH-LOW-HIGH & & 15 & 15 \\
\hline Latch Data Capture & LE & LOW-HIGH-LOW & & 15 & 15 \\
\hline
\end{tabular}

Note: The Am29705A meet or exceeds all of the specifications of the Am29705.

Am 29705 SWITCHING CHARACTERISTICS
(Output levels \(=0\) and 3.0 V , transitions measured at 1.5 V )
( \(R_{L}=390 \Omega, C_{L}=50 \mathrm{pF}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters & From & To & Test Conditions & \[
\begin{gathered}
T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\
V_{C C}=4.75 \text { to } 5.25 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T}_{A}=-55 \text { to }+125^{\circ} \mathrm{C} \\
V_{C C}=4.5 \text { to } 5.5 \mathrm{~V}
\end{gathered}
\] \\
\hline Access Time & A Address Stable or B Address Stable & YA Stable or YB Stable & \(L E=H I G H\) & 53 & 58 \\
\hline Turn-On Time & \(\overline{\mathrm{OE}-\mathrm{A}}\) or \(\overline{\mathrm{OE}-\mathrm{B}}\) LOW & YA or YB Stable & & 30 & 30 \\
\hline Turn-Off Time & \(\overline{\mathrm{OE}-\mathrm{A}}\) or \(\overline{\mathrm{OE}-\mathrm{B}} \mathrm{HIGH}\) & YA or YB Off & & 20 & 20 \\
\hline Reset Time & A-LOLOW & YA LOW & & 35 & 35 \\
\hline Enable Time & LE HIGH & YA and YB Stable & & 32 & 32 \\
\hline
\end{tabular}

MINIMUM SETUP AND HOLD TIMES (in ns)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters & From & To & Test Conditions & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\
\operatorname{Max}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=4.5 \text { to } 5.5 \mathrm{~V}
\end{gathered}
\] \\
\hline Data Setup Time & D Stable & Either \(\overline{\text { WE }}\) HIGH & & 20 & 25 \\
\hline Data Hold Time & Either WE HIGH & D Changing & & 3 & 5 \\
\hline Address Setup Time & B Stable & Both \(\overline{\text { WE }}\) LOW & & 5 & 5 \\
\hline Address Hold Time & Either WE HIGH & B Changing & & 0 & 0 \\
\hline Latch Close Before & LE LOW & \(\overline{W E}_{1}\) LOW & \(\overline{W_{2}}\) LOW & 0 & 0 \\
\hline Write Begins & LE LOW & \(\overline{W E}_{2}\) LOW & \(\overline{W E}_{1}\) LOW & 0 & 0 \\
\hline \begin{tabular}{l}
Address Setup \\
Before Latch Closes
\end{tabular} & A or B Stable & LE LOW & & 45 & 50 \\
\hline
\end{tabular}

\section*{MINIMUM PULSE WIDTHS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters & Input & Puise & Test Conditions & \[
\begin{gathered}
T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\
\text { Max }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=4.5 \text { to } 5.5 \mathrm{~V}
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Write Pulse Width} & \(\overline{W E_{1}}\) & HIGH-LOW-HIGH & \(\overline{W E_{2}}\) LOW & 25 & 25 \\
\hline & \(\overline{W E}\) & HIGH-LOW-HIGH & \(\overline{W E_{1}}\) LOW & 20 & 20 \\
\hline A Latch Reset Pulse & \(\overline{\text { A-LO }}\) & HIGH-LOW-HIGH & & 20 & 20 \\
\hline Latch Data Capture & LE & LOW-HIGH-LOW & & 20 & 25 \\
\hline
\end{tabular}

\section*{Am29705/29705A/29707}

Am 29707 SWITCHING CHARACTERISTICS
(Output levels \(=0\) and 3.0 V , transitions measured at 1.5 V )
( \(\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) )
\begin{tabular}{|c|c|c|c|c|}
\hline Parameters & From & To & Conditions & \[
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=4.75 \text { to } 5.25 \mathrm{~V}
\end{gathered}
\] \\
\hline Access Time & A Address Stable or B Address Stable & YA Stable or YB Stable & \(L E=H I G H\) & 13 \\
\hline Turn-On Time & \(\overline{\mathrm{OE}-\mathrm{A}}\) or \(\overline{\mathrm{OE}-\mathrm{B}}\) LOW & YA or YB Stable & & 6 \\
\hline Turn-Off Time & \(\overline{\mathrm{OE}-\mathrm{A}}\) or \(\overline{\mathrm{OE}-\mathrm{B}} \mathrm{HIGH}\) & YA or YB Off & & 13 \\
\hline Reset Time & \(\overline{\text { A-LO LOW }}\) & YA LOW & & 8 \\
\hline Enable Time & LE HIGH & YA and YB Stable & & 8 \\
\hline \multirow[t]{2}{*}{Transparency} & \(\overline{\mathrm{WE}}\) or \(\overline{\mathrm{WE}}_{2}\) & YA or YB & & 12 \\
\hline & D & YA or YB & & 14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Minimum Set-up and Hold Times (in ns)} & \[
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C} \\
\mathrm{~V}_{C C}=5.0 \mathrm{~V} \pm 5 \%
\end{gathered}
\] \\
\hline Parameters & From & To & Conditions & Max \\
\hline Data Set-Up Time & D Stable & Either \(\overline{\text { WE }}\) HIGH & & 2 \\
\hline Data Hold Time & Either WE HIGH & D Changing & & 4 \\
\hline Address Set-Up Time & B Stable & Both WE LOW & & -1 \\
\hline Address Hold Time & Either WE HIGH & B Changing & & 8 \\
\hline \multirow[t]{2}{*}{Latch Close Before Write Begins} & LE LOW & \(\overline{W E}_{1}\) LOW & \(\overline{W E}_{2}\) LOW & 0 \\
\hline & LE LOW & \(\overline{W E}_{2}\) LOW & \(\overline{\mathrm{WE}} \mathrm{E}_{1}\) LOW & 0 \\
\hline \begin{tabular}{l}
Address Set-Up \\
Before Latch Closes
\end{tabular} & A or B Stable & LE LOW & & 7 \\
\hline
\end{tabular}


\section*{TEST OUTPUT LOAD CONFIGURATIONS FOR Am29705}

\section*{A. THREE-STATE OUTPUTS}


Notes: 1. \(C_{L}=50 \mathrm{pF}\) includes scope probe, wiring and stray capacitances without device in test fixture.
2. \(S_{1}, S_{2}, S_{3}\) are closed during function tests and all A.C. tests except output enable tests.
3. \(S_{1}\) and \(S_{3}\) are closed while \(S_{2}\) is open for tpZH test.
\(S_{1}\) and \(S_{2}\) are closed while \(S_{3}\) is open for tPZL test.
4. \(C_{L}=5 \mathrm{pF}\) for output disable tests.

TEST OUTPUT LOADS FOR Am29705
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Pin \# \\
(DIP)
\end{tabular} & Pin Label & \begin{tabular}{c} 
Test \\
Circuit
\end{tabular} & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) \\
\hline- & \(\mathrm{YA}_{0}-3\) & A & 312 & 1 K \\
\hline- & \(\mathrm{YB}_{0-3}\) & A & 312 & 1 K \\
\hline
\end{tabular}

\section*{Notes on Testing}

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:
1. Insure the part is adequately decoupled at the test head. Large changes in \(V_{C C}\) current as the device switches may cause erroneous function failures due to \(V_{C C}\) changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in \(5-8 \mathrm{~ns}\). Inductance in the ground
cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach \(V_{I L}\) or \(V_{I H}\) until the noise has settled. AMD recommends using \(\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}\) for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

\section*{USING THE Am29705 AND Am29707}

The Am2903 and Am29203 each contain only 16 scratchpad registers plus the \(Q\) register. For applications which require more than 17 registers, the register set of the Am2903 and Am29203 can be easily expanded.
- Use the Am29705 with the Am2903
- Use the Am29707 with the Am29203

\section*{All references to the Am29705 include the Am29705A}

For further applications information on using the Am29705 with the Am2903, see Chapter lil of Bit Slice Microprocessor Design, Mick and Brick, McGraw-Hill Publications.


The Am29705 as a two-way interface buffer. Data may be passed between the main data bus and the peripheral data bus under I/O control. The two-port RAM allows data to be written into buffer storage from a peripheral device, using the B address port and the S counter register, while it is being read into main memory, using the A address port and the Q counter register. This simultaneous read/write capability facilitates DMA transfers because the CPU can ignore write requests from the peripheral device. Data output from CPU to the peripheral device is handled by sequential write and read operations. Data is written into buffer storage from the CPU, using the \(B\) address port and the \(R\) counter register. It is read onto the peripheral device using the B address port and either the R register, for single word transfers, or the S register, for block transfers.

\section*{APPLICATIONS (Cont.)}


A 16 -word by 4-bit two-port RAM with LE and \(W E_{1}\) connected to make the device appear edge triggered. \(W E_{1}\) and \(W E_{2}\) are logically identical but are electrically slightly different. For synchronous operation without possibility of race, \(\mathrm{WE}_{1}\) should be connected to \(L E\).


MPR-258
A 64-word by 4-bit three address memory. Data is read from the \(A\) address to the YA outputs and from the \(B\) address to the YB outputs while the latch enable is HIGH. When the latch enable goes LOW, the YA and YB data is held in the internal latches, and the RAM B address is switched to the C -destination address lines. A write pulse will then deposit the input data into the location selected by the C address.


\section*{Am29803A \\ 16-Way Branch Control Unit}

\section*{DISTINCTIVE CHARACTERISTICS}
- 16 separate instructions \(-2,4,8\) or 16 -way branch in one microprogram execution cycle
- Four individual test inputs
- Four individual outputs for driving the four OR inputs on the Am2909A Microprogram Sequencer
- Provides maximum branch capability in a microprogram control unit using the Am2909
- Advanced Low-Power Schottky processing

\section*{FUNCTIONAL DESCRIPTION}

The Am29803A is a Low-Power Schottky processed device that provides 16 -way branch control when used in conjunction with the Am2909A Microprogram Sequencer.
The device features 16 instructions that provide all combinations of simultaneous testing of four different inputs. The device has four outputs that are used to drive the four OR inputs of the Am2.909A Microprogram Sequencer.
The "zero" instruction inhibits the testing of any of the four test ( T ) inputs. The remaining 15 instructions are used to test combinations of \(1,2,3\) or 4 of the T inputs simultaneously. If one \(T\) input is being tested, the Am29803A will select one of two possible addresses. If two T inputs are being tested, the device will select one of four possible addresses. If three \(T\) inputs are being tested, the device will select one of eight possible addresses. If all four T inputs are being tested, the device will select one of sixteen addresses as the field used to drive the OR inputs of the Am2909A.

Am29803A
MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous & -0.5 V to +7.0 V \\
\hline DC Voltage Applied to Outputs & -0.5 V to \(+\mathrm{V}_{\mathrm{cc}}\) max \\
\hline DC Input Voltage & -0.5 V to +5.5 V \\
\hline DC Input Current & -30 mA to +5 mA \\
\hline
\end{tabular}

\section*{OPERATING RANGE}
\begin{tabular}{|l|l|l|l|}
\hline COM'L & Am29803ADC & \(T_{A}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\) \\
\hline MIL & Am29803ADM & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameters & Description & \multicolumn{2}{|c|}{Test Conditions} & Min. & \begin{tabular}{l}
Typ. \\
(Note 1)
\end{tabular} & Max. & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & 2.4 & & & Volts \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=M I N ., I_{O L}=16 \mathrm{~mA} \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & & & 0.45 & Volts \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & Input HIGH Level & \multicolumn{2}{|l|}{Guaranteed input logical HIGH voltage for all inputs} & 2.0 & & & Volts \\
\hline \(\mathrm{V}_{\text {IL }}\) & Input LOW Level & \multicolumn{2}{|l|}{Guaranteed input logical LOW voltage for all inputs} & & & 0.8 & Volts \\
\hline IIL & Input LOW Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}\)} & & -0.010 & -0.250 & mA \\
\hline \({ }_{1 / \mathrm{H}}\) & Input HIGH Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\)} & & & 25 & \(\mu \mathrm{A}\) \\
\hline \(1 /\) & Input HIGH Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{MAX},. \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}\)} & & & 1.0 & mA \\
\hline \({ }^{\text {ISC }}\) & Output Short Circuit Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}\) ( Note 2)} & -20 & \(-40\) & -90 & mA \\
\hline \({ }^{1} \mathrm{CC}\) & Power Supply Current & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { All inputs = GND } \\
& V_{C C}=\text { MAX. }
\end{aligned}
\]} & & 95 & 130 & mA \\
\hline \(v_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(V_{C C}=\) MIN., IIN \(=-18 \mathrm{~mA}\)} & & & -1.2 & Volts \\
\hline \multirow{3}{*}{\({ }^{\text {I CEX }}\)} & \multirow{3}{*}{Output Leakage Current} & \multirow[b]{3}{*}{\[
\begin{aligned}
& V_{C C}=\mathrm{MAX} . \\
& V_{\overline{C S 1}}=2.4 \mathrm{~V}
\end{aligned}
\]} & \(\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}\) & & & 40 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & \(\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}\) & & & 40 & \\
\hline & & & \(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\) & & & -40 & \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input Capacitance & \multicolumn{2}{|l|}{\(V_{\text {IN }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}\) (Note 3)} & & 4 & & \multirow[b]{2}{*}{pF} \\
\hline \(\mathrm{C}_{\text {OUT }}\) & Output Capacitance & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}\) (Note 3)} & & 8 & & \\
\hline
\end{tabular}
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second
3. These parameters are not \(100 \%\) tested, but are periodically sampled.

SWITCHING CHARACTERISTICS
( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \({ }_{\text {t PLH }}\) & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{i}}\) to \(\mathrm{OR}_{\mathrm{i}}\)} & \multirow{6}{*}{\[
\begin{aligned}
\mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \\
\mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega
\end{aligned}
\]} & & \multirow[t]{2}{*}{25} & \multirow[t]{2}{*}{35} & \multirow[t]{2}{*}{ns} \\
\hline tPHL & & & & & & \\
\hline \({ }^{\text {P PLH }}\) & \multirow[t]{2}{*}{\(T_{i}\) to \(O R_{i}\)} & & & \multirow[t]{2}{*}{25} & \multirow[t]{2}{*}{35} & \multirow[t]{2}{*}{ns} \\
\hline \({ }_{\text {t PHL }}\) & & & & & & \\
\hline \({ }^{\text {Z }} \mathrm{ZH}\) & \multirow[t]{2}{*}{\(\overline{O E}_{i}\) to \(\mathrm{OR}_{\mathrm{i}}\)} & & & \multirow[t]{2}{*}{15} & \multirow[t]{2}{*}{18} & \multirow[t]{2}{*}{ns} \\
\hline \({ }^{\text {t }} \mathrm{L}\) L & & & & & & \\
\hline \({ }^{\text {t }} \mathrm{HZ}\) & \multirow[t]{2}{*}{\(\overline{O E}_{\mathbf{i}}\) to \(\mathrm{OR}_{\mathbf{i}}\)} & \(\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}\) & & \multirow[t]{2}{*}{15} & \multirow[t]{2}{*}{18} & \multirow[t]{2}{*}{ns} \\
\hline \(t_{L Z}\) & & \(R_{L}=2.0 \mathrm{k} \Omega\) & & & & \\
\hline
\end{tabular}

\section*{SWITCHING CHARACTERISTICS} OVER OPERATING RANGE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & \(\mathrm{V}_{\mathrm{CC}}\) & \[
\pm 5 \%
\] & \[
\mathrm{V}_{\mathrm{Cc}}
\] & \[
\pm 10 \%
\] & \\
\hline Parameters & Description & Test Conditions & Min. & Max. & Min. & Max. & Units \\
\hline \({ }^{\text {tPLH }}\) & \multirow[t]{2}{*}{\(\mathrm{l}_{\mathrm{i}}\) to \(\mathrm{OR}_{\mathrm{i}}\)} & \multirow{8}{*}{\[
\begin{aligned}
C_{L} & =15 \mathrm{pF} \\
R_{L} & =2.0 \mathrm{k} \Omega
\end{aligned}
\]} & & \multirow[t]{2}{*}{45} & & \multirow[t]{2}{*}{60} & \multirow[t]{2}{*}{ns} \\
\hline \(\mathrm{t}_{\text {PHL }}\) & & & & & & & \\
\hline \({ }^{\text {tPLH }}\) & \multirow[t]{2}{*}{\(\mathrm{T}_{\mathrm{i}}\) to \(\mathrm{OR}_{\mathrm{i}}\)} & & & \multirow[t]{2}{*}{45} & & \multirow[t]{2}{*}{60} & \multirow[t]{2}{*}{ns} \\
\hline \({ }^{\text {tPHL }}\) & & & & & & & \\
\hline \({ }^{\text {Z }}\) H & \multirow[t]{2}{*}{\(\overline{O E}_{\mathrm{i}}\) to \(\mathrm{OR}_{\mathrm{i}}\)} & & & \multirow[t]{2}{*}{30} & & \multirow[t]{2}{*}{30} & \multirow[t]{2}{*}{ns} \\
\hline t LL & & & & & & & \\
\hline \({ }_{\text {thz }}\) & \multirow[t]{2}{*}{\(\overline{O E}_{\mathrm{i}}\) to \(\mathrm{OR}_{\mathrm{i}}\)} & & & \multirow[t]{2}{*}{20} & \multirow[t]{2}{*}{- 20} & \multirow[t]{2}{*}{20} & \multirow[t]{2}{*}{ns} \\
\hline \(\mathrm{t}_{\mathrm{L}}\) & & & & & & & \\
\hline
\end{tabular}

\section*{DEFINITION OF FUNCTIONAL TERMS}
\(I_{0}, I_{1}, I_{2}, I_{3}\)
The four instruction inputs to the device
\(\mathbf{T}_{\mathbf{0}}, \mathrm{T}_{1}, \mathrm{~T}_{\mathbf{2}}, \mathrm{T}_{\mathbf{3}} \quad\) The four test inputs for the device \(\mathrm{OR}_{0}, \mathrm{OR}_{1}, \mathrm{OR}_{2}, \mathrm{OR} 3\) The four outputs of the device that are connected to the four OR inputs of the Am2909
\(\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}\)
Output Enable. When either \(\overline{\mathrm{OE}}\) input is HIGH, the OR \({ }_{i}\) outputs are in the high impedance state. When both the \(\overline{O E}_{1}\) and \(\overline{O E} 2\) inputs are LOW, the \(O R\) outputs are enabled and the selected data will be present.

\section*{LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS}


Note: Actual current flow direction shown.

\section*{GUARANTEED LOADING RULES} OVER OPERATING RANGE (In Unit Loads)

A Low-Power Schottky TTL Unit Load is defined as \(20 \mu \mathrm{~A}\) measured at 2.7 V HIGH and -0.36 mA measured at 0.4 V LOW.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin No.'s} & \multirow[b]{2}{*}{Input/Output} & \multirow[t]{2}{*}{\begin{tabular}{l}
Input \\
Load
\end{tabular}} & \multirow[t]{2}{*}{Output HIGH} & \multicolumn{2}{|r|}{Output LOW} \\
\hline & & & & MIL & COM'L \\
\hline 1 & \(\mathrm{I}_{2}\) & 0.5 & - & - & - \\
\hline 2 & \(\mathrm{I}_{1}\) & 0.5 & - & - & - \\
\hline 3 & \(\mathrm{I}_{0}\) & 0.5 & - & - & - \\
\hline 4 & \(\mathrm{T}_{3}\) & 0.5 & - & - & - \\
\hline 5 & \(\mathrm{T}_{0}\) & 0.5 & - & - & - \\
\hline 6 & T1 & 0.5 & - & - & - \\
\hline 7 & \(\mathrm{T}_{2}\) & 0.5 & - & - & - \\
\hline 8 & GND & - & - & - & - \\
\hline 9 & \(\mathrm{OR}_{0}\) & - & 100 & 44 & 44 \\
\hline 10 & \(\mathrm{OR}_{1}\) & - & 100 & 44 & 44 \\
\hline 11 & \(\mathrm{OR}_{2}\) & - & 100 & 44 & 44 \\
\hline 12 & \(\mathrm{OR}_{3}\) & - & 100 & 44 & 44 \\
\hline 13 & \(\overline{\mathrm{OE}}_{1}\) & 0.5 & - & - & - \\
\hline 14 & \(\overline{\mathrm{OE}}_{2}\) & 0.5 & - & - & - \\
\hline 15 & 13 & 0.5 & - & - & - \\
\hline 16 & \(\mathrm{V}_{\mathrm{CC}}\) & - & - & - & - \\
\hline
\end{tabular}

FUNCTION TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Function & \(\mathrm{I}_{3}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{0}\) & \(\mathrm{T}_{3}\) & \(\mathrm{T}_{2}\) & T1 & \(\mathrm{T}_{0}\) & \(\mathrm{OR}_{3}\) & \(\mathrm{OR}_{2}\) & \(\mathrm{OR}_{1}\) & \(\mathrm{OR}_{0}\) \\
\hline No Test & L & L & L & L & X & X & x & \(\times\) & L & L & L & L \\
\hline Test \(\mathrm{T}_{0}\) & L & L & L & H & \[
\begin{aligned}
& \hline x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline Test \(\mathrm{T}_{1}\) & L & L & H & L & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\stackrel{L}{L}
\] & \[
\begin{aligned}
& \hline \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline Test \(T_{0}\) \& \(T_{1}\) & L & L & H & H & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \(L\)
\(L\)
\(L\)
\(L\) & \[
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \hline L \\
& L \\
& H \\
& H \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] \\
\hline Test \(\mathrm{T}_{2}\) & L & H & L & L & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& \times \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \hline
\end{aligned}
\] & \[
\bar{L}
\] & \[
\bar{L}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline Test \(T_{0}\) \& \(T_{2}\) & L & H & L & H & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & L
L
\(H\)
\(H\) & \[
\begin{aligned}
& \mathrm{x} \\
& \times \\
& \times \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \(L\)
\(L\)
\(L\) & \[
\begin{aligned}
& L \\
& L \\
& L
\end{aligned}
\] & \(L\)
\(L\)
\(H\)
\(H\) & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline Test \(\mathrm{T}_{1}\) \& \(\mathrm{T}_{2}\) & L & H & H & L & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x
\end{aligned}
\] & L
L
H
H & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \(L\)
\(L\)
\(L\) & L
L
H
\(H\) & \[
\begin{aligned}
& L \\
& H \\
& H \\
& H
\end{aligned}
\] \\
\hline Test \(\mathrm{T}_{0}, \mathrm{~T}_{1} \& \mathrm{~T}_{2}\) & L & H & H & H & \[
\begin{aligned}
& \hline \times \\
& \hline
\end{aligned}
\] & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\) & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & L
\(H\)
\(L\)
\(H\)
\(L\)
\(H\)
\(H\)
\(H\) &  & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\) & \(L\)
\(L\)
\(H\)
\(H\)
\(L\)
\(L\)
\(H\)
\(H\) & L
H
L
\(H\)
L
\(H\)
\(L\)
\(H\) \\
\hline Test \(\mathrm{T}_{3}\) & H & L & L & L & \[
\frac{\mathrm{L}}{\mathrm{H}}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \times \\
& \times \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \times \\
& \times \\
& \hline
\end{aligned}
\] & \[
\bar{L}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline Test \(\mathrm{T}_{0}\) \& \(\mathrm{T}_{3}\) & H & L & L & H & L
L
\(H\)
\(H\) & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& H \\
& L \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \(L\)
\(L\)
\(L\)
\(L\) & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline Test \(T_{1} \& T_{3}\) & H & L & H & L & L
L
\(H\)
\(H\) & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& H \\
& L \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x
\end{aligned}
\] & \(L\)
\(L\)
\(L\)
\(L\) & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline Test \(T_{0}, T_{1} \& T_{3}\) & H & L & H & H & L
L
L
L
\(H\)
\(H\)
\(H\)
\(H\) & \[
\begin{aligned}
& \hline x \\
& \hline
\end{aligned}
\] & \(L\)
\(L\)
\(H\)
\(H\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\) & \(L\)
\(H\)
\(L\)
\(H\)
\(L\)
\(H\)
\(L\)
\(H\) &  & \(L\)
\(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\) & \(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(L\)
\(L\)
\(H\)
\(H\) & L
\(H\)
\(L\)
\(H\)
\(L\)
\(H\)
\(L\)
\(H\) \\
\hline Test \(T_{2}\) \& \(\mathrm{T}_{3}\) & H & H & L & L & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \(L\)
\(L\)
\(L\)
\(L\) & \[
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L \\
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& H \\
& H \\
& H
\end{aligned}
\] \\
\hline Test \(T_{0}, T_{2} \& T_{3}\) & H & H & L & H & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\) & \[
\begin{aligned}
& \text { L } \\
& L \\
& H \\
& H \\
& H \\
& L \\
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \text { L } \\
& H \\
& L \\
& H \\
& H \\
& H \\
& H \\
& H
\end{aligned}
\] & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\) & L
L
L
L
\(H\)
\(H\)
\(H\)
\(H\) & \(L\)
\(L\)
\(H\)
\(H\)
\(L\)
\(L\)
\(H\)
\(H\) & \[
\begin{aligned}
& L \\
& H \\
& H \\
& H \\
& H \\
& L \\
& H \\
& L \\
& H
\end{aligned}
\] \\
\hline Test \(T_{1}, T_{2}\) \& \(T_{3}\) & H & H & H & L & L
\(L\)
\(L\)
\(L\)
L
\(H\)
\(H\)
\(H\)
\(H\) & \[
\begin{aligned}
& \hline L \\
& L \\
& H \\
& H \\
& L \\
& L \\
& H \\
& H \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& H \\
& L \\
& H \\
& L \\
& H \\
& L \\
& H
\end{aligned}
\] & \[
\begin{gathered}
\hline \times \\
\hline
\end{gathered}
\] & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\) & L
\(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\) & \(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(L\)
\(L\)
\(H\)
\(H\) & L
\(H\)
L
\(H\)
\(L\)
\(H\)
\(L\)
\(H\) \\
\hline Test \(T_{0}, T_{1}, T_{2}\) \& \(T_{3}\) & H & H & H & H & L
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\) & \[
\begin{aligned}
& \text { L } \\
& L \\
& L \\
& L \\
& H \\
& H \\
& H \\
& H \\
& L \\
& L \\
& L \\
& L \\
& H \\
& H \\
& H \\
& H \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { L } \\
& L \\
& H \\
& H \\
& L \\
& L \\
& H \\
& H \\
& L \\
& L \\
& H \\
& H \\
& L \\
& L \\
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& \text { L } \\
& H \\
& L \\
& H \\
& L
\end{aligned}
\] & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\) & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\)
\(L\)
\(L\)
\(L\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\) & \(H\)
\(L\)
\(L\)
\(H\)
\(H\)
\(L\)
\(L\)
\(H\)
\(H\)
\(L\)
\(L\)
\(H\)
\(H\)
\(L\)
\(L\)
\(H\)
\(H\) & \(H\)
\(L\)
\(H\) \\
\hline
\end{tabular}
\(\mathrm{L}=\mathrm{LOW}, \mathrm{H}=\mathrm{HIGH}, \mathrm{X}=\) Don't care

\section*{ORDERING INFORMATION}

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.
\begin{tabular}{lccc}
\begin{tabular}{c} 
Order \\
Number
\end{tabular} & \begin{tabular}{c} 
Package Type \\
(Note 1)
\end{tabular} & \begin{tabular}{c} 
Operating Range \\
(Note 2)
\end{tabular} & \begin{tabular}{c} 
Screening Level \\
(Note 3)
\end{tabular} \\
\hline AM29803APC & \(\mathrm{P}-16\) & C & \(\mathrm{C}-1\) \\
AM29803ADC & \(\mathrm{D}-16\) & C & \(\mathrm{C}-1\) \\
AM29803ADC-B & \(\mathrm{D}-16\) & C & \(\mathrm{B}-1\) \\
AM29803ADM & \(\mathrm{D}-16\) & M & \(\mathrm{C}-3\) \\
AM29803ADM-B & \(\mathrm{D}-16\) & M & \(\mathrm{B}-3\) \\
AM29803AFM & F-16 & M & \(\mathrm{C}-3\) \\
AM29803AFM-B & \(\mathrm{F}-16\) & M & \(\mathrm{B}-3\)
\end{tabular}

Notes: 1. \(P=\) Molded DIP, \(D=\) Hermetic DIP, \(F=\) Flat Pak. Number following letter is number of leads. See Appendix \(B\) for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. \(\mathrm{C}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) to \(5.25 \mathrm{~V}, \mathrm{M}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}\) to 5.50 V .
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

\section*{APPLICATION}


A typical computer control unit using the Am2909, Am2911, Am29803A and Am29811A. Note that the least significant microprogram sequencer is an Am2909 and the more significant sequencers are Am2911's.

\section*{Am29811A \\ Next Address Control Unit}

\section*{DISTINCTIVE CHARACTERISTICS}
- Next address control unit for the Am2911A Microprogram Sequencer
- 16 next address instructions
- Test input for conditional instructions
- Separate outputs to control the Am2911A, an independent event counter, and a mapping PROM/branch address interface
- Advanced Low-Power Schottky technology


\section*{FUNCTIONAL CHARACTERISTICS}

The Am29811A is a Low-Power Schottky device designed specifically for next address control of the Am2911A Microprogram Sequencer. The device contains all outputs required to control a high-performance computer control unit or a structured state machine design using microprogramming techniques.
Sixteen instructions are available by using a four-bit instruction field \(\mathrm{I}_{0-3}\). In addition, a test input is available such that conditional instructions can be performed based on a condition code test input.
The full instruction set consists of such functions as conditional jumps, conditional jump-to-subroutine, conditional return-from-subroutine, conditional repeat loops, conditional branch to starting address, and so forth.
One Am29811A can be used to control any number of Am2911A Microprogram Sequencers. The Am2911A Sequencer is a four-bit slice itself. Thus, one Am29811A Next Address Control Unit and three Am2911A Microprogram Sequencers can be used to build a powerful, microprogram sequencer capable of controlling 4 k words of microprogram memory.

CONNECTION DIAGRAM
Top View
P16, D16

\(\mathrm{F}-16\) pin configuration identical to \(\mathrm{D}-16, \mathrm{P}-16\). Note: Pin 1 is marked for orientation.

LOGIC SYMBOL


MPR-316
\(V_{C C}=\operatorname{Pin} 16\)
GND \(=P\) in 8

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C} \mathrm{to}+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous & -0.5 V to +7.0 V \\
\hline DC Voltage Applied to Outputs & -0.5 V to \(+\mathrm{V}_{\mathrm{CC}} \mathrm{max}\) \\
\hline DC Input Voltage & -0.5 V to +5.5 V \\
\hline DC Input Current & -30 mA to +5 mA \\
\hline
\end{tabular}

\section*{OPERATING RANGE}
\begin{tabular}{|l|l|l|l|}
\hline COM'L & Am29811ADC & \(T_{A}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\) \\
\hline MIL & Am29811ADM & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameters & Description & \multicolumn{2}{|c|}{Test Conditions} & Min. & Typ. (Note 1) & Max. & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOH}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\
& \mathrm{~V}_{I N}=\mathrm{V}_{I H} \text { or } V_{I L}
\end{aligned}
\]} & 2.4 & & & Volts \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=M I N ., I O L=16 \mathrm{~mA} \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & & & 0.45 & Volts \\
\hline \(\mathbf{V}_{\text {IH }}\) & Input HIGH Level & \multicolumn{2}{|l|}{Guaranteed input logical HIGH voltage for all inputs} & 2.0 & & & Volts \\
\hline \(V_{\text {IL }}\) & Input LOW Level & \multicolumn{2}{|l|}{Guaranteed input logical LOW voltage for all inputs} & & & 0.8 & Volts \\
\hline IIL & Input LOW Current & \multicolumn{2}{|l|}{\(V_{C C}=M A X ., V_{\text {IN }}=0.45 \mathrm{~V}\)} & & -0.010 & -0.250 & mA \\
\hline \(\mathrm{I}_{1 \mathrm{H}}\) & Input HIGH Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\) MAX., \(\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\)} & & & 25 & \(\mu \mathrm{A}\) \\
\hline \(1 /\) & Input HIGH Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\)} & & & 1.0 & mA \\
\hline \({ }^{\text {ISC }}\) & Output Short Circuit Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}\) ( Note 2)} & -20 & -40 & -90 & mA \\
\hline \({ }^{1} \mathrm{CC}\) & Power Supply Current & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { All inputs = GND } \\
& V_{C C}=\text { MAX. }
\end{aligned}
\]} & & 90 & 115 & mA \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\) MIN., \(\mathrm{IIN}=-18 \mathrm{~mA}\)} & & & -1.2 & Volts \\
\hline \multirow{3}{*}{ICEX} & \multirow[t]{3}{*}{Output Leakage Current} & \multirow{3}{*}{\[
\begin{aligned}
& V_{C C}=\mathrm{MAX} . \\
& \mathrm{V}_{\overline{\mathrm{CS}}}=2.4 \mathrm{~V}
\end{aligned}
\]} & \(\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}\) & & & 40 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & \(\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}\) & & & 40 & \\
\hline & & & \(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\) & & & -40 & \\
\hline \(\mathrm{Cl}_{\text {IN }}\) & Input Capacitance & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}\) (Note 3)} & & 4 & & \multirow[b]{2}{*}{pF} \\
\hline COUT & Output Capacitance & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}\) (Note 3)} & & 8 & & \\
\hline
\end{tabular}

Notes: 1. Typical limits are at \(V_{C C}=5.0 \mathrm{~V}\) and \(T_{A}=25^{\circ} \mathrm{C}\).
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not \(100 \%\) tested, but periodically sampled.

Am29811A
SWITCHING CHARACTERISTICS
( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & Test Conditions & Min. & Typ. & Max. & Units \\
\hline tPLH & \multirow[t]{2}{*}{\(I_{i}\) to Any Output} & \multirow{6}{*}{\[
\begin{aligned}
C_{L} & =15 \mathrm{pF} \\
R_{L} & =2.0 \mathrm{k} \Omega
\end{aligned}
\]} & & 25 & 35 & ns \\
\hline \({ }^{\text {tPHL }}\) & & & & & & \\
\hline tPLH & \multirow[t]{2}{*}{Test to Any Output} & & & 25 & 35 & ns \\
\hline tPHL & & & & & & \\
\hline \({ }^{\text {Z }} \mathrm{H}\) & \multirow[t]{2}{*}{\(\overline{\mathrm{OE}}\) to Any Output} & & & 15 & 20 & ns \\
\hline \({ }_{\text {L }} \mathrm{L}\) & & & & & & \\
\hline \(\mathrm{t}_{\mathrm{H}} \mathrm{Z}\) & \multirow[t]{2}{*}{\(\overline{\mathrm{OE}}\) to Any Output} & \(\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}\) & & 15 & 20 & ns \\
\hline \({ }^{\text {t }} \mathrm{L}\) & & \(R_{L}=2.0 \mathrm{k} \Omega\) & & 15 & 20 & ns \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS OVER OPERATING RANGE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multirow[b]{2}{*}{Test Conditions} & \multicolumn{2}{|l|}{\(V_{C C}=5.0 \mathrm{~V} \pm 5 \%\)} & \multicolumn{2}{|l|}{\(V_{C C}=5.0 \mathrm{~V} \pm 10 \%\)} & \multirow[b]{2}{*}{Units} \\
\hline Parameters & Description & & Min. & Max. & Min. & Max. & \\
\hline tPLH & \multirow[t]{2}{*}{\(I_{i}\) to Any Output} & \multirow{8}{*}{\[
\begin{aligned}
\mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \\
\mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega
\end{aligned}
\]} & & \multirow[t]{2}{*}{40} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{50} & \multirow[t]{2}{*}{ns} \\
\hline tPHL & & & & & & & \\
\hline tple & \multirow[t]{2}{*}{Test to Any Output} & & & \multirow[t]{2}{*}{40} & & \multirow[t]{2}{*}{50} & \multirow[t]{2}{*}{ns} \\
\hline tPHL & & & & & & & \\
\hline \({ }^{2} \mathrm{ZH}\) & \multirow[t]{2}{*}{\(\overline{O E}\) to Any Output} & & & \multirow[t]{2}{*}{25} & & \multirow[t]{2}{*}{30} & \multirow[t]{2}{*}{ns} \\
\hline t CL & & & & & & & \\
\hline \({ }_{t} \mathrm{HZ}\) & \multirow{2}{*}{\(\overline{O E}\) to Any Output} & & & \multirow[t]{2}{*}{25} & & \multirow[t]{2}{*}{30} & \multirow[t]{2}{*}{ns} \\
\hline \({ }_{\text {t }} \mathrm{L}\) & & & & & & & \\
\hline
\end{tabular}

\section*{DEFINITION OF FUNCTIONAL TERMS}
\(\mathbf{I}_{0}, I_{1}, I_{2}, I_{3}\) The four instruction inputs to the Am29811A.

TEST
The condition code input to the device. When the test input is LOW, the device assumes the test has failed. When the test input is HIGH, the device assumes the condition code required has been met; the test has passed.

Counter This output is used to drive the parallel load input of an Am25LS169 up/down counter.
\(\overline{\text { Counter }}\) This output is used to drive the counter ena-
Enable
\(\overline{\text { Map }}\) Enable

This output is used to control the three-state outputs of the mapping PROM or PLA used to provide the initial starting address for each machine instruction.

\section*{\(\overline{\text { Pipeline }}\)} Enable

\section*{\(\overline{\text { FE File }}\)}

Enable
This output is used to drive the file enable input of the Am2911. When the file enable output is LOW, a stack operation will take place.
PUP Push/Pop. The PUP output is used to drive the push/pop input of the Am2911 Microprogram Sequencer. When the PUP output is HIGH, a push will take place when the file is enabled. When the PUP output is LOW, a pop will take place when the file is enabled.
\(\mathbf{S}_{0}, \mathbf{S}_{1} \quad\) These two outputs are used to drive the \(\mathrm{S}_{0}\) and \(S_{1}\) inputs to the Am2911 Microprogram Sequencer. These outputs control whether the direct input, the register, the microprogram counter, or the stack is selected as the source of the next address for the microprogram memory.

Am29811A
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS} & \multicolumn{6}{|l|}{\begin{tabular}{l}
GUARANTEED LOADING RULES OVER OPERATING RANGE (In Unit Loads) \\
A Low-Power Schottky TTL Unit Load is defined as \(20 \mu \mathrm{~A}\) measured at 2.7 V HIGH and -0.36 mA measured at 0.4 V LOW.
\end{tabular}} \\
\hline & Pin No.'s & Input/Output & Input Load & Output HIGH & MIL &  \\
\hline \(\xi\) 列 & 1 & \(\overline{\text { MAP E }}\) & - & 100 & 44 & 44 \\
\hline \[
\left|\begin{array}{ll}
\text { IOH } \\
\text { IL }
\end{array}\right|
\] & 2 & PUP & - & 100 & 44 & 44 \\
\hline  & 3 & \(\overline{\mathrm{FE}}\) & - & 100 & 44 & 44 \\
\hline  & 4 & \(\mathrm{S}_{1}\) & - & 100 & 44 & 44 \\
\hline 4 & 5 & \(\mathrm{S}_{0}\) & - & 100 & 44 & 44 \\
\hline + & 6 & \(\overline{\text { CNT LOAD }}\) & - & 100 & 44 & 44 \\
\hline \(\cdots\) & 7 & \(\overline{\text { CNT E }}\) & - & 100 & 44 & 44 \\
\hline  & 8 & GND & - & - & - & - \\
\hline \[
\{\quad\}
\] & 9 & \(\overline{\text { PLE }}\) & - & 100 & 44 & 44 \\
\hline  & 10 & TEST & 0.5 & - & - & - \\
\hline  & 11 & \(1_{0}\) & 0.5 & - & - & - \\
\hline \[
\stackrel{I}{=} \quad \underset{=}{I}
\] & 12 & 11 & 0.5 & - & - & - \\
\hline & 13 & \(\mathrm{I}_{2}\) & 0.5 & - & - & - \\
\hline & 14 & 13 & 0.5 & - & - & -- \\
\hline & 15 & \(\overline{\mathrm{OE}}\) & - & 100 & 44 & 44 \\
\hline Note: Actual current flow direction shown. & 16 & \(\mathrm{V}_{\text {CC }}\) & - & - & - & -- \\
\hline
\end{tabular}

INSTRUCTION TABLE
\begin{tabular}{|c|c|c|}
\hline MNEMONIC & \(\mathrm{I}_{3} \cdot \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}\) & INSTRUCTION \\
\hline JZ & L L L L & Jump to Address Zero \\
\hline CJS & L L L H & Conditional Jump-to-Subroutine with Jump Address in Pipeline Register. \\
\hline JMAP & L L H L & Jump to Address at Mapping PROM Output. \\
\hline CJP & L L H H & Conditional Jump to Address in Pipeline Register \\
\hline PUSH & L HLL & Push Stack and Conditionally Load Counter \\
\hline JSRP & L HLH & Jump-to-Subroutine with Starting Address Conditionally Selected from Am 2911 R-Register or Pipeline Register. \\
\hline CJV & L H H L & Conditional Jump to Vector Address. \\
\hline JRP & L. H H H & Jump to Address Conditionally Selected from Am2911 R-Register or Pipeline Register. \\
\hline RFCT & H L L L & Repeat Loop if Counter is not Equal to Zero. \\
\hline RPCT & HLL & Repeat Pipeline Address if Counter is not Equal to Zero. \\
\hline CRTN & H L H L & Conditional Return-from-Subroutine. \\
\hline CJPP & H L H H & Conditional Jump to Pipeline Address and Pop Stack. \\
\hline LDCT & H H L L & Load Counter and Continue. \\
\hline LOOP & H H L H & Test End of Loop. \\
\hline CONT & H.H H L & Continue to Next Address. \\
\hline JP & HHHH & Jump to Pipeline Register Address. \\
\hline
\end{tabular}

Am29811A FUNCTION TABLE

\begin{tabular}{ll}
\(L=\) LOW & DEC \(=\) Decrement \\
\(H=\) HIGH & *LL \(=\) Special Case
\end{tabular}

Am29811A TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{MNEMONIC} & \multirow[b]{2}{*}{FUNCTION} & \multicolumn{5}{|c|}{INPUTS} & \multicolumn{8}{|c|}{OUTPUTS} \\
\hline & & \multicolumn{5}{|l|}{\(\begin{array}{llllll}13 & 1_{2} & 1_{1} & 1_{0} & \stackrel{\leftarrow}{\sim} \\ \leftarrow\end{array}\)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
NEXT \\
ADDR SOURCE \(S_{1} S_{0}\)
\end{tabular}} & \[
\begin{array}{r}
\text { F } \\
\text { F }{ }^{\mu}{ }^{\mu} \\
\hline
\end{array}
\] & \(\frac{2}{2}\) & \multicolumn{2}{|l|}{\begin{tabular}{l}
COUNTER
|o \\
|z
\end{tabular}} &  & 㐌 \\
\hline & PIN NO. & 14 & & 12 & 11 & 10 & 4 & 5 & 3 & 2 & 6 & 7 & 1 & 9 \\
\hline JZ & JUMP ZERO & & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] \\
\hline CJS & COND JSB PL & & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] \\
\hline JMAP & JUMP MAP & & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline CJP & COND JUMP PL & & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\bar{L}
\] \\
\hline PUSH & PUSH/COND LD CNTR & & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] \\
\hline JSRP & COND JSB R/PL & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] \\
\hline cJv & COND JUMP VECTOR & & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline JRP & COND JUMP R/PL & & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] \\
\hline RFCT & REPEAT LOOP, CTR \(\neq 0\) & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] \\
\hline RPCT & REPEAT PL, CTR \(\neq 0\) & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & & H
H & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] \\
\hline CRTN & COND RTN & & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] \\
\hline CJPP & COND JUMP PL \& POP & \[
\begin{array}{|l}
\mathrm{H} \\
\mathrm{H} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & H
H & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] \\
\hline LDCT & LD CNTR \& CONTINUE & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & H
H & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] \\
\hline LOOP & TEST END LOOP & & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{L} \\
& \mathbf{L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & H
H & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & L \\
\hline CONT & CONTINUE & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & H
H & & \begin{tabular}{l}
H \\
H \\
\hline
\end{tabular} & H
H & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] \\
\hline JP & JUMP PL & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & & H
H & & & H
H & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] \\
\hline
\end{tabular}
\(L=L O W\)
\(H=H I G H\)

\section*{ORDERING INFORMATION}

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.
\begin{tabular}{lccc}
\begin{tabular}{c} 
Order \\
Number
\end{tabular} & \begin{tabular}{c} 
Package Type \\
(Note 1)
\end{tabular} & \begin{tabular}{c} 
Operating Range \\
(Note 2)
\end{tabular} & \begin{tabular}{c} 
Screening Level \\
(Note 3)
\end{tabular} \\
\hline AM29811APC & P-16 & C & \(\mathrm{C}-1\) \\
AM29811ADC & \(\mathrm{D}-16\) & C & \(\mathrm{C}-1\) \\
AM29811ADC-B & \(\mathrm{D}-16\) & C & \(\mathrm{B}-1\) \\
AM29811ADM & \(\mathrm{D}-16\) & M & \(\mathrm{C}-3\) \\
AM29811ADM-B & \(\mathrm{D}-16\) & M & \(\mathrm{B}-3\) \\
AM29811AFM & \(\mathrm{F}-16\) & M & \(\mathrm{C}-3\) \\
AM29811AFM-B & \(\mathrm{F}-16\) & M & \(\mathrm{B}-3\)
\end{tabular}

Notes: 1. \(P=\) Moided DIP, \(D=\) Hermetic DIP, \(F=\) Flat Pak. Number following letter is number of leads. See Appendix \(B\) for detailed outline. Where Appendix \(B\) contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. \(\mathrm{C}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) to \(5.25 \mathrm{~V}, \mathrm{M}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}\) to 5.50 V .
3. See Appendix \(A\) for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

\section*{APPLICATION}

```

SYSTEMS
DESIGN dESICN

```

BIPOLAR LSIVVLSI TECHNOLOCIES Am2900 SYSTEMS SOLUTIONS

\begin{tabular}{l} 
DESIGN \begin{tabular}{l} 
DEVELOPMENT SYSTEMS AND SOFTWARE \\
EVALUATION BOARDSANDKITS \\
AIDS \\
ERAINING AND APPLICATIONS MATERLAL
\end{tabular} \\
\hline
\end{tabular}

Am2960/70
MEMORY
SUPPORT

DYNAMIC MEMORY CONTROL
MEMORY TMMNG/CONTROL UNITS
ERROR DETECTION AND CORRECTION
\begin{tabular}{ll} 
Am2900 & BIT-SLICE PROCESSORS \\
PROCESSORS \\
AND PERIPHERALS & LSIPCRODESEQUENCERS
\end{tabular}


\section*{Am29100}

CONTROLLER
16-BIT MICROPROCESSOR
FAMILY
INTERRUPTIBLE SEQUENCERS
LSI PERIPHERALS


Am29500
ARRAY AND DICITAL SIGNAL PROCESSING

\section*{\(16 \times 16\) PARALLEL MULTIPLIERS \\ MULTIPORT PIPELINED PROCESSORS \\ FFT ADDRESS SEQUENCERS}

\section*{Am29800 \\ HGHPERFORMANCE BUS INTERFACE}

8,9, AND 10-BIT IMOX EUS NTERFACE DIAGNOSTIC REGISTERS IMOX COMPARATORS



HIGH PERFORMANCE SCHOTTKY LOGIC
LOW-POWER SCHOTTKYLOGIC
\(8 \times 8\) PARALLEL MULTIPLIERS

```

Am26s
Am26LS

```

HIGH PERFORMANCE SCHOTTKY BUS INTERFACE dATA COMMUNICATIONS INTERFACE


\section*{8100 \\ 6200}

MOS MICROPROCESSOR SUPPORT PRODUCTS FOR 8 -BIT AND 16-EIT MICROPROCESSORS


\section*{MEMORIES, \\ pals. \\ MOSS, PERIPHERALS,} PROMs, BIPOLAR RAMS, MOS STATIC RAMS 20-PIN AND 24-PIN PALS. MOS LSI PERIPHERALS VERY HIGH SPEED DATA ACCUISIIION


\section*{GENERAL \\ INFORMATION}
PACKAGING, ORDERING WFORMATION TESTNG, OUALITY ASSURANCEIGUARANTEES CATE COUNTS, DIE SIZES, RELIAEILITY

\section*{Am29100 \\ Controller Family Products Index}
Am29100 Family Overview ..... 6-1
Am29112 Interruptible 8-Bit Microprogram Sequencer ..... 6-2
Am29116 16-Bit Bipolar Microprocessor ..... 6-15
Am29116 System Cycle Timing ..... 6-44
"Bipolar VLSI: Opening Up High Speed Control," reprinted from Electronics ..... 6-46
CPU Using Am29116 Application Note ..... 6-51
Disk Controller Using Am29116 Application Note ..... 6-65
Bit-Mapped Graphics Controller Using Am29116 Application Note ..... 6-133
Am29118 I/O Port for Am 29116 ..... 6-145
Am2904 Status and Shift Control Unit ..... See Section 5
Am2910 Microprogram Controller ..... See Section 5
Am2913 Priority Interrupt Expander ..... See Section 5
Am2914 Vectored Priority Interrupt Controller ..... See Section 5
Am2925 System Clock Generator and Driver ..... See Section 5
Am2940 DMA Address Generator ..... See Section 5
Am2942 Programmable Timer/Counter/DMA Address Generator ..... See Section 5
Am2950/2951 8-Bit Bidirectional I/O Ports with Handshake ..... See Section 5
Am2952/2953 8-Bit Bidirectional I/O Ports ..... See Section 5
Design Aids
Am2900 Family Application Literature ..... See Section 3
Customer Education Center Courses (including Am29116) ..... See Section 3
Videotape Seminar Kits (including Am29116) ..... See Section 3
System 29 Development System ..... See Section 3
General Information ..... See Section 13

\title{
Am29100 High-Performance Controller Products
}

\section*{A BETTER WAY IS HERE}

A new family of products from Advanced Micro Devices makes high-performance controller design a snap.

\section*{MICROPROGRAMMING; BEST FOR COMPUTERS, BEST FOR CONTROLLERS}

Microprogramming, long the preferred approach for computer design, offers lots of advantages in controllers as well. The ease with which the functions of a microprogrammed controller can be enhanced and modified made the original 2900 Family popular for many disk, printer and communications controllers. The high-speed operation of these microprogrammed systems makes it possible to handle higher data rates from newer peripheral devices and to build intelligence into the controller.
But the original 2900 products are architecturally oriented toward computers, with design features optimized for arithmetic functions and short sequences of microinstructions. MOS processors are good choices for many low-speed applications, but when the demand for speed and intelligence goes up, they cannot keep pace. Controllers need something better: the 29100 Family.

The 29100 Family products have been designed from the ground up with peripheral control applications in mind. They are fast, they are optimized for bit-manipulation, character handling, data communication and long, sophisticated microprograms and they are designed to work together in a system.

\section*{FAST LIKE YOU'VE NEVER HAD}

The central element of our new high-speed controller family is the Am29116 - a 16-bit bipolar microprocessor. It's not a slice it's a complete 16 -bit processor, with three-input ALU, 32 scratchpad registers, an accumulator, data latch, barrel shifter,
priority encoder and status register with conditional code generation logic. But the Am29116 is far more than a very fast number cruncher - it's been optimized for controller-oriented applications. It's instruction set has instructions often needed in controllers that are not available in any other processor.

\section*{A WHOLE FAMILY OF FAST LSI CONTROLLER PARTS}

There's more to our controller family than just the Am29116. A new sequencer, the Am29112, has been expressly designed for 10 MHz microprogram control, with features like real-time interrupt servicing and deep subroutining. Rapid internal data transfer is handled by the Am2940 DMA Address Generator and by the Am2950 handshaking I/O port. The Am9520 Burst Error Processor will provide a solution for error correction on disk reads. Now, more than ever, the 2900 Family is the better solution for high data rate and highly intelligent control problems.

\section*{TYPICAL CONFIGURATION USING THE 2900 CONTROLLER FAMILY}

A typical intelligent controller configuration is shown below. The basic controller consists of the Am29116, a microprogram control unit and a high-speed buffer memory. Each microinstruction includes: a) a 16-bit instruction field to the Am29116, b) next-microinstruction selection bits, c) control for the buffer memory, d and e) control for the interface circuits and f) possibly an 8 or 16-bit data field.
Interface circuits like the Am2940 and Am2950 are used to provide DMA and to pass data between the controller and the host computer. Other circuits are used to interface to the peripheral. In this example, a disk interface is shown with a serial-parallel converter, a FIFO and a burst error processor. Controllers for other peripherals use identical hardware except for the peripheral interface itself.

\section*{Am29112 \\ A High-Performance 8-Bit Slice Microprogram Sequencer}

\section*{DISTINCTIVE CHARACTERISTICS}
- Fast -

The Am29112 is designed to operate in 10 MHz microprogrammed systems.
- Expandable -

A single Am29112 is 8 bits wide and addresses 256 words of microprogram memory. Two Am29112's may be cascaded to directly address up to 64 K of microprogram memory.
- Deep stack -

A 33 deep on-chip stack is used for subroutine linkage, interrupt handling and loop control.
- Interruptible at the microprogram level -

Two kinds of interrupts: maskable and unmaskable.
- Powerful loop control -

Features an 8-bit counter for loop control. When two Am29112s are cascaded, the counters can act as a single 16-bit counter or two independent 8 -bit counters.
- Powerful addressing modes -

Features direct, multiway, multiway relative and program counter relative addressing.
- Support for writable control store
- Hold feature -

A hold pin facilitates multiple sequencer implementations.
- 48-pin Hermetic DIP

\section*{FUNCTIONAL DESCRIPTION}

The Am29112 is a high performance interruptible microprogram controller intended for use in very high speed microprogrammed machines and optimized for the new state-of-the-art ALU's and other processing components.
It has an instruction set featuring relative and multiway branching, a rich variety of looping constructs, and provision for loading and unloading the on-chip stack.
Interrupts are accepted at the microcycle level and serviced in a manner completely transparent to the interrupted microcode.

Figure 1. Am29112 in a Single Pipelined System


\section*{APPLICATION NOTES REFERENCE}
- Microprogrammed CPU using Am29116
- An intelligent fast disk controller
- Am29116 architecture speeds pixel manipulation in interactive bit mapped graphics

Figure 1. Control Path in a Single Pipelined System Using the Am29112


\section*{PIN FUNCTIONS}
\begin{tabular}{|c|c|}
\hline \(\mathrm{D}_{0}-\mathrm{D}_{7}\) & Bidirectional data input for direct input to address multiplexer, counter and other control registers and stack output. \\
\hline \(Y_{0}-Y_{7}\) & Bidirectional microprogram address bus outputs microprogram address and inputs interrupt vector. \\
\hline \(\mathrm{M}_{\mathbf{0}}\) & Multiway input pins for up to 16 way branches. \\
\hline HOLD & When this signal is high, the \(Y\) bus is three-stated and the carry in to the program counter incrementer is forced low. Also, the CMUX output is selected at the incrementer input. \\
\hline \(\overline{\mathbf{C C}}\) & Test input for the sequencer. (See Table 2.) \\
\hline CCEN & Test enable for the sequencer. (See Table 2.) \\
\hline POL & Polarity input for test. (See Table 2.) \\
\hline \(\mathrm{I}_{0}-\mathrm{I}_{4}\) & Instruction input. \\
\hline \(\mathrm{I}_{5}-\mathrm{I}_{6}\) & Mode control input. Select one of three modes: normal, extended or forced continue. (See Table 1.) \\
\hline
\end{tabular}

STKERR Indicates stack overflow or underflow.
\begin{tabular}{|c|c|}
\hline UINTR & Unmaskable interrupt request input. \\
\hline \(\overline{M I N T R}\) & Maskable interrupt request input. \\
\hline INTD & Disable for maskable interrupts. \\
\hline \(\overline{\text { MINTA }}\) & Maskable interrupt acknowledge. \\
\hline LSS & Programs the least significant chip when high, most significant chip when low. \\
\hline RST & Reset input. Selects zero as the next microprogram address, resets the stack pointer and interrupt logic, and disables maskable interrupts. \\
\hline CP & Clock input. \\
\hline ACIO & Bidirectional adder \(1 / O\) line for cascaded Am29112s. \\
\hline PCIO & Bidirectional program counter I/O line for cascaded Am29112s. \\
\hline ClO & Bidirectional counter I/O line for cascaded Am29112s. \\
\hline CZIO & Bidirectional counter zero I/O line for cascaded Am29112s. \\
\hline
\end{tabular}


\section*{SYSTEM OVERVIEW}

The Am29112 is designed for use in single-level pipelined systems. A typical configuration is shown in Figure 1.
Branch addresses, constants for the various registers, and stack pointer values are supplied to the Am29112 through the D port which is bidirectional to allow the stack to be unloaded onto an external LIFO. The next address generated by the sequencer is output on the Y port and directly drives the microprogram memory. A single register at the output of the microprogram memory contains the microinstruction being executed, while the next is being fetched. External conditions are applied to the \(\overline{\mathrm{CC}}\) input of the Am29112 via the condition code MUX and also to the multiway inputs.
A vectored priority interrupt controller generates a prioritized interrupt request (MINTR) to the Am29112, which acknowledges the request via the \(\overline{\text { MINTA }}\) pin. Upon receiving the acknowledge, the priority interrupt control puts out the encoded priority of the interrupt, which is translated to a vector by the vector mapping PROM. The MINTA output of the Am29112 turns on the PROM output and simultaneously turns off the \(Y\) port, enabling the interrupt vector onto the microprogram ad-
dress bus. In the Am29112, internal states are automatically saved on the stack while the interrupt vector is transmitted through the Y port and incremented to form the next microprogram address.

The emergency detect circuit generates an unmaskable interrupt request upon power failure or stack error. On receiving an unmaskable interrupt, the sequencer branches to the unmaskable interrupt routine; the address of this routine is stored on the Am29112 in the INTVECT register. Detailed interrupt handling is discussed in a later section.

\section*{ARCHITECTURE OF THE Am29112}

The internal organization of the Am29112 is shown in Figure 2. The most important control loop inside the sequencer consists of the CMUX, incrementer, and PC register. The CMUX selects the next microprogram address based on the instruction and condition code inputs. The next microprogram address is selected from the PC register for a continue, the D port for a branch, the adder for relative and multiway branches, the interrupt register for unmaskable interrupts, the stack for subroutine returns or loop repeats, or all zeros for the JUMP ZERO instruction.

The Am29112 has many registers other than the PC register and the interrupt register. There is an 8 -bit counter used for loop control; the DWIDTH register is a 4-bit register which programs the number of least significant bits of the D port that are added to the PC in relative addressing modes; the stack pointer is a 5 -bit counter/register that points to the top of stack element; the 4 -bit command register is used to program the chip on power-up for compatibility with the external hardware configuration; finally, there is the INTRTN register which is used for saving the CMUX output on the stack when an interrupt occurs.
With the exception of the INTRTN register and the stack pointer, each of the above registers can be loaded directly from the D port of the Am29112.

The Am29112 features a high speed adder with full carry lookahead across 8 -bits. The adder is used for PC relative addressing (branch address is PC + D), multiway relative addressing (branch address is \(D+M\), where \(M\) is the 4 -bit multiway input), and for testing the stack pointer against the D bus. In cascaded configurations, carry ripples from the LSS adder to the MSS adder over the CIO line.
The on-chip stack is 33 deep, and the Am29112 has instructions to save the D inputs, counter, multiway register, and PCregister on the stack. The stack output bus is connected via three-state buffers to the D port. It is possible to pop the stack to the D port.

\section*{INSTRUCTION SET OF THE Am29112}

\section*{MODE BITS ( \(\mathbf{I}, 5\) )}

The Am29112 is controlled by 5 instruction inputs, two mode inputs, and the condition code. In typical applications it is expected that the instruction inputs are driven directly from the pipeline, whereas the mode inputs are either permanently wired high or low to select the desired operating mode, or driven indirectly via external logic. (In some applications it might be justifiable to drive the mode bits directly from the pipeline). The two mode bits select among three operating modes: normal ( 00 ), extended ( 01 ) and forced continue (10 and 11). In the normal mode, the entire instruction set of the Am29112 applies.

TABLE 1. MODE CONTROLS
\begin{tabular}{|c|l|l|}
\hline \(\mathrm{I}_{65}\) & \multicolumn{1}{|c|}{ Mode } & \multicolumn{1}{|c|}{ Description } \\
\hline 00 & Normal & \begin{tabular}{l} 
For cascaded Am29112s, two independent \\
8 -bit counters
\end{tabular} \\
\hline 01 & Extended & For cascaded Am29112s, one 16-bit counter \\
\hline 10 & \begin{tabular}{l} 
Forced \\
Continue
\end{tabular} & \begin{tabular}{l} 
The Am29112 executes a continue instruction \\
regardless of instruction, condition code, \\
and multiway inputs.
\end{tabular} \\
\hline 11 & \\
\hline
\end{tabular}

\section*{EXTENDED MODE}

The instruction set includes instructions that differentiate between upper and lower counters (when there are two cascaded Am29112s). In the normal mode, the two counters on cascaded Am29112s function independently, and it is possible to set up a doubly nested loop without having to save and restore counter values on the stack. In the extended mode, however, the counters on cascaded Am29112s behave like one 16 -bit counter and instructions that differentiate between the counters degenerate into identical instructions. Hence in a system with only one Am29112 there is no use for the extended mode.

\section*{FORCED CONTINUE MODE}

In the forced continue mode the Am29112 executes a continue in every cycle regardless of the instruction bits, condition code, and multiway inputs. The simplest application (if mode bits are driven directly from the pipeline) is to use forced continue for straight-line segments of code thereby permitting most of the sequencer control fields of the pipeline to be shared. The forced continue also has an important application in systems with a writeable control store where it is necessary to step through the addresses sequentially while loading the WCS.
The instructions of the Am29112 are classified into four groups:
- Branching and subroutine linkage
- Looping
- Stack and register
- Interrupt

The sequencer has an instruction repertoire of altogether 40 different instructions. In order to encode these instructions with only 5 instruction lines, the condition code is used in some cases to differentiate between two distinct instructions sharing the same opcode. This way of encoding is used for the stack and register, and interrupt groups of instructions. For these instructions, therefore, the condition code multiplexer is not used to select an external condition. However it is required to force the condition code to unconditional Pass or Fail. The condition code enable and polarity logic has been designed with this in mind. Using the enable and polarity, it is possible to generate both unconditional Pass and unconditional Fail (regardless of the condition code input). Hence the condition code is for these instructions is like a sixth instruction line, and the condition code multiplexer field of the pipeline can be shared for these instructions (see Figure 4 and Table 2).

Figure 4. Condition Code Circuit


TABLE 2. CONDITION CODE TABLE
\begin{tabular}{|c|c|c|c|}
\hline CCEN & CC & POL & Condition \\
\hline 0 & 0 & 0 & PASS \\
0 & 1 & 0 & FAIL \\
0 & 0 & 1 & FAIL \\
0 & 1 & 1 & PASS \\
1 & 0 & 0 & PASS \\
1 & 1 & 0 & PASS \\
1 & 0 & 1 & FAIL \\
1 & 1 & 1 & FAIL \\
\hline
\end{tabular}

\section*{Am29112 Instruction Set}
Opcode ( \(\mathbf{I}_{\mathbf{4 0}}\) ) Condition Mnemonic

\section*{Description}
\begin{tabular}{|c|c|c|c|}
\hline 0 & X & JZ.U & UNCONDITIONAL JUMP ZERO \\
\hline 1 & PASS & PUSHD.P & PUSH D (PASS) \\
\hline 1 & FAIL & LDCMD.F & LOAD COMMAND REGISTER FROM D (FAIL) \\
\hline 2 & COND & POP, C & POP; CONDITIONAL STACKOUT TO D \\
\hline 3 & COND & CJD.C & CONDITIONAL JUMP D \\
\hline 4 & COND & CJSD.C & CONDITIONAL JUMP SUBROUTINE D \\
\hline 5 & COND & CJMW.C & CONDITIONAL JUMP MULTIWAY D \\
\hline 6 & COND & CJSMW.C & CONDITIONAL JUMP SUBROUTINE MULTIWAY D \\
\hline 7 & COND & CRTN.C & CONDITIONAL RETURN \\
\hline 8 & COND & PUSHPL.C & PUSH PC; COND LOAD LOWER COUNTER \\
\hline 9 & COND & LDLC.C & LOAD LOWER COUNTER; COND PUSH COUNTER \\
\hline 10 & PASS & POPLC.P & POP TO LOWER COUNTER (PASS) \\
\hline 11 & PASS & RSTSP.P & RESET STACK POINTER (PASS) \\
\hline 11 & FAIL & LDINTV.F & LOAD UNMASKABLE INTERRUPT VECTOR (FAIL) \\
\hline 12* & PASS & RFCTU.P & REPEAT LOOP, UPPER COUNTER \(=0\) (PASS) \\
\hline 12* & FAIL & RFCTL.F & REPEAT LOOP, LOWER COUNTER \(=0\) ( FAIL ) \\
\hline 13** & PASS & RPCTU.P & REPEAT PIPELINE, UPPER COUNTER \(=0\) (PASS) \\
\hline 13** & FAIL & RPCTL.F & REPEAT PIPELINE, LOWER COUNTER \(=0\) (FAIL) \\
\hline 14 & COND & LOOP.C & TEST END LOOP \\
\hline 15 & PASS & ENINT.P & ENABLE INTERRUPTS (PASS) \\
\hline 15 & FAIL & DISINT.F & DISABLE INTERRUPTS (FAIL) \\
\hline 16*** & COND & TWBL.C & THREE-WAY BRANCH, LOWER COUNTER \\
\hline 17*** & COND & TWBU.C & THREE-WAY BRANCH, UPPER COUNTER \\
\hline 18 & PASS & TSTSP.P & TEST SP WITH D (PASS) \\
\hline 18 & FAIL & TSTMT.F & JUMP D IF STACK NOT EMPTY \\
\hline 19 & COND & CJDF.C & COND JUMP D/STACK AND POP \\
\hline 20 & COND & CJSDF.C & COND JUMP SUBROUTINE D/STACK AND POP \\
\hline 21 & COND & CJMWR.C & COND JUMP MULTIWAY RELATIVE D \\
\hline 22 & COND & CJSMWR.C & COND JUMP SUBROUTINE MULTIWAY RELATIVE D \\
\hline 23 & COND & CJPP.C & COND JUMP PIPELINE AND POP \\
\hline 24 & COND & PUSHPU.C & PUSH PC; COND LOAD UPPER COUNTER \\
\hline 25 & COND & LDUC.C & LOAD UPPER COUNTER; COND PUSH COUNTER \\
\hline 26 & PASS & POPUC.P & POP TO UPPER COUNTER (PASS) \\
\hline 26 & FAIL & POPDW.F & POP TO DISPLACEMENT WIDTH (FAIL) \\
\hline 27 & COND & LDDW.C & LOAD DISPLACEMENT WIDTH; COND PUSH DW \\
\hline 28 & COND & CJR.C & COND JUMP D PC REL \\
\hline 29 & COND & CJRN.C & COND JUMP D PC REL NEGATIVE \\
\hline 30 & COND & CJSR.C & COND JUMP SUBROUTINE D PC REL \\
\hline 31 & COND & CJSRN.C & COND JUMP SUBROUTINE D PC REL NEGATIVE \\
\hline
\end{tabular}
*These instructions are identical in the extended mode.
**These too.
***These too.
Extensions: \(U\) - unconditional; \(\mathbf{C}\) - conditional; P - PASS condition; F - FAIL condition.
Note: PASS/FAIL condition can be produced as follows. \(P\) stands for polarity and I for input.
\begin{tabular}{|c|c|c|c|}
\hline CC & CCEN & POL & Condition \\
\hline x & 1 & 0 & PASS \\
\hline x & 1 & 1 & FAIL \\
\hline I & 0 & P & COND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
0 Jump Zero (JZ.U) \\
UNCONDITIONAL
\end{tabular} & \begin{tabular}{l}
1 Push D (PUSHD.P) \\
FORCED PASS
\end{tabular} & \begin{tabular}{l}
1 Load Command Latch from D (LDCMD.F) \\
FORCED FAIL
\end{tabular} \\
\hline 2 Pop and Unconditional Stackout to D (POP.C) & 3 Jump D (CJD. C) & \begin{tabular}{l}
4 Jump Subroutine D (CJSD.C) \\
CONDITIONAL
\end{tabular} \\
\hline \begin{tabular}{l}
5 Jump Multiway D (CJMW.C) \\
CONDITIONAL
\end{tabular} & \begin{tabular}{l}
6 Jump Subroutine Multiway D (CJSMW.C) \\
CONDITIONAL
\end{tabular} & 7 Return (CRTN.C) \\
\hline \begin{tabular}{l}
8 Push PC and Conditional Load Lower Counter (PUSHPL.C) \\
CONDITIONAL
\end{tabular} & \begin{tabular}{l}
9 Load Lower Counter and Conditional Push Counter (LDLC. C) \\
CONDITIONAL
\end{tabular} & \begin{tabular}{l}
10 Pop to Lower Counter (POPLC.P) \\
FORCED PASS
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 11 Reset Stack Pointer (RSTSP.P) & 11 Load Unmaskable Interrupt Vector (LDINTV.F) & \begin{tabular}{l}
12 Repeat Loop, Upper Counter (RFCTU.P) \\
FORCED PASS
\end{tabular} \\
\hline \begin{tabular}{l}
12 Repeat Loop, Lower Counter (RFCTL.F) \\
FORCED FAIL
\end{tabular} & \begin{tabular}{l}
13 Repeat Pipeline, Upper Counter (RPCTL.P) \\
FORCED PASS
\end{tabular} & 13 Repeat Pipeline, Lower Counter (RPCTL.F) \\
\hline \begin{tabular}{l}
14 Test End Loop (LOOP.C) \\
CONDITIONAL
\end{tabular} & \begin{tabular}{l}
15 Enable Interrupts (ENINT.P) \\
FORCED PASS
\end{tabular} & \begin{tabular}{l}
15 Disable Interrupts (DISINT.F) \\
FORCED FAIL
\end{tabular} \\
\hline \begin{tabular}{l}
16 Three-Way Branch, Lower Counter (TWBL.C) \\
CONDITIONAL
\end{tabular} & \begin{tabular}{l}
17 Three-Way Branch, Upper Counter (TWBU.C) \\
CONDITIONAL
\end{tabular} & 18 Test SP with D (TSTSP.P) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 18 Jump D if Stack Not Empty (TSTMT.F) & 19 Conditional Jump D/Stack and Pop (CJDF.C) & 20 Conditional Jump Subroutine D/Stack and Pop (CJSDF.C) \\
\hline \begin{tabular}{l}
21 Conditional Jump Multiway Relative D (CJMWR.C) \\
CONDITIONAL
\end{tabular} & \begin{tabular}{l}
22 Conditional Jump Subroutine Multiway Relative D (CJSMWR.C) \\
CONDITIONAL
\end{tabular} & 23 Conditional Jump Pipeline and Pop (CJPP) \\
\hline \begin{tabular}{l}
24 Push PC and Conditional Load Upper Counter (PUSHPU.C) \\
CONDITIONAL
\end{tabular} & \begin{tabular}{l}
25 Load Upper Counter and Conditional Push Counter (LDUC.C) \\
CONDITIONAL
\end{tabular} & \begin{tabular}{l}
26 Pop to Upper Counter (POPUC.P) \\
FORCED PASS
\end{tabular} \\
\hline \begin{tabular}{l}
26 Pop to Displacement Width (POPDW.F) \\
FORCED FAIL
\end{tabular} & \begin{tabular}{l}
27 Load Displacement Width and Conditional Push DW (LDDW.C) \\
CONDITIONAL
\end{tabular} & \begin{tabular}{l}
28 Conditional Jump D PC Relative (CJR.C) \\
\(\mathrm{D}^{* *}\) is displacement (see 1). CONDITIONAL
\end{tabular} \\
\hline
\end{tabular}


Notes: 1. The number of bits of D used as displacement is stored in DWIDTH register. The remaining high order bits are zero-extended.
2. The number of bits of D used as displacement is stored in DWIDTH register. The remaining high order bits are one-extended.

\section*{BRANCHING INSTRUCTIONS}

\section*{Direct Branching}

Instruction 0 is the unconditional jump to zero instruction. This instruction also resets the stack pointer and the interrupt logic.
Direct branching is implemented by instruction 3 (COND JUMP D) and 4 (COND JSB D). The branch address is input through the D port. If the condition is PASS, the branch is taken, otherwise the sequencer executes a continue. Two-way direct branching is implemented by instruction 19 (COND JMP D/ STACK) and instruction 20 (COND JSB D/STACK). If the condition is Pass, the branch address is taken from the D input port, otherwise, the branch address is taken from the stack. In either case the stack is popped. This instruction assumes that the alternative address was pushed on the stack by a previous instruction. Jump to subroutine differs from JUMP in that the PC register is pushed on the stack if the condition is PASS for a jump subror ine. This enables the subroutine to use COND RETURN (7), return to the point of call. Note that the twoway jump to subroutine (20) causes a simultaneous pop and push so that the stack pointer is unaffected but the top of stack element is replaced by the return address.

\section*{Relative Branching}

In the relative branch instructions, a dynamically alterable subfield of the \(D\) inputs is added to the PC to form the branch address. The remaining most significant bits of the \(D\) inputs are ignored and internally converted to all 0's for forward branches and all 1's for backward branches. The displacement width (DWIDTH) register in the Am29112 holds the number of least significant bits of \(D\) that participate in the relative branch as the displacement, and can be loaded from the D port. In cascaded systems, the displacement width has to be loaded consistently in the two chips. For example, for a displacement width of 9 , the lower order chip gets a displacement width of 8 and the higher order chip gets a displacement width of 1. As another example, if the lower order chip has a displacement width of less than 8 bits, the higher order chip must have a displacement width of zero. If the displacement width register is loaded with any value greater than 8 , it is exactly as if it were loaded with 8.

Instruction 28 (29) is the relative jump (jump back) instruction, and instruction \(30(31)\) is the relative jump to subroutine (jump back to subroutine). For backward relative branches, the dis-
placement must be coded as a two's complement negative number. When the displacement width is the same as the microaddress width the forward and backward relative branch instructions are identical. When the displacement width is less than the microaddress width, the more significant bits of D outside the displacement are forced to all zeros for positive branches and to all ones for negative branches. This is effectively like sign extension except that the sign information is contained in the instruction rather than the displacement, and there is no need for sign information to propagate between cascaded chips since it is assumed that the displacement width registers in the two chips have been consistently loaded.
The disadvantage of having the sign information in the instruction rather than the displacement can be overcome by a judicious choice of instruction format. The opcodes for forward and backward relative branch instructions have been chosen to differ in the least significant bit position only, with a ' 0 ' in that bit for forward branches and a ' 1 ' for backward branches. If the sequencer instruction field is contiguous with and on the more significant side of the displacement field in the pipeline register, then the least significant instruction bit is like the sign bit for the displacement for relative branch instructions. This permits the assembler to use the same opcode for forward and backward relative branch instructions, but overlap the displacement field (now declared to be one bit longer than the actual displacement field in the pipeline) with the sequencer instruction field by one bit. If the assembler now generates a negative displacement, the sequencer opcode formed is the backward branch; while if the displacement is positive, the sequencer opcode formed is forward branch.
When the instruction is executed, the PC already has been incremented and points to the next sequential instruction, hence a forward branch with a displacement of 0 causes the next sequential instruction to be executed.

\section*{Multiway Branching}

Two variants of multiway branching are available on the Am29112 - multiway substitute D and multiway relative D. In multiway substitute \(D\) the 4 multiway inputs directly replace the 4 least significant bits of the branch address input at D. Instruction 5 is a conditional multiway branch and instruction 6 a conditional multiway subroutine call. In these instructions, the least significant 4 bits of the \(D\) input port are not used by the
sequencer, and may be shared, for instance to select among different sets of multiway inputs.
Multiway branching has the disadvantage that the jump table must be aligned on a 16 word boundary. This disadvantage is overcome in the Am29112 multiway relative branching instructions. In these instructions, the number input on the multiway pins is added to the branch address input at D . Instruction 21 is a conditional multiway relative branch and instruction 22 a conditional multiway relative subroutine call.
One of the advantages of multiway branching is that it enables a 16 way decision to be made in exactly one microcycle. However, the 16 target addresses are constrained to be contiguous in memory. Hence, if the target routines need more than one microword each, as is very likely, they are addressed indirectly through a table of 16 contiguous branch instructions. For very high speed applications, the extra microcycle needed to branch indirectly off the jump table may not be acceptable. This penalty is avoidable if the multiway bits are offset with respect to the D inputs. When two cascaded Am29112's are used, there are two sets of 4 -bit multiway inputs. The least significant chip has a multiway input with no offset, while the most significant chip has a multiway input with an 8-bit offset. The Am29112 command register has a bit \(\mathrm{CR}(1)\) that enables or disables multiway branching on the chip. In a system with two cascaded Am29112s, each chip has a command register bit. Multiway branching may be disabled in either chip by resetting the command register bit on that chip, or enabled by setting the command register bit. When multiway branching is disabled on a chip, for that chip both multiway and multiway relative branches are converted to direct branches, and the multiway inputs are a don't care. Multiway branching with an 8 -bit offset is implemented by disabling multiway in the least significant slice and enabling it in the most significant slice. In this case, the 16 target addresses are dispersed in memory, separated by 256 locations each. Another useful configuration is obtained by enabling multiway on both chips. In this case, up to 16 sets of target addresses are dispersed in memory, separated by 256 locations each.

The Am29112 does not have an unconditional continue in its instruction set. This is not expected to be a drawback because the instruction set requires that both unconditional PASS and unconditional FAIL are required by the sequencer to select among different instructions sharing the same opcode. Hence, a continue is obtained by executing instruction 3 (COND JUMP D) with a forced FAIL condition.

\section*{LOOPING INSTRUCTIONS}

The looping instructions on the Am29112 are of two kinds: conditional, which depend on an external condition to signal loop termination, and iterative, which decrement the Am29112 counter and check for a count of zero. There is also a threeway branch instruction that combines the check for external condition with the check for count of zero in a single instruction.
All the looping instructions are similar in two respects. Firstly, the check for the loop condition is done at the end of the loop. This implies that the loop body is always executed at least once. Secondly, in the case that the loop has to be repeated, a backward branch to the loop head is made by using the address on top of stack. This frees the \(D\) inputs for other use, but makes it necessary to push the address of the start of the loop on the stack before entering the loop. Also, if the loop is iterative, it is necessary to load a count value in the counter at the same time. Instructions 24 (PUSH PC; COND LOAD UPPER COUNTER) and 8 (PUSH PC; COND LOAD LOWER COUNTER) combine both these requirements.

Instruction 14 implements a simple conditional repeat loop. If the condition is FAIL the sequencer loops back using the top of stack address, and if the condition is PASS, the sequencer performs a continue to the next sequential address, and simultaneously pops the stack to remove the address of the loop head. The instruction may be described in Pascal-like syntax as:

> repeat PUSH PC
> LOOP BODY
> until condition = TRUE;

Instruction 23 (COND LOOP EXIT) implements a loop exit that may be used with any of the Am29112 loop instructions. It is a conditional jump to \(D\), which simultaneously pops the stack. If the condition is FAIL, it simply performs a continue.
As discussed earlier, the counters present in cascaded Am29112s may be used independently or cascaded as a single 16 -bit counter under microprogram control. The mode bits select the cascaded configuration only in the extended mode. There are separate repeat and three-way branch instructions for upper and lower counters. In the case of the repeat instructions, the condition code is used to differentiate between the repeat on the upper and the repeat on lower counter (a condition of PASS selects the upper counter). In the case of the three-way branch, which needs the condition code input for the external condition, there are two separate opcodes for threeway branch on upper (opcode 17) and three-way branch on lower (opcode 16). When a single Am29112 is used only the repeat on lower counter instructions are useful; and when two Am29112s are cascaded but operated in the extended mode, the repeat instructions on upper and lower counter are identical in effect and both operate on the 16 -bit cascaded counter.
Instruction 12 (REPEAT LOOP IF COUNTER NOT ZERO) is the iterative analog of instruction 14 (CONDITIONAL REPEAT LOOP). Instruction 8 (PUSH PC; COND LOAD COUNTER) is used with condition code as forced PASS and the desired count in the D field of pipeline. This causes the address of the loop head to be pushed on the stack, and the lower counter loaded with the count. At the end of the loop body, the repeat instruction checks if the count is zero. If it is not zero, it performs a loop back using the top of stack address; and simultaneously decrements the counter; if it is zero, it pops the address of the loop head off the stack and simultaneously selects the next sequential address thereby exiting the loop. A repeat loop on the upper counter can be set up using instruction 24 instead of 8 to push PC and load upper counter, and using instruction 14 to loop back with condition code as forced PASS. Note the potential off-by-one error: since the count is checked before it is decremented, a count of 1 causes two iterations: the first iteration finds a count of 1 and decrements; on the second iteration the count is found to be zero and the loop terminates. Hence, the value of count loaded should be one less than the desired number of iterations. In the example above, loading the counter with 7 resulted in 8 iterations.
The single instruction repeat (instruction 13) is provided for applications where the loop body is a single microinstruction, for example, an ALU shift. The loop is set up as before using instruction 8 or 7 (PUSH PC; COND LOAD COUNTER). The repeat instruction then presents its own address to the \(D\) inputs of the sequencer. As with the repeat loop instruction, the single instruction repeat checks for counter \(=0\). If the counter is equal to zero, it pops the stack and continues to the next sequential instruction; otherwise it repeats the address presented to the D inputs, which is its own address, and decrements the count by one. Instruction 13 can also be used in place of
instruction 12 where there is no stack location available to hold the address of the loop head.

Often it is necessary to repeat an action until either some external condition becomes true or a predetermined count is reached: for example, searching a character string for an occurance of some character. The three-way branch instructions of the Am29112 combine the test for count and external condition in one cycle. At any loop iteration, if the condition becomes PASS when the three-way branch is executed, then the sequencer performs a continue to the next sequential instruction, and pops the stack. If the condition is FAIL when the three-way branch is executed, the sequencer tests the count. If the count is zero, then the search is unsuccessful and the sequencer performs a branch to the address input at the \(D\) port, simultaneously popping the stack. If the count is not zero, and the condition is FAIL, the sequencer performs a loop back via the stack, and decrements the counter by one.
Since interrupts may occur at any point in the execution of microcode, it is necessary to be able to save counter values on the stack so that the interrupt routines can use the counter without interfering with the operation of the interrupted code. The sequencer provides instructions that permit arbitrary nesting of loops and subroutine calls. Instruction 9 (LOAD LOWER COUNTER; CONDITIONAL PUSH COUNTER) can be used to load the lower counter from the D port. If the condition is PASS, then the instruction also causes the old counter value to be pushed on the stack. To restore the counter from the stack, instruction 10 (POP TO LOWER COUNTER) can be used with a forced FAIL condition. Instructions 25 (LOAD UPPER COUNTER; CONDITIONAL PUSH COUNTER) and 26 (COND POP TO UPPER COUNTER/POP TO DISPLACEMENT WIDTH) are the counterparts for operating on the upper counter. Note that in cascaded systems, when the counter is pushed, regardless of whether instruction 25 or instruction 10 is executed the entire counter is pushed to keep the stack balanced in the two Am29112s.

\section*{STACK AND REGISTER INSTRUCTIONS}

In addition to all the instructions mentioned earlier that explicitly or implicitly alter the stack, the Am29112 has some specialized instructions for stack manipulation.
The stack on the Am29112 is 33 deep. Attempting to push when the stack is full or to pop when the stack is empty causes the STACK ERROR signal out of the Am29112 to be generated. The error is latched internally and persists until either the chip is reset, or the stack is popped in case of overflow or pushed in case of underflow. When the stack overflows, the stack pointer does not wrap around, and all subsequent pushes on the full stack write over the top-of-stack location.

The stack on the Am29112 can be loaded through the \(D\) port using instruction 1 (COND PUSH D/LOAD COMMAND REGISTER) with condition as forced PASS and unloaded out of the D port using instruction 2 (POP; COND STACKOUT TO D) with a forced PASS condition. In the stackout instruction the D port becomes an output port. Care must be taken to avoid contention on the D bus when this instruction is executed. The ability to load and unload the stack is useful for implementing context switches. For fast unloading of the stack, a tight twoinstruction loop can be set up using instruction 12 (POP; COND STACKOUT TO D) with a forced FAIL condition and instruction 18 (COND TEST SP/BRANCH STACK NOT EMPTY) also with a forced FAIL condition. The branch instruction performs a branch to \(D\) if the stack is not empty.
The stack nesting level in an interruptible sequencer varies dynamically. Hence, the Am29112 is provided with instructions
for checking the available stack space: instruction 18 (COND TEST SP/BRANCH STACK NOT EMPTY). Two distinct instructions for testing the stack pointer have been packed into the same opcode, and are differentiated by the condition code. A condition code of PASS selects the Test Stack Pointer instruction. In this instruction, the sequencer tests the stack to see if there is enough space, as determined by a constant input at the \(D\) port; if there is enough space, the sequencer performs a continue, whereas if there is not enough space, the sequencer performs a subroutine return. The number of stack locations required is input at the D port. In a system with only one Am29112, the least significant 6 bits of the \(D\) are used within the chip for this instruction. In a system with two cascaded Am29112s the determination is made independently in the two chips (since the stack pointer is at all times identical in the two chips). Hence, the same number must be presented to the two chips. The adders in the two Am29112s are not cascaded for this instruction but function independently. In both Am29112s only the 6 LSBs of the D port are actually used in the comparison.

\section*{INTERRUPT HANDLING}

The Am29112 recognizes two kinds of interrupts: maskable and unmaskable. Maskable interrupts cause automatic saving of status on the internal stack and can be inhibited, either externally via the INTERRUPT DISABLE pin, or internally via instruction 15 (COND ENABLE/DISABLE INTERRUPT). In addition, maskable interrupts are disabled when there is not enough space on the stack to service the interrupt; though this internal inhibit can be overidden be clearing a bit in the command register. The unmaskable interrupt, on the other hand, cannot be disabled and does not cause saving of status on the internal stack. It is intended for handling abnormal and irrecoverable situations like power failure or stack overflow. When an unmaskable interrupt occurs, the sequencer branches to the address of the unmaskable interrupt routine stored in the INTVECT register. This address is stored on chip at system initialize time using instruction 11 (COND RESET SP/LOAD INTERRUPT REGISTER) with a condition of FAIL. If a maskable interrupt is being processed when the unmaskable interrupt occurs, the unmaskable interrupt may be delayed at most one cycle to prevent contention on the \(Y\) bus. In any case, the unmaskable interrupt request should persist for at least one clock edge.

The Am29112 contains an interrupt disable flip-flop on-chip. The flip-flop is set by the DISABLE INTERRUPT instruction (opcode 15 with forced FAIL) and reset by the ENABLE INTERRUPT instruction (opcode 15 with forced PASS). The flip-flop output performs the same function as the interrupt disable pin. On reset, or on receiving an unmaskable interrupt, the flip-flop is set thereby disabling maskable interrupts. Hence, at the end of initialization, the ENABLE INTERRUPT instruction will have to be executed to reset the flip-flop and enable maskable interrupts.

In the case of maskable interrupts, the interrupt return address is saved on the stack automatically using the INTRTN register. The INTRTN register is loaded with the CMUX output with every clock. When an interrupt is acknowledged, the Am29112 output is turned off and the vector applied externally. However, the sequencer executes the instruction which is in the pipeline register in that cycle. The result of executing the interrupted instruction, namely the next address, does not come out of the Am29112 Y bus because the Y bus is used to input the interrupt vector. It is clocked into the INTRTN register. On the first cycle of the interrupt routine, the sequencer pushes the return
address on the stack so that the interrupt routine returns by doing a COND RETURN, like any other subroutine.

\section*{THE INVISIBLE STACK PUSH THAT THE SEQUENCER EXECUTES WHEN IT IS INTERRUPTED OCCURS IN THE FIRST CYCLE OF THE INTERRUPT SERVICE ROUTINE. hence, The first instruction of the interrupt SERVICE ROUTINE MAY NOT BE ANY INSTRUCTION THAT USES THE STACK.}

Before acknowledging an interrupt, the sequencer checks the stack to see if there is enough space to handle the interrupt. If there is insufficient space on the stack, the acknowledge is not generated. This feature may be disabled by a bit in the command register.
\[
\begin{array}{ll}
\text { CR }(0)=1 & \text { INHIBIT ACKNOWLEDGE ON STACK FULL } \\
& \text { (DEFAULT) } \\
\text { CR }(0)=0 & \text { GENERATE ACKNOWLEDGE ON } \\
& \text { STACK FULL }
\end{array}
\]

\section*{MASKABLE INTERRUPTS}

The branch vector for maskable interrupts is applied externally to the \(Y\) port of the Am29112. This section discusses the system timing considerations and their impact on interrupt handling in the Am29112.

Figure 3(a) shows a general system configuration highlighting the interrupt portion of the circuitry and the control loop. A priority interrupt controller generates an interrupt request for the highest priority pending interrupt. This request is applied to the MINTR pin of the Am29112. If the request is not masked, the Am29112 puts out an acknowledge on the MINTA pin. The interrupt controller then puts out the encoded priority of the highest priority interrupt to the vector PROM, which maps the priority code into a vector.
The \(\overline{\text { MINTA }}\) line turns on the vector PROM output at the same time as the Y port on the Am29112 is three-stated. Hence, the interrupt vector gets onto the micromemory address bus and is also input into the Am29112, and incremented to form the next address. The Am29112 saves the return address on the stack so that when the interrupt service routine does a subroutine return, control returns to the instruction following the interrupted instruction.

The maskable interrupt request is synchronized on the Am29112. If there is no disable, therefore, the acknowledge always is active in the cycle following the request. However, the acknowledge to \(Y\) bus three-stating delay is programmable: the \(Y\) bus three-stating signal can occur either in the same cycle as, or in the cycle following, the MINTA acknowledge, depending on a bit in the command latch of the Am29112.
The command register bit that programs the postdelay option is bit 2, the third least significant bit. The command register has 3 bits altogether and is loaded from the 3 LSBs of the \(D\) inputs using instruction 1 (COND PUSH D/LOAD COMMAND REGISTER) with a condition of PASS. Note that in a system with two cascaded Am29112s the command registers in the two chips must both be loaded with the same data on system initialization. The postdelay bit in the command register selects the postdelay option when it is zero.
Figure 3(b) shows the configuration without postdelay, including a simplified view of the acknowledge circuit. The acknowledge is granted at the same time the Y output of the Am29112 is three-stated and the vector PROM enabled by the MINTA signal out of the Am29112. The critical delay path in this case is
clock to acknowledge (Am29112) + acknowledge to priority out (interrupt controller) + vector PROM access time + microprogram memory access time + pipeline setup time. Obviously, this delay will have a significant impact on overall cycle time. However, in slow systems or in systems where the vector is always available immediately with acknowledge, this configuration is acceptable. It is also acceptable if the vector mapping PROM is made part of the microprogram memory by dedicating the locations in low memory addressed by the priority to hold vectors to the corresponding interrupt routines.
Figure 3(c) shows a simplified view of the Am29112 configured with postdelay active. An external D-type flip-flop adds a one cycle delay to the MINTA signal before it switches the output enable on the vector register. The interrupt request to acknowledge delay is the same as in the circuit with postdelay inactive, but the \(Y\) bus three-stating signal occurs one cycle later than the acknowledge. The critical path has been broken into two with the register at the vector PROM output. In this case the critical delay path is cut short by the microprogram memory access time. While the vector PROM accesses the interrupt vector, the microprogram memory accesses the next sequential instruction. This implies that one more instruction of the interrupted code executes after the cycle in which the acknowledge is granted. (If that instruction happens to be a DISABLE INTERRUPT' instruction, then even though no more interrupts will be accepted by the Am29112, the interrupt which has been acknowledged goes through and the corresponding interrupt service routine may enable interrupts again using the ENABLE INTERRUPT instruction.)

The command register bits are summarized below:
CR(0) : Interrupt acknowledge on stack full
\(C R(0)=1\) : inhibit acknowledge on stack full
\(C R(0)=0\) : generate acknowledge on stack full
CR(1) : Multiway enable
\(C R(1)=1\) : enable multiway branching
\(\mathrm{CR}(1)=0\) : disable multiway branching
CR(2) : Interrupt postdelay flip-flop
\(C R(2)=1\) : no postdelay
\(C R(2)=0\) : postdelay

\section*{HOLD}

The Am29112 is equipped with a HOLD pin for configurations utilizing more than one sequencer driving a common microprogram address bus. In such situations, it is necessary to cause the unselected sequencer to hold its internal state while some other sequencer executes, so that it can resume execution at the point where it was held. The HOLD pin, when asserted, three-states the \(Y\) bus, forces low the carry into the PC incrementer, and selects the internal CMUX output (instead of the \(Y\) bus) at the incrementer input. To complete the HOLD function, it is also necessary to disable interrupts and to put the sequencer into the forced continue mode. Under these conditions, the value of the PC is recirculated through the CMUX and the incrementer until the HOLD is released; and all the remaining state bits in the sequencer are not altered because of the forced continue.

Figure 3a. Interrupt Control Loop


Figure 3b. No Postdelay


Note: The INTD connection directly from microprogram memory.

Figure 3c. With Postdelay


\section*{Am29116}

\section*{A High-Performance 16-Bit Bipolar Microprocessor}

\section*{DISTINCTIVE CHARACTERISTICS}
- Optimized for High-Performance Controllers Architecture and instruction set optimized for high-performance, intelligent controllers in microprogrammed environments. Excellent solution for applications requiring speed and bit-manipulation power.
- Fast

Supports 100ns microcycle time/10MHz data rate for all instructions.
- Flexible 16-Bit Data Path

The ALU and all on-chip data storage elements are interconnected via a common 16 -bit data bus. All instructions executable on bytes or 16 -bit words.
- 16-Bit Barrel Shifter

Contains a 16-bit Barrel Shifter which can shift or rotate a word up to 15 positions in a single instruction cycle.
- Immediate Instruction Capability

Immediate instruction capability for multiplexing data and instructions. May be used for storing constants in microcode or for configuring a second data port.
- Powerful Field Insertion/Extraction and Bit Manipulation Instructions
Rotate and Merge, Rotate and Compare and bit manipulation instructions provided for complex bit control.
- 32-Working Registers

Contains 32 working registers arranged in a single port RAM architecture. RAM may be configured to accept different source and destination addresses within single cycle.
- Status Register and Condition-Code Generator/Multiplexer
Contains status manipulation capability for condition code initiated branching and user definable flag manipulation.
- CRC Generation

Has instructions which perform both forward and reverse CRC (Cyclic-Redundancy Check), calculations for any CRC polynomial of 16 bits or less. (Supports 5 MHz data rate)
- 52-Pin Hermetic DIP

\section*{OTHER LITERATURE}
- Am29116 Electrical Characteristics
- An Intelligent Fast Disk Controller Using the Am29116 Application Note.
- A Microprogrammed CPU Using the Am29116 Application Note

\section*{TABLE OF CONTENTS}

Block Diagram
Pin Definitions
6-16
Architecture of the Am29116 ..... 6-17
Instruction Set ..... 6-18
Ordering Information ..... 6-42

\section*{FUNCTIONAL DESCRIPTION}

The Am29116 is a microprogrammable 16-bit bipolar microprocessor whose architecture and instruction set is optimized for high performance peripheral controllers, like graphics controllers, disk controllers, communications controllers, front-end concentrators and modems. The device also performs well in microprogrammed processor applications, especially when combined with the Am29516 16x16 multiplier (65ns worst-case \(16 \times 16\) multiply). In addition to its complete arithmetic and logic instruction set, the Am29116 instruction set contains functions particularly useful in controller applications; bit set, bit reset, bit test, rotate and merge, rotate and compare, and cyclic-redundancy-check (CRC) generation.



Figure 1. Detailed Am29116 Block Diagram

\section*{PIN DEFINITIONS (Pin out provided on back page)}
\(Y_{0}-Y_{15}\) Data Input/Output Lines. When \(\overline{O E}_{Y}\) is \(\mathrm{HIGH}, Y_{0}-Y_{15}\) are used as external data inputs which allow data to be directly loaded into the 16 -bit data latch. Having \(\overline{O E}_{Y}\) LOW allows the ALU data to be output on \(Y_{0}-Y_{15}\).

DLE Data Latch Enable. When DLE is HIGH, the 16 -bit data latch is transparent and is latched when DLE is LOW.
\(\overline{\mathrm{OE}}_{\mathbf{Y}}\) Output Enable. When \(\overline{\mathrm{OE}}_{\boldsymbol{Y}}\) is HIGH, the 16 -bit Y outputs are disabled (high-impedance); when \(\overline{O E}_{Y}\) is LOW, the 16 -bit Y outputs are enabled (HIGH or LOW).
\(\mathbf{I}_{0}-\mathbf{I}_{15}\) Sixteen Instruction Inputs. Used to select the operations to be performed in the Am29116. Also used as data inputs while performing immediate instructions.
IEN Instruction Enable. With IEN LOW, data can be written into the RAM when the clock is LOW. The Accumulator can accept data during the LOW-HIGH transition of the clock. Having IEN LOW, the Status Register can be updated when SRE is LOW. With IEN HIGH, the conditional test output, CT, is disabled as a function of the instruction inputs. IEN should be LOW for the first half of the first cycle of an immediate instruction.
\(\overline{\text { SRE }} \quad\) Status Register Enable. When \(\overline{\text { SRE }}\) and \(\overline{\mathrm{EN}}\) are both LOW, the Status Register is updated at the end of all instructions with the exception of NO-OP, Save Status, and Test Status. Having either SRE or IEN HIGH will inhibit the Status Register from changing.

Clock Pulse. The clock input to the Am29116. The RAM latch is transparent when the clock is HIGH. When the clock goes LOW, the RAM output is latched. Data is written into the RAM during the low period of the clock provided IEN is LOW and if the instruction being executed designates the RAM as the destination of operation. The Accumulator and Status Register will accept data on the LOW-HIGH transition of the clock if IEN is also LOW. The instruction latch becomes transparent when it exits an immediate instruction mode during a LOW-HIGH transition of the clock.
\(\mathbf{T}_{\mathbf{1}}-\mathrm{T}_{\mathbf{4}}\) Input/Output Pin. Under the control of \(\mathrm{OE}_{\mathrm{T}}\), the four lower status bits \(\mathrm{Z}, \mathrm{C}, \mathrm{N}, \mathrm{OVR}\) become outputs on \(\mathrm{T}_{1}-\mathrm{T}_{4}\), respectively when \(\mathrm{OE}_{\mathrm{T}}\) goes HIGH . When \(O E_{T}\) is LOW, \(\mathrm{T}_{1}-T_{4}\) are used as inputs to generate the CT output.

OET Output Enable. When OET is LOW, the 4-bit T outputs are disabled (high-impedance); when \(\mathrm{OE}_{\mathrm{T}}\) is HIGH, the 4-bit T outputs are enabled (HIGH or LOW).
CT Conditional Test. The condition code multiplexer selects one of the twelve condition code signals and places them on the CT output. A HIGH on the CT output indicates a passed condition and a LOW indicates a failed condition.

\section*{ARCHITECTURE OF THE Am29116}

The Am29116 is a high-performance, microprogrammable 16-bit bipolar microprocessor.

As shown in the Block Diagram, Figure 1, the device consists of the following elements interconnected with 16-bit data paths.
- 32-Word by 16-Bit RAM
- Accumulator
- Data Latch
- Barrel Shifter
- AlU
- Priority Encoder
- Status Register
- Condition-Code Generator/Multiplexer
- Three-State Output Buffers
- Instruction Latch and Decoder

\section*{32-Word by \(\mathbf{1 6 - B i t ~ R A M}\)}

The 32 -Word by 16 -Bit RAM is a single-port RAM with a 16 -bit latch at its output. The latches are transparent when the clock input (CP) is HIGH and latched when the clock input is LOW. Data is written into the RAM while the clock is LOW if the IEN input is also LOW and if the instruction being executed defines the RAM as the destination of the operation. For byte instructions, only the lower eight RAM bits are written into; for word instructions, all 16 bits are written into. With the use of an external multiplexer on five of the instruction inputs, it is possible to select separate read and write addresses for the same instruction. This two-address operation is not allowed for immediate instructions.

\section*{Accumulator}

The 16 -bit Accumulator is an edge-triggered register. The Accumulator accepts data on the LOW-to-HIGH transition of the clock input if the IEN input is LOW and if the instruction being executed defines the Accumulator as the destination of the operation. For byte instructions, only the lower eight bits of the Accumulator are written into; for word instructions, all 16 bits are written into

\section*{Data Latch}

The 16 -bit Data Latch holds the data input to the Am29116 on the bi-directional Y bus. The latch is transparent when the DLE input is HIGH and latched when the DLE input is LOW.

\section*{Barrel Shifter}

A 16-bit Barrel Shifter is used as one of the ALU inputs. This permits rotating data from either the RAM, the Accumulator or the Data Latch up to 15 positions. In the word mode, the Barrel Shifter rotates a 16 -bit word; in the byte mode, it rotates only the lower eight bits.

\section*{Arithmetic Logic Unit}

The Am29116 contains a 16-bit ALU with full carry lookahead across all 16 bits in the arithmetic mode. The ALU is capable of operating on either one, two or three operands, depending upon the instruction being executed. It has the ability to execute all conventional one and two operand operations, such as pass, complement, two's complement, add, subtract, AND, NAND, OR, NOR, EXOR, and EX-NOR. In addition, the ALU can also execute three-operand instructions such as rotate and merge and rotate and compare with mask. All ALU operations can be performed on either a word or byte basis, byte operations being performed on the lower eight bits only.
The ALU produces three status outputs, C (carry), N (negative) and OVR (overflow). The appropriate flags are generated at the byte or word level, depending upon whether the device is executing in the byte or word mode. The Z (zero) flag, although not generated by the ALU, detects zero at both the byte and word level.
The carry input to the ALU is generated by the Carry Multiplexer which can select an input of zero, one, or the stored carry bit from the Status Register, QC. Using QC as the carry input allows execution of multiprecision addition and subtractions.

\section*{Priority Encoder}

The Priority Encoder produces a binary-weighted code to indicate the locations of the highest order ONE at its input. The input to the Priority Encoder is generated by the ALU which performs an AND operation on the operand to be prioritized and a mask. The mask determines which bit locations to eliminate from prioritization. In the word mode, if no bit is HIGH, the output is a binary zero. If bit 15 is HIGH, the output is a binary one. Bit 14 produces a binary two, etc. Finally, if only bit 0 is HIGH, a binary 16 is produced

In the byte mode, bits 8 thru 15 do not participate. If none of bits 7 thru 0 are HIGH, the output is a binary zero. If bit 7 is HIGH a binary one is produced. Bit 6 produces a binary two, etc. Finally, if only bit 0 is HIGH, a binary 8 is produced.

\section*{Status Register}

The Status Register holds the 8-bit status word. With the Status-Register Enable, (SRE) input LOW and the IEN input LOW, the Status Register is updated at the end of all instructions except NO-OP, Save-Status and Test-Status instructions. SRE going HIGH or IEN going HIGH inhibits the Status Register from changing.
The lower four bits of the Status Register contain the ALU status bits of Zero (Z), Carry, (C) Negative (N), and Overflow (OVR). The upper four bits contain a Link bit and three user-definable status bits (Flag.1, Flag 2, Flag 3).
With \(\overline{\text { SRE }}\) LOW and IEN LOW, the lower four status bits are updated after each instruction except those mentioned above, NO-OP, Save Status, Status Test and the Status Set/Reset instruction for the upper four bits. Under the same conditions, the upper four status bits are changed only during their respective Status Set/Reset instructions and during Status Load instuctions in the word mode. The Link-Status bit is also updated after each shift instruction.

The Status Register can be loaded from the internal \(Y\)-bus, and can also be selected as a source for the internal Y-bus. When the Status Register is loaded in the word mode, all 8 -bits are updated; in the byte mode, only the lower 4 bits ( \(\mathrm{Z}, \mathrm{C}, \mathrm{N}, \mathrm{OVR}\) ) are updated.
When the Status Register is selected as a source in the word mode, all eight bits are loaded into the lower byte of the destination; the upper byte of the destination is loaded with all zeros. In the byte mode, the Status Register again loads into the lower byte of the destination, but the upper byte remains unchanged. This Store and Load combination allows saving and restoring the Status Register for interrupt and subroutine processing. The four lower status bits (Z, C, N, OVR) can be read directly via the bidirectional \(T\) bus. These four bits are available as outputs on the \(T_{1-4}\) outputs whenever \(O E_{T}\) is HIGH .

\section*{Condition-Code Generator/Multiplexer}

The Condition-Code Generator/Multiplexer contains the logic necessary to develop the 12 condition-code test signals. The multiplexer portion can select one of these test signals and place it on the CT output for use by the microprogram sequence. The multiplexer may be addressed in two different ways: One way is through the Test Instruction. This instruction specifies the test condition to be placed in the CT output, but does not allow an ALU operation at the same time. The second method uses the bidirectional T bus as an input. This requires extra bits in the microword, but provides the ability to simultaneously test and execute. The test instruction lines, \(\mathrm{I}_{0-4}\) have priority over \(\mathrm{T}_{1-4}\) for testing status.

\section*{Three-State Output Buffers}

There are two sets of Three-State Output Buffers in the Am29116. One set controls the bidirectional, 16 -bit Y bus. These outputs are enabled by placing a LOW on the OE input. A HIGH puts the Y outputs in the high-impedance state, allowing data to be input to the Data latch from an external source.
The second set of Three-State Output Buffers control the bidirectional 4 -bit \(T\) bus and is enabled by placing a HIGH on the \(O E_{T}\) input. This allows storing the four internal ALU status bits (Z, C, N, OVR) externally. A LOW OE \(T\) input forces the \(T\) outputs into the high-impedance state. External devices can then drive the \(T\) bus to select a test condition for the CT output.

\section*{Instruction Latch and Decoder}

The 16 -bit Instruction Latch is normally transparent to allow decoding of the Instruction Inputs by the Instruction Decoder into the internal control signals for the Am29116. All instructions except Immediate Instructions are executed in a single clock cycle.
Immediate instructions require two clock cycles for execution. During the first clock cycle, the Instruction Decoder recognizes that an Immediate Instruction is being specified and captures the data on the instruction Inputs in the Instruction Latch. During the second clock cycle, the data on the Instruction Inputs is used as one of the operands for the function specified during the first clock cycle. At the end of the second clock cycle, the Instruction Latch is returned to its transparent state.

\section*{INSTRUCTION SET}

The instruction set of the Am29116 is very powerful. In addition to the single and two operand logical and arithmetic instructions, the Am29116 instruction set contains functions particularly useful in controller applications; bit set, bit reset, bit test, rotate and merge, rotate and compare, and cyclic-redundancy-check (CRC) generation. Complex instructions like rotate and merge, rotate and compare, and prioritize are executed in a single microcycle.

Three data types are supported by the Am29116.
- Bit
- Byte
- Word (16-bit)

In the byte mode data is written into the lower half of the word and the upper half is unchanged. The special case is when the status register is specified as the destination. In the byte mode the LSH (OVR, N, C, Z) of the status register is updated and in the word mode all eight bits of the status register are updated. The status register does not change for save status and test status instructions. In the test status instructions the CT output has the result and the \(Y\)-bus is undefined.

The Am29116 Instruction Set can be divided into eleven types of instructions. These are:
- Single Operand
- Rotate and Compare
- Two Operand
- Prioritize
- Single Bit Shift
- Rotate and Merge
- Cyclic-Redundancy-Check
- Bit Oriented
- Rotate by \(n\) Bits
- Status
- Rotar by n Bit

Each instruction type is arbitrarily divided into quadrants. Two of the sixteen instruction lines decode to four quadrants labelled from 0 to 3 . The quadrants were defined mainly for convenience in classification of the instruction set and addressing modes and can be used together with the OP CODES to distinguish the instructions.
The following pages describe each of the instruction types in detail. Throughout the description \(\overline{\text { OEy }}\) is assumed to be LOW allowing ALU outputs on the Y-bus.

Table 1 illustrates operand source-destination combinations for each instruction type.

TABLE 1. OPERAND SOURCE/DESTINATION COMBINATIONS
\begin{tabular}{|c|c|c|c|}
\hline Instruction Type & \multicolumn{3}{|l|}{Operand Combinations (Note 1)} \\
\hline \multirow[b]{2}{*}{Single Operand} & \multicolumn{2}{|l|}{Source (R/S)} & Destination \\
\hline & \multicolumn{2}{|l|}{```
RAM (Note 2)
ACC
D
D(OE)
D(SE)
I
0
```} & \begin{tabular}{l}
RAM \\
ACC \\
Y Bus \\
Status \\
ACC and Status
\end{tabular} \\
\hline \multirow[b]{2}{*}{Two-Operand} & Source (R) & Source (S) & Destination \\
\hline & RAM RAM D D ACC D & \begin{tabular}{l}
ACC \\
1 \\
RAM ACC \\
I \\
I
\end{tabular} & \begin{tabular}{l}
RAM \\
ACC \\
Y Bus
\end{tabular} \\
\hline \multirow[b]{2}{*}{Single Bit Shift} & \multicolumn{2}{|l|}{Source (U)} & Destination \\
\hline & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { RAM } \\
& \text { ACC } \\
& \text { ACC } \\
& D \\
& D \\
& D
\end{aligned}
\]} & RAM ACC Y Bus RAM ACC Y Bus \\
\hline \multirow[b]{2}{*}{Rotate n Bits} & \multicolumn{2}{|l|}{Source (U)} & Destination \\
\hline & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { RAM } \\
& \text { ACC } \\
& D
\end{aligned}
\]} & \begin{tabular}{l}
RAM \\
ACC \\
Y Bus
\end{tabular} \\
\hline \multirow[b]{2}{*}{Bit Oriented} & \multicolumn{2}{|l|}{Source (R/S)} & Destination \\
\hline & \multicolumn{2}{|l|}{RAM ACC D} & \[
\begin{aligned}
& \text { RAM } \\
& \text { ACC } \\
& \text { Y Bus }
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{Rotate and Merge} & Rotated Source (U) & Mask (S) & Non-Rotated Source/ Destination (R) \\
\hline & \begin{tabular}{l}
D \\
D \\
D \\
D \\
ACC \\
RAM
\end{tabular} & \begin{tabular}{l}
I \\
RAM 1 \\
ACC \\
1
\end{tabular} & \begin{tabular}{l}
ACC \\
ACC \\
RAM \\
RAM \\
RAM \\
ACC
\end{tabular} \\
\hline \multirow[b]{2}{*}{Rotate and Compare} & Rotated Source (U) & Mask (S) & Non-Rotated Source/ Destination (R) \\
\hline & \begin{tabular}{l}
D \\
D \\
D \\
RAM
\end{tabular} & ACC । & \begin{tabular}{l}
ACC \\
RAM \\
RAM \\
ACC
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Instruction Type & \multicolumn{3}{|l|}{Operand Combinations (Note 1)} \\
\hline \multirow[t]{2}{*}{Prioritize (Note 3)} & Source (R) & Mask (S) & Destination \\
\hline & \[
\begin{aligned}
& \text { RAM } \\
& \text { ACC } \\
& \mathrm{D}
\end{aligned}
\] & \[
\begin{aligned}
& \text { RAM } \\
& \text { ACC } \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { RAM } \\
& \text { ACC } \\
& \text { Y Bus }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Cyclic Redundancy Check} & Data in & Destination & \(n\) Polynomial \\
\hline & QLINK & RAM & ACC \\
\hline No Operation & \multicolumn{3}{|c|}{-} \\
\hline \multirow[b]{2}{*}{Set Reset Status} & \multicolumn{3}{|c|}{Bits Affected} \\
\hline & \multicolumn{3}{|c|}{\begin{tabular}{l}
OVR, N, C, Z \\
LINK \\
Flag 1 \\
Flag 2 \\
Flag 3
\end{tabular}} \\
\hline \multirow[b]{2}{*}{Store Status} & \multicolumn{2}{|l|}{Source} & Destination \\
\hline & \multicolumn{2}{|c|}{Status} & \[
\begin{aligned}
& \text { RAM } \\
& \text { ACC } \\
& \text { Y Bus }
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{Status Load} & Source (R) & Source (S) & Destination \\
\hline & & ACC 1 1 & \begin{tabular}{l}
Status \\
Status and ACC
\end{tabular} \\
\hline \multirow[b]{2}{*}{Test Status} & \multicolumn{3}{|c|}{Test Condition (CT)} \\
\hline & \multicolumn{3}{|c|}{\[
\begin{aligned}
& (N \oplus O V R)+Z \\
& N \oplus O V R \\
& Z \\
& \text { OVR } \\
& \text { Low } \\
& C \\
& Z+\bar{C} \\
& N \\
& \text { LiNK } \\
& \text { Flag1 } \\
& \text { Flag2 } \\
& \text { Flag3 } \\
& \hline
\end{aligned}
\]} \\
\hline
\end{tabular}

Notes: 1. When there is no dividing line between the R\&S OPERAND or SOURCE and DESTINATION, the two must be used as a given pair. But where there exists such a separation, any combination of them is possible.
2. In the SINGLE OPERAND INSTRUCTION, RAM cannot be used when both ACC and STATUS are designated as a DESTINATION.
3. In the PRIORITIZE INSTRUCTIONS, OPERAND and MASK must be different sources.

\section*{SINGLE OPERAND INSTRUCTIONS}

The Single Operand Instructions contain four indicators; byte or word mode, opcode, source and destination. It is further subdivided into two types. The first type uses RAM as a source or destination or both, and the second type does not use RAM as a source or destination. Both types have different instruction formats as shown below. Under the control of instruction inputs, the desired function is performed on the source and the result is either stored in the specified destination or placed on the \(Y\)-bus or both. For a special case where 8 -bit to 16 -bit conversion is
needed, the Am29116 is capable of extending sign bit (D(SE)) or binary zero (\(D(O E)\)) over 16 -bits in the word mode. The least significant four bits of the Status Register (OVR, N, C, Z) are affected by the function performed in this category. The most significant bits of status register (FLAG1, FLAG2, FLAG3, LINK) are not affected. The only limitation in this type is that the RAM cannot be used as a source when both ACC and the Status Register are specified as a destination.

\section*{SINGLE OPERAND FIELD DEFINITIONS}
\[
\begin{array}{llllll}
15 & 14 & 13 & 12 & 98 & 54 \\
0
\end{array}
\]

SOR

SONR
\begin{tabular}{|l|l|l|l|l|}
\hline B/W & Quad & Opcode & SRC & Dest \\
\hline
\end{tabular}

SINGLE OPERAND INSTRUCTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction 1 & B/W \({ }^{2}\) & Quad \({ }^{3}\) & & & & & & R/S \({ }^{4}\) & Dest \({ }^{4}\) & & RAM & dress \\
\hline SOR & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 10 & \[
\begin{aligned}
& 1100 \\
& 1101 \\
& 1110 \\
& 1111
\end{aligned}
\] & \begin{tabular}{l}
MOVE \\
COMP \\
INC \\
NEG
\end{tabular} & \[
\begin{aligned}
& \mathrm{SRC} \rightarrow \text { Dest } \\
& \overline{\mathrm{SRC}} \rightarrow \text { Dest } \\
& \text { SRC }+1 \rightarrow \text { Dest } \\
& \overline{\text { SRC }}+1 \rightarrow \text { Dest }
\end{aligned}
\] & \[
\begin{aligned}
& 0000 \\
& 0010 \\
& 0011 \\
& 0100 \\
& 0110 \\
& 0111 \\
& 1000 \\
& 1001 \\
& 1010 \\
& 1011
\end{aligned}
\] & \[
\begin{aligned}
& \text { SORA } \\
& \text { SORY } \\
& \text { SORS } \\
& \text { SOAR } \\
& \text { SODR } \\
& \text { SOIR } \\
& \text { SOZR } \\
& \text { SOZER } \\
& \text { SOSER } \\
& \text { SORR }
\end{aligned}
\] & \begin{tabular}{l}
RAM \\
RAM \\
RAM \\
ACC \\
D \\
1 \\
D(0E) \\
D(SE) \\
RAM
\end{tabular} & \begin{tabular}{l}
ACC \\
Y Bus \\
Status \\
RAM \\
RAM \\
RAM \\
RAM \\
RAM \\
RAM \\
RAM
\end{tabular} & \begin{tabular}{l}
\[
00000
\] \\
11111
\end{tabular} & \[
\begin{aligned}
& \text { R00 } \\
& \text { R31 }
\end{aligned}
\] & RAM Reg 00 RAM Reg 31 \\
\hline Instruction & B/W & Quad & \multicolumn{3}{|c|}{Opcode} & & & \multicolumn{2}{|c|}{R/S \({ }^{4}\)} & \multicolumn{3}{|c|}{Destination} \\
\hline SONR & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 11 & \[
\begin{aligned}
& 1100 \\
& 1101 \\
& 1110 \\
& 1111
\end{aligned}
\] & \begin{tabular}{l}
MOVE \\
COMP \\
INC \\
NEG
\end{tabular} & \[
\begin{aligned}
& \mathrm{SRC} \rightarrow \text { Dest } \\
& \overline{\mathrm{SRC}} \rightarrow \text { Dest } \\
& \mathrm{SRC}+1 \rightarrow \text { Dest } \\
& \overline{\mathrm{SRC}}+1 \rightarrow \text { Dest }
\end{aligned}
\] & \[
\begin{aligned}
& 0100 \\
& 0110 \\
& 0111 \\
& 1000 \\
& 1001 \\
& 1010
\end{aligned}
\] & \begin{tabular}{l}
SOA \\
SOD \\
SOI \\
SOZ \\
SOZE \\
SOSE
\end{tabular} & & & \[
\begin{aligned}
& 00000 \\
& 00001 \\
& 00100 \\
& 00101
\end{aligned}
\] & \begin{tabular}{l}
NRY \\
NRA \\
NRS \\
NRAS
\end{tabular} & \begin{tabular}{l}
Y Bus \\
ACC \\
Status \\
ACC, Státus
\end{tabular} \\
\hline
\end{tabular}

Notes: 1. The instruction mnemonic designates different instruction formats used in the Am29116. They are useful in assembly microcode with the System 29 AMDASM \({ }^{\text {™ }}\) meta assembler.
2. \(B=\) Byte Mode, \(W=\) Word Mode.
3. See Instruction Set description.
4. \(R=\) Source; \(S=\) Source; Dest \(=\) Destination.

> Y BUS AND STATUS - SINGLE OPERAND INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & Description & B/W & Y - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & Z \\
\hline SOR & MOVE & SRC \(\rightarrow\) Dest & \multirow[t]{4}{*}{\[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\]} & \(Y_{i} \leftarrow \mathrm{SRC}_{i}\) & NC & NC & NC & NC & U & U & U & U \\
\hline \multirow[t]{3}{*}{SONR} & COMP & \(\overline{\text { SRC }} \rightarrow\) Dest & & \(Y_{i} \leftarrow \overline{S R C}_{i}\) & NC & NC & NC & NC & U & U & U & U \\
\hline & INC & SRC + \(1 \rightarrow\) Dest & & \(Y \leftarrow\) SRC +1 & NC & NC & NC & NC & U & U & U & U \\
\hline & NEG & \(\overline{\text { SRC }+1 \rightarrow \text { Dest }}\) & & \(\mathrm{Y} \leftarrow \overline{\mathrm{SRC}}+1\) & NC & NC & NC & NC & U & U & U & \(\cup\) \\
\hline
\end{tabular}

\footnotetext{
SRC = Source
\(\mathrm{U}=\) Update
NC = No Change
\(0=\) Reset
\(1=\) Set
\(i=0\) to 15 when not specified
}

\section*{TWO OPERAND INSTRUCTIONS}

The Two Operand instructions contain five indicators; byte or word mode, opcode, R source, S source, and destination. It is further subdivided into two types. The first type uses RAM as the source and/or destination and the second type does not use RAM as source or destination. The first type has two formats; the only difference is in the quadrant. Under the control of instruction inputs, the desired function is performed on the specified sources and the result is stored in the specified destination or placed on
the \(Y\)-bus or both. The least significant four bits of the status register (OVR, N, C, Z) are affected by the arithmetic functions performed and only the \(N\) and \(Z\) bits are affected by the logical functions performed. The OVR and C bits of the status register are forced to ZERO for logical functions. Add with carry and Subtract with carry instructions are useful for Multiprecision Add or Subtract.

\section*{TWO OPERAND FIELD DEFINITIONS:}

TWO OPERAND INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & & & R1 & S \({ }^{1}\) & Dest \({ }^{1}\) & \multicolumn{3}{|c|}{Opcode} & \multicolumn{3}{|c|}{RAM Address} \\
\hline TOR1 & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 00 & \begin{tabular}{l}
0000 \\
0010 \\
0011 \\
1000 \\
1010 \\
1011 \\
1100 \\
1110 \\
1111
\end{tabular} & \begin{tabular}{l}
TORAA \\
TORIA \\
TODRA \\
TORAY \\
TORIY \\
TODRY \\
TORAR \\
TORIR \\
TODRR
\end{tabular} & \begin{tabular}{l}
RAM \\
RAM \\
D \\
RAM \\
RAM \\
D \\
RAM \\
RAM \\
D
\end{tabular} & \begin{tabular}{l}
ACC \\
1 \\
RAM \\
ACC \\
1 \\
RAM \\
ACC \\
I \\
RAM
\end{tabular} & \begin{tabular}{l}
ACC \\
ACC \\
ACC \\
Y Bus \\
Y Bus \\
Y Bus \\
RAM \\
RAM \\
RAM
\end{tabular} & \begin{tabular}{l}
0000 \\
0001 \\
0010 \\
0011 \\
0100 \\
0101 \\
0110 \\
0111 \\
1000 \\
1001 \\
1010 \\
1011
\end{tabular} & \begin{tabular}{l}
SUBR \\
SUBRC \\
SUBS \\
SUBSC \\
ADD \\
ADDC \\
AND \\
NAND \\
EXOR \\
NOR \\
OR \\
EXNOR
\end{tabular} & \begin{tabular}{l}
\(S\) minus \(R\) \(S\) minus \(R\) with carry \(R\) minus \(S\) \(R\) minus \(S\) with carry \(R\) plus \(S\) R plus \(S\) with carry
\[
\frac{R \cdot S}{R \cdot S}
\] \\
\(R \oplus S\) \\
\(\overline{R+S}\) \\
\(R+S\) \\
\(\overline{R \oplus S}\)
\end{tabular} & \[
\begin{gathered}
00000 \\
\text { • } 1111
\end{gathered}
\] & \[
\begin{aligned}
& \text { R00 } \\
& \text { R31 }
\end{aligned}
\] & RAM Reg 00 RAM Reg 31 \\
\hline Instruction & B/W & Quad & & & R1 & S 1 & Dest \({ }^{1}\) & \multicolumn{3}{|c|}{Opcode} & \multicolumn{3}{|c|}{RAM Address} \\
\hline TOR2 & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 10 & \[
\begin{aligned}
& \hline 0001 \\
& 0010 \\
& 0101
\end{aligned}
\] & TODAR TOAIR TODIR & \begin{tabular}{l}
D \\
ACC \\
D
\end{tabular} & ACC 1 1 & RAM RAM RAM & \[
\begin{aligned}
& 0000 \\
& 0001 \\
& 0010 \\
& 0011 \\
& 0100 \\
& 0101 \\
& \\
& 0110 \\
& 0111 \\
& 1000 \\
& 1001 \\
& 1010 \\
& 1011
\end{aligned}
\] & \begin{tabular}{l}
SUBR \\
SUBRC \\
SUBS \\
SUBSC \\
ADD \\
ADDC \\
AND \\
NAND \\
EXOR \\
NOR \\
OR \\
EXNOR
\end{tabular} & \begin{tabular}{l}
\(S\) minus \(R\) S minus R with carry \(R\) minus \(S\) \(R\) minus \(S\) with carry R plus \(S\) R plus S with carry \(\frac{R \cdot S}{R \cdot S}\) \\
\(\frac{R \oplus S}{R+S}\) \\
\(R+S\) \\
\(\overline{R \oplus S}\)
\end{tabular} & \[
\begin{gathered}
00000 \\
11111
\end{gathered}
\] & \[
\begin{aligned}
& \text { R00 } \\
& \text { R31 }
\end{aligned}
\] & RAM Reg 00 RAM Reg 31 \\
\hline
\end{tabular}

\footnotetext{
Note 1: \(\mathrm{R}=\) Source
S = Source
Dest \(=\) Destination
}

Am29116

\section*{TWO OPERAND INSTRUCTIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & & & R1 & S1 & \multicolumn{3}{|c|}{Opcode} & \multicolumn{3}{|c|}{Destination} \\
\hline \multirow{13}{*}{TONR} & \multirow[t]{13}{*}{\[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\]} & \multirow[t]{13}{*}{11} & \multirow[t]{13}{*}{\[
\begin{aligned}
& 0001 \\
& 0010 \\
& 0101
\end{aligned}
\]} & \multirow[t]{13}{*}{\[
\begin{aligned}
& \text { TODA } \\
& \text { TOAI } \\
& \text { TODI }
\end{aligned}
\]} & \multirow[t]{13}{*}{\[
\begin{aligned}
& \mathrm{D} \\
& \mathrm{ACC} \\
& \mathrm{D}
\end{aligned}
\]} & \multirow[t]{13}{*}{\[
\begin{aligned}
& \text { ACC } \\
& 1 \\
& 1
\end{aligned}
\]} & 0000 & SUBR & \(S\) minus \(R\) & 00000 & NRY & Y Bus \\
\hline & & & & & & & 0001 & SUBRC & \(S\) minus R with & 00001 & NRA & ACC \\
\hline & & & & & & & & & carry & 00100 & NRS & Status \\
\hline & & & & & & & 0010 & SUBS & \(R\) minus \(S\) & 00101 & NRAS & ACC, Status \\
\hline & & & & & & & 0011 & SUBSC & \(R\) minus \(S\) with carry & & & \\
\hline & & & & & & & 0100 & ADD & \(R\) plus \(S\) & & & \\
\hline & & & & & & & 0101 & ADDC & \(R\) plus \(S\) with carry & & & \\
\hline & & & & & & & 0110 & AND & R.S & & & \\
\hline & & & & & & & 0111 & NAND & \(\overline{R \cdot S}\) & & & \\
\hline & & & & & & & 1000 & EXOR & \(R \oplus S\) & & & \\
\hline & & & & & & & 1001 & NOR & \(\overline{R+S}\) & & & \\
\hline & & & & & & & 1010 & OR & R+S & & & \\
\hline & & & & & & & 1011 & EXNOR & \(\overline{\mathrm{R} \oplus \mathrm{S}}\) & & & \\
\hline
\end{tabular}

Notes 1: R = Source
\(S=\) Source

Y buS AND STATUS CONTENTS - TWO OPERAND INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & Description & B/W & Y - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & Z \\
\hline \multirow{12}{*}{TOR1 TOR2 TONR} & SUBR & \(S\) minus R & \multirow[t]{12}{*}{\[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\]} & \(Y \leftarrow S-R\) & NC & NC & NC & NC & U & U & U & U \\
\hline & SUBRC & \(S\) minus \(R\) with carry & & \(Y \leftarrow S+\bar{R}-1+Q C\) & NC & NC & NC & NC & U & U & U & U \\
\hline & SUBS & R minus S & & \(Y \leftarrow R-S\) & NC & NC & NC & NC & U & U & U & U \\
\hline & SUBSC & \(R\) minus \(S\) with carry & & \(Y \leftarrow R+\bar{S}-1+Q C\) & NC & NC & NC & NC & U & U & U & U \\
\hline & ADD & R plus S & & \(\mathrm{Y} \leftarrow \mathrm{R}+\mathrm{S}\) & NC & NC & NC & NC & U & U & U & \(u\) \\
\hline & ADDC & \(R\) plus \(S\) with carry & & \(Y \leftarrow R+S+Q C\) & NC & NC & NC & NC & U & U & U & \(u\) \\
\hline & AND & R.S & & \(Y \leftarrow R_{i}\) AND \(S_{i}\) & NC & NC & NC & NC & 0 & U & 0 & \(u\) \\
\hline & NAND & \(\overline{\bar{R} \cdot \mathrm{~S}}\) & & \(Y_{i} \leftarrow R_{i}\) NAND \(S_{i}\) & NC & NC & NC & NC & 0 & \(u\) & 0 & \(u\) \\
\hline & EXOR & \(R \oplus S\) & & \(Y_{i} \leftarrow R_{i}\) EXOR \(S_{i}\) & NC & NC & NC & NC & 0 & \(u\) & 0 & U \\
\hline & NOR & \(\overline{R+S}\) & & \(Y_{i} \leftarrow R_{i}\) NOR \(S_{i}\) & NC & NC & NC & NC & 0 & \(u\) & 0 & U \\
\hline & OR & \(R+S\) & & \(Y_{i} \leftarrow R_{i} O R S_{i}\) & NC & NC & NC & NC & 0 & \(\cup\) & 0 & U \\
\hline & EXNOR & \(\overline{R \oplus S}\) & & \(Y_{i} \leftarrow R_{i}\) EXNOR \(S_{i}\) & NC & NC & NC & NC & 0 & \(u\) & 0 & \(u\) \\
\hline
\end{tabular}

\footnotetext{
SRC = Source
\(\mathrm{U}=\) Update
NC = No Change
\(0=\) Reset
\(1=\) Set
\(i=0\) to 15 when not specified
}

\section*{SINGLE BIT SHIFT INSTRUCTIONS}

The Single Bit Shift Instructions contain four indicators; byte or word mode, direction and shift linkage, source and destination. It is further subdivided into two types. The first type uses RAM as the source and/or destination and the second type does not use RAM as source or destination. Under the control of the instruction inputs, the desired shift function is performed on the specified source and the result is stored in the specified destination or placed on the Y -bus or both. The direction and shift linkage indicator defines the direction of the shift (up or down) as well as what will be shifted into the vacant bit. On a shift-up instruction,
the LSB may be loaded with ZERO, ONE, or the Link-Status bit (QLINK). The MSB is loaded into the Link-Status bit as shown in Figure 2. On a shift-down instruction, the MSB may be loaded with ZERO, ONE, the contents of the Status Carry flip-flop, (QC), the Exclusive-OR of the Negative-Status bit and the OverflowStatus bit (QN \(\oplus\) QOVR) or the Link-Status bit. The LSB is loaded into the Link-Status bit as shown in Figure 3. The N and Z bits of the Status register are affected but the OVR and \(C\) bits are forced to ZERO. The Shift-Down with QN \(\oplus\) QOVR is useful for Two's Complement multiplication.

\section*{SINGLE BIT SHIFT FIELD DEFINITIONS:}

SHFTNR
\begin{tabular}{|l|l|l|l|l|}
\hline B/W & Quad & SRC & Opcode & Dest \\
\hline
\end{tabular}

Figure 2. Shift Up Function

Figure 3. Shift Down Function

\section*{SINGLE BIT SHIFT INSTRUCTIONS}

SINGLE BIT SHIFT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & & & U1 & Dest \({ }^{1}\) & \multicolumn{4}{|c|}{Opcode} & \multicolumn{3}{|c|}{RAM Address} \\
\hline SHFTR & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 10 & \[
\begin{aligned}
& 0110 \\
& 0111
\end{aligned}
\] & \[
\begin{aligned}
& \text { SHRR } \\
& \text { SHDR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RAM } \\
& D
\end{aligned}
\] & \[
\begin{aligned}
& \text { RAM } \\
& \text { RAM }
\end{aligned}
\] & \begin{tabular}{l}
0000 0001 \\
0010 \\
0100 \\
0101 \\
0110 \\
0111 \\
1000
\end{tabular} & \begin{tabular}{l}
SHUPZ \\
SHUP1 \\
SHUPL \\
SHDNZ \\
SHDN1 \\
SHDNL \\
SHDNC \\
SHDNOV
\end{tabular} & \begin{tabular}{l}
Up \\
Up \\
Up \\
Down \\
Down \\
Down \\
Down \\
Down
\end{tabular} & \begin{tabular}{l}
0 \\
1 \\
QLINK \\
0 \\
1 \\
QLINK \\
QC \\
QN \(\oplus\) QOVR
\end{tabular} & \[
\begin{gathered}
00000 \\
\dot{11111}
\end{gathered}
\] & \begin{tabular}{l}
R00 \\
R31
\end{tabular} & RAM Reg 00 RAM Reg 31 \\
\hline Instruction & B/W & Quad & \multicolumn{4}{|c|}{U1} & \multicolumn{4}{|c|}{Opcode} & \multicolumn{3}{|c|}{Destination} \\
\hline SHFTNR & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 11 & \[
\begin{aligned}
& 0110 \\
& 0111
\end{aligned}
\] & \[
\begin{aligned}
& \text { SHA } \\
& \text { SHD }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ACC } \\
& \mathrm{D}
\end{aligned}
\] & & \begin{tabular}{l}
0000 0001 \\
0010 \\
0100 \\
0101 \\
0110 \\
0111 \\
1000
\end{tabular} & \begin{tabular}{l}
SHUPZ \\
SHUP1 \\
SHUPL \\
SHDNZ \\
SHDN1 \\
SHDNL \\
SHDNC \\
SHDNOV
\end{tabular} & \begin{tabular}{l}
Up \\
Up \\
Up \\
Down \\
Down \\
Down \\
Down \\
Down
\end{tabular} & \begin{tabular}{l}
0 \\
1 \\
QLINK \\
0 \\
1 \\
QLINK \\
QC \\
QN \(\oplus\) QOVR
\end{tabular} & \[
\begin{aligned}
& 00000 \\
& 00001
\end{aligned}
\] & NRY NRA & \[
\begin{aligned}
& \text { Y Bus } \\
& \text { ACC }
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1. \(U=\) Source
\[
\text { Dest }=\text { Destination }
\]

Y BUS AND STATUS - SINGLE BIT SHIFT INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & \multicolumn{2}{|r|}{Description} & B/W & \(\mathbf{Y}\) - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & Z \\
\hline \multirow{4}{*}{SHR SHNR} & \multirow[t]{2}{*}{SHUPZ SHUP1 SHUPL} & \multirow[t]{2}{*}{\begin{tabular}{l}
Up \\
Up \\
Up
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0 \\
& 1 \\
& \text { QLINK }
\end{aligned}
\]} & \(1=W\) & \[
\begin{aligned}
& Y_{i} \leftarrow S R C_{i}-1, i=1 \text { to } 15 ; \\
& Y_{0} \leftarrow \text { Shift input }
\end{aligned}
\] & NC & NC & NC & SRC \({ }_{15}{ }^{*}\) & 0 & \(\mathrm{SRC}_{14}\) & 0 & \(u\) \\
\hline & & & & \(0=B\) & & NC & NC & NC & SRC7* & 0 & \(\mathrm{SRC}_{6}\) & 0 & U \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
SHDNZ \\
SHDN1 \\
SHDNL \\
SHDNC \\
SHCNOV
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
Down & 0 \\
Down & 1 \\
Down & QLINK \\
Down & QC \\
Down & QN \(\oplus\) QOVR
\end{tabular}}} & \(0=W\) & \[
\begin{aligned}
& Y_{i} \leftarrow \text { SRC }_{i}+1, i=14 \text { to } 0 ; \\
& Y_{15} \leftarrow \text { Shift Input }
\end{aligned}
\] & NC & NC & NC & \(\mathrm{SRC}_{0}{ }^{*}\) & 0 & Shift Input & 0 & U \\
\hline & & & & \(0=B\) & \[
\begin{aligned}
& Y_{i} \leftarrow S R C_{i}+1, i=1 \text { to } 6 ; \\
& Y_{i} \leftarrow S R C_{i}-7, i=8 \text { to } 14 ; \\
& Y_{7,15} \leftarrow S \text { Shift input }
\end{aligned}
\] & NC & NC & NC & SRC0* & 0 & Shift Input & 0 & U \\
\hline
\end{tabular}

SRC = Source;
*Shifted Output is loaded into the QLINK.
\(\mathrm{U}=\) Update
NC = No Change
\(0=\) Reset
1 = Set
\(i=0\) to 15 when not specified

\section*{BIT ORIENTED INSTRUCTIONS}

The Bit Oriented Instructions contain four indicators; byte or word mode, operation, source/destination, and the bit position of the bit to be operated on (Bit 0 is the least significant bit). It is further subdivided into two types. The first type uses the RAM as both source and destination and has two kinds of formats which differ only by quadrant. The second type does not use the RAM as a source or a destination. Under the control of the instruction inputs, the desired function is performed on the specified source and the result is stored in the specified destination or placed on the Y -bus or both. The operations which can be performed are: Set Bit \(n\) which forces the \(n^{\text {th }}\) bit to a ONE leaving other bits unchanged;

Reset Bit \(n\) which forces the \(n^{\text {th }}\) bit to ZERO leaving the other bits unchanged; Test Bit n, which sets the ZERO Status Bit depending on the state of bit \(n\) leaving all the bits unchanged; Load \(2^{n}\), which loads ONE in Bit position \(n\) and ZERO in all other bit positions; Load \(\overline{2^{n}}\) which loads ZERO in bit position \(n\) and ONE in all other bit positions; increment by \(2^{n}\), which adds \(2^{n}\) to the operand; and decrement by \(2^{n}\) which subtracts \(2^{n}\) from the operand. For all the Load Set, Reset and Test instructions, the N and Z bits are affected and OVR and \(C\) bit of the Status register are forced to ZERO. For all arithmetic instructions the LSH (OVR, C, N, Z bits) of the Status register is affected.

\section*{BIT ORIENTED FIELD DEFINITIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\(\begin{array}{llll}15 & 14 & 131298\end{array}\)} & \multicolumn{2}{|c|}{54} \\
\hline BOR1 & B/W & Quad & n & Opcode & RAM Address \\
\hline BOR2 & B/W & Quad & n & Opcode & RAM Address \\
\hline BONR & B/W & Quad & n & 1100 & Opcode \\
\hline
\end{tabular}

BIT ORIENTED INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & n & \multicolumn{3}{|r|}{Opcode} & \multicolumn{3}{|r|}{RAM Address} \\
\hline BOR1 & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 11 & 0 to 15 & \[
\begin{aligned}
& 1101 \\
& 1110 \\
& 1111
\end{aligned}
\] & SETNR RSTNR TSTNR & Set RAM, bit n Reset RAM, bit \(n\) Test RAM, bit n & \[
\begin{gathered}
00000 \\
\ldots \\
11111
\end{gathered}
\] & \[
\begin{gathered}
\text { R00 } \\
\text { R } \\
\text { R31 }
\end{gathered}
\] & \begin{tabular}{l}
RAM Reg 00 \\
RAM Reg 31
\end{tabular} \\
\hline Instruction & B/W & Quad & n & \multicolumn{3}{|r|}{Opcode} & \multicolumn{3}{|r|}{RAM Address} \\
\hline BOR2 & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 10 & 0 to 15 & \[
\begin{aligned}
& 1100 \\
& 1101 \\
& 1110 \\
& 1111
\end{aligned}
\] & \begin{tabular}{l}
LD2NR \\
LDC2NR \\
A2NR \\
S2NR
\end{tabular} & \[
\begin{aligned}
& \frac{2^{n}}{2^{n}} \rightarrow \text { RAM } \\
& \text { RAM plus } 2^{n} \rightarrow \text { RAM } \\
& \text { RAM minus } 2^{n} \rightarrow \text { RAM }
\end{aligned}
\] & \[
\begin{gathered}
00000 \\
\because \\
11111
\end{gathered}
\] & \[
\begin{gathered}
\text { R00 } \\
\therefore \\
\text { R31 }
\end{gathered}
\] & RAM Reg 00 RAM Reg 31 \\
\hline Instruction & B/W & Quad & n & & & & & & code \\
\hline BONR & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 11. & 0 to 15 & 1100 & & - & \begin{tabular}{l}
00000 \\
00001 \\
00010 \\
00100 \\
00101 \\
00110 \\
00111 \\
10000 \\
10001 \\
10010 \\
10100 \\
10101 \\
10110 \\
10111
\end{tabular} & \begin{tabular}{l}
TSTNA RSTNA SETNA A2NA S2NA LD2NA \\
LDC2NA \\
TSTND \\
RSTND \\
SETND \\
A2NDY \\
S2NDY \\
LS2NY \\
LDC2NY
\end{tabular} & \begin{tabular}{l}
Test ACC, bit \(n\) Reset ACC, bit n Set ACC, bit \(n\) ACC plus \(2^{n} \rightarrow\) ACC ACC minus \(2^{n} \rightarrow\) ACC
\[
\frac{2^{n}}{2^{n}} \rightarrow A C C
\] \\
Test D, bit \(n\) \\
Reset D, bit \(n\) \\
Set D, bit \(n\) \\
D plus \(2^{n} \rightarrow Y\) Bus \\
D minus \(\overrightarrow{2^{n}} \rightarrow Y\) Bus \\
\(\frac{2^{n}}{2^{n}} \rightarrow Y\) Bus \\
\(\overline{2^{n}} \rightarrow Y\) Bus
\end{tabular} \\
\hline
\end{tabular}

\section*{BIT ORIENTED INSTRUCTIONS}

Y BUS AND STATUS - BIT ORIENTED INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & Description & B/W & \(\mathbf{Y}\) - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & Z \\
\hline \multirow{3}{*}{BOR1} & SETNR & Set RAM Bit n & \multirow[t]{21}{*}{\[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\]} & \(Y_{i} \leftarrow\) RAM \({ }_{i}\) for \(i \neq n ; Y_{n} \leftarrow 1\) & NC & NC & NC & NC & 0 & U & 0 & 0 \\
\hline & RSTNR & Reset RAM, Bit \(n\) & & \(Y_{i} \leftarrow\) RAM \(M_{i}\) for \(i \neq n ; Y_{n} \leftarrow 0\) & NC & NC & NC & NC & 0 & U & 0 & U \\
\hline & TSTNR & Test RAM, Bit \(n\) & & \(Y_{i} \leftarrow 0\) for \(i \neq n ; Y_{n} \leftarrow \mathrm{SRC}_{n}\) & NC & NC & NC & NC & 0 & U & 0 & U \\
\hline \multirow{4}{*}{BOR2} & LD2NR & \(2^{n} \rightarrow\) RAM & & \(Y_{i} \leftarrow 0\) for \(i \neq n ; Y_{n} \leftarrow 1\) & NC & NC & NC & NC & 0 & U & 0 & 0 \\
\hline & LDC2NR & \(\overline{2^{n}} \rightarrow\) RAM & & \(Y_{i} \leftarrow 1\) for \(i \neq n ; Y_{n} \leftarrow 0\) & NC & NC & NC & NC & 0 & U & 0 & 0 \\
\hline & A2NR & RAM \(+2^{n} \rightarrow\) RAM & & \(Y_{i} \leftarrow R A M+2^{n}\) & NC & NC & NC & NC & U & U & U & U \\
\hline & S2NR & RAM - \(2^{n} \rightarrow\) RAM & & \(Y_{i} \leftarrow R A M-2^{n}\) & NC & NC & NC & NC & U & U & U & \(u\) \\
\hline \multirow{14}{*}{BONR} & TSTNA & Test ACC, Bit \(n\) & & \(Y_{i} \leftarrow 0\) for \(i \neq n ; Y_{n} \leftarrow A C C_{n}\) & NC & NC & NC & NC & 0 & U & 0 & U \\
\hline & RSTNA & Reset ACC, Bit n & & \(Y_{i} \leftarrow A C C_{i}\) for \(i \neq n_{;} Y_{n} \leftarrow 0\) & NC & NC & NC & NC & 0 & U & 0 & U \\
\hline & SETNA & Set ACC, Bit n & & \(Y_{i} \leftarrow A C C_{i}\) for \(i \neq n ; Y_{n} \leftarrow 1\) & NC & NC & NC & NC & 0 & U & 0 & 0 \\
\hline & A2NA & \(\mathrm{ACC}+2^{n} \rightarrow \mathrm{ACC}\) & & \(Y_{i} \leftarrow A C C+2^{n}\) & NC & NC & NC & NC & U & U & U & U \\
\hline & S2NA & ACC \(-2^{n} \rightarrow\) ACC & & \(Y_{i} \leftarrow A C C-2^{n}\) & NC & NC & NC & NC & \(U\) & \(u\) & U & U \\
\hline & LD2NA & \(2^{n} \rightarrow\) ACC & & \(Y_{i} \leftarrow 0\) for \(i \neq n ; Y_{n} \leftarrow 1\) & NC & NC & NC & NC & 0 & U & 0 & 0 \\
\hline & LDC2NA & \(\overline{2^{n}} \rightarrow\) ACC & & \(Y_{i} \leftarrow 1\) for \(i \neq n_{;} Y_{n} \leftarrow 0\) & NC & NC & NC & NC & 0 & U & 0 & 0 \\
\hline & TSTND & Test D, Bit n & & \(Y_{i} \leftarrow 0\) for \(i \neq n ; Y_{n} \leftarrow D_{n}\) & NC. & NC & NC & NC & 0 & U & 0 & U \\
\hline & RSTND & Reset D, Bit \({ }^{*}\) & & \(Y_{i} \leftarrow D_{i}\) for \(i \neq n_{;} Y_{n} \leftarrow 0\) & NC & NC & NC & NC & 0 & U & 0 & U \\
\hline & SETND & Set D, Bit \({ }^{*}\) & & \(Y_{i} \leftarrow D_{i}\) for \(i \neq n ; Y_{n} \leftarrow 1\) & NC & NC & NC & NC & 0 & U & 0 & 0 \\
\hline & A2NDY & \(D+2^{n} \rightarrow Y\) Bus & & \(Y \leftarrow D+2^{n}\) & NC & NC & NC & NC & U & U & U & U \\
\hline & S2NDY & \(D-2^{n} \rightarrow Y\) Bus & & \(Y \leftarrow D-2^{n}\) & NC & NC & NC & NC & U & U & U & U \\
\hline & LD2NY & \(2^{n} \rightarrow Y\) Bus & & \(Y_{i} \leftarrow 0\) for \(i \neq n ; Y_{n} \leftarrow 1\) & NC & NC & NC & NC & 0 & U & 0 & 0 \\
\hline & LDC2NY & \(\overline{2^{n}} \rightarrow Y\) Bus & & \(Y_{i} \leftarrow 1\) for \(i \neq n ; Y_{n} \leftarrow 0\) & NC & NC & NC & NC & 0 & U & 0 & 0 \\
\hline
\end{tabular}

\section*{SRC = Source \\ \(U=\) Update \\ NC = No Change \\ \(0=\) Reset \\ \(1=\) Set \\ \(i=0\) to 15 when not specified}
*Destination is not \(D\) Latch but \(Y\) Bus.

\section*{ROTATE BY \(\mathbf{n}\) BITS INSTRUCTIONS}

The Rotate by \(n\) Bits instructions contain four indicators: byte or word mode, source, destination and the number of places the source is to be rotated. It is further subdivided into two types. The first type uses RAM as a source and/or a destination and the second type does not use RAM as a source or destination. The first type has two different formats and the only difference is in the quadrant. The second type has only one format as shown in the table. Under the control of instruction inputs, the \(n\) indicator specifies the number of bit positions the source is to be rotated up
(0 to 15) and the result is either stored in the specified destination or placed on the Y -bus or both. An example of this instruction is given in Figure 4. In the Word mode, all 16-bits are rotated up while in the Byte mode, only lower 8 -bits \((0-7)\) are rotated up. In the Word mode, a rotate up by \(n\) bits is equivalent to a rotate down by (16-n) bits. Similarly, in the Byte mode a rotate up by \(n\) bits is equivalent to a rotate down by \((8-n)\) bits. The \(N\) and \(Z\) bits of the Status Register are affected and OVR and C bits are forced to ZERO

Note 1: \(U=\) Source
Dest \(=\) Destination

Y BUS AND STATUS - ROTATE BY n BITS INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & B/W & \(\mathbf{Y}\) - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & Z \\
\hline \multirow[t]{2}{*}{ROTR1 ROTR2 ROTNR} & \multirow[t]{2}{*}{} & \(1=W\) & \(Y_{i} \leftarrow\) SRC \(_{(i-n) \bmod 16}\) & NC & NC & NC & NC & 0 & \(\mathrm{SRC}_{15-\mathrm{n}}\) & 0 & U \\
\hline & & \(0=B\) & \[
\begin{aligned}
& Y_{i} \leftarrow \text { SRC }_{i}+8=\text { SRC }_{(i-n) \bmod 8} \\
& \text { for } i=0 \text { to } 7
\end{aligned}
\] & NC & NC & NC & NC & 0 & \(\mathrm{SRC}_{8-\mathrm{n}}\) & 0 & U \\
\hline
\end{tabular}

SRC = Source
\(\mathrm{U}=\) Update
NC = No Change
\(0=\) Reset
\(1=\) Set
\(i=0\) to .15 when not specified

\section*{ROTATE AND MERGE INSTRUCTION}

The Rotate and Merge Instructions contain five indicators: byte or word mode, rotated source, non-rotated source/destination, mask and the number of bit positions a source is to be rotated. The function performed by the Rotate and Merge instruction is illustrated in Figure 5. The rotated source, \(U\), is rotated up by the Barrel Shifter \(n\) places. The mask input then selects, on a bit by bit basis, the rotated \(U\) input or \(R\) input. A ZERO in bit \(i\) of the mask
will select the \(i^{\text {th }}\) bit of the \(R\) input as the \(i^{\text {th }}\) output bit, while ONE in bit \(i\) will select the \(i^{\text {th }}\) rotated \(U\) input as the output bit. The output word is stored in the non-rotated operand location. The \(N\) and \(Z\) bits are affected. The OVR and C bits of the Status register are forced to ZERO. An example of this instruction is given in Figure 6.

Figure 6. Rotate and Merge Example

Figure 5. Rotate and Merge Function

ROTATE AND MERGE INSTRUCTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & n & & & U1 & R/Dest \({ }^{1}\) & S1 & \multicolumn{3}{|c|}{RAM Address} \\
\hline ROTM & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 01 & 0 to 15 & \begin{tabular}{l}
0111 \\
1000 \\
1001 \\
1010 \\
1100 \\
1110
\end{tabular} & \begin{tabular}{l}
MDAI MDAR \\
MDRI MDRA MARI MRAI
\end{tabular} & \begin{tabular}{l}
D \\
D \\
D \\
D \\
ACC \\
RAM
\end{tabular} & \begin{tabular}{l}
ACC \\
ACC \\
RAM \\
RAM \\
RAM \\
ACC
\end{tabular} & & \[
\begin{gathered}
00000 \\
\ldots \\
11111
\end{gathered}
\] & \[
\begin{gathered}
\text { R00 } \\
\text { R31 }
\end{gathered}
\] & \begin{tabular}{l}
RAM-Reg 00 \\
RAM Reg 31
\end{tabular} \\
\hline
\end{tabular}

Note 1. \(U=\) Rotated Source
R/Dest = Non Rotated Source and Destination
S = Mask

\section*{Y BUS AND STATUS - ROTATED MERGE}

SRC = Source
\(\mathrm{U}=\) Update
NC = No Change
\(0=\) Reset
\(1=\) Set
\(\mathrm{i}=0\) to 15 when not specified

\section*{ROTATE AND COMPARE INSTRUCTIONS}

The Rotate and Compare Instructions contain five indicators: byte or word mode, rotated source, non-rotated source, mask, and the number of bit positions the rotated source is to be rotated up. Under the control of instruction inputs, the function performed by the Rotate and Compare instruction is illustrated in Figure 7. The rotated operand is rotated by the Barrel Shifter \(n\) places. The mask is inverted and ANDed on a bit-by-bit basis with the output
of the Barrel Shifter and \(R\) input. Thus, a ONE in the mask input eliminates that bit from the comparison. A ZERO allows the comparison. If the comparison passes, the Zero flag is set. If it fails, the Zero flag is reset. The N and Z bit are affected. The OVR and \(C\) bits of the Status register are forced to ZERO. An example of this instruction is given in Figure 8.

EXAMPLE: \(\mathrm{n}=4\), Word Mode
\begin{tabular}{lllll}
U & 0011 & 0001 & 0101 & 0110 \\
U Rotated & 0001 & 0101 & 0110 & 0011 \\
\(R\) & 0001 & 0101 & 1111 & 0000 \\
Mask (S) & 0000 & 0000 & 1111 & 1111
\end{tabular}

Figure 8. Rotate and Compare Examples

ROTATE AND COMPARE FIELD DEFINITIONS

Figure 7. Rotate and Compare Function

ROTATE AND COMPARE INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & n & & & U1 & R & S 1 & \multicolumn{3}{|c|}{RAM Address} \\
\hline ROTC & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 01 & 0 to 15 & \begin{tabular}{l}
0010 \\
0011 \\
0100 \\
0101
\end{tabular} & \begin{tabular}{l}
CDAI \\
CDRI \\
CDRA \\
CRAI
\end{tabular} & \begin{tabular}{l}
D \\
D \\
D \\
RAM
\end{tabular} & \begin{tabular}{l}
ACC \\
RAM \\
RAM \\
ACC
\end{tabular} & 1. 1 ACC I & \begin{tabular}{l}
00000 \\
11111
\end{tabular} & \[
\begin{aligned}
& \text { R00 } \\
& \text { R31 }
\end{aligned}
\] & \begin{tabular}{l}
RAM Reg 00 ... \\
RAM Reg 31
\end{tabular} \\
\hline
\end{tabular}

Note 1. \(U=\) Rotated Source
R/Dest = Non Rotated Source and Destination
S = Mask

Y BUS AND STATUS - ROTATE AND COMPARE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & B/W & Y - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & 2 \\
\hline \multirow[t]{2}{*}{ROTC} & \multirow[t]{2}{*}{} & 1 = W & \[
\begin{aligned}
& Y_{i} \leftarrow(\operatorname{Rot} O p)_{i} \cdot \overline{(\text { mask })_{i}} \\
& (\text { Non Rot Op })_{(i-n) \bmod 16} \cdot \stackrel{\oplus}{(\text { mask })_{i}}
\end{aligned}
\] & NC & NC & NC & NC & 0 & U & 0 & U \\
\hline & & \(0=B\) & \[
\begin{aligned}
& Y_{i} \leftarrow(\operatorname{Rot} O p)_{i} \cdot \overline{(\text { mask })_{i}} \stackrel{\oplus}{\left(\text { Non Rot Op) }(i-n) \bmod 8 \cdot(\text { mask })_{i}\right.}
\end{aligned}
\] & NC & NC & NC & NC & 0 & U & 0 & U \\
\hline
\end{tabular}

SRC = Source
\(\mathrm{U}=\) Update
NC = No Change
\(0=\) Reset
\(1=\) Set
\(i=0\) to 15 when not specified

\section*{PRIORITIZE INSTRUCTION}

The Prioritize Instructions contain four indicators: byte or word mode, operand source (R), mask source \((S)\) and destination. It is further subdivided into two types. The function performed by the Prioritize instruction is shown in Figure 9. The R operand is ANDed with the complement of the Mask operand. A ZERO in the Mask operand allows the corresponding bit in the R operand to participate in the priority encoding function. A ONE in the Mask operand forces the corresponding bit in the R operand to a ZERO, eliminating it from participation in the priority encoding function.

The priority encoder accepts a 16 -bit input and produces a 5 -bit binary-weighted code indicating the bit position of the highest priority active bit. If none of the inputs are active, the output is ZERO. In the Word mode, if input bit 15 is active, the output is 1 , etc. Figure 10 lists the output as a function of the highest-priority active-bit position in both the Word and Byte mode. The N and Z bits are affected and the OVR and C bits of the status register are forced to ZERO. The only limitation in this instruction is that the operand and the mask must be different sources.
\begin{tabular}{cccc}
WORD MODE & \multicolumn{2}{c}{ BYTE MODE* } \\
\hline \begin{tabular}{c}
Highest- \\
Priority \\
Active Bit
\end{tabular} & \begin{tabular}{c}
Encoder \\
Output
\end{tabular} & \begin{tabular}{c}
Highest \\
Priority \\
Active Bit
\end{tabular} & \begin{tabular}{c}
Encoder \\
Output
\end{tabular} \\
\hline None & 0 & None & 0 \\
15 & 1 & 7 & 1 \\
14 & 2 & 6 & 2 \\
\(\cdot\) & \(\cdot\) & \(\cdot\) &. \\
\(\cdot\) & 15 & 1 & 7 \\
1 & 16 & 0 & 8 \\
0 & & &
\end{tabular}

Figure 10.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{PRIORITZE INSTRUCTION FIELD DEFINITIONS} \\
\hline 151 & \(4 \quad 131\) & \multicolumn{2}{|l|}{298} & 54 \\
\hline B/W & Quad & Destination & Source (R) & RAM Address/ Mask (s) \\
\hline B/W & Quad & Mask (s) & Destination & RAM Address/ Source (R) \\
\hline B/W & Quad & Mask (s) & Source (R) & RAM Address/ Destination \\
\hline B/W & Quad & Mask (s) & Source (R) & Destination \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & \multicolumn{3}{|c|}{Destination} & \multicolumn{3}{|c|}{Source (R)} & \multicolumn{3}{|l|}{RAM Address/Mask (S)} \\
\hline PRT1 & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 10 & \[
\begin{aligned}
& 1000 \\
& 1010 \\
& 1011
\end{aligned}
\] & \[
\begin{aligned}
& \text { PRIA } \\
& \text { PR1Y } \\
& \text { PR1R }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ACC } \\
& \text { Y Bus } \\
& \text { RAM }
\end{aligned}
\] & \[
\begin{aligned}
& 0111 \\
& 1001
\end{aligned}
\] & PRT1A
PR1D & \[
\begin{aligned}
& \mathrm{ACC} \\
& \mathrm{D}
\end{aligned}
\] & \[
\begin{aligned}
& 00000 \\
& 11111
\end{aligned}
\] & \[
\begin{aligned}
& \text { R00 } \\
& \text { R31 }
\end{aligned}
\] & RAM Reg 00 RAM Reg 31 \\
\hline Instruction & B/W & Quad & \multicolumn{3}{|c|}{Mask (S)} & \multicolumn{3}{|c|}{Destination} & \multicolumn{3}{|l|}{RAM Address/Source (R)} \\
\hline PRT2 & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 10 & \[
\begin{aligned}
& 1000 \\
& 1010 \\
& 1011
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { PRA } \\
& \text { PRZ } \\
& \text { PRI }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ACC } \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0000 \\
& 0010
\end{aligned}
\] & PR2A PR2Y & \begin{tabular}{l}
ACC \\
Y Bus
\end{tabular} & \[
\begin{gathered}
00000 \\
\ldots \\
11111
\end{gathered}
\] & \[
\begin{gathered}
\text { R00 } \\
\ldots \\
\text { R31 }
\end{gathered}
\] & \begin{tabular}{l}
RAM Reg 00 \\
RAM Reg 31
\end{tabular} \\
\hline Instruction & B/W & Quad & \multicolumn{3}{|c|}{Mask (S)} & \multicolumn{3}{|c|}{Source (R)} & \multicolumn{3}{|r|}{RAM Address/Dest} \\
\hline PRT3 & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 10 & \[
\begin{aligned}
& 1000 \\
& 1010 \\
& 1011
\end{aligned}
\] & \[
\begin{aligned}
& \text { PRA } \\
& \text { PRZ } \\
& \text { PRI }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ACC } \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0011 \\
& 0100 \\
& 0110
\end{aligned}
\] & \[
\begin{aligned}
& \text { PR3R } \\
& \text { PR3A } \\
& \text { PR3D }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RAM } \\
& \text { ACC }
\end{aligned}
\]
\[
\mathrm{D}
\] & \[
\begin{gathered}
00000 \\
\cdots \\
11111
\end{gathered}
\] & \[
\begin{gathered}
\text { R00 } \\
\text { R31 }
\end{gathered}
\] & \begin{tabular}{l}
RAM Reg 00 \\
RAM Reg 31
\end{tabular} \\
\hline Instruction & B/W & Quad & \multicolumn{3}{|c|}{Mask (S)} & \multicolumn{3}{|c|}{Source (R)} & \multicolumn{3}{|c|}{Destination} \\
\hline PRTNR & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 11 & \[
\begin{aligned}
& 1000 \\
& 1010 \\
& 1011
\end{aligned}
\] & \[
\begin{aligned}
& \text { PRA } \\
& \text { PRZ } \\
& \text { PRI }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ACC } \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0100 \\
& 0110
\end{aligned}
\] & PRTA PRTD & \[
\begin{aligned}
& \text { ACC } \\
& \mathrm{D}
\end{aligned}
\] & \[
\begin{aligned}
& 00000 \\
& 00001
\end{aligned}
\] & NRY NRA & Y Bus ACC \\
\hline
\end{tabular}

Y BUS AND STATUS - PRIORITIZE INSTRUCTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & B/W & \(\boldsymbol{Y}\) - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & c & z \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
PRT1 \\
PRT2 \\
PRT3 \\
PRTNR
\end{tabular}} & \multirow[t]{2}{*}{} & \(1=\mathrm{W}\) & \begin{tabular}{l}
\(Y_{i} \leftarrow \operatorname{CODE}\left(\right.\) SRC \(\left._{n} \cdot \overline{\text { mask }_{n}}\right)\); \\
\(Y_{m} \leftarrow 0 ; i=0\) to 4 and \(n=0\) to 15 \(\mathrm{m}=5\) to 15
\end{tabular} & NC & NC & NC & NC & 0 & U & 0 & u \\
\hline & & \(0=B\) & \[
\begin{aligned}
& Y_{Y_{i}} \leftarrow \operatorname{CODE}\left(\mathrm{SRC}_{n} \cdot \overline{\text { mask }_{n}}\right) ; \\
& Y_{m} \leftarrow 0 ; i=0 \text { to } 2 \text { and } n=0 \text { to } 7 \\
& m=3 \text { to } 15
\end{aligned}
\] & NC & NC & NC & NC & 0 & U & 0 & u \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { SRC = Source } & N C=\text { No Change } & 1=\text { Set } \\ U=\text { Update } & 0=\text { Reset } & i=0 \text { to } 15 \text { when not specified }\end{array}\)

\section*{CRC INSTRUCTION}

The CRC (Cyclic-Redundancy-Check) Instructions contain one indicator: address of a RAM register to use as the check sum register. The CRC instruction provides a method for generation of the check bits in a CRC calculation. Two CRC instructions are provided-CRC Forward and CRC Reverse. The reason for providing two instructions is that CRC standards do not specify which data bit is to be transmitted first, the LSB or the MSB, but they do specify which check bit must be transmitted first. Figure 11 illustrates the method used to generate these check bits for the CRC Forward function and Figure 12 illustrates method used for the

CRC Reverse function. The ACC serves as a polynomial mask to define the generating polynomial while the RAM register holds the partial result and eventually the calculated check sum. The LINK-bit is used as the serial input. The serial input combines with the MSB of the check-sum register, according to the polynomial defined by the polynomial mask register. When the last input bit has been processed, the check-sum register contains the CRC check bits. The LINK, N and Z bits are affected and the OVR and \(C\) bits of the Status register are forced to ZERO.

\section*{CYCLIC-REDUNDANCY-CHECK FIELD DEFINITIONS:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{1514} & \multicolumn{2}{|l|}{1298} & 4 \\
\hline CRCF & 1 & Quad & 0110 & 0011 & RAM Address \\
\hline CRCR & 1 & Quad & 0110 & 1001 & RAM Address \\
\hline
\end{tabular}

Figure 11. CRC Forward Function

Figure 12. CRC Reverse Function

CYCLIC REDUNDANCY CHECK
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & & & \multicolumn{3}{|c|}{RAM Address} \\
\hline CRCF & 1 & 10 & 0110 & 0011 & \[
\begin{gathered}
00000 \\
\ldots \\
11111
\end{gathered}
\] & \[
\begin{gathered}
\text { R00 } \\
\cdots \\
\text { R31 }
\end{gathered}
\] & \begin{tabular}{l}
RAM Reg 00 \\
RAM Reg 31
\end{tabular} \\
\hline Instruction & B/W & Quad & & & \multicolumn{3}{|c|}{RAM Address} \\
\hline CRCR & 1 & 10 & 0110 & 1001 & \begin{tabular}{l}
00000 \\
11111
\end{tabular} & \[
\begin{gathered}
\text { R00 } \\
\text { R31 }
\end{gathered}
\] & \begin{tabular}{l}
RAM Reg 00 \\
RAM Reg 31
\end{tabular} \\
\hline
\end{tabular}

Y BUS AND STATUS - CYCLIC REDUNDANCY CHECK
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & B/W & \(\mathbf{Y}\) - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & \(\mathbf{z}\) \\
\hline CRCF & & 1 = W & \[
\begin{aligned}
& \hline Y_{i} \leftarrow\left[\left(Q L I N K \oplus R A M_{15}\right) \cdot A C C_{i}\right] \\
& \oplus \text { RAM }_{i}-1 \text { for } i=15 \text { to } 1 \\
& Y_{0} \leftarrow\left[\left(Q L I N K \oplus \text { RAM }_{15}\right) \cdot A C C_{01} \oplus 0\right.
\end{aligned}
\] & NC & NC & NC & RAM \(_{15}{ }^{*}\) & 0 & U & 0 & U \\
\hline CRCR & & 1 = W & \begin{tabular}{l}
\(Y_{i} \leftarrow\left[\left(Q_{i} N K \oplus R_{M}\right) \cdot A C C_{i}\right]\) \\
\(\oplus R_{A M}+1\) for \(i=14\) to 0 \\
\(Y_{15} \leftarrow\left[\left(\right.\right.\) QLINK \(\oplus\) RAM \(\left._{0}\right) \cdot\) ACC \(\left._{15}\right] \oplus 0\)
\end{tabular} & NC & NC & NC & RAM \({ }^{*}{ }^{*}\) & 0 & U & 0 & U \\
\hline
\end{tabular}

SRC = Source
*QLINK is loaded with the shifted out bit from the checksum register.
\(\mathrm{U}=\) Update
NC = No Change
\(0=\) Reset
\(1=\) Set
\(\mathrm{i}=0\) to 15 when not specified

\section*{STATUS INSTRUCTIONS}

Status Instructions - The Set Status Instruction contains a single indicator. This indicator specifies which bit or group of bits, contained in the status register (Figure 13), are to be set (forced to a ONE).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & Z \\
\hline
\end{tabular}

MPR-775
Figure 13. Status Byte
The Reset Status Instruction contains a single indicator. This indicator specifies which bit or group of bits, contained in the status register are to be reset (forced to ZERO).

The Store Status Instruction contains two indicators; byte/word and a second indicator that specifies the destination of the status register. The Store Status Instruction allows the status of the processor to be saved and restored later, which is an especially useful function for interrupt handling.
The status register is always stored in the lower byte of the RAM or the ACC register. Depending upon byte or word mode the upper byte is unchanged or loaded with all ZEROs respectively.

The Load Status instructions are included in the single operand instruction type.

The Test Status Instructions contain a single indicator which specifies which one of the 12 possible test conditions are to be placed on the Conditional-Test output. Besides the eight bits in the Status register (QZ, QC, QN, QOVR, QLINK, QFlag1, QFlag2, and QFlag3), four logical functions (QN \(\oplus\) QOVR, (\(\mathrm{QN} \oplus \mathrm{QOVR}\)) \(+\mathrm{QZ}, \mathrm{QZ}+\overline{\mathrm{QC}}\) and LOW may also be selected. These functions are useful in testing results of Two's Complement and unsigned number arithmetic operations. The status register may also be tested via the bidirectional T bus. The code to test the status register via \(T\) bus is similar to the code used by instruction lines \(I_{1}\) to \(I_{4}\) as shown below. Instruction lines \(I_{0}-4\)
have priority over \(T\) bus for testing the status register on CT output. See the discussion on the status register for a full description
\begin{tabular}{|l|l|l|l|l|}
\hline \(\mathbf{T}_{\mathbf{4}}\) & \(\mathbf{T}_{\mathbf{3}}\) & \(\mathbf{T}_{\mathbf{2}}\) & \(\mathbf{T}_{\mathbf{1}}\) & \\
\(\mathbf{I}_{\mathbf{4}}\) & \(\mathbf{I}_{\mathbf{3}}\) & \(\mathbf{I}_{\mathbf{2}}\) & \(\mathbf{\mathbf { I } _ { \mathbf { 1 } }}\) & \\
\hline 0 & 0 & 0 & 0 & \((\mathrm{~N} \oplus\) OVR \()+\mathrm{Z}\) \\
\hline 0 & 0 & 0 & 1 & \(\mathrm{~N} \oplus\) OVR \\
\hline 0 & 0 & 1 & 0 & Z \\
\hline 0 & 0 & 1 & 1 & OVR \\
\hline 0 & 1 & 0 & 0 & LOW \\
\hline 0 & 1 & 0 & 1 & C \\
\hline 0 & 1 & 1 & 0 & \(\mathrm{Z}+\overline{\mathrm{C}}\) \\
\hline 0 & 1 & 1 & 1 & N \\
\hline 1 & 0 & 0 & 0 & LINK \\
\hline 1 & 0 & 0 & 1 & Flag1 \\
\hline 1 & 0 & 1 & 0 & Flag2 \\
\hline 1 & 0 & 1 & 1 & Flag3 \\
\hline
\end{tabular}

STATUS:
\begin{tabular}{c|c|c|c|c|c|c|}
\multicolumn{1}{c}{15} & 14 & 13 & 12 & 98 & 54 & \\
\hline 0 & Quad & 1011 & 1010 & Opcode \\
\hline
\end{tabular}

RSTST
\begin{tabular}{|l|l|l|l|l|}
\hline 0 & Quad & 1010 & 1010 & Opcode \\
\hline
\end{tabular}

SVSTR

SVSTNR

STATUS INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & & & \multicolumn{3}{|c|}{Opcode} \\
\hline SETST & 0 & 11 & 1011 & 1010 & \begin{tabular}{l}
0001 \\
00101 \\
00110 \\
01001 \\
01010
\end{tabular} & SONCZ
SL
SF1
SF2
SF3 & \begin{tabular}{l}
Set OVR, N, C, Z \\
Set LINK \\
Set Flag1 \\
Set Flag2 \\
Set Flag3
\end{tabular} \\
\hline Instruction & B/W & Quad & & & \multicolumn{3}{|c|}{Opcode} \\
\hline RSTST & 0 & 11 & 1010 & 1010 & \begin{tabular}{l}
00011 \\
00101 \\
00110 \\
01001 \\
01010
\end{tabular} & \begin{tabular}{l}
RONCZ \\
RL \\
RF1 \\
RF2 \\
RF3
\end{tabular} & \begin{tabular}{l}
Reset OVR, N, C, Z \\
Reset LINK \\
Reset Flag1 \\
Reset Flag2 \\
Reset Flag3
\end{tabular} \\
\hline Instruction & B/W & Quad & & & \multicolumn{3}{|c|}{RAM Address/Dest} \\
\hline SVSTR & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 10 & 0111 & 1010 & \[
\begin{gathered}
00000 \\
\cdots \\
11111
\end{gathered}
\] & \[
\begin{gathered}
\text { R00 } \\
\ldots \\
\text { R31 }
\end{gathered}
\] & \begin{tabular}{l}
RAM Reg 00 \\
RAM Reg 31
\end{tabular} \\
\hline & & & & & \multicolumn{3}{|c|}{Destination} \\
\hline SVSTNR & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & 11 & 0111 & 1010 & \[
\begin{aligned}
& 00000 \\
& 00001
\end{aligned}
\] & NRY NRA & Y Bus
ACC \\
\hline
\end{tabular}

\section*{STATUS INSTRUCTIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & & & \multicolumn{3}{|c|}{Opcode (CT)} \\
\hline & & & & & 00000 & TNOZ & Test (\(\mathrm{N} \oplus\) OVR) +Z \\
\hline & & & & & 00010 & TNO & Test \(\mathbf{N} \oplus\) OVR \\
\hline & & & & & 00100 & TZ & Test Z \\
\hline & & & & & 00110 & TOVR & Test OVR \\
\hline & & & & & 01000 & TLOW & Test LOW \\
\hline Test & 0 & 11 & 1001 & 1010 & 01010 & TC & Test C \\
\hline & & & & & 01100 & TZC & Test \(\mathrm{Z}+\overline{\mathrm{C}}\) \\
\hline & & & & & 01110 & TN & Test N \\
\hline & & & & & 10000 & TL & Test LINK \\
\hline & & & & & 10010 & TF1 & Test Flag1 \\
\hline & & & & & 10100 & TF2 & Test Flag2 \\
\hline & & & & & 10110 & TF3 & Test Flag3 \\
\hline
\end{tabular}

Note: \(\overline{\mathbb{E N}} \cdot\) test status instruction has priority over \(\mathrm{T}_{1-4}\) instruction.
Y BUS AND STATUS - FOR STATUS INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & Description & B/W & \(\mathbf{Y}\) - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & Z \\
\hline \multirow{5}{*}{SETST} & SONCZ & Set OVR, N, C, Z & \multirow[t]{5}{*}{\(0=B\)} & \multirow[t]{5}{*}{\(\mathrm{Y}_{\mathrm{i}} \leftarrow 1\) for \(\mathrm{i}=0\) to 15} & NC & NC & NC & NC & 1 & 1 & 1 & 1 \\
\hline & SL & Set LINK & & & NC & NC & NC & 1 & NC & NC & NC & NC \\
\hline & SF1 & Set Flag1 & & & NC & NC & 1 & NC & NC & NC & NC & NC \\
\hline & SF2 & Set Flag2 & & & NC & 1 & NC & NC & NC & NC & NC & NC \\
\hline & SF3 & Set Flag3 & & & 1 & NC \\
\hline \multirow{5}{*}{RSTST} & RONCZ & Reset OVR, N, C, Z & \multirow[t]{5}{*}{\(0=B\)} & \multirow[t]{5}{*}{\(\mathrm{Y}_{\mathrm{i}} \leftarrow 0\) for \(\mathrm{i}=0\) to 15} & NC & NC & NC & NC & 0 & 0 & 0 & 0 \\
\hline & RL & Reset LINK & & & NC & NC & NC & 0 & NC & NC & NC & NC \\
\hline & RF1 & Reset Flag1 & & & NC & NC & 0 & NC & NC & NC & NC & NC \\
\hline & RF2 & Reset Flag2 & & & NC & 0 & NC & NC & NC & NC & NC & NC \\
\hline & RF3 & Reset Flag3 & & & 0 & NC \\
\hline SVSTR SVSTNR & & Save Status* & \[
\begin{aligned}
& 0=B \\
& 1=W
\end{aligned}
\] & \[
\begin{aligned}
& Y_{i} \leftarrow \text { Status for } i=0 \text { to } 7 ; \\
& Y_{i} \leftarrow 0 \text { for } i=8 \text { to } 15
\end{aligned}
\] & NC \\
\hline
\end{tabular}

\section*{SRC = Source}
\(U=\) Update
NC = No Change
\(0=\) Reset
\(1=\) Set
\(\mathrm{i}=0\) to 15 when not specified
* In byte mode only the lower byte from the Y bus is loaded into the RAM or ACC and in word mode all 16-bits from the Y bus are loaded into the RAM or ACC.

Y BUS AND STATUS - FOR STATUS TEST INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & Description & B/W & Y - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & z \\
\hline \multirow{12}{*}{Test} & TNOZ & Test (\(\mathrm{N} \oplus\) OVR) l + & \multirow[t]{12}{*}{\(0=B\)} & \multirow[t]{12}{*}{*} & NC \\
\hline & TNo & Test \(\mathrm{N} \oplus\) OVR & & & NC \\
\hline & TZ & Test Z & & & NC \\
\hline & TOVR & Test OVR & & & NC \\
\hline & TLOW & Test LOW & & & NC \\
\hline & TC & Test C & & & NC \\
\hline & TZC & Test \(\mathrm{Z}+\overline{\mathrm{C}}\) & & & NC \\
\hline & TN & Test N & & & NC \\
\hline & TL & Test LINK & & & NC \\
\hline & TF1 & Test Flag1 & & & NC \\
\hline & TF2 & Test Flag2 & & & NC \\
\hline & TF3 & Test Flag3 & & & & & & & & & & \\
\hline
\end{tabular}

\section*{\({ }^{-} \mathrm{Y}\)-Bus is undefined}

\section*{SRC = Source}
\(\mathbf{U}=\) Update
NC = No Change
\(0=\) Reset
\(1=\) Set
\(\mathrm{i}=0\) to 15 when not specified

\section*{NO-OP INSTRUCTION}

The NO-OP Instruction has a fixed 16 -bit code. This instruction does not change any internal registers in the Am29116. It preserves the status register, RAM register and the ACC register.

NO OPERATION FIELD DEFINITION:
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{15} & 14 & 13 & 12 & 98 \\
\hline 0 & 11 & 1000 & 1010 & 00000 \\
\hline
\end{tabular}

\section*{NO-OP INSTRUCTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Instruction & B/W & Quad & & & \\
\hline NOOP & 0 & 11 & 1000 & 1010 & 00000 \\
\hline
\end{tabular}

\section*{Y BUS AND STATUS - NO-OP INSTRUCTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instruction & Opcode & B/W & Y - Bus & Flag3 & Flag2 & Flag1 & LINK & OVR & N & C & Z \\
\hline NOOP & & \(0=B\) & * & NC \\
\hline \multicolumn{12}{|l|}{SRC \(=\) Source \(\quad *\) Y-Bus is undefined.} \\
\hline \multicolumn{12}{|l|}{\(\mathrm{U}=\) Update} \\
\hline \multicolumn{12}{|l|}{NC = No Change} \\
\hline \multicolumn{12}{|l|}{\(0=\) Reset} \\
\hline \multicolumn{12}{|l|}{1 = Set} \\
\hline \(i=0\) to 15 when not & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{SUMMARY OF MNEMONICS}
\begin{tabular}{cl}
Instruction Type & \\
SOR & Single Operand RAM \\
SONR & Single Operand Non-RAM \\
TOR1 & Two Operand RAM (Quad 0) \\
TOR2 & Two Operand RAM (Quad 2) \\
TONR & Two Operand Non-RAM \\
SHFTR & Single Bit Shift RAM \\
SHFTNR & Single Bit Shift Non-RAM \\
ROTR1 & Rotate n Bits RAM (Quad 0) \\
ROTR2 & Rotate n Bits RAM (Quad 1) \\
ROTNR & Rotate n Bits Non-RAM \\
BOR1 & Bit Oriented RAM (Quad 3) \\
BOR2 & Bit Oriented RAM (Quad 2) \\
BONR & Bit Oriented Non-RAM \\
ROTM & Rotate and Merge \\
ROTC & Rotate and Compare \\
PRT1 & Prioritize RAM; Type 1 \\
PRT2 & Prioritize RAM; Type 2 \\
PRT3 & Prioritize RAM; Type 3 \\
PRTNR & Prioritize Non-RAM \\
CRCF & Cyclic Redundancy Check Forward \\
CRCR & Cyclic Redundancy Check Reverse \\
NOOP & No Operation \\
SETST & Set Status \\
RSTST & Reset Status \\
SVSTR & Save Status RAM \\
SVSTNR & Save Status Non-RAM \\
TEST & Test Status
\end{tabular}

SOURCE AND DESTINATION
Single Operand
\begin{tabular}{ll}
SORA & Single Operand RAM to ACC \\
SORY & Single Operand RAM to Y Bus \\
SORS & Single Operand RAM to Status \\
SOAR & Single Operand ACC to RAM \\
SODR & Single Operand D to RAM \\
SOIR & Single Operand I to RAM \\
SOZR & Single Operand 0 to RAM \\
SOZER & Single Operand D(OE) to RAM \\
SOSER & Single Operand D(SE) to RAM \\
SORR & Single Operand RAM to RAM \\
SOA & Single Operand ACC \\
SOD & Single Operand D \\
SOI & Single Operand I \\
SOZ & Single Operand 0 \\
SOZE & Single Operand D(OE) \\
SOSE & Single Operand D(SE) \\
NRY & Non-RAM Y Bus \\
NRA & Non-RAM ACC \\
NRS & Non-RAM Status \\
NRAS & Non-RAM ACC, Status
\end{tabular}

\section*{Two Operand}

TORAA Two Operand RAM, ACC to ACC
TORIA Two Operand RAM, I to ACC
TODRA Two Operand D, RAM to ACC
TORAY Two Operand RAM, ACC to Y Bus
TORIY Two Operand RAM, I to \(Y\) Bus
TODRY Two Operand D, RAM to \(Y\) Bus
TORAR Two Operand RAM, ACC to RAM
TORIR Two Operand RAM, I to RAM
TODRR Two Operand D, RAM to RAM
TODAR Two Operand D, ACC to RAM
TOAIR Two Operand ACC, I to RAM
\begin{tabular}{ll}
TODIR & Two Operand D, I to RAM \\
TODA & Two Operand D, ACC \\
TOAI & Two Operand ACC, I \\
TODI & Two Operand D, I
\end{tabular}
\begin{tabular}{cl}
Single Bit Shift & \\
SHRR & Shift RAM, Store in RAM \\
SHDR & Shift D, Store in RAM \\
SHA & Shift ACC \\
SHD & Shift D \\
Rotate \(\boldsymbol{n}\) Bits & \\
RTRA & Rotate RAM, Store in ACC \\
RTRY & Rotate RAM, Place on Y Bus \\
RTRR & Rotate RAM, Store in RAM \\
RTAR & Rotate ACC, Store in RAM \\
RTDR & Rotate D, Store in RAM \\
RTDY & Rotate D, Place on Y Bus \\
RTDA & Rotate D, Store in ACC \\
RTAY & Rotate ACC, Place on Y Bus \\
RTAA & Rotate ACC, Store in ACC
\end{tabular}

\section*{Rotate and Merge}
\begin{tabular}{ll}
MDAI & \begin{tabular}{l}
Merge Disjoint Bits of D and ACC Using \\
I as Mask and Store in ACC
\end{tabular} \\
MDAR & \begin{tabular}{l}
Merge Disjoint Bits of D and ACC Using
\end{tabular} \\
& RAM as Mask and Store in ACC \\
MDRI & \begin{tabular}{l}
Merge Disjoint Bits of D and RAM Using
\end{tabular} \\
& I as Mask and Store in RAM \\
MDRA & \begin{tabular}{l}
Merge Disjoint Bits of D and RAM Using
\end{tabular} \\
MARI & \begin{tabular}{l}
ACC as Mask and'Store in RAM \\
\\
Merge Disjoint Bits of ACC and RAM
\end{tabular} \\
MRAI & \begin{tabular}{l}
Using I as Mask and Store in RAM \\
Merge Disjoint Bits of RAM and ACC
\end{tabular} \\
& Using I as Mask and Store in ACC
\end{tabular}

Rotate and Compare
\begin{tabular}{ll}
CDAI & \begin{tabular}{l}
Compare Unmasked Bits of D and ACC \\
Using I as Mask
\end{tabular} \\
CDRI & \begin{tabular}{l}
Compare Unmasked Bits of D and RAM \\
Using I as Mask
\end{tabular} \\
CDRA & \begin{tabular}{l}
Compare Unmmasked Bits of D and RAM \\
Using ACC as Mask
\end{tabular} \\
CRAI & \begin{tabular}{l}
Compare Unmasked Bits of RAM and ACC \\
Using I as Mask
\end{tabular}
\end{tabular}

\section*{Prioritize}

PR1A
PR1R RAM as Destination for Prioritize Type 1
PRT1A ACC as Source for Prioritize Type 1
PR1D D as Source for Prioritize Type 1
PR2A ACC as Destination for Prioritize Type 2
PR2Y Y Bus as Destination for Prioritize Type 2
PR3R RAM as Source for Prioritize Type 3
PR3A ACC as Source for Prioritize Type 3
PR3D D as Source for Prioritize Type 3
PRTA ACC as Source for Prioritize Type Non-RAM
PRTD D as Source for Prioritize Type Non-RAM
PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM

Am29116

\section*{SUMMARY OF MNEMONICS}

PRZ Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM
PRI I as Mask for Prioritize Type 2, 3, and Non-RAM

\section*{OPCODE}

Addition'
\begin{tabular}{ll}
ADD & Add without Carry \\
ADDC & Add with Carry \\
A2NA & Add \(2^{n}\) to ACC \\
A2NR & Add \(2^{n}\) to RAM \\
A2NDY & Add \(2^{n}\) to D, Place on Y Bus \\
Subtraction & \\
SUBR & \\
SUBRC & Subtract R from S without Carry \\
SUBS & Subtract S from \(S\) with Carry \\
SUBSC & Subtract S from R with Carry \\
S2NR & Subtract \(2^{n}\) from RAM \\
S2NA & Subtract \(2^{n}\) from ACC \\
S2NDY & Subtract \(2^{n}\) from D, Place on Y Bus
\end{tabular}

Logical Operations
\begin{tabular}{ll}
AND & Boolean AND \\
NAND & Boolean NAND \\
EXOR & Boolean EXOR \\
NOR & Boolean NOR \\
OR & Boolean OR \\
EXNOR & Boolean EXNOR
\end{tabular}

\section*{SHIFTS}

SHUPZ Shift Up Towards MSB with 0 Insert SHUP1 Shift Up Towards MSB with 1 Insert SHUPL Shift Up Towards MSB with LINK Insert SHDNZ Shift Down Towards LSB with 0 Insert SHDN1 Shift Down Towards LSB with 1 Insert SHDNL Shift Down Towards LSB with LINK Insert SHDNC Shift Down Towards LSB with Carry Insert SHDNOV Shift Down Towards LSB with Sign EXOR Overflow Insert

\section*{Loads}

LD2NR Load \(\frac{2^{n}}{}\) into RAM
LDC2NR Load \(\overline{2^{n}}\) into RAM

Bit Oriented
SETNR Set RAM, Bit \(n\)
SETNA Set ACC, Bit \(n\)
SETND Set D, Bit n
SONCZ Set OVR, N, C, Z, in Status Register
SL
SF1
. Set Flag1 Bit in Status Register
SF2 \(\quad\) Set Flag2 Bit in Status Register
SF3 - Set Flag3 Bit in Status Register
RSTNR
RSTNA
RSTND
RONCZ
RL
RF1
RF2
RF3
TSTNR
TSTNA
TSTND
Reset RAM, Bit \(n\)
Reset ACC, Bit \(n\)
Reset D, Bit \(n\)
Reset OVR, N, C, Z, in Status Register Reset LINK Bit in Status Register
Reset Flag1 Bit in Status Register Reset Flag2 Bit in Status Register Reset Flag3 Bit in Status Register
Test RAM, Bit n
Test ACC, Bit \(n\)
Test D, Bit n

\section*{Arithmetic Operations}
\begin{tabular}{ll}
MOVE & Move and Update Status \\
COMP & Complement (1's Complement) \\
INC & Increment \\
NEG & Two's Complement
\end{tabular}

\section*{Conditional Test}
\begin{tabular}{ll}
TNOZ & Test \((\mathbf{N} \oplus\) OVR \()+Z\) \\
TNO & Test \(\mathbf{N} \oplus\) OVR \\
TZ & Test Zero Bit \\
TOVR & Test Overflow Bit \\
TLOW & Test for LOW \\
TC & Test Carry Bit \\
TZC & Test \(\mathbf{Z}+\bar{C}\) \\
TN & Test Negative Bit \\
TL & Test LINK Bit \\
TF1 & Test Flag1 Bit \\
TF2 & Test Flag2 Bit \\
TF3 & Test Flag3 Bit
\end{tabular}

\footnotetext{
Mnemonics copyright © 1980 Advanced Micro Devices, Inc.
}

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Case) Under Bias & -55 to \(+\mathbf{1 2 5 ^ { \circ } \mathrm { C }}\) \\
\hline Supply Voltage to Ground Potential & -0.5 to \(+\mathbf{7 . 0 \mathrm { V }}\) \\
\hline DC Voltage Applied to Outputs for High Output State & -0.5 V to VCC MAX \\
\hline DC Input Voltage & -0.5 to +5.5 V \\
\hline DC Output Current, Into Outputs & 30 mA \\
\hline DC Input Current & \(-\mathbf{3 0}\) to +5.0 mA
\end{tabular}

\section*{OPERATING RANGE}
\begin{tabular}{|l|l|l|ll|}
\multicolumn{1}{c}{ P/N } & \multicolumn{1}{c}{ Range } & \multicolumn{1}{c}{ Temperature } & VCC \\
\hline AM29116DC, DCB & Commercial & \(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \quad(\mathrm{MIN}=4.75 \mathrm{~V}, \mathrm{MAX}=5.25 \mathrm{~V})\) \\
\hline AM29116DM, DMB & Military & \(\mathrm{T}_{\mathrm{C}}=-55\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \quad(\mathrm{MIN}=4.50 \mathrm{~V}, \mathrm{MAX}=5.50 \mathrm{~V})\) \\
\hline
\end{tabular}

Vcc AND GROUND PIN CONNECTIONS

MPR-839

Notes: 1. All \(\mathrm{V}_{\mathrm{CC}}\) and all GND pins must be connected as shown. Offsets between any two \(\mathrm{V}_{\mathrm{CC}}\) pins or between any two GND pins should be avoided.
2. \(\mathrm{C}_{1}=1.0 \mu \mathrm{~F}, \mathrm{C}_{2}=0.01 \mu \mathrm{~F}\).

The \(C_{1}\) and \(C_{2}\) capacitors should be used to shunt low- and high-frequency noise from \(V_{C C}\). Do not replace with one capacitor.
dC CHARACTERISTICS OVER OPERATING RANGE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parame & Description & \multicolumn{3}{|c|}{Test Conditions (Note 1)} & Min & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Typ } \\
\text { (Note 2) }
\end{gathered}
\]} & \multirow[t]{2}{*}{Max} & \multirow[b]{2}{*}{Units
Volts} \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & \[
\begin{aligned}
& V_{C C}=M I N \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\] & \[
\begin{aligned}
& Y_{0-15} \\
& T_{1-4} \\
& C T
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \mathrm{OH} \\
-1.6 \mathrm{~mA}, \mathrm{COML} \\
-1.2 \mathrm{~mA}, \mathrm{MIL}
\end{array}
\] & \[
\begin{aligned}
& 2.4 \\
& 2.4
\end{aligned}
\] & & & \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \[
\begin{aligned}
& V_{C C}=M I N \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\] & \[
\begin{aligned}
& Y_{0-15} \\
& T_{1-4} \\
& C T
\end{aligned}
\] & IoL (COM'LMIL) \(16 \mathrm{~mA} / 12 \mathrm{~mA}\) & & & 0.5 & Volts \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Guaranteed Input Logical HIGH Voltage (Note 6) & & All inputs & & 2.0 & & & Volts \\
\hline VIL & Guaranteed Input Logical LOW Voltage (Note 6) & & All Inputs & & & & 0.8 & Volts \\
\hline \(V_{1}\) & Input Clamp Voltage & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}\) & All inputs & \[
\left.\right|_{-18 \mathrm{~mA}} ^{\mathrm{I}_{\mathrm{N}}}
\] & & - & -1.5 & Volts \\
\hline ILL & Input LOW Current & \[
\begin{aligned}
& V_{C C}=\text { MAX } \\
& V_{I N}=0.5 \text { Volts } \\
& \text { (Note 4) }
\end{aligned}
\] & & & & & \[
\begin{aligned}
& -0.50 \\
& -0.50 \\
& -1.00 \\
& -1.00 \\
& -0.50 \\
& -0.50 \\
& -0.50 \\
& -1.50 \\
& -0.55 \\
& -0.55
\end{aligned}
\] & mA \\
\hline \(I_{I H}\) & Input HIGH Current & & \begin{tabular}{l}
CTY \\
SAE \\
DLE \\
\(I_{0-4}\) \\
\(I_{5-15}\) \\
\(O E_{T}\) \\
\(O_{Y}\) \\
\(C P\) \\
\(T_{1-4}\) \\
\(Y_{0-15}\) \\
\hline
\end{tabular} & & & & \begin{tabular}{c}
50 \\
50 \\
100 \\
100 \\
50 \\
50 \\
50 \\
150 \\
100 \\
100 \\
\hline
\end{tabular} & \(\mu \mathrm{A}\) \\
\hline 1 & Input HICHE Curre & \[
\begin{gathered}
V_{C C}=M A X \\
V_{I N}=5.5 \text { Volts }
\end{gathered}
\] & All Inputs & & & & 1.0 & mA \\
\hline Iozh & Off State (Hiet impedance) Output Current & \[
\begin{aligned}
& V_{C C}=M A X \\
& V_{O}=2.4 \text { Volts (Note 4) }
\end{aligned}
\] & \[
\begin{aligned}
& T_{1-4} \\
& Y_{0-15} \\
& \hline
\end{aligned}
\] & & & & 100 & \(\mu \mathrm{A}\) \\
\hline Iozl & Off State (HIGH Impedance) Output Current & \[
\begin{aligned}
& V_{C C}=M A X \\
& V_{O}=0.5 \text { Volts (Note 4) }
\end{aligned}
\] & \[
\begin{aligned}
& T_{1-4} \\
& Y_{0-15} \\
& \hline
\end{aligned}
\] & & & & -550 & \(\mu \mathrm{A}\) \\
\hline los & Output Short Circuit Current & \[
\begin{aligned}
& V_{C C}=M A X+0.5 \text { Volts } \\
& V_{O}=0.5 \text { Volts (Note } 3 \text {) }
\end{aligned}
\] & & & -30 & & -85 & mA \\
\hline \multirow{5}{*}{Icc} & \multirow{5}{*}{Power Supply Current (Note 5)} & \multirow{5}{*}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}\)} & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 595 & & \multirow{5}{*}{mA} \\
\hline & & & \multirow[t]{2}{*}{COM'L} & \[
\begin{aligned}
& T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \\
& \text { (Note 7) }
\end{aligned}
\] & & & 735 & \\
\hline & & & & \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) & & & 535 & \\
\hline & & & \multirow[t]{2}{*}{MIL} & \[
\begin{aligned}
& T_{C}=-55 \text { to } 125^{\circ} \mathrm{C} \\
& \text { (Note } 7 \text {) }
\end{aligned}
\] & & & 745 & \\
\hline & & & & \(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\) & & & 485 & \\
\hline
\end{tabular}

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Range for the applicable device type.
2. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. \(Y_{0-15}, T_{1-4}\) are three-state outputs internally connected to TTL inputs. Input characteristics are measured under conditions such that the outputs are in the OFF state.
5. Worst case ICC is at minimum temperature.
6. These input levels provide zero noise immunity and should be tested only in a static, noise-free environment.
7. Cold start.

\section*{SWITCHING CHARACTERISTICS}

The tables below define the Am29116 switching characteristics. All measurements are made at 1.5 V with input levels at OV or 3 V . All values are in nsec. All outputs have maximum DC loading.

\section*{TYPICAL ROOM TEMPERATURE CHARACTERISTICS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\))

\section*{A. Combinational Delays (nsec)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multicolumn{2}{|c|}{} & Outputs & \multicolumn{2}{c|}{} \\
\cline { 3 - 5 } \multicolumn{2}{|c|}{} & \(Y_{0-15}\) & \(T_{1-4}\) & CT \\
\hline & \(I_{0-4}\) (ADDR) & 55 & 56 & - \\
\hline & \(I_{0-15}\) (DATA) & 55 & 56 & - \\
\hline & \(I_{0-15}\) (INSTR) & 55 & 56 & 29 \\
\hline Input & DLE & \(37^{* *}\) & 39 & - \\
\hline & \(T_{1-4}\) & - & - & 25 \\
\hline & CP & 40 & 40 & 24 \\
\hline & \(Y_{0-15}\) & \(37^{* *}\) & \(39^{*}\) & - \\
\hline & \(\overline{\text { EN }}\) & - & - & 27 \\
\hline
\end{tabular}
\({ }^{*} \mathrm{Y}_{0-15}\) must be stored in the Data Latch and its source disabled before the delay to \(Y_{0-15}\) as an output can be measured.
*"Guaranteed indirectly by other tests.
D. Setup and Hold Times (nsec)
B. Enable/Disable Times (nsec)
(\(C_{L}=5 p F\) for disable only)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Input} & \multirow[b]{2}{*}{With Respect to} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(\Rightarrow\) Setup \(\begin{gathered}\text { High-tónow } \\ \text { Transition }\end{gathered}\)}} & \multicolumn{4}{|c|}{Low-to-High Transition} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Comment}} \\
\hline & & & & & & \multicolumn{2}{|l|}{Setup} & \multicolumn{2}{|l|}{Hold} & & \\
\hline 10-4 (RAM ADDR) & & & & & & & & - & & Single (Source) & \[
\overline{\mathrm{DRR}}
\] \\
\hline Io-4 (RAM ADDR) & & & & \multicolumn{4}{|c|}{Do Not Change} & \multicolumn{2}{|l|}{(\(\mathrm{h}_{\mathrm{h}}\)) 0} & \multicolumn{2}{|l|}{Two ADDR (Destination)} \\
\hline 10-15 (DATA) & & & & & & \multicolumn{2}{|r|}{\(\left(\mathrm{t}_{\mathrm{s} 8}\right) 45\)} & \multicolumn{2}{|l|}{(th8) 0} & & \\
\hline \(\mathrm{I}_{0-15}\) (INSTR) & CP & & 27 & & & \multicolumn{2}{|r|}{\(\left(\mathrm{t}_{\text {s9 }}\right) 45\)} & \multicolumn{2}{|l|}{(\(\mathrm{thg}^{\text {g }} 0\)} & & \\
\hline \(\overline{\text { IEN HIGH }}\) & CP & \multicolumn{2}{|r|}{(\(\mathrm{ts}_{4}\)) 5} & \multicolumn{2}{|c|}{-} & \multicolumn{2}{|c|}{-} & \multicolumn{2}{|l|}{\(\left(t_{\text {H0 }}\right) 0\)} & \multicolumn{2}{|l|}{Disable} \\
\hline IEN LOW & CP & - & (\(\mathrm{ts}_{5}\)) 10 & - & \(\left(t_{\text {h }}\right)^{\dagger} 0\) & \(\left(\mathrm{t}_{\text {s11 }}\right) 11\) & - & \(\left(t_{\text {h11 }}\right)^{\dagger \dagger} 0\) & - & Enable & Immediate first cycle \\
\hline \(\overline{\text { SRE }}\) & CP & \multicolumn{2}{|r|}{-} & \multicolumn{2}{|c|}{-} & \multicolumn{2}{|r|}{\(\left(t_{\text {s } 12}{ }^{\text {l }} 7\right.\)} & \multicolumn{2}{|l|}{(\(\mathrm{n}_{12}\)) 0} & & \\
\hline Y & CP & & - & & & \multicolumn{2}{|r|}{(\(\mathrm{s}_{\mathbf{1 1 3}}\)) 29} & \multicolumn{2}{|l|}{\(\left(t_{n 13}\right) 0\)} & & \\
\hline Y & DLE & &) 5 & &) 2 & \multicolumn{2}{|l|}{-} & \multicolumn{2}{|l|}{-} & & \\
\hline DLE & CP & & - & & - & \multicolumn{2}{|r|}{\(\left(t_{\text {s14 }}\right) 30\)} & \multicolumn{2}{|l|}{(th14) 0} & & \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Timing for immediate instruction for the first cycle.
\({ }^{\dagger} \dagger\) Status register and accumulator destination only.
}

\section*{SWITCHING CHARACTERISTICS (Cont.)}

\section*{PRELIMINARY CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE}
\(\left(T_{A}=0\right.\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\))

\section*{A. Combinational Delays (nsec)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multicolumn{2}{|c|}{} & Outputs & \multicolumn{2}{c|}{} \\
\cline { 3 - 5 } \multicolumn{2}{|c|}{} & \(Y_{0-15}\) & \(T_{1-4}\) & CT \\
\hline & \(I_{0-4}\) (ADDR) & 79 & 84 & - \\
\hline & \(I_{0-15}\) (DATA) & 79 & 84 & - \\
\hline & \(I_{0-15}\) (INSTR) & 79 & 84 & 48 \\
\hline Input & DLE & \(58^{* *}\) & 60 & - \\
\hline & \(T_{1-4}\) & - & - & 39 \\
\hline & CP & 56 & 62 & 36 \\
\hline & \(Y_{0-15}\) & \(62^{* *}\) & \(64^{*}\) & - \\
\hline & \(\overline{\text { EN }}\) & - & - & 43 \\
\hline
\end{tabular}
\({ }^{*} Y_{0-15}\) must be stored in the Data Latch and is source disabled before the delay to \(Y_{0-15}\) as an output can be measured.
**Guaranteed indirectly by other tests.

\section*{D. Setup and Hold Times (nsec) \\ D. Setup and Hold Times (nsec)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Input & With Respect to & & & Id & \multicolumn{4}{|c|}{Low-to-High Transition} & \multicolumn{2}{|r|}{Comment} \\
\hline \(\mathrm{I}_{0-4}\) (RAM ADDR) & &) & & & & & - & & Single (Source) & DR \\
\hline \(\mathrm{I}_{0-4}\) (RAM ADDR) & Pathe & (52) 10 & \multicolumn{4}{|c|}{Do Not Change} & \multicolumn{2}{|l|}{(\(\mathrm{h}_{7}\)) 0} & \multicolumn{2}{|l|}{Two ADDR (Destination)} \\
\hline 10-15 (DATA) & & - & \multicolumn{2}{|c|}{-} & \multicolumn{2}{|l|}{\(\left(\mathrm{t}_{\mathrm{s} 8}\right) 65\)} & \multicolumn{2}{|l|}{(\(\mathrm{n}_{8}\)) 0} & & \\
\hline \(\mathrm{I}_{0-15}\) (INSTR) & CP & \(\left(\mathrm{t}_{53}\right) 38{ }^{\dagger}\) & \multicolumn{2}{|l|}{\(\left(\mathrm{th3}^{\dagger}{ }^{\dagger} 17\right.\)} & \multicolumn{2}{|l|}{\(\left(\mathrm{t}_{\text {s9 }}\right) 65\)} & \multicolumn{2}{|l|}{(th9) 0} & & \\
\hline \(\overline{\text { IEN HIGH }}\) & & \(\left(\mathrm{t}_{54}\right) 10\) & & & \multicolumn{2}{|l|}{-} & \multicolumn{2}{|l|}{\(\left(t_{\text {H0 }}\right) 0\)} & \multicolumn{2}{|l|}{Disable} \\
\hline IEN LOW & CP & \(-\quad\left(t_{s 5}\right) 20\) & - & \(\left(t_{\text {L } 5}\right)^{\dagger} 0\) & \(\left(\mathrm{t}_{\text {s11 }}\right) 22\) & - & \(\left(t_{\text {h11 }}\right)^{\dagger \dagger} 0\) & - & Enable & Immediate first cycle \\
\hline \(\overline{\text { SRE }}\) & CP & - & \multicolumn{2}{|c|}{-} & \multicolumn{2}{|r|}{\(\left(t_{s 12}\right) 17\)} & \multicolumn{2}{|l|}{(th12) 0} & & \\
\hline \(Y\) & CP & - & \multicolumn{2}{|c|}{-} & \multicolumn{2}{|r|}{\(\left(t_{s 13}\right) 44\)} & \multicolumn{2}{|l|}{\(\left(t_{\text {13 }}\right) 0\)} & & \\
\hline Y & DLE & \(\left(\mathrm{t}_{56}\right) 10\) & \multicolumn{2}{|c|}{(th6) 6} & \multicolumn{2}{|l|}{-} & \multicolumn{2}{|l|}{-} & & \\
\hline DLE & CP & - & \multicolumn{2}{|c|}{-} & \multicolumn{2}{|r|}{\(\left(t_{s 14}\right) 42\)} & \multicolumn{2}{|l|}{\(\left(t_{\text {14 }}\right) 0\)} & & \\
\hline
\end{tabular}
\(\dagger\) Timing for immediate instruction for the first cycle.
\(\dagger \dagger\) Status register and accumulator destination only.
\(\dagger\) Timing for immediate instruction for the first cycle.
\(\dagger \dagger\) Status register and accumulator destination only.

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:
1. Insure the part is adequately decoupled at the test head. Large changes in \(V_{C C}\) current as the device switches may cause erroneous function failures due to \(\mathrm{V}_{\mathrm{C}}\) changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in \(5-8 \mathrm{~ns}\). Inductance in the ground cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
B. Enable/Disable Times (nsec)
(\(C_{L}=5 \mathrm{pF}\) for disable only)

C. Clock and-pulse Requirements (nsec)

\section*{Notes on Testing}
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach \(\mathrm{V}_{\mathrm{IL}}\) or \(V_{I H}\) until the noise has settled. AMD recommends using \(\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}\) for AC tests.
5. To simplify failure analysis, programs should be designed to perform \(D C\), Function, and \(A C\) tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documertation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

\section*{THE USE OF AN EXTERNAL STATUS REGISTER} IN REDUCING MICROCYCLE LENGTH
The standard connection of the CT pin of the Am29116 and microcycle length calculation arising from that connection are shown below:

CRITICAL PATH TIMING (Figure A)
\begin{tabular}{|l|l|c|}
\hline Part Number & \multicolumn{1}{|c|}{ Path } & \begin{tabular}{c}
Maximum \\
Commercial \\
Delay (ns)
\end{tabular} \\
\hline Pipeline Register & \(\mathrm{CP} \rightarrow \mathrm{Q}\) & 12 \\
\hline Am29116 & \(\mathrm{T} \rightarrow \mathrm{CT}\) & 39 \\
\hline Fast MUX & SEL or \(\mathrm{D}_{\text {IN }} \rightarrow \mathrm{Y}\) & 20 \\
\hline Am2910-1 & \(\overline{\mathrm{CC}} \rightarrow \mathrm{Y}\) & 30 \\
\hline \begin{tabular}{l}
Am27S35 \\
(Registered PROM)
\end{tabular} & \begin{tabular}{l}
PROM access time and \\
Pipeline Register Setup
\end{tabular} & 40 \\
\hline & & 141 \\
\hline
\end{tabular}

While 141 ns cycle is quite fast, it can be improved by using an external
register for status testing.

CRITICAL PATH TIMING (Figure B)
\begin{tabular}{|c|c|c|}
\hline Part Number & Path & Maximum Commercial Delay (ns) \\
\hline Am298XX Status Register & \(\mathrm{CP} \rightarrow \mathrm{Y}\) & 12 \\
\hline Fast MUX & SEL or \(D_{\mathbb{N}} \rightarrow Y\) & 20 \\
\hline Am2910-1 & \(\overline{\mathrm{CC}} \rightarrow \mathrm{Y}\) & 30 \\
\hline Am27S35 & PROM Access Time & 40 \\
\hline & & 102 \\
\hline
\end{tabular}

The cycle time has been reduced from 141 to 102 ns .

Figure B.

\section*{Am29116 System Cycle Times}

Based on the preliminary commercial AC timing for the 29116, system microcycle times are estimated and included in the next few pages. Several observations can be made as follows:
1. The data path microcycle is roughly 110 ns (even for Y -bus input/output in a single cycle). This will increase if external multiplexers (e.g., for 2 address, N -count register) or other system glues are used.
2. The control path is the system bottleneck.
a. If CT from the 29116 is used, cycle time will be in the 169ns (2910) range.
b. A lookahead scheme (placing a flip-flop in front of the sequencer \(\overline{\mathrm{CC}}\) input), will decrease the cycle time. This causes conditional branches to have different test condition setup requirements (single cycle for simple status, two cycles for a complex test), which is undesirable for most applications.
c. The sensible way is to use an external status register and a 2925 at maximum speed (31 MHz) for variable cycle control. For example, in a 2910-1 system, one can switch between divide by 4 and by 5 , to get 132 and 165 ns cycle respectively for conditional branch using status register and CT from 29116.

SYSTEM BLOCK DIAGRAM

MPR-859

\section*{DATA PATH TIMING ANALYSIS}
I. Without Any External Logic
\begin{tabular}{llc}
a. Pipeline Register & \((29821)\) CP-Q & 12ns \\
RALU & \((29116)\) & l-T -4 \\
Status Register & \((29821)\) Setup & 84 \\
& & \(\frac{4}{100 \mathrm{~ns}}\) \\
& & \((29821)\) \\
b. CP-Q & 12 ns \\
RALU & \((29116)\) & I-Y \\
Data Register & \((29821)\) Setup & \(\frac{49}{95 n s}\)
\end{tabular}
II. With Multiplexers for Address, N-Count, etc.
\begin{tabular}{|c|c|c|c|}
\hline a. Pipeline Register & (29821) & CP-Q & 12 ns \\
\hline Multiplexer & (S157) & Sel-Y & 20 \\
\hline RALU & (29116) & \(1-\mathrm{T}_{1}-4\) & 84 \\
\hline Status Register & (29821) & Setup & 4 \\
\hline & & & \(\frac{4}{120 \mathrm{~ns}}\) \\
\hline b. Pipeline Register & (29821) & CP-Q & 12 ns \\
\hline Multiplexer & (S157) & Sel-Y & 20 \\
\hline RALU & (29116) & I-Y & 79 \\
\hline Data Register & (29821) & Setup & 4 \\
\hline
\end{tabular}

\section*{III. Using \(Y\)-Bus as Input/Output in One Cycle}
a. Pipeline Register
\begin{tabular}{llll}
Pipeline Register & (29821) & CP-Q & 12ns \\
Decoder & (2924) & Sel-Y & 12 \\
Source Select & (2918) & OE-Y & 19 \\
RALU & (29116) & YIN-YOUT & 62 \\
Destination & (29821) Setup & \(\frac{4}{109 n s}\)
\end{tabular}
(est.)

DLE can go LOW 10ns after data is valid on \(Y\)-bus (i.e., 53ns after \(C P \uparrow\)). \(\overline{O E_{Y}}\) should go LOW before 80ns from CP \(\uparrow\). Therefore a \(50 \%\) duty cycle clock will work at 110 ns with DLE tied to \(\overline{\mathrm{E}_{Y}}\) to CP .

\section*{CONTROL PATH TIMING ANALYSIS}

\section*{Technical articles}

\section*{Bipolar VLSI builds 16-bit controller handling many fast peripherals at once \\ Special-purpose microprocessor has controller instruction set in microcode, manipulates three operands in one cycle}
by Sunil Joshi, Deepak Mithani, and Steve Stephansen
In the last decade, peripheral controllers have evolved from little more than simple input/output ports into highly sophisticated dedicated processors that command the level of performance necessary for handling high data rates. They also must now provide intelligent preand post-processing of data to offload from the host computer the specialized tasks intelligent controllers perform.

Recognizing the need for such a processor, Advanced Micro Devices has combined its proprietary Imox processing technology with a bipolar circuit design of scaled emitter-coupled logic based on very large-scale integration to produce the Am29116 16-bit bipolar microprocessor. The largest and the most complex bipolar device ever produced, the 29116 has an architecture and an instruction set specifically designed for high-performance, intelligent peripheral controllers. The high performance is a result of its unique architecture, microprogrammable instruction set, and processing technology; its requisite high speed is achieved by designing the part in ECL with TTL-compatible levels at the pins (see "What is microprogramming?" p. 100).

The instruction set of the 29116 has extensive data and bit manipulation capability to mask, rotate-andmerge, or rotate-and-compare, data in one microcyclefunctions that are useful for field extraction, field insertion, and data alignment, which are frequently encountered in controllers. The architecture provides flexibility and parallelism in the data paths so that the device can perform in one microcycle a complex function that would take other processors several cycles to execute. One such feature is the barrel shifter, which rotates a 16-bit word by up to 15 places in one microcycle before the arithmetic operation is performed. The part also has an on-chip priority encoder and cyclic-redundancy-
checking logic for specialized functions.
Created for a microprogrammed environment, the 29116 gives the user the flexibility to tailor the controller architecture for a specific application. MOS microprocessors, with their fixed architecture and instruction set, are limited in this respect. The performance is at least an order of magnitude higher than that of any available mos device (see "Imox: a union of TTL and ECL," p. 102).

The 52-pin device has a microcycle time of 100 nanoseconds. In one cycle, the three-input arithmetic-andlogic unit operates on one, two, or three operands, while the barrel shifter is rotating one of the operands before it is used for an operation. The part also has a single-port register file that is 32 words deep by 16 bits wide and a dedicated accumulator to store temporary results. In this way, the advantages of both register-based and accumu-lator-based machines can be obtained (Fig. 1).

\section*{Bidirectional busing}

The bidirectional 16 -bit Y-bus is the primary off-chip data input and output port. The 16 -bit D-latch at the input allows the data to be presented directly to the alu, or be latched and used in the next cycle. This latch can thus be used as a pipeline for prefetching data while the alU is performing a different function. It is also possible to bring data onto the chip on the Y-bus, perform some function on it, and then send it out again on the same bus without even having to store it.

The priority encoder generates a binary coded number, indicating the most significant bit in the operand that is a one. This special-purpose hardware module saves a significant amount of time, since a subroutine is ordinarily required to perform this often-used operation.

The status register is clocked with the ALU every cycle
and can even contain user-defined status bits whose function is defined by the microcode. Using microinstructions, it is also possible to provide a condition-test output based on the status. The bidirectional T-bus, when used as an input, exploits the device's parallelism further by allowing the user to select a condition for branching, while simultaneously executing an instruction in the alu. The user can also select separate read and write addresses for the same instruction in both the byte and 16 -bit word modes.
In addition to having full-carry lookahead across all 16 bits, the alU executes all the conventional one- and two-operand instructions, such as move, complement, 2's complement, add, subtract, AND, NAND, OR, NOR, exclu-sive-OR, and exclusive-NOR.

\section*{Masking in a microcycle}

Where the 29116 departs from convention is in its ability to operate on three operands simultaneously in a single microcycle. Thus a bit field can be selected from the two data operands with a masking operand all in a single microcycle.
The alU produces three status outputs: overflow, negative, and carry. The zero flag, although not generated by the ALU, detects zero at both the byte and word level. The carry input to the alu selects an input of 0,1 , or the stored carry bit from the status register, QC. Using QC as the carry input allows efficient execution of multiprecision addition and subtraction.
The condition-code generator contains the logic necessary to develop the 12 condition-code test signals. The condition-code multiplexer selects one of these test signals and places it on the CT condition-test output for use
by the microprogram sequencer. The multiplexer may be addressed in two different ways. In the first, a test instruction specifies the test condition to be placed on the CT output but does not allow an ALU operation at the same time. The second method uses the bidirectional T-bus as an input, which requires extra microcode but lets the controller simultaneously test and execute.

\section*{Specialized instructions}

Immediate instructions are executed in two clock cycles. During the first clock cycle, the instruction decoder recognizes that an immediate instruction is being specified and captures the data on the inputs in the instruction latch. In the second clock cycle, the data on the instruction inputs is used as one of the operands for the function specified during the first clock cycle. At the end of the second clock cycle, the instruction latch is returned to its transparent state.
Since the 29116 is optimized for intelligent controllers, it has extensive bit manipulation instructions operating in either the byte or the word mode. These instructions allow operations such as setting, resetting, and testing of any particular bit without affecting the rest of the bits. Single-bit masks can also be created, such as a single 1 in a field of 0 s or a single 0 in a field of 1 s in a single microcycle. In addition, the instructions can generate memory addresses in powers of 2 by incrementing or decrementing a number by \(2^{n}\), where \(n\) can vary from 0 to 15 .
The rotate-by-n instruction uses the barrel shifter with n specifying the number of bit positions the source is to be rotated. In the word mode, a specified number of bits are wrapped around over the 16 -bit boundary; in the

1. Novel architecture. The arithmetic-and-logic unit on the 29116 16-bit bipolar microprocessor has three inputs so that a masking operation can be performed simultaneously with another instruction. The barrel shifter and priority encoder further optimize it for control.

2. Maximum system. If the highest speeds are required, then the 29116 can be assisted by support chips from the 2900 family. However, a minimum system configuration can be realized by using only the shaded components, though system throughput will be slightly degraded.
byte mode, the bits are rotated around the 8 -bit boundary of the least significant byte.

The rotate-and-merge instruction can merge two operands on a bit-by-bit basis, under the control of the mask as a third operand. Thus, in one microcycle, translation from one code to another, such as from ASCII to
hexadecimal, can be done with this instruction. This sort of operation would require at least three instructions with a conventional ALU.
The rotate-and-compare instruction compares a rotated operand with a nonrotated operand. A 1 at the mask input (third operand) eliminates that bit from the

\section*{What is microprogramming?}

Most instructions execute a fixed sequence of steps to perform their function. This control sequence may be realized as a hardwired random-logic state machine that provides the necessary outputs for controlling the different functions. The disadvantage of this approach is that it leads to a design that is irregular and inflexible.

An alternative is the microprogrammed approach, where the control information is obtained from a regular structure, such as a programmable array or a read-only memory. A sequence of controls is obtained by accessing different words in the array. This access is usually obtained by cycling through consecutive words in the array until the instruction is completed. The action is performed by a sequencer that selects the microsubroutines that execute instructions.

Thus, a microprogrammed control mechanism consists of a memory and a sequencer. The memory can be a ROM, programmable ROM or random-access memory, and the information residing in it is referred to as the
microcode. The sequencer controls the order of execution of the microcode words. In a microprogrammed system, the output of that microcode memory, however it is stored, directly controls the machine's hardwere. This memory in essence replaces the random-logic control mechanism of a machine.
The modularity of this scheme results in a design that is easy to upgrade or modify, since programming a PROM takes much less time than redesigning a random-logic state machine. In the same way that assemblers simplify machine language programming, programs called metaassemblers can aid in the writing of microcode. A development system called System 29 aids the design of microprogrammed systems. It also contains a meta-assembler called Amdasm for assembling the firmware portion of a system. Using Amdasm, it is possible to write microcode using user-definable mnemonics and the other facilities provided by System 29 help in the development and debugging of this firmware.
comparison. The result of the comparison is loaded in the 0 bit of the status register. If the comparison passes, the 0 bit is set.

The 29116 can also prioritize a masked operand, which is ideal for performing n-way jumps as well as for normalizing numbers. The priority encoder accepts a 16 -bit input and produces a 5 -bit binary-weighted code indicating the bit position of the highest-priority active bit. If none of the bits is active, the output is 0 . Such an operation requires a separate subroutine when carried out on conventional microprocessors.

\section*{Forward and reverse}

For reliable data transmission, the cyclic-redundancycheck instructions permit generation and comparison of the CRC check bits using any 16-bit polynomial. Since the CRC code standard does not indicate which data bit must be transmitted first, the 29116 supplies both forward and reverse CRC instructions, each of which consumes only two microcycles per bit-perfect for bidirectional tape drives.
In the first cycle, the data bit is shifted from one of the registers into the link bit of the status register. During the second cycle, check bits are generated by executing either the CRC forward or reverse instructions. The result is stored back into the check-sum register.

The part also includes such niceties as exclusive-NOR sign extention for converting 8 -bit integers into 16 -bit ones and a single-bit shift directly on a register.
A typical system configuration for the 29116 consists of a host computer, memory, and peripheral controller interfaced through three buses. The peripheral controller and the peripheral devices are interfaced with a separate data bus, which may be either serial or parallel, and a control bus. Information on the control buses comprises status, command, and timing signals.
In a typical implementation of the peripheral controller portion of a system, the bidirectional interface to the host's data bus is via two Am2950 8-bit parallel I/O ports. Two Am2940 8-bit direct-memory-access address
generators drive the associated address bus, and another 2950 interfaces with the bidirectional control bus. The interface to the serial peripheral data bus in this case is serial. The interface between these bus-interface units and the 29116 is a 16 -bit bidirectional bus that connects to its Y port. A 256 -word random-access memory for temporary data storage and a 12 -bit interface to the microprogram controller connect to the \(D\) inputs of the AM2910 microprogram sequencer. The bus-control and clock-enable signals for these devices are generated by the pipeline register at the output of the microprogram memory.
The 29116,2910 , and the microprogram memory perform the data manipulation and routing; command and status generation and testing; and the timing-signal generation functions. This implementation minimizes the amount of hardware necessary to implement a controller, which is accomplished by sharing the instructioninputs to the 29116 with the inputs to the 2910 ; by generating all the necessary test conditions within the 29116, which permits connecting the CT output of the 29116 directly to the condition code (\(\overline{\mathrm{CC}}\)) inputs of the 2910; by performing all the necessary status manipulations within the 29116; and by using the same RAM address for reading and writing.

\section*{A tradeoff}

Although the peripheral-controller implementation described above minimizes the amount of required hardware, it does limit the throughput. The architecture shown in Fig. 2 uses the same bus interface circuits but maximizes the throughput of the controller at the expense of additional hardware. In this implementation, the instruction inputs of the 29116 and the D inputs of the 2910 are driven from separate microcode bits, making possible simultaneous instruction execution in the 29116 and direct jumping in the 2910.

The multiplexer at the \(\overline{\mathrm{CC}}\) input of the 2910 allows conditions to be tested without loading the signals into the 29116. Four additional bits of microcode drive the \(T\)

3. Typical application. The 29116 is ideal for controlling Winchester disk drives. It can handle up to eight such drives simultaneously and, with the addition of a burst-error processor and data-ciphering processor, it can be made very reliable as well.

\section*{Imox: A union of TTL and ECL}

The Imox process is an advanced oxide-isolated structure developed by Advanced Nicro Devices to address the reproducibilty requirements of die sizes in excess of 50,000 square mils. It empioys fully ion-implanted transisfors, walled emitters, and two layers of metal interconnections. Assuming the same feature sizes, tmox can produce devicas wilh less than hall the base area and wo thirds the collector substrate area of a diffused-isolation washed-emitter low-power Schottky transistor. Smaller sizes and inert lsolation regions significantly reduce devics capacitarices and increase potential speed.
The approach selected was to comblne an oxideisolated device structure with emiter-coupled-toglc Internal and TTL input/output circultry. The technique enabled engineers at AMD to pack the equivelent of over 2,500

TLL gates into 78,000 square mils of slificon, using 3 micrometer minimum features and an 8 - \(\mu \mathrm{m}\) metal pich.
As with all large-scale integrated processes, Imox is a marriage of clicult and process approaches. The reason that the internal circultry of the 29116 is implemented in ECL, while the inputs and outputs are all standard TTL levels with translatiors to the ECL Interior, is because ECL possesses the ability to create donse structures with an excellent speed-power product through serles gating. The barde ohifter in the 20116 is an excellent example of how ECI cen be appliod to a complex LSI devico. Thie function performs a sofectabie n-bl shit or rotate. II is the gquikalent of 276 gates and is implemented with 526 components, consumes 92 millwalts, and exhibits delays of less than 7 nanoseconds.
inputs of the 29116, permitting simultaneous conditional testing and execution of an instruction in the controller. In addition, the alU status bits can be selectively loaded into the 2904 to reduce the number of cycles necessary to perform status manipulation.
By adding five additional microcode bits and a multiplexer at the I inputs of the part, separate source and destination addresses can be used in the same microcycle. For example, the contents of the third register can be added to the contents of the accumulator and the results can be stored in register 7 .

In addition to supplying the basic oscillator and clock driver functions, the 2925 system-clock generator and driver lets the user dynamically alter the length of the microcycle and, thus, interface the 29116 with slower bus-interface and peripheral circuits. The 2914 handles high-speed interrupts from the peripheral controllers.
The 29116 functions as a superior disk controller because its bipolar technology enables it to perform at much higher speeds than MOS processors and, therefore, handle as many as eight Winchester disk drives simultaneously (Fig. 3). Its microprogrammability lets it be tailored to the requirements of a specific application. Efficient data movement and data compression is possible using instructions, such as rotate-and-merge.

\section*{Major application areas}

The unit's bit manipulation instructions are useful for checking control and status bits. A microprogrammed system allows the controller to initiate a task such as positioning the disk head while performing other tasks until notified that the head is in position.

Fast response to interrupts as well as other speed enhancements can be designed in, using other 2900 bit-slice-family components. The CRC instructions can be used for the checking and generating the file header CRC bits; the CRC reverse instruction is included for systems (such as with magnetic tape) in which reading data in a forward and in a reverse direction is desirable to avoid time-wasting back-space and reread operations.

Graphics processors vary in complexity based on the performance required from them, but sophisticated image processors require very high-speed controllers.

The 29116 is well-suited for systems that include character and vector display or partition the screen into various regions that may need independent scrolling, cursor control, zoom and pan, scaling, and translation and transfer of data between various sections of the memory.

If the part is used for address generation, the arithmetic instructions using \(2^{n}\) are useful. For example, in a windowing operation, there are certain bits in every horizontal scan that must be selected. The next line is displaced in the memory by a fixed address equal to the number of pixels in the horizontal line.
Thus, address generation is simplified considerably. In addition, vectors can be generated from the coordinates of two points to be connected can be done easily using algorithms that generate the intermediate points and require only additions and subtractions for interpolation.

\section*{Saving cycles}

The rotate, rotate-and-merge, and other specialized instructions of the 29116 let the user perform the functions in one cycle that would take several cycles on conventional processors. For example, when a copying operation is performed on the display, a section of the area that was previously aligned with the 16 -bit word boundary of the controller may no longer be aligned. The realigning may require rotation with a mask to leave the area outside the window unchanged.

Another excellent application for the 29116 is as a cluster controller that manages a group of devices requiring service on a statistical basis. These devices could be terminals or printers or specialized t/O ports. The controller can dynamically alter device priorities to assure a fast response to the active devices at the expense of the inactive ones.

The kinds of functions that a cluster controller may have to perform are data transfers between the devices themselves or between a memory and the devices, checking of device status, diagnostics, and assigning of service priorities. The priorities can be of different kinds and may be dynamically alterable. For example, when all devices are of equal priority, then a round-robin scheme can be used so that the device just serviced gets the last priority for the next service.

\section*{A Microprogrammed CPU Using Am29116}

By Deepak Mithani Advanced Micro Devices

\section*{A Microprogrammed CPU Using Am29116}

\section*{INTRODUCTION}

This application note shows techniques for designing a highperformance CPU using the Am29116 16-bit Bipolar Microprocessor. The Am29116 design maintains architectural and software compatibility with the Super-16, a 16-bit computer designed at AMD. An alternative implementation using the Am2901 and Am2903 4-bit Bipolar Microprocessor slices is described in chapter 9 of "Bit Slice Microprocessor Design" by John Mick and James Brick.

The architecture of the CPU incorporates pipelining at the microprogram level as well as at the macroinstruction level. It has the same instruction set as the Super-16, so it can run all its existing software with no modification. Although the Am29116 is optimized for peripheral controllers, it is an ideal choice for the CPU. It has a powerful instruction set for arithmetic operations, data movements, multiple bit shifts, bit manipulations and status manipulations. In addition to speed, the Am29116 design reduces power requirements and PC board area.

\section*{SYSTEM ORGANIZATION}

In a simple system comprising a main memory 16 -bits wide and the CPU (Figure 1), the main memory is designed with static RAM chips (such as Am93422). A simple bus structure communicates between two devices. Although the interface to other I/O devices is not discussed, the bus can easily be modified to accommodate bus request, bus acknowledge and other interface signals. Addition of other I/O devices would require a bus controller to arbitrate bus requests from the CPU or I/O devices that require Direct Memory Access (DMA) transfers.
The interface signals between the memory and the CPU are shown in Figure 2. The handshaking is done over a 16 -bit-wide address bus, a 16 -bit-wide bidirectional data bus and a control bus. The control bus comprises Memory Request, Read/Write, Address Accepted, Data Strobe, Data Synch, and Interrupt Control lines.

To use the data in the \(\mathrm{n}+1\) cycle, the Am29116 generates the main memory address during the \(n-1\) cycle and the data is read

Figure 1. Central Processing Unit Block Diagram
during the n cycle (Figure 3). The n cycle is longer than normal CPU cycles to accommodate for the main memory read timings. Information to stretch the cycle is provided during the \(n-1\) cycle to the Am2925 system clock generator. The CPU generates the address, memory request and read/write signals during the \(n\) cycle. The main memory responds to the memory requests by pulling the Address Accepted signal LOW. If the memory is busy, it does not generate the Address Accepted signal; instead the

Figure 2. Memory - CPU Handshaking Protocol

CPU waits until it receives this signal. The CPU responds to the Address Accepted signal by generating the Data Strobe signal, indicating that it is expecting data from the memory. The Data Synchronous signal is generated by the memory, indicating valid data on the bus for the read operation. The Data Strobe and Data Synchronous signals generate either the load Z Latch or Load Data Register signal, depending upon whether the information requested is instruction or data, respectively.
Since the Am29116 generates the main memory address and the data to be written, the memory write operation is done in two cycles (Figure 4). The address and the memory request are held active for two clocks. The \(n\) clock is longer than the normal CPU clock to accommodate the main memory write timings. If the memory is not busy then the READ/WRITE signal is generated in the next cycle along with the Data Strobe signal, indicating valid write data on the bus. The main memory write pulse is generated from the Data Strobe and \(\mathrm{R} / \overline{\mathrm{W}}\) signals. Acceptance of the write data is indicated to the CPU by the Data Synchronous pulse.

\section*{INSTRUCTION FORMATS}

Instructions, which are stored in the main memory, are either one or two words long, with a word being 16 bits wide (Figure 5). The most significant half (MSH) of the first word is the operation code field. The least significant half (LSH) is divided into two fields, four bits each, indicating register assignment for the operands and the result. The lower half (registers \(0-15\)) of the 32-register file in the Am29116 is used as a scratch pad by the user; the upper half

Figure 3. Memory Read

\section*{A Microprogrammed CPU Using Am29116}

Figure 4. Memory Write

Figure 5. Instruction Formats
(registers 16-31) is used by the operating system to track memory stacks, counter, and so on. The first word of a two-word instruction has the same format as the one word instruction explained above. The second word is always a 16 -bit value, which is either a displacement address or an immediate data.
There are 256 instructions possible with the 8 -bit-wide operation code, which is usually more than enough for the general-purpose machine. The instruction set includes operation codes that can operate on the following data types:
- Bit
- Nibble
- Byte
- Word

The information about the addressing mode is designed into the operation code for different instructions. In addition the instruction set also includes the PUSH/POP instruction to maintain single or multiple stacks, \(1 / O\) instructions, decimal and binary integer arithmetic.
Depending upon the addressing mode, the register specified by the instruction can act as either an accumulator for the arithmetic and logic operation or an index register to manipulate the operand address for the main memory. For the operations where the result is placed in the register, the R1 field depicts the destination register address and R2 (or R2 +d) is the source register (or points to the source field in the main memory). For the operations where the result is transferred from the register to the main memory, the R1 field depicts the source register address and R2 (\(\mathrm{R} 2+\mathrm{d}\)) points to the destination memory location. For the memory-to-memory transfer, the R2 field is the source pointer and the R1 is the destination pointer for the main memory.
The microprogram architecture provides the flexibility for designers to select different formats and define the machine-level instructions. The instructions and instruction format are similar to the Super-16 computer designed at Advanced Micro Devices. For more detailed information refer to chapter 9 of "Bit-Slice Microprocessor Design' by John Mick and Jim Brick (a McGraw-Hill Publication).

\section*{CPU ARCHITECTURE}

In the block diagram of the CPU (Figure 6), all internal data transfers are done through the 16 -bit-wide internal bus. The data transfer between the system bus and the internal CPU bus is done through the Data Register, the Address Register and the \(\mathbf{Z}\) latch. The design incorporates single-level pipeline structure. The register at the output of the microprogram memory acts as a pipeline register, providing the capability to execute simultaneously one microinstruction while fetching the next. The Instruction Register (IR) and the Z latch allow macrolevel pipelining. While the macroinstruction in the Instruction Register is being decoded, the \(Z\) latch may contain the next macroinstruction (in the register-to-register mode) or the displacement field (in the index addressing) or the data (in the immediate addressing).

\section*{Data Path (Macroinstruction)}

The macroinstruction from the main memory is either loaded into the \(Z\) latch or into the Instruction Register. A macroinstruction can be loaded directly into the Instruction Register by making the \(Z\) latch transparent. The \(\mathbf{Z}\) latch is made transparent by forcing its enable signal HIGH. The decision to load either the \(Z\) latch or the Instruction Register is made by the addressing mode of the macroinstruction being decoded. During the pipefill operation, the first macroinstruction is loaded into the Instruction Register. All single-word instructions are next loaded into the \(Z\) latch, then into
the Instruction Register after execution of the current macroinstruction. Since a two-word instruction consumes information stored in both the Instruction Registers (which contains the instruction) and the \(Z\) latch (which contains the displacement), the next macroinstruction from the main memory is directly loaded into the Instruction Register. During the decoding of a two-word instruction, if the content of the \(Z\) latch is decoded to be a displacement then it is used by the Am29116 during the form operand address cycle. If it is decoded as immediate data, then it is used during the execute cycle. (See Instruction Execution section for both situations).
The data transfer between the processor and other devices is implemented using the Am2918 data registers and tri-state buffer chips (Figure 7). The data receive register (DRX reg.) receives data from the system data bus under microprogram control. The data transmit register (DTX reg.) acts either as the register to transmit data on system data bus or as a temporary register for the CPU internal bus. As a temporary register, data can be loaded from the internal bus and read to the bus under the control of microprogram.
The \(D\) latch at the input port of the Am29116 provides the capability to input and output data in the same microcycle. Data is brought in through the \(Y\) port (either from \(Z\) latch or DTX register) and loaded into the D latch during the first half of the cycle. During the second half, the \(D\) latch is disabled. The \(Y\) output buffers can be turned on to allow the ALU result to appear on the internal bus.
The N register permits incorporation of functions such as N -way jump and normalization. A 16 -bit word can be prioritized in the Am29116 under the control of a mask. The five-bit vector is loaded into the N -register and used in the next cycle either to branch to a specific microroutine or as a number " n " in the instruction to rotate a word in the barrel shifter.

\section*{Microprogram Control}

The control logic generates the proper sequence of microprogram execution. The Am2910 Microprogram Controller generates the address for the next microinstruction to be executed. It can perform either sequential access or conditional branch to any microinstruction within its 4 k microword range. The Am2910 receives the branch address (at Dinputs) from one of the four sources: 1) Pipeline Register, 2) Interrupt Vector Decoder, 3) Macroinstruction Decoder, or 4) N -register. The macroinstruction Decoder (Mapping PROM) uses the operation code (bits 8-15 of IR) as an address and provides the starting address of the microroutine that executes each macroinstruction. The interrupt vector decoder uses the three-bit vector (generated by the Am2914 Vectored Priority Interrupt Controller) unique to a requesting device and generates the starting address for interrupt service routine. The N -register provides the capability to do n -way jump. The prioritize instruction in the Am29116 generates a fivebit binary vector indicating the most significant one in the 16 -bit word. This vector along with other predefined bits can be used as a branch address.

The decision to branch in the Am2910 depends upon the condition presented at the \(\overline{\mathrm{CC}}\) input. The status bits from the Am29116 T-bus (Carry, Overflow, Zero, Negative) can be used to branch in the next cycle by selecting one out of four (\(T_{1}\) to \(T_{4}\)) inputs at the CC-MUX. The condition test output from the Am29116 or the Am2904 can be selected at the CC-MUX to branch on complex conditions (such as less than, equal, etc.) or to branch on the condition generated previously.
Microcycle timing analysis for some selected critical paths is shown in Figure 8. This analysis is done using worst case propogation delays of each chip. The timing path through the pipeline

Figure 6. Central Processing Unit

Figure 7. Bidirectional Data Register Configuration

Figure 8. System Timing Analysis

\section*{A Microprogrammed CPU Using Am29116}
register (CP to Q), Am29116 (I to CT), CCMUX (D to Y), Am2910 (\(\overline{\mathrm{CC}}\) to Y), microprogram memory (address accešs) and back to the pipeline register (set-up time) was the most critical path affecting the microcycle. However, the use of D-Flip Flop (CCFF) separates the cycle time for that path into two non-critical paths. Since the D-Flip Flop delayed the condition code (\(\overline{\mathrm{CC}})\) signal at the input of Am2910 by a clock, the CC-Mux select lines are taken out from the microprogram memory to align the selection of the condition code and the execution of microinstruction. With the CCFF in, the most critical path in the system is through the Am2910 (CP to Y), microprogram memory (address access) and the pipeline register (set-up time). This critical path can be made non-critical by adopting two level architecture, which is not discussed in this application note for simplicity.

\section*{Am29116}

The Am29116 allows the processor to perform powerful arithmetic and logic functions. In addition, the Am29116 also maintains and generates main memory addresses. Its 32-word RAM provides ample temporary storage to enhance the throughput of the processor. The lower half (Registers 0-15) of the 32-register file in the Am29116 is used as a scratch pad by the user, the upper half (Registers 16-31) is used by the operating system for tracking memory stacks, counter, etc. For high-level language implementation, the barrel shifter allows field insertion and extraction, rotation and table lookup. An onboard status register provides the ability to check the user-definable and other status flags through either the instruction inputs or the bidirectional T-bus with result appearing at the CT output.
The instruction set of the Am29116 provides additional power to the processor. The prioritize and rotate instructions can be used to normalize a floating point instruction. The bit manipulation capability provides easy address manipulation and pattern generation.
The detail CPU diagram (Figure 6) indicates that the 16 -bit instruction inputs of the Am29116 are driven by the microcode bits. The multiplexer (tri-state bus) at the input of bits 0 to 3 provide flexibility to address sixteen registers by either the macroinstruction field (R1 or R2) or from the microcode. Similarly, to provide flexibility in specifying the number "N" for rotating a word from either the macroinstruction or N-Register or microinstruction, a multiplexer (tri-state bus) is used at the input of bits 9 to 12. The outputs of the R1 and the R2 field of the Instruction Register are controlled by separate microcode bits. Since the Am29116 has a single-port RAM, it takes two cycles to perform register-to-register operation. In the first cycle, the contents of R2 are moved to the Accumulator. In the second cycle, an operation between R1 and the Accumulator is performed with R1 as the destination. Four additional bits of microcode drive the \(T_{1}\) to \(T_{4}\) inputs of the Am29116. This allows simultaneous testing of the status and execution of an instruction in the Am29116. The four status bits (C, N, OVR, Z) can be loaded into the status register or can be taken out on the T-bus. Thus selective loading of the status bit can be done in the Am2904 using the T-bus. The flexibility of the Am2904 reduces the number of cycles necessary to perform status manipulations. To allow branching in the next cycle, on these (\(C, N, O V R, Z\)) status bits, the T-bus also goes to the CC-MUX input.
The Am2904 has two status registers, one for the micro level status and the other for the machine (macro) level status. The micro-status is updated every microcycle if the T-port of the Am29116 is the output port. The macro-status is updated at the end of each machine instruction. Thus branching at the microlevel or machine-level becomes easier with the Am2904.

The Am2925 system clock generator and driver, which provides basic clock oscillator and driver functions, can generate four different clock waveforms (different duty cycle). The Am2925 provides the capability to alter the length of the microcycle dynamically, and it responds to asynchronous interfaces by generating a wait state. The capability of the Am2925 to stretch the cycle and generate a wait state enhances the CPU power by making the interface with slower device easier and more efficient.

\section*{INSTRUCTION EXECUTION}

The normal instruction cycle has four basic sequences of operations:
1. Form memory address of instruction
2. Fetch Instruction
3. Decode Instruction
4. Execute

For instructions that require operands from the memory rather than the local register file, two extra steps will be required after the decode operation: form operand address and fetch operand.

The performance is increased by prefetching the next instruction during the execution of the current instruction. The pipeline architecture partially utilizes the overlapping capability of the fetch, decode and the execute operations of the different instructions because the Am29116 is acting as both the Program Control Unit and the Arithmetic Logic Unit. The use of separate PCUs (2901 or 2930) will increase the performance of the system and utilizes the pipeline architecture to the fullest extent.

Each operation is detailed below.

\section*{Form Memory Address (1 microcycle)}

The Program Counter (PC) is incremented by two and the result is loaded into the Memory Address Register (MAR) and back into the PC. This can be done by selecting RAM as the destination and \(\overline{\mathrm{OE}}\) y LOW in the Am29116.
Fetch Instruction (1 microcycle)
The Main Memory Request and the Read Strobe is generated. The memory uses the address generated in the same cycle and puts the data on the bus. The instruction is loaded into the Instruction Register at the next rising edge of the microcycle.

\section*{Decode Instruction (1 microcycle)}

The Instruction falls through the \(Z\) latch into the IR. The mapping PROM generates appropriate starting address for the microprogram from the operation code.
Form Operand Address (1 microcycle)
After every instruction fetch another read cycle occurs. The data is stored in the \(Z\) Latch. Depending upon the addressing mode of the instruction during the decode cycle, the decoding logic determines whether the data in the \(Z\) Latch is the next instruction the displacement or the immediate data. This displacement value is used with the specified index register to form an operand address and loaded into the MAR.

\section*{Fetch Operand (1 microcycle)}

The Operand is read from the memory address generated in the previous clock and stored in the Z Latch (or D-Reg).

\section*{EXECUTE}

The Am29116 performs the specified operation on the operands. Two microcycles are required for a register-to-register type of instruction because of the single port register file in the Am29116. This can be done in one cycle by two address architectures.

The instruction cycle for the Register-to-Register type (RR) is shown in Figure 9a. A second memory fetch occurs after the instruction fetch cycle during the pipefill operation. The second instruction fetched is stored in the \(Z\)-latch. The next instruction is loaded from the Z -latch into the IR after executing the current instruction. Concurrently, the address for the following instruction to be fetched is placed on the address bus. During the next cycle, the instruction fetched from the memory is stored into the Z-latch.

The execution of each instruction takes two clocks as explained before. Figure 5 a indicates that, except for the pipefill operation, the Am29116 is used in all the cycles either for the execution of an instruction or for the generation of the main memory address.

The instruction cycle for the Register-to-Index storage (RX) type is shown in Figure 9b. During the pipefill operation the displacement is fetched immediately after the instruction. After the pipe is
\begin{tabular}{|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & \\
\hline Form Instruction Address & A & B & & & & C & & & D & & & E & & & & & & & & & & \[
\begin{aligned}
& P C+2 \rightarrow P C \\
& P C+2 \rightarrow \text { MAR }
\end{aligned}
\] \\
\hline Fotch Instruction & & \[
\begin{aligned}
& \text { IR } \\
& \text { A }
\end{aligned}
\] & \[
\begin{aligned}
& Z \\
& B
\end{aligned}
\] & & & & Z & & & Z & & & \(Z\)
\(E\) & & & & & & & & & PC + \(2 \rightarrow\) MAR and Load \(\mathbf{Z}\) Latch or IR \\
\hline Decode & & & A & & & IR
B & & & IR
c & & & IR
D & & & & & & & & & & Decode Instruction and Load Pipeline Regiater \\
\hline Form Operand Address & \[
\begin{aligned}
& \mathbf{Z}+\text { Index } \\
& \text { Register } \rightarrow \text { MAR }
\end{aligned}
\] \\
\hline Fotch Operand & & & & & & & & & & . & & & & & & & & & & & & Load Data Register \\
\hline Execute & & & & A & A & & 8 & B & & c & c & & D & D & & & & & & & & \\
\hline & Y & Y & & Y & \(Y\) & Y & Y & Y & \(Y\) & \(Y\) & \(Y\) & Y & Y & Y & & & & & & & & The Am29116 Usage \\
\hline
\end{tabular}
\(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) are Register to Register type instructions.
\(Z=Z\) Latch
IR = Instruction Register

Figure 9a. Register to Register Instruction Cycle
\begin{tabular}{|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
\hline Form Instruction Address & A & \(A_{D}\) & & & B & & BD & & & C & & \(\mathrm{CD}^{\text {D }}\) & & & & & & & & & \[
\begin{aligned}
& P C+2 \rightarrow \text { MAR } \\
& P C+2 \rightarrow P C
\end{aligned}
\] \\
\hline Fetch Instruction & & \[
\begin{aligned}
& \mathbb{R} \\
& \mathrm{A}
\end{aligned}
\] & \begin{tabular}{l}
z \\
\(A_{D}\)
\end{tabular} & & & \[
\begin{aligned}
& \text { IR } \\
& \text { B }
\end{aligned}
\] & & \begin{tabular}{l}
2 \\
\(\mathrm{BD}_{\mathrm{D}}\)
\end{tabular} & & & \[
\begin{aligned}
& \mathrm{IR} \\
& \mathrm{C}
\end{aligned}
\] & & \begin{tabular}{l}
z \\
\(C_{D}\)
\end{tabular} & & & & & & & & \begin{tabular}{l}
\[
(P C+2 \rightarrow M A R
\] \\
and PC)* \\
Load IR or \(\mathbf{Z}\) Latch
\end{tabular} \\
\hline Decode & & & A & & & & B & & & & & C & & & & & & & & & PC + \(2 \rightarrow\) MAR and PC Decode and Load Pipeline Register \\
\hline Form Operand Address & & & & A & & & & & B & & & & & C & & & & & & & \[
\begin{aligned}
& Z+\text { Index } \\
& \text { Register } \rightarrow \text { MAR }
\end{aligned}
\] \\
\hline Fetch Operand & & & & & A & & & & & B & & & & & C & & & & & & \begin{tabular}{l}
\[
P C+2 \rightarrow P C \text { and MAR }
\] \\
Load Operand in Data Register
\end{tabular} \\
\hline Execute & & & & & & A & & & & & B & & & & & C & & & & & \\
\hline & Y & \(Y\) & & Y & Y & Y & Y & & \(Y\) & \(Y\) & Y & v & & \(Y\) & \(Y\) & \(Y\) & & & & & The Am29116 Usage \\
\hline & \\
\hline
\end{tabular}

\footnotetext{
*For pipefill operation only.
}

A, B C are Register to Index storage type instructions.
\(A_{D}, B_{D}, C_{D}\) are displacement.
\(\mathbf{Z}=\mathbf{Z}\) Latch
IR = Instruction Register

Figure 9b. Register to Index Storage Instruction Cycle

\section*{A Microprogrammed CPU Using Am29116}

Figure 9c. Branch or Condition RX Type Instruction Cycle
filled, generation of the next instruction address and fetching of an operand can be done concurrently. The Am29116 is used in six out of the seven cycles needed to execute the RX type of instruction (Figure 5b).
\(M\) specifies conditions for jump. \(\left(X_{2}\right)+\) displacement is the branch address.

The decision to branch on the RX-type instruction occurs after the CPU determines that the condition is true or false (during execute A cycle) (Figure 9c). The format for the macro-branch is shown in Figure 10. The condition code for the branching is presented to the Am2904. The Am2904 presents this condition to the Am2910 where the decision to branch takes place.

\section*{MICROWORD FORMAT}

The microinstruction is 78 bits wide (Figure 11). The control bits for each functional unit are grouped together for better readability.

Definitions of each control bits are shown in Table I. The enable signals for loading the Z latch and the D latch of the Am29116 can be used with the clocks or other timing waveform to ensure proper operation. Proper waveforms for the memory interface can be generated from the Data Strobe and the READ/WRITE signals depending upon the type of static RAM chips used in the main memory.

Figure 10. Branch on Condition (RX) Instruction Format
\begin{tabular}{|c|c|c|c|c|}
\hline ALU (26) & DATA PATH (11) & MEMORY CONTROL (4) & INTERRUPT CONTROL (5) & CLKSEL (3) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline STATUS (6) & TEST (4) & CCSEL (3) & SEQUENCE CONTROL (4) & BRANCH ADDRESS (12) \\
\hline
\end{tabular}

Figure 11. Microword Format

TABLE 1. MICROINSTRUCTION FIELDS
\begin{tabular}{|c|c|c|}
\hline Field Width & Mnemonic & Description \\
\hline \multicolumn{3}{|l|}{ALU} \\
\hline 16 & \(\mathrm{I}_{0}-\mathrm{l}_{15}\) & 29116 Instruction \\
\hline 1 & DLE & 29116 Data Latch Enable \\
\hline 1 & IEN & 29116 Instruction Enable \\
\hline 1. & OEY & 29116 Output Enable Y-bus \\
\hline 1 & SRE & 29116 Status Register Enable \\
\hline 1 & OET & 29116 Output Enable T-bus \\
\hline 3 & RAMSRC & \(29116 \mathrm{I}_{0}-\mathrm{I}_{4}\) Source Select \\
\hline 2 & NSRC & \(29116 \mathrm{lg}^{-1} 12\) Source Select \\
\hline \multicolumn{3}{|l|}{Data Path} \\
\hline 4 & DSEL & Data Register Source/Destination Select \\
\hline 1 & DLD & Data Register Enable \\
\hline 1 & MARLD & Memory Address Enable \\
\hline 1 & IRLD & Instruction Register Enable \\
\hline 1 & ZLD & Z Latch Enable \\
\hline 1 & NLD & N Register Enable \\
\hline 1 & MAP & Mapping PROM Output Enable \\
\hline 1 & VECT & Interrupt Vector PROM Output Enable \\
\hline \multicolumn{3}{|l|}{Memory Control} \\
\hline 1 & R/W & Memory READ/WRITE Pulse \\
\hline 1 & WREQ & Wait Request \\
\hline 1 & DATASTB & Data Strobe \\
\hline 1 & MEMREQ & Memory Request \\
\hline \multicolumn{3}{|l|}{Interrupt Control} \\
\hline 4 & \(10-13\) & 2914 Instruction \\
\hline 1 & INTD & 2914 Interrupt Disable \\
\hline \multicolumn{3}{|l|}{Clock Select} \\
\hline 3 & \(L_{1}-L_{3}\) & 2925 Clock Length Select \\
\hline \multicolumn{3}{|l|}{Status} \\
\hline 1 & EZ & 2904 Enable Zero \\
\hline 1 & EC & 2904 Enable Carry \\
\hline 1 & ES & 2904 Enable Sign \\
\hline 1 & EOVR & 2904 Enable Overflow \\
\hline 1 & CEM & 2904 Enable Machine Status \\
\hline 1 & CEMICRO & 2904 Enable Micro Status \\
\hline \multicolumn{3}{|l|}{Test} \\
\hline 4 & \(\mathrm{T}_{1}-\mathrm{T}_{4}\) & 29116 or 2904 Test Status Instruction \\
\hline \multicolumn{3}{|l|}{CCSEL} \\
\hline 3 & CCSEL & Condition Code MUX Select \\
\hline \multicolumn{3}{|l|}{Sequence Control} \\
\hline 4 & \(\mathrm{I}_{0-13}\) & 2910 instruction \\
\hline Branch Address & & \\
\hline \[
\frac{12}{78}
\] & BA & Next Micro Address \\
\hline
\end{tabular}

\section*{EXAMPLE}

One of the frequent operations performed in the floating point CPU is normalization (Figure 12). A 23-bit mantissa is stored in two registers. To start, the MSH of mantissa is in register R1 and the LSH is in the Accumulator. The contents of R1 is checked for zero. If it is not zero, prioritization is done on R1; otherwise, it is done on the Accumulator to determine the bit position of the most significant one. The actual number of positions to be shifted is one less than the binary weighted code generated from the Am29116; this can be done directly in the microroutine, which
performs the normalization. Knowing the number of leading zeroes, the contents of the R1 can be rotated (Figure 13a). In the second step, the contents of the Accumulator can be rotated on the fly and merged with the contents of the R1 under the control of mask. The result is stored back in R1 (Figure 13b). Since the MSH of the result is formed, the LSH can be formed by rotating the contents of the Accumulator by N and merging it with zero under the control of different mask (Figures 13c and 13d). Flow chart of the normalization is shown in Figure 14.

\section*{A Microprogrammed CPU Using Am29116}

Example: Floating Point Normalization
Figure 12.

Step 1: ROTR1, W, N, RTRR, R1 (Am29116 Instruction)
Figure 13a.

Step 2: ROTM, W, N, MARI, R1
Figure 13b.

Figure 13c.

Step 4: ROTM, W, N, MARI, R2
Figure 13d.

Figure 14. Normalization of Floating Point Mantissa

\section*{A Microprogrammed CPU Using Am29116}

\section*{CONCLUSION}

Microprogrammability of the Am2900 devices makes customized architecture easier and faster to design. The powerful instruction set of the Am29116 provides additional capability to the CPU to do bit manipulation, Multiple Bit Rotate, Rotate and Merge, Rotate and Compare and prioritize functions besides normal arithmetic and logical operation.

The design shown in this application note is done with minimum part configuration. The throughput of the system can be increased with a separate Program Control Unit designed using the Am2930 or Am2901 executing concurrently with the Am29116 (ALU), thus relieving the Am29116 from generating the main memory addresses.

\title{
An Intelligent, Fast Disk Controller Using the Am29116
}

\author{
By Paul Chu, Brad Kitson, and Otis Tabler Advanced Micro Devices
}

Until recently, advances in highperformance disk systems were limited mainly by the state of the art in Read/Write circuits and head. Today, track densities and transfer rates are becoming so high that the design of the controller is becoming a bottleneck. The need for high bandwidth is accompanied by demands for more powerful cormand sets and the transfer of many operating system software tasks into the controller firmware.

To implement intelligent high-bandwidth controllers, flexible and very fast VLSI building blocks are needed. This article shows how two such building blocks, the Am29116 Bipolar Microprocessor and the Am9520 Burst Error Processor, can be combined to form a disk controller with over 20 MHz bandwidth, and incorporate such features as detection and correction of burst errors up to 11 bits long, I/O request queue sorting, sector caching, device transparency, logical record I/O, and associative (content-addressed) reading and writing of logical records.

The Am29116 performs 10 million instructions per second within a 16-bit parallel architecture and \(32 \times 16\) register file. Its 16-bit barrel shifter allows an operand to be masked and rotated from 1 to 15 places and then optionally compared with a second operand within a single instruction cycle. Within a single cycle, it is also possible to rotate an operand and merge it with a second operand under a mask.

Other important features of the Am29116 includes its generation of forward and
reverse CRCs; its ability to prioritize event and status bits under mask; and its ability to set, reset, and test arbitrary bits. The Am29116 is the largest and most complex such bipolar device produced. Fabricated using AMD's proprietary ion-implemented oxide-isolated (IMOX \({ }^{\text {TM }}\)) process, it contains emitter-coupled logic (ECL) circuitry scaled to VLSI proportions. Although ECL is used internally, all input and output buffers are fully TTLcompatible.

The Am9520's features, which make it a cornerstone of this design, include the ability to generate check bits and detect and correct single and burst errors for four different modified Fire code polynomials-including the popular 48-bit polynomial and the exceptionally powerful 56-bit polynomial used in this design. High throughput of the Am9520 is achieved by using an 8-bit parallel network of exclusive OR gates that accomplishes the equivalent, in a single clock, of eight clockings of a linear feedback shift register. In less than 200 microseconds, the correct high speed mode of the Am9520, which is used in this design, permits correction of \(a\) maximum-length error burst (11 bits) anywhere within a 256-byte sector using the microcode logic shown and the 56-bit polynomial. The Am9520 performs the correct high-speed function by simultaneously dividing the data input by all of the factors (except the first) of the polynomial. Location and correction of the error burst is fast because the periods of
the factors are short compared with the period of the composite polynomial.

\section*{Am29116 Organization}

The Am29116 includes a \(32 \times 16\) RAM with latched outputs, a 16-bit accumulator, a 16bit data input latch, a 16-bit barrel shifter, a three-input arithmetic/logic unit, a 16-bit priority encoder, a status register, a condition-code generator/multiplexer, 16 tristate output buffers and a 16-bit instruction latch and decoder (Figure 1).

The single-port RAM has output latches that are transparent when the clock input \(C P\) is HIGH and latched when CP is LOW. Data is written into the RAM while the clock is low
if the \(\overline{I E N}\) input is also LOW and if the instruction being executed selects the RAM as destination. Data is written into the low-order 8 bits of the addressed word for byte instructions and into all 16 bits for word instructions. Separate read and write RAM addresses may be used by supplying a multiplexer on instruction inputs I4-IO using \(C P\) as the select signal.

The accumulator, which is edge-triggered, accepts data on the LOW-to-HIGH transition of \(C P\) if \(\overline{I E N}\) is also LOW and if the instruction being executed selects it as the

Figure 1. Am29116 Organization

\section*{Disk Controller Application Note}
destination. As with RAM locations, byte instructions modify only the lower half of the accumulator while word instructions modify the full register.

The data input latch (D-latch) holds the data input to the ALU on the bidirectional \(Y\) bus. The latch is transparent when the DLE input is HIGH and latched when the DLE input is LOW. The sources of the ALU operation are the RAM, the accumulator, the D-latch and the instruction inputs during IMMEDIATE instructions.

The ALU, which can operate on one, two, or three operands depending upon the instruction being executed, contains full carry lookahead across all 16 bits. All ALU operations can be performed in either word or byte mode. Status outputs Carry (C), Negative (N), and Overflow (OVR) are generated at the byte level for byte-mode operations and at the word level for wordmode operations. A fourth flag, Zero (Z),
is generated outside the ALU and also operates in either byte or word mode. The Stored Carry (QC) bit of the status register may be selected (along with 0 and 1) as the ALU carry input to support multi-precision arithmetic operations. This is used by the correct high speed microcode of the disk controller, which employs coefficients as large as 2,647,216.

The priority encoder produces a binaryweighted code to indicate the location of the highest-order non-masked one at its input. If none of the masked bits is HIGH, the output of the priority encoder is zero. If bit \(i\) is the most significant HIGH bit then the output of the priority encoder is equal to \(s-i+1\) where \(s\) is the position of the sign bit and is equal to 15 in word mode and 7 in byte mode. To understand why s-i +1 is used in place of \(s-i\) (the usual priority encoding), consider the following example (Figure 2). The eight Attention Drive signals are presented on the time-

Figure 2. Using the Am29116 Prioritize Instruction
multiplexed drive command/data bus and are read through the \(Y\)-bus and data input latch of the Am29116. If the controller has already serviced all attention requests from drives 1-3 and wishes to service the highest priority attention request (if any) from drives 4-8, it executes a Prioritize instruction in byte mode using hexadecimal FFEO as the mask, followed by a Branch if Not Zero into a jump table indexed by the priority encoder output.

The 8-bit status register and the conditioncode generator/multiplexer contain the information and logic necessary to develop 12 condition-code test signals. The multiplexer selects one test signal and places it on the condition-code test (CT) output for use by the microprogram sequencer. The multiplexer is addressed in two ways. In the first, which is used here to maximize throughput, the T-bus is used in input-only mode to specify the multiplexer select position directly. In the second, the CT output is selected through a test instruction.

The output enable \(Y\)-bus (\(\overline{O E Y}\)) input enables the 16 tristate output buffers when it is LOW. When \(\overline{O E Y}\) is HIGH, the output buffers are read in the high-impedance state (allowing read/write and status data to reach the D-latch from the controller's 16bit system data bus).

The 16-bit instruction latch is normally transparent to allow decoding of the 16 instruction inputs I15-0 into internal control signals for the Am29116 and the execution of the instruction within a single clock cycle. The only exceptions to this
rule are the immediate-operand instructions, which execute in two clock cycles rather than one. These are captured in the instruction latch during the first clock and executed during the second. It is during the second clock that the immediate operand, which resides in the 115-0 field of the next microinstruction, is fetched and execution is completed. Immediate instructions are used extensively in the disk controller microcode whenever masks and special arithmetic constants are needed. (The Am29116 allows the addition or subtraction of \(2^{N}\), and the use of \(2^{N}\) and its complement as a mask, for any \(N\) between 0 and 15 within a single clock, so that for these 16 common numbers and 32 common masks,

\section*{Am29116 Instructions}

The 16 -bit instructions of the Am29116 can be grouped into eleven types which correspond in a natural way with the Am29116's internal instruction decoding logic: single operand, two operand, single bit shift, rotate and merge, bit oriented, rotate by \(n\) bits, rotate and compare, prioritize, cyclic redudancy check, status, and no-op. The microprogrammer needs to be familiar with these groupings (and certain subgroupings) because the System 29 AMDASM DEF file provides mnemonics that correspond to them. For example, the AMDASM SRC file line

SOR W,INC,SORY,R1
increments the full 16-bit contents of Am29116 RAM location 1 by one and places it onto the \(Y\)-bus and

TOR1 B,SUBR,TORAR,R2
subtracts the low-order byte of the

\section*{Disk Controlier Application Note}
accumulator from the low-order byte of RAM location 2 while leaving the high-order byte of location 2 unchanged.

Table 1 summarizes the basic operations that Am29116 instructions can perform within a
single cycle. (Two cycles are used if one operand is immediate data.) Note that for a typical line of this table, there are several Am29116 mnemonic operation codes, depending upon the choice of operand source(s) and destination.

TABLE 1. SINGLE-CLOCK Am29116 OPERATIONS
```

Add
Add with Carry
Add 2N
And
Comp lement
Accumulate forward CRC
Accumulate reverse CRC
Exclusive Nor
Exclusive Or
Increment
Load 2N
Load 2N
Move
Nand
Negate (2's complement)
Nor
Or
Prioritize under mask
Reset bit N
Reset status bit
Rotate N bits
Rotate N bits and compare under mask
Rotate N bits and merge according to mask
Set bit N
Set status bit
Single bit shift
Subtract
Subtract with Carry
Subtract 2N
Test bit N
Test status bit

```

Many of the operations prove particularly useful when implementing intelligent disk controllers. For example, the packing of ASCII characters (which occupy 8-bit bytes in main memory yet need only occupy 7-bit contiguous frames in the disk record) is accomplished efficiently and at high speed by Rotate and Merge instructions as shown in Figure 3. The microinstructions shown on the arrows perform the bit mapping indicated by them. In this example, 8 ASCII bytes requiring 64 bits of main storage are packed into 56 bits (8 7-bit contiguous frames) prior to being written to disk. In general, the ability of the Am29116 to rotate a 16bit operand by N bits and merge it with a second 16 -bit operand under mask within a single cycle makes the manipulation of arbitrary-length, arbitrarily-aligned data fields efficient and simple. Other operations that are especially valuable in
this application are provided by the CRC Forward instruction (used to generate or check the integrity of header records), the instructions which add and subtract \(2^{N}\), load \(2^{\mathrm{N}}\) and its complement, reset, set, and test bit \(N\), and (as indicated above) the masked Prioritize instruction. If the intelligence incorporated into the controller includes associative retrieval based upon recognition of an arbitrary bit string within the data record, the instructions which rotate by N bits and then (within the same cycle) compare under mask are almost indispensable.

\section*{Functions of An Intelligent Controller}

Figure 3. Packing ASCII Fields by Means of the Rotate and Merge Instruction
functions discussed can be used for most current rigid or flexible disk drives. With minimal external logic, the Am29116 and Am9520 perform all the functions needed to format, read, and write disks at over 20 MegaBits per second. These include generating and checking header CRCs, performing header-sector acquisitions, enabling and disabling drive read/write circuits at the appropriate times, managing data flow through a high-speed buffer memory, generating check bits during writes, and detecting and correcting single and burst errors up to 11 bits long during reads.

Except for seeks, retries, and formatting, all of the above have been microcoded. The microcode fits within 256 words (one-fourth of the microprogram memory used in the design), and it is appropriate here to describe some additional intelligent functions that can be microprogrammed:

Maintaining I/O Request Queues. To maximize throughput, the controller orders its read and write request queues by sector, head, drive, and cylinder. (Cylinders appear last in the order of sorting because a seek on one drive may be overlapped with a read or write on another.) The Am29116 maintains the read/write request queue in its \(4096 x\) 16 high-speed buffer memory.

Selective sorting of the read/write request queue is performed by the controller. Each new request is assigned a "bump count" of 0 when the controller receives it. The request is
then placed into the queue at the position determined by the following:
(1) Behind all requests whose bump counts equal \(N\) ("Queue 1")
(2) Inserted in sorted order into the remaining queue of requests whose bump counts are less than \(N\) ("Queue 2") as follows:
(a) By type (read after write)
(b)
(c)
(d)
(e)

By sector number
By head number
By drive number
Finally, by cylinder number
(3) Before each new request is queued, Queue 2 is scanned head-to-tail. Each request encountered during the scan that has a bump count of \(N\) is removed from Queue 2 and placed at the end of Queue 1.
(4) After each new request is queued, the bump count is increased by 1 for each Queue 2 member that has been bumped by it (i.e., now follows it).

It should be noted that the choice of \(N\) is application-dependent, since increasing \(N\) increases throughput but also lengthens response time for some read/write requests.
2. Avoiding Redundant Reads. The Am29116 also maintains copies of the last eight sectors read from or written to disk. Before each read request is entered into the queue, the Am29116 compares it with
a list of buffer memory-resident sector images. If a match is found, the contents of the sector images are used to satisfy the read request and no enqueueing is performed.
3. Performing Logical Record \(1 / 0\) and Maintaining Device Transparency. The Am29116 translates I/O requests by logical record number into physical select, seek, and \(1 / 0\) operations by drive, track, head, and sector numbers. The CPU software need not concern itself with the characterisitics of the particular drives attached, and it is minimally affected by deletions and additions of drives of varying types.
4. Performing Associative Logical Record I/O. The Am29116 reads, writes, or returns the logical record numbers of logical records that contain specified fields. The CPU software merely specifies the type of operation to be performed and the length, relative position within the logical record, and value of the content-addressing field.
5. Performing Data Compression and Expansion. Much of the information routinely stored on disk as 8-bit bytes is character data. While it is convenient to manipulate these data in the central processor in 8-bit EBCDIC notation, they can usually be stored much more efficiently on disk as either 6-bit BCD (or FIELDATA) bytes or 7-bit ASCII bytes. The usefulness of compressing information in this manner depends entirely upon the database. For example, most accounting and management
information system data do not involve lower-case alphabetics and can be recorded in 6-bit \(B C D\) (or FIELDATA), giving approximately a \(25 \%\) reduction in disk storage occupied and a \(33 \%\) increase in storage effectiveness. Most word processing data involve lower-case alphabetics but can be recorded in 7-bit ASCII, giving approximately a \(12.5 \%\) reduction in disk storage occupied and a \(14.3 \%\) increase in storage effectiveness. The recording of data compressed in this manner is accomplished by a translation from EBCDIC to BCD/FIELDATA or ASCII followed by packing and an unformatted write operation. Compressed data are read by an unformatted read operation followed by unpacking and a translation from BCD/FIELDATA or ASCII to ECBDIC. The translations are performed two bytes at a time by the two \(2048 \times 8\) Am27S291 PROMs illustrated in Figure 8. The three microcode bits labelled XLAT2 -XLATO select one of eight code translations; four are used by the BCD/FIELDATA and ASCII compression algorithms and four are spares.

Many other types of applicationdependent data compression can be performed directly by the controller. The following IBM VM/370 CMS commands perform various types of compression depending upon the old file type:
(1) COPY , old file name. ,old file type. , old file mode. , new file name. ,new file type. ,new file mode. (REP PACK)
(2) COPY , old file name. ,old file type. , old file mode., new file name. , new file type. ,new file mode. (REP UNPACK)

All the functions of COPY (PACK) and COPY (UNPACK) can be performed by the Am29116 and Am9520-based controller. The controller allows packed files to be read and written as if they were unpacked, just as it allows 6-bit BCD/FIELDATA and 7-bit ASCII files to be read and written as if they were 8-bit EBCDIC files.

\section*{System Organization}

Figure 4 is an overall block diagram of the disk controller. The interface to the drives includes separate bit-serial data paths for read data and write data, and byte-parallel paths for commands, disk addresses, and disk status as described in
the current ANSI standard. The Am2910 microsequencer and \(1 \mathrm{~K} \times 8\) Am27S35 registered microprogram memory drive the 80 -bit control bus that directs the actions of the other components. Data flows serially and asynchronously at over 20 MegaBits per second between the drives and the timedivision multiplexed serial input/serial output ports of the \(16 \times 16\) FIFO array. Data flows synchronously in 16-bit parallel form between the FIFO array and the \(4 K \times 16\) Am9147 buffer memory. In this design, it is assumed that support of disk transfer rates of close to \(30 \mathrm{Mbit} / \mathrm{sec}\). is desirable. This is why the burst error processor, which can handle data up to \(20 \mathrm{Mbit} / \mathrm{sec}\), is placed in parallel with the first-in-first-out memory array and the Am9147 RAM buffer*. During
*AMD now offers the Am9520-1, a 30Mbit/sec part which will simplify the microcode shown in the application note.

Figure 4. Block Diagram of the Am29116/Am9520 Disk Controller
disk reads, the Am29116 maintains two pointers: a write pointer for transferring data from the FIFO array to the buffer memory at a rate close to 30 MHz , and a read pointer for concurrently transferring data from the buffer memory to the burst error processor at a rate equivalent to 15 MHz . During disk writes, in which the timing of
the checksum calculation is more critical, the transfers are not overlapped. If the data transfer rate needed is 20Mbit/sec or less in an alternative design, the burst error processor can be placed in line with the FIFO array. Table 2 lists the interface signals between the controller and up to eight drives.

TABLE 2. CONTROLLER/DRIVE INTERFACE SIGNALS
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PROSE SIGNAL NAME & SIGNAL SOURCE \\
\hline \(\overline{\text { ADMC }}\) & Address Mark Control & Controller \\
\hline ATTN & Attention & Selected Drive \\
\hline BACK & Bus Acknowledge & Selected Drive \\
\hline BOUT & Bus Direction Out & Controller \\
\hline BUSY & Busy & Selected Drive \\
\hline \(\overline{\text { CBPA }}\) & Control Bus Parity & Controller or Selected Drive \\
\hline \(\mathrm{CBDA}_{0-7}\) & Control Bus Data (multiplexed with SADR \(_{0-7}\)) & Controller or Selected Drive \\
\hline CREQ & Command Request & Controller \\
\hline INDX & Index & Selected Drive \\
\hline PENB & Port Enable & Controller \\
\hline PREQ & Parameter Request & Controller \\
\hline \(\overline{\mathrm{RDCM}}\) & Read/Reference Clock - & Selected Drive \\
\hline RDCP & Read/Reference Clock + & Selected Drive \\
\hline
\end{tabular}

TABLE 2 CONTROLLER/DRIVE INTERFACE SIGNALS (Cont.)
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PROSE SIGNAL MAME & SIGNAL SOURCE \\
\hline RDDM & Read Data - & Selected Drive \\
\hline RDDP & Read Data + & Selected Drive \\
\hline \(\overline{\mathrm{RDGA}}\) & Read Gate & Controller \\
\hline \(\mathrm{SADR}_{0-7}\) & Select/Attention Drive \({ }_{0-7}\) (multiplexed with \(\mathrm{CBDA}_{0-7}\)) & Controller or Selected Drive \\
\hline SAMD & Sector/Address Mark Detected & Selected Drive \\
\hline SAST & Select/Attention Strobe & Controller \\
\hline WRCM & Write Clock - & Controller \\
\hline WRCP & Write Clock + & Controller \\
\hline WRDM & Write Data - & Controller \\
\hline WRDP & Write Data + & Controller \\
\hline WRGA & Write Gate & Controller \\
\hline
\end{tabular}

The host CPU and memory interface is through either DMA or a host data channel, depending upon the host machine and application. Although the interface is not shown in detail, it can readily be implemented using the Am2940 DMA Address Generator and the Am2950 Parallel I/O Data Port.

Figure 5 depicts the byte-sync logic and timing logic for the FIFO buffer. It has been assumed here that the encoding scheme used by the drives is one that employs allzero preambles (e.g., Modified Frequency

Modulation). If 3PM or any other non-zeropreamble scheme is used, the byte-sync logic shown must be appropriately redesigned. Redesign of the byte-sync logic will also be necessary for drives that suppress transmission of part or all of the preamble.

Byte sync is achieved by three binary counters, which present and maintain a low output as soon as at least \(K\) zeroes followed by binary 11111110 (hexadecimal FE) have been encountered. The value of K may be "programmed" by means of the D, C, B, A

Disk Controller Application Note
Figure 5. Byte-Sync and Timing Logic
inputs to U1 and U2. These inputs are shown tied to hexadecimal F7. Since \(F F_{16}-F_{16}=\) \(08_{16}=08_{10}, K=8\) for this instance. Higher values of \(K\) may render the detector unduly sensitive to phase locktime jitter and should be avoided. The bits first encountered during a sync burst are the least likely to be sampled correctly, since the drive's clock/data separator is still
acquiring phase lock with the sync byte train. The optimal choice for \(K\) depends upon the acquisition rate and other characteristics of the clock/data separator.

Figure 6 depicts the serial-to-parallel and parallel-to-serial conversion interface using an array of 9403As operated in

Figure 6. Serial: Parallel Interfacing
parallel at an aggregate rate of \(30 \mathrm{Mbit} / \mathrm{sec}\) per second. The FIFOs themselves are individually operated at 7.5Mbit/sec per second, and the 30 Mb aggregate data rate is achieved by an alternate clocking scheme (Figure 7). This same scheme is used for both read and write clocking and that the FIFO serial input and output clocks, CPSI and CPSO, are falling-edge active. Pipelining is used to satisfy the setup time requirements of the FIFO serial inputs, DS. The FIFO serial outputs QS are also pipelined. However, the FIFO parallel inputs and outputs, D3-DO and Q3-Q0, are fast enough to communicate with the buffer memory bus without pipelining.

The major elements of the remaining portion of the data path are the Am29116, the Am9520 and 4096 words of Am9147-55 buffer memory (Figure 8). These elements interface through an internal 16-bit data bus. The Am29116 is connected to this bus through two Am2949 bidirectional bus transceivers. During data compression operations, the read and write data are actually routed through two sets of Am27S291 translation PROMs. The Am29116 also generates and maintains the buffer memory addresses. The buffer memory comprises sixteen Am9147-55 \(4096 \times 1\) RAMs. It contains images of the last eight sectors read from or written to disk, the \(1 / 0\) request queues, and additional

Figure 7. FIFO Alternate Clocking

housekeeping tables. The 8-bit data input and output lines of the Am9520 are connected to the 16-bit internal data bus through a low and high byte bidirectional I/O port using two Am2950s. The instruction (C2-0) and read error pattern (REP) inputs of the Am9520 are generated by the Am29116 and are strobed into the command register under microprogram control. The Am9520 status signals--located error pattern (LP3-0) and pattern match (PM4-2)--are communicated to the Am29116 through the Am2959 buffer during high-speed error correction. In addition, the ANSI Control Bus Data (\(\mathrm{CBDA}_{7-0}\)) and the Select/Attention Drive (\(\overline{S A D R}_{7-0}\)) signals to and from the selected drive are multiplexed and connected to the least significant byte of the internal data bus through an Am2949 bidirectional bus transceiver.

The Am2910 microprogram sequencer generates the next address to 1 K words of control memory (Figure 9). The control memory is 80 bits wide and is configured using ten Am27S35 \(1024 \times 8\) registered PROMs. The test condition (\(\overline{C C}\)) input to the Am2910 comes from one of sixteen sources (including a forced HIGH and a forced LOW) selected through multiplexers by five microinstruction bits. Except for the Am29116 CT status output, all of the test conditions are synchronized by the microinstruction clock (MICK) because they are from such asynchronous sources as the disk drives and the FIFO array.

\section*{Microinstruction Format}

The format of the 80-bit microinstruction is outlined in Figure 10. The intent here is not to create a minimum-width, shared-field
control word but to demonstrate microcoding the controller in a straightforward manner. Table 3 details the definition for each of the fields. A microinstruction word and field definition (DEF) file incorporating these is available to System 29 users.

Sample microcode has been written (and a source (SRC) file is available to System 29 users) for uncompressed sector read and write operations. The header and data segment format is shown in Figure 11. The code includes header and sector acquisition, error checking of the header (via CRC), and error checking and correction of the data segments (via the Am9520 and its 56-bit modified Fire code polynomial) (Figure 12).

The sector input/output microroutine (SECTIO) performs input or output of a single 256-byte sector. Seek and retry operations are the responsibility of the calling microprogram.

At entry to SECTIO, RO contains 0 to request a sector read, or +1 to request a sector write. R1 contains the I/O head number in its upper byte. The I/O track number is split between the lower byte of R1 and the upper byte of R2, while the lower byte of R2 contains the I/O sector number. R3 contains the buffer memory start address.

SECTIO first checks to see whether (RO) \(=+1\) and, if so, uses the Am9520 to calculate the 56-bit modified Fire Code check bits that are to be appended during write. The check bits are stored in buffer memory immediately following the data.

Figure 10. Microinstruction Format

TABLE 3. MICROINSTRUCTION FIELDS

\section*{Disk Controller Application Note}

TABLE 3. MICROINSTRUCTION FIEL.DS (Cont.)
\begin{tabular}{|c|c|c|c|}
\hline MICROINSTRUCTION BITS & \begin{tabular}{l}
FIELD \\
WIDTH \\
(BITS)
\end{tabular} & MNEMONIC & DESCRIPTION \\
\hline 19 & 1 & \(\overline{\text { CREQ }}\) & Command Request (Table 1) \\
\hline 18 & 1 & INPT & (Enable Serial Data) Input To 9403A FIFO Array \\
\hline 17-16 & 2 & JMPI & (Enable) Jump Indirect Am29116 Y-Bus (Double-Rail) \\
\hline 15 & 1 & \(\overline{\text { MADR }}\) & (Enable Loading Of Buffer) Memory Address Register \\
\hline 14 & 1 & MREA & (Enable Buffer) Memory Read \\
\hline 13 & 1 & MWRT & (Enable) Memory Write Operation \\
\hline 12 & 1 & OUPT & (Enable Serial Data) Output From 9403A FIFO Array \\
\hline 11 & 1 & PENB & Parameter Enable (Table 1) \\
\hline 10 & 1 & PFPM & (Enable Setting Of Am9520) P Bits From Am9520 PM Bits \\
\hline 09 & 1 & \(\overline{\text { PF03 }}\) & (Enable) Parallel Fetch From 9403A FIFO Array \\
\hline 08 & 1 & PL03 & (Enable) Parallel Load Of 9403A FIFO Array \\
\hline 07 & 1 & PREQ & Parameter Request (Table 1) \\
\hline 06 & 1 & RDGA & Read Gate (Table 1) \\
\hline 05 & 1 & RFIF & Reset 9403A FIFO Array \\
\hline 04 & 1 & SAST & Select/Attention Strobe (Table 1) \\
\hline 03 & 1 & WRGA & Write Gate (Table 1) \\
\hline 02-0 & 3 & XLAT & Translate Table Select For Data Compression PROM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Header Preamble \\
Sync Train \\
14 Bytes
\end{tabular} & \begin{tabular}{c}
Head, Track, and \\
Sector Number \\
4 Bytes
\end{tabular} & \begin{tabular}{c}
CRC-16 \\
2 Bytes
\end{tabular} & \begin{tabular}{c}
Header Postamble \\
6 Bytes
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Data Preamble \\
Sync Train \\
14 Bytes
\end{tabular} & \begin{tabular}{c}
Data Segment \\
256 Bytes
\end{tabular} & \begin{tabular}{c}
56-Bit Modified \\
Fire Code \\
7 Bytes
\end{tabular} & \begin{tabular}{c}
Data Postamble \\
5 Bytes
\end{tabular} \\
\hline
\end{tabular}

Figure 11. Header and Data Segments

SECTIO then (both for reads and for writes) uses the Am29116 to calculate the CRC of the header contained in R1 and R2. This CRC is saved in R4.

A search is then made of the entire track for a header whose head, track, sector, and

CRC fields match the contents of R1, R2, and R4. If the search fails, RO is loaded with +1 (defective or missing header) and control is returned to the calling microprogram. If the search is successful, control is passed (via (RO) and table BRTABL) to either the read sector (RDSEC1) or the write sector (WRSEC1) microcode module.

\section*{6 \\ }

\section*{Disk Controller Application Note}

Read Sector Microcode Module (RDSEC1)
This module transfers synchronized information, a 16-bit word at a time, from the 9403A FIFO array to buffer memory and from buffer memory to the Am9520 operating in Read High-Speed mode. Since the current Am9520 data sheet only guarantees operation at 20 MHz , some form of buffering must be used between the 30 MHz disk and the Am9520. This is accomplished by using R4 as a memory buffer pointer for transfer in from the 9403A's and R5 as a pointer for transfer out to the Am9520. For simplicity in the microcode loop, R5 increments at half (rather than two-thirds) the rate at which R4 increments.

At the end of the read loop, R5 has advanced halfway through the data read in and a second loop is executed to process the remaining half of the data through the Am9520.

When all the data have been processed by the Am9520 Read High-Speed operation, the Am9520 error (ER) flag is tested to determine whether an error was detected. If \(E R\) is low (no error), RO is loaded with 0 (operation completed successfully) and control is returned to the calling program.

If \(E R\) is high, error correction is performed using the Am9520's correct high speed mode. This uses the Chinese Remainder Theorem method to calculate the error location (as a bit displacement from the end of the data segment) and error pattern (a 12-bit mask). The error is corrected by exclusive or-ing the error pattern with the 12 -bit data field beginning at the error location. The
capabilities of the Am9520 and the properties of the 56 -bit modified Fire Code polynomial make this correction technique extremely fast. Less than 200 microseconds are required for a worst-case error location and correction using the microcode shown.

The location of an error burst is calculated by:
\[
\begin{aligned}
& L=N \times K-\left(M_{1} \times A_{1}+M_{2} \times A_{2}+M_{3} \times\right. \\
& \left.A_{3}+M_{4} \times A_{4}\right)
\end{aligned}
\]
where:
\(L\) is the difference in position between the last bit transferred and the beginning of the burst error.
\(N\) is the composite period of the 56-bit polynomial and is equal to 585,442 .
\(K\) is the smallest integer such that \(L\) is positive.
\(A_{1}, A_{2}, A_{3}\), and \(A_{4}\) are Chinese Remainder Theorem coefficients:
\[
\begin{aligned}
& A_{1}=452,387 \\
& A_{2}=2,521,904 \\
& A_{3}=578,864 \\
& A_{4}=2,647,216
\end{aligned}
\]
\(M_{1}, M_{2}, M_{3}\), and \(M_{4}\) are factor match clock counts that are accumulated by the microcode while clocking the Am9520 in Correct HighSpeed mode. For burst errors of length not exceeding 11 bits, it can be shown that \(M_{1}\) will never exceed 22 (the period of the first factor of the 56-bit polynomial); \(M_{2}\) will never exceed 13 (period of the second
factor); \(M_{3}\) will never exceed 89 (period of the third factor); and \(M_{4}\) will never exceed 23 (period of the fourth factor).

Consequently, the maximum number of Am9520 clock cycles needed to locate an 11-bit (or shorter) error burst is the sum of the first period and the maximum of the remaining three periods:
\[
22+\operatorname{MAX}(13,89,23)=22+89=111
\]

It should be noted that the above number of Am9520 clock cycles is far less than the composite period, 585,442, which is the upper limit for correct normal operations and is representative of how long a less sophisticated part would require to locate and correct the error burst.

To perform error location and correction, the Am9520 is placed in correct high-speed mode and its clock enable PO is set high for factor match clock count \(M_{1}\) accumulation. R8 is initialized to 0 to serve as the \(M_{1}\) counter. \(\mathrm{PF}_{1}\) (the maximum permissible value for \(M_{1}\), which will be exceeded only for multiple bursts or bursts longer than 11 bits) is loaded into the accumulator (ACC). The EP output is tested. If EP is low, alignment exception (AE) is tested while the ACC is decremented and the Am9520 is clocked. If AE is high, the burst error is not on a byte boundary and R8 is incremented by 1 . If \(A E\) is low, R8 is incremented by 8. The ACC is now tested. If positive, PF1 is not exceeded and a loop back to the EP test is performed. If negative, an uncorrectable error exists; RO is set to +2; and control is returned to the calling microprogram. If
\(E P\) is high, the \(M_{1}\) calculation is complete; the error pattern is available; and \(M_{2}\) through \(M_{4}\) can now be accumulated.

The inherent parallelism of the Am9520 is then exploited by concurrently accumulating \(M_{2}\) through \(M_{4}\). This reduces the number of Am9520 clocks required from the sum of the three periods (125) to their maximum (89). R9 through R11 serve as the counters for \(M_{2}\) through \(M_{4}\). The microprogram flow of control reflects the completeness or incompleteness of each factor match by looping through a jump table indexed by the Am9520 Pattern Match (\(\mathrm{PM}_{2}\) through \(\mathrm{PM}_{4}\)) outputs, and by selectively disabling the \(P_{1}\) through \(P_{3}\) clock enables with the same \(\mathrm{PM}_{2}\) through \(\mathrm{PM}_{4}\) outputs. This yields eight possible paths (Figure 12), in each of which the appropriate combination of \(R 9\) through R11 can be operated upon and tested to see if it exceeds period factor limits (i.e., a multiple-burst error or an error burst longer than 11 bits has been encountered).

Once \(M_{1}\) through \(M_{4}\) have been obtained, the expression:
\[
\left(M_{1} \times A_{1}+M_{2} \times A_{2}+M_{3} \times A_{3}+M_{4} \times A_{4}\right)
\]
is evaluated by calling a specialized multiply subroutine (MUL) four times. This subroutine utilizes the special nature both of the period factor values and of the Chinese Remainder Theorem coefficients to maximize throughput. A specially optimized divide subroutine (DIV) is then called to calculate:
\[
\left(M_{1} \times A_{1}+M_{2} \times A_{2}+M_{3} \times A_{3}+M_{4} \times A_{4}\right) /
\]

\section*{Disk Controller Application Note}
leaving a remainder of \((-L+N)\). One additional subtract obtains L*.

The word-boundary address of the error burst in buffer memory is extracted from \(L\) using the Am29116 Rotate and Merge instruction. A 16 -way branch on the low-order 4 bits of \(L\) is used to enter a table (TAB2) of Rotate and Merge instructions.

These align the error pattern (using a single ROTM instruction if the error burst does not cross a word boundary and two instructions if it does). The error burst is then exclusive OR-ed with the aligned error pattern; RO is loaded with 0 (operation completed successfully); and control is returned to the calling microprogram.

\section*{Write Sector Microcode Module (WRSEC1)}

This module transfers information one 16bit word at a time to the 9403A FIFO array. The information transferred comprises a data preamble (13 all-zero bytes), data sync byte (hexadecimal FE), 256 data bytes, 7 check bytes, and a data postamble (5 allzero bytes). Both the data bytes and the check bytes are located in buffer memory, beginning at word (R3). (Calculation of the check bytes has already occurred at the beginning of SECTIO):

RO is loaded with 0 (operation completed successfully) and control is returned to the calling program.

\section*{Conclusion}

The high-speed and parallel architecture of the Am29116 and Am9520-based controller allows handling of high data transfer rate disk drives and complex data manipulation and management. The availability of costeffective microprogrammable building blocks in the Am2900 Family has led to systems with increasingly distributed control. This allows functions to be performed at system locations that optimize overall cost/performance.

Significant improvements in host computer system performance can be realized by downloading many time-consuming operating system tasks into the controller firmware. This allows mainstream processing of the application programs to proceed with minimal I/O overhead. System response is enhanced and main storage usage, software requirements and system overhead are reduced.

\footnotetext{
* The method used here to obtain the error location is not the only one possible. One alternative is to subtract some form of the Chinese Remainder Theorem coefficients iteratively instead of multiplying and dividing. With each subtraction \(L\) would be tested. If negative, \(N\) would be added to L. This approach still exploits the parallel nature of the Am9520.
}

AMDOS/29 AMDASM MICRO ASSEMBLER, V1. 4
AM29116/AM9520 DISK CONTROLLER 9/81 TABLER-KITSON
```

; This .DEF file (DISKCTLR.DEF) was created by editing CONTROLR.DEF;
by adding DEF and EQU statements, deleting some others, and by
changing the basic microword format. The bulk of the effort required
to create such a file was considerably reduced by beginning from the
"master" file (CONTROLR.DEF) rather than typing a new file from scratch,
This particular .DEF file was created for a specific Am29116-Am9520
disk controller, described in the AMD application note:
A High-Performance Intelligent Disk Controller," by Otis Tabler and
Brad Kitson, to be released by AMD in early 1982. The source file
is DISKCTLR.SRC.
The major difference between this DEF file and the CONTROLR.DEF file is
the approach to the microprogramming. This file makes heavy use of
DEF statement overlays while the other uses the comma-positional
notation. The choice is a matter of preference. THE Am29116 MNEMONICS
AND INSTRUCTION LAYOUT ARE IDENTICAL IN THESE FILES.
This file may also be used as a master file which the user can edit to
suit his/her application.
Anyone finding an error in this file is requested to send a marked listing
or portion thereof to: AMD APPLICATIONS or AMD CUSTOMER EDUCATION CENTER
PO BOX 453 MS\#70 PO BOX 453 MS\#71
SUNNYVALE, CA 94086 490-A LAKESIDE DRIVE
SUNNYVALE, CA 94086
Advanced Micro Devices reserves the right to make changes in its product
Advanced Micro Devices reserves the right to make changes in its product
Without notice in order to improve design or performance characteris
The company assumes no res
Am29116 Mnemonics Copyright (c) }1982\mathrm{ Advanced Micro Devices, Inc.
ORD 80
******************
GENERAL MNEMONICSS
BYTE - WORD MODE SELECT [M] <---------- referenced by DEF statements
EQU IB\#0 ; BYTE MODE
EQU 1B\$1 ; WORD MODE
N SELECT [N]

N0:	EQU	H\%	;
N1:	EQU	H ${ }^{\text {H }}$	;
N2:	EQU	H\%	;
N3:	EQU	H ${ }^{\text {P }}$	;
N4:	EQU	H\$4	;
N5:	EQU	H 5	;
N6:	EQU	H\% 6	;
N7:	EQU	H17	;
N8:	EQU	H\%	;
N9:	EQU	H\$9	;
NA :	EQU	Hita	;
NB:	EQU	H ${ }_{\text {\# }}$	;
NC:	EQU	H ${ }_{\text {C }}$	;
ND:	EQU	H*D	;
NE:	EQU	H\%	;
NF:	EQU	HFF	;

```

\section*{Disk Controller Application Note}

```

;
; SINGLE OPE
, ********************************
; OPCODES [1]

```


\section*{Disk Controller Application Note}

```

; *************************************************
;ROTATE INSTRUCTIONS
****************************************************
; SOURCE-DESTINATION [12]

```

```

RTRY: % EQU H:E % % RAM Y BUS
;
i,*******************************************************
ROTRI: DEF IV, B\#00,4V\&D\&,4V*D\&, 5V\&D\&,64X ; ROTATE RAM (1)
; MODE,QUAD,N,SOURCE-DEST,REGISTER
; [M]_[**************)[N] [12] [R]
; SOURCE-DESTINATION [13]
;

```

```

;
;
; ******************************************************
ROTR2: DEF IV, B|O1,4V\&D\#,4V\&D\#, SV\&D\#,64X ; ROTATE RAM (2)
; MODE,QUAD,N,SOURCE-DEST, REGISTER
; *******************************************************
SOURCE dEStINATION [14]
'RTDY: EQU

RTDY:	EQU	D\$24	;	D	y bus
RTDA:	EQU	D 125	;	D	ACC
RTAY:	EQU	D\$28	;	ACC	$y$ bus
RTAA:	EQU	D\$29	;	Acc	ACC

;
; *******************************************************
ROTNR: DEF 1v, Bill,4VID\#,H\#C, SVID\#,64X ; ROTATE NON-RAM
; . MODE,QUAD,N,FIXED CODE,DESTINATION
*************[M] [N] [14]

```

\section*{Disk Controller Application Note}
```

BIT ORIENTED INSTRUCTIONS
BIT ORIENTED INSTRUCTIONS
OPCODES [15]

SETNR:	EQU	HiD	SET RAM, BIT N
RSTNR:	EQU	HEE	RESET RAM, BIT N
TSTNR:	EQU	HiF	TEST RAM, BIT N

BOR1: DEF 1V, B\11,4V\&D\$,4V\&D%, SVEDS,64X ; BIT ORIENTED RAM (1)
; MODE,QUAD,N,OPCODE,REGISTER
***************************************R]
OPCODES [16]

```

```

M MODE,QUAD,N,OPCODE,REGISTER
OPCODES [17]

```


```

ROTATE AND MERGE
*******************************************************
; SOURCE-DEST SELECT [U,S,MASK-DEST] [18]

,				ROT	NON-ROT	MASK-dEST
MDA :	EQU	H 7	;	D	ACC	1
MDAR	EQU	H\%8	;	D	ACC	RAM
MDRI :	EQU	H\%	;	D	RAM	1
MDRA :	EQU	H\#	;	D	RAM	ACC
MARI :	EQU	H\%	;	ACC	RAM	1
MRAI :	EQU	H\#E	;	Ram	ACC	1
;						
***	****			****	*********	***
ROTM :	\% 01			\%D*		;ROTATE AN

; MODE,QUAD,N,SOURCE-DEST,REGISTER
; *******************************************************************
****************************************************
ROTATE AND COMPARE
; ***************************************************
; ROT.SRC(U)-NON ROT.SRC(S)/DEST-MASK(S) [19]

CDAI:	EQU	H\#2	; D	ACC	I
CDRI:	EQU	H\#3	;	RAM	I
CDRA:	EQU	H\#4	D	RAM	ACC
CRAI:	EQU	H\#5	RAM	ACC	I

;
; **************************************************
ROTC: DEF 1V, B\#01,4V%D\#,4V%D\#, 5V%D\#,64X ; ROTATE AND COMPARE
; MODE,QUAD,N,SOURCE-DEST-MASK,REGISTER
****************************************************)[R]
**************************************************
PRIORITIZE
***************************************************
; SOURCE [20]

PRTIA:	EQU	H\#7	ACC
PRID:	EQU	Hi	

PRID: EQU
DESTINATION [21]
PR1A:
PRIY:
; **************************************************
PRT1: DEF 1V, B\#10,4V%D\#, 4V%D\#, 5V%D\#,64X ; RAM ADDR MASK(S)
MODE,QUAD,DESTINATION,SOURCE,REG-MASK
[M] [21] [20] [R]
DESTINATION [23]
PR2A: EQU H*O ; ACC
PR2Y: EQU H\#\# H\# ; Y BUS
; MASK (S) [22]
PRA: EQ
RR2: EQ
PRI:
EQU
H\#8 ( ; ACC
;
; **************************************************
PRT2: DEF 1V, B\#10,4V%D\#, 4V%D\#, 5V%D\#,64X ; PRIORITIZE RAM
; MODE,QUAD,MASK,DEST,REG-SOURCE
[M] [22][23] [R]

```

Disk Controller Application Note
```

; SOURCE (R) [24]

PR3R:	EQU	H\#3	RAM
PR3A:	EQU	H\#4	ACC
PR3D:	EQU	H\#6	D

; *************************************************
PRT3: DEF 1V, B\#10,4V\&D\#, 4V%D\#, 5V\&D\#,64X ; PRIORITIZE RAM
; MODE,QUAD,MASK,SOURCE,REG-DEST
; [************************************************
SOURCE (R) [25]
PRTA: EQU H:4 ; ACC
PRTD: EQU
;
; ************************************************
PRTNR: DEF lV, B\#11,4V%D\#, 4V%D\#, 5V\&D\#,64X ; PRIORITIZE NON-RAM
; MODE,QUAD,MASK,SOURCE,DESTINATION
; *************************************************
**********************
*************************************************
; ********************************************
CRCF: DEF B\#11001100011,5V8D\#,64X ; FORWARD
; *********************************************
;
; *********************************************
CRCR: DEF B\#11001101001,5V%D\#,64X, RE****************
; *********************************************
; NOOP
; ****
NOOP: DEF H\#7140,64X ; NO OPERATION
; **********************************************

```

\section*{Disk Controller Application Note}

\section*{Disk Controller Application Note}

```

CREATED 9/81 TABLER-KITSON
This SRC file was created for the AMD application note:
"A High-Performance Intelligent Disk Controller"
by Otis Tabler and Brad Kitson.
Mnemonics and word format are defined in DISKCTLR.DEF
Advanced Micro Devices reserves the right to make changes in its
product without notice in order to improve design or performance
characteristics. The company assumes no responsibility for the
use of any circuits or programs described herein.
Am29116 Mnemonics Copyright (C) }1982\mathrm{ Advanced Micro Devices
SECTOR READ / WRITE SUBROUTINE
INPUTS:
FUNCTION CODE IN RO:
O TO READ SECTOR
+1 TO WRITE SECTOR
HEAD NUMBER IN MSB OF RI
MSB OF TRACK NUMBER IN LSB OF RI
LSB OF TRACK NUMBER IN MSB OF R2
SECTOR NUMBER IN LSB OF R2
START ADDRESS OF RAM SECTOR BUFFER IN R3

```

\section*{Disk Controller Application Note}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{OUTPUT:} \\
\hline & ; & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{RO CONTAINS:}} \\
\hline & ; & & & & \\
\hline & ; & & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{0}} & If THE function specipied was completed \\
\hline & ; & & & & EITHER WITHOUT ERROR OR WITH A \\
\hline & ; & & & & SUCCESSFULLY CORRECTED READ ERROR \\
\hline & ; & & & & \\
\hline & ; & & & +1 & If the Sector's header is bad \\
\hline & ; & & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{+2}} & \\
\hline & ; & & & & IF AN UNCORRECTABLE ERROR WAS DETECTED IN reading the sector's data segment \\
\hline \multicolumn{6}{|c|}{\multirow[t]{3}{*}{\begin{tabular}{l}
ADDITIONAL MNEMONICS \\

\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & ; & & & & \\
\hline \multicolumn{6}{|l|}{} \\
\hline 0010 & CRCNIT: & EQU & 16 & & CRCF NUMBER OF ITERATIONS (D 16 <-- default bas. \\
\hline & nSPASS : & EQU & 64 & & number of sector passes (SET this equal \\
\hline \multirow[t]{2}{*}{0040} & \multirow[t]{2}{*}{R \({ }^{\text {RDITCT }}\) :} & & \multirow{3}{*}{65} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TO THE NUMBER OF SECTORS PER TRACK.)}} \\
\hline & & EQU & & & \\
\hline & ; & & & & OF 16-BIT WORDS (DATA PLUS MODIFIED FIRE \\
\hline 0041 & & & & & CODE) PER SECTOR, DIVIDED BY TWO, MINUS 1. \\
\hline 0016 & PF1: & EQU & 22 & & PERIOD FACTOR ONE \\
\hline 000D & PF2: & EQU & 13 & & period factor two \\
\hline \multirow[t]{2}{*}{0059} & PF3: & EQU & 89 & & period factor three \\
\hline & PF4: & EQU & 23 & & period factor four \\
\hline 0017 & \multicolumn{5}{|l|}{'} \\
\hline E723 & A1LSW: & EQU & H\#E723 & & A1 CONSTANT(LEAST SIG. WORD) \\
\hline 0006 & AlMSW: & EQU & & & Al CONS. (MOST SIG. WORD) \\
\hline \multirow[t]{3}{*}{D530} & A2LSW: & EQU & H\#BFA8 & & A 2 CONS. (LEAST SIG. WORD) \\
\hline & A3LSW: & EQU & H \(\geqslant \mathrm{D} 530\) & & A3' CONS. (LEAST SIG. WORD) \\
\hline & A4LSW: & EQU & H\#A928 & & A4' CONS. (LEAST SIG. WORD) \\
\hline \multirow[t]{2}{*}{7100} & \multirow[t]{2}{*}{KL128:} & \multirow[t]{2}{*}{EQU} & \multirow[t]{2}{*}{H\%7100} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{; K(LEAST SIG. WORD) SHIFTED UP ; by Seven places}} \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{0477} & KM128: & EQU & H\#0477 & & K(MOST SIG. WORD) SHIFTED UP \\
\hline & KLSW: & EQU & H*EEE2 & & K(LEAST SIG. WORD) \\
\hline & KMSW : & EQU & 8 & & K (MOST SIG. WORD) \\
\hline 0008 & ; & & & & \\
\hline
\end{tabular}
```

IF THE FUNCTION CODE IN RO EQUALS +1 (WRITE SECTOR), PRECALCULATE THE MODIFIED FIRE CODE'S PARTIAL CHECKSUM FOR THE FIRST HALF OF THE DATA SEGMENT TO BE WRITTEN.
0000 SECTIO: BOR2 W,O,S2NR,RO
M,
RESET THE AM9520 AND THEN PLACE IT IN COMPUTE CHECK BITS MODE.
INITIALIZE COUNTER FOR CHECK BITS PRECALCULATION LOOP.
0001
0 0 0 2
0003


## Disk Controller Application Note




Disk Controller Application Note


	;						
	;	COMPARE THE CONTENTS OF R2 AND R5; IF they disagree, examine the next sector.					
	;						
0030		TOR1	W, EXOR, TODRR, R2				
	1	\&NODLE	\&NOIEN \&NOOEY	\&SRE \&CT	$z$		
	1	\&PFO3	\&INPT \&NOJMPI	\&RDGA			
	/	\& IF	CT16 \&CJP	SECTL 2			
	;						
	;	INPUT RECORDED CRCF BYTES 1 AND 0 TO R5 AND D-LATCH.					
	;						
	;	SOR W,MOVE,SODR,R5					
0031							
	1	\&DLE	$\&$ IEN \&NOOEY	\&NOSRE			
	1	6BFO3	\&BT16 \&INPT	\&NOJMPI GRDGA			
	1	\&CONT					
	;						
	;						
	;	COMPARE THE TWO CRCFS.					
	;	IF THEY AGREE, PROCEED TO READ OR WRITE AS SPECIPIED BY RO.					
	\%	OTHERWISE, ASSUME BAD HEADER, TRUE ID UNKNOWN,					
	;	AND CONTINUE LOOP.					
	'	TOR1 W,EXOR,TODRR,R4					
0032							
	1	ENODLE\&INPT	\&NOIEN \&NOOEY	\&SRE \&CT	$z$		
	$/$		\&NOJMPI \&RDGA				
	1	\& IF	CT16 \&CJP	MATCH1			
	;		-				
	;	TURN OFF READ GATE.					
	;						
	;	LEAVE INPUT MODE.					
	;	END SECTOR PASS LOOP.					
	;	NOTICE WE HAVE THREE MICROINSTRUCTION CLOCKS LEFT BEFORE					
	;	IT IS TIME TO BEGIN WRITING OR RE-SYNC AND BEGIN READING.					
	'						
0033	SECTL2:	SOR   \&NODLE   \&NOJMPI   \&RPCT	W,MOVE, SORY, RO	\&NOSRE			
	1		\&NOIEN \&NOOEY				
	1						
	1		SECTL1				
	;						
	;			EXHAUSTED, LOAD			
	;	IF SECTOR SEARCH COUNT			+1 INTO RO	AND	RETURN
	;	BOR2 W, LD2NR, O,RO					
0034							
	1	\&NODLE	\&IEN \&NOOEY	\&NOSRE			
	1	\&NOJMPI					
	1	\&RTN					
	;	SUCCESSFUL MATCH.					
	;						
. 0035	MATCHI:	SOR   \&NODLE   \&JMPI   \&CONT	W,MOVE, SORY, RO				
	/		\&NOIEN \&OEY	\&NOSRE			
	1						
	1		$\& C O N T$				
	;	SOR   \&NODLE					
0036	BRTABL:		W,NEG, SORA, R3				
	1		\&IEN \&NOOEY	\&NOSRE			
	1	\&NOJMPI\&JP	\&RFIF				
	/		RDSECI				
	;						
0037		SOR	W,NEG, SORA, R3				
	1	\&NODLE	\&IEN \&NOOEY	\&NOSRE			
	1	\&NOJMPI	\&RFIF				
	1	\&JP	WRSEC1				

## Disk Controller Application Note




## Disk Controller Application Note



004E	RDSEC4:	SONR	W, MOVE,	SOI, NRY	\&NOSRE	
	1	\&NODLE	\&NOIEN	\& OEY		
	1	\&NOJMPI				
	$/$	\&CONT				
	;					
004F		IMME	H\#001F			
	1	¢NODLE	\&NOIEN	\& OEY	\&NOSRE	
	1	\&NOJMPI	\& BT20	\&BF16		
	/	$\& C O N T$				
	;					
	;					
	;	CLEAR R8(M1).				
	;					
0050		SOR W,MOVE,SOZR,R8				
	1	\&NODLE	\&IEN	\&NOOEY	\&NOSRE	
	1	\&NOJMPI				
	$/$	$\& C O N T$				
	;					
	;	PERIOD FACTOR $1(P F 1)$ TO ACC.				
	;					
	;					
0051		SONR W,MOVE, SOI,NRA				
	1	\&NODLE	\&IEN	\&NOOEY	\& NOSRE	
	1	\&NOJMPI				
	/	\& CONT				
	;	IMME PFI				
0052						
	1	\&NODLE	\&IEN	\&NOOEY	\&NOSRE	
	1	\&NOJMPI				
	/	$\& C O N T$				
	;	TEST FOR ERROR PATTERN			PRESENT.	
	;					
	i	NOOP				
	M1:					
0053	$/$	\&NODLE	\&NOIEN	\& NOOEY		\&NOSRE
	1	\&NOJMPI				
	/	\& IF	EP20	\&CJP	M234I	
	;					
	;					
	;	EP NOT PRESENT,				
	;	DECREMENT ACC.				
	;	TEST FOR ALIGNMENT EXCEPTION(AE).				
	;					
0054		BONR W, O, S2NA				
	$/$	\&NODLE	\&IEN	\&NOOEY	\&SRE	
	1	\&NOJMPI	\& CP 20			
	/	\& IF	AE20	\&CJP	AE	
	;					
	;					
	;	AE NOT PRESENT,				
	;	ADD 8 TO R8.				
	;					
0055		BOR2 W, 3, A2NR, R8				
	1	\&NODLE	\&IEN	\&NOOEY	\&NOSRE	
	1	\&NOJMPI				
	1	\& JP	LINK			
	;					
	;					
	;	AE PRESEN	NT;			
	;	INC R8.		.		
	;					
0056	AE:	BOR2 W, $2, A 2 N R, R 8$				
	1	\&NODLE	\&IEN	\&NOOEY	\& NOSRE	
	1	\&NOJMPI				
	/	$\& C O N T$				

## Disk Controller Application Note



	;	R 9 = PF2-R9.			
	;				
0063	MFIX:	TOR1	W, TORIR	, SUBR, R9	
	1	\&NODLE	\&IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	\&CONT			
	;				
0064		IMME	PF 2		
	1	\&NODLE	\& IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	\&CONT			
	;				
	;				
	;	R10 $=$ PF	$3-\mathrm{R} 10$		
	;				
0065		TOR1	W,TORIR	, SUBR, R10	
	1	\&NODLE	\&IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	\& CONT			
	;				
0066		IMME	PF3		
	1	\&NODLE	\&IEN	\&NOOEY	\&NOSRE
	$!$	\&NOJMPI			
	$\%$	\&CONT			
	;				
	;				
	;	R11 $=$ PF	4-R11		
	;				
0067		TORI	W,TORIR	, SUBR, RI	
	1	\&NODLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	$\&$ CONT			
	;				
0068		IMME	PF4		
	1	\& NODLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	\&CONT			
	;	0 TO R7	(LOCATI	ON ACC M	W, LAC) .
0069	M1A1:	SOR	W,MOVE,		
	/	\&NODLE	\&IEN	\&NOOEY	\&NOSRE
	/	\&NOJMPI			
	/	\&CONT			
	;				
	;				
	;	Al TO R1	2 (LSW),	R13 (MSW)	
	;				
006A		SOR	W, MOVE,	SOI,R12	
	$/$	\&NODLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	\&CONT			
	;				
006B		IMME	AlLSW		
	1	\&NODLE	\& IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	1	\&CONT			
	;				
006C		SOR	W, MOVE,	SOI, R13	
	1	\&NODLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	1	$\& \mathrm{CONT}$			
	;				
006D		IMME	AlMSW		
	1	\&NODLE	\& IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	1	\& LDCT	4		
	;				
	;				
	;	R8 TO D			
	;	$L A C=M$	1A1, MUL	TIPLY Mla	1.
	;				
006E		SOR	W, MOVE,	SORY,R8	
	1	\&DLE	\&NOIEN	\&OEY	\& NOSRE
	1	\&NOJMPI			
	/	\&JS	MUL		

## Disk Controller Application Note

	;	A2 TO R12,R13.			
006F	M2A2	IMME	A2LSW		
	1	\&NODLE	\&IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	\&CONT			
0070	;				
		BOR2	W, 3,LD2N	R,R13	
	1	\&NODLE	\&IEN	\&NOOEY	\& NOSRE
	1	\&NOJMPI			
	/	\&LDCT	3		
	;				
	;				
	;	R9 T0 D.			
	;	$\mathrm{LAC}=\mathrm{LA}$	C + M2A		
0071	;	SOR	W, MOVE,	RORY, R9	
	1	\&DLE	\&NOIEN	\& OEY	\& NOSRE
	1	\&NOJMPI	¢NOIEN		anoske
	/	\&JS	mul		
	;				
	;				
	;	A3' (A3 -	-4K) TO	R12,R13	
0072	M ${ }^{\text {¢ }}$ 3 3 :	IMME	A3LSW		
	$1 /$	\& NODLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	\&CONT			
0073	;	BOR2	W,1,LD2N	R, R13	
	1	\&NODLE	\&IEN	\& NOOEY	\& NoSre
	1	\&NOJMPI			
	/	\&LDCT	6		
	;				
	;				
	;	R10 TO			
	;	$L A C=L A$	C + M3A		
	;				
0074		SOR		SORY,R1 \&OEY	
	\%	\&DLE   \&NOJMPI	\&NOIEN	\&OEY	\& NOSRE
	1	\& JS	muL		
	;				
	;	A4' (A4 -	4K) TO	R12,R13	
0075	'ı4A4:				
	1	\&NODLE	$\& I E N$	\& Nooty	\&NOSRE
	1	\& NOJMPI			
	/	$\& \mathrm{CONT}$			
0076	;	BOR2	W,3,LD2N	R,R13	
	1	\&NODLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	\&LDCT	4		
	;				
	;				
	;	R11 TO D			
	;	LAC $=$ LA	C + M4A		
	;				
0077		SOR	W, MOVE,	ORY, R11	
	1	\& DLE	\& NOIEN	\& OEY	\&NOSRE
	1	\&NOJMPI			
	/	\&JS	MUL		
	;				
	;				
	;	PRESHIFT	PED DIVI	OR(K)	R R12,R13,D.
	;	LAC $=$ REM	m(M1Al	+M2A2 +	M3A3 + M4A4)
	;	LAC $=-\mathrm{L}$	+ K.		
	;				
0078		IMME	KL128		
	1	\&NODLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	!	$\& C O N T$			
0079	;	SOR			
	1	\&DLE	\&IEN	\& OEY	\& NOSRE
	1	\&NOJMPI			
	1	\&LDCT	6		
007A	;				
	/	${ }_{\text {IMDE }}$ IME	${ }_{\text {KM }}^{\text {K EN }}$ (28		\&NOSRE
	1	\&NOJMPI			dNOSRE
	1	\&JS	DIV		



## Disk Controller Application Note

	;	MADR $=$ ACC = R4-ACC.			
0087	XOR:	TOR1	W, TORAA,	,SUBS, R4	
	1	\&NODLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI			
	/	\&CONT			
	;				
0088		BONR	W,0,s2NA		
	1	\&NODLE	\&IEN	\&OEY	\&NOSRE
	1	\&MADR	\&NOJMPI		
	/	\&CONT			
	;				
	;				
	;	R8 = R8	XOR MEM.		
	;				
0089		TOR1	W, TODRR,	, EXOR,R8	
	1	8 dLE	\&IEN	\&NOOEY	\& NOSRE
	1	\&NOJMPI	\&BT16		
	/	\&CONT			
	;				
	;				
	;	R8 TO ME	EMORY.		
008A	;	SOR	W, MOVE,	SORY, R8	
	1	\&NODLE	\&NOIEN	\&OEY	\&NOSRE
	1	\&NOJMPI	\&MWRT	\&BF16	
	/	$\& C O N T$			
	;				
	;				
	;	MADR $=$ A	ACC + 1.		
008B	;	SONR	W, INC,SO	OA,NRY	
	1	\& NODLE	\&NOIEN	\& OEY	\&NOSRE
	1	\&NOJMPI	\&MADR		
	/	$\&$ CONT			
	;				
	;				
	;	$\mathrm{R9}=\mathrm{R9}$	XOR MEM.		
008C	;	TORI	W, TODRR,	, EXOR,R9	
	/	\&DLE	\&IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16		
	/	\&CONT			
	;				
	;	R9 TOME	EMORY.		
008D	;	SOR	w, MOVE,	SORY, R9	
	1	\&NODLE	\&NOIEN	\& OEY	\&NOSRE
	1	\&NOJMPI	\&MWRT	\&BF16	
	/	\&CONT			
	;				
	;				
	;		(ERROR	CORRECTE	flag) -
	;	RETURN.			
008E	;	SOR	W,MOVE,	SOZR,R0	
	1	\& NODLE	\& IEN	\&OEY	\& NOSRE
	1	\&NOJMPI	\& BT20	\&BF16	
	1	\&RTN			



## Disk Controller Application Note



0082		ROTM	W, 6, MDR I, R8		$\begin{aligned} & \text { \&NOSRE } \\ & \& B F 2 L \end{aligned}$
	1	\&DLE	\& IEN	\&NOOEY	
	1	\&NOJMPI	\& BT16	\&BF2U	
	1	$\& \mathrm{~J}$	REP14		
	;				
OOB3		ROTM	W, 7, MDR	I, R8	
	1	\&DLE	\& IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI	$\& \mathrm{EPTl}_{6}$	$\& B F 2 U$	\& BF2L
	1	\& JP	REP 15		
	;				
00B4		ROTM	W, 8 , MDR	, R8	
	1	\&DLE	\& IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	$\& \mathrm{BF} 2 \mathrm{U}$	\& BF2L
	1	\& JP	REP16		
00B5	REP1:	IMME	H\$0001		
	1	\&DLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\& BF2L
	1	\& JP	RM1		
0086	;				
	REP2:	IMME	H\#0003		
	1	\&DLE	\& IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\& BF2L
	1	\&JP	RM2		
00B7	;				
	REP3:	IMME	H 0007		
	1	GDLE	\& IEN	\&NOOEY	\&NOSRE
	1	GNOJMPI	\& BT16	\&BF2U	\& BF2L
	1	\&JP	RM3		
00B8	;				
	REP4:	IMME	H\%000F		
	1	\&DLE	\& IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\& BF2L
	1	\&JP	RM4		
00B9	-				
	REP5:	IMME	H\%001F		
	1	\&DLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\& BF2L
	1	\&JP	RM5		
OOBA	;				
	REP6:	IMME	H\#003F		
	1	\&DLE	\& IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\&BF2L
	/	\& JP	RM6		
00B B	REP7:	IMME	H\#007F		
	1	\&DLE	\&IEN	\& NOOEY	conosre
	1	\&NOJMPI	\& BT16	\& BF2U	\&BF2L
	/	\&JP	RM7		
00BC	;				
	REP8:	IMME	H\#00FF		
	1	\&DLE	\& IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\& BF2L
	/	$\&_{6} \mathrm{~J}$ P	RM8		
	;				
00BD	REP9:	IMME	H\#OlFF		
	1	\&DLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\& BF2L
	/	\&JP	RM9		
	;				
OOBE	REP10:	IMME	H\#03FF		
	1	\&DLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI	\&BT16	\&BF2U	\&BF2L
	/	\&JP	RM10		
OOBF	;				
	REP11:	IMME	H\#07FF		
	1	\&DLE	\&IEN	\&NOOEY	\& NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	$\&$ BF2L
	1	\& J P	RM11		
00C0	;				
	REP12:	IMME	H\#0FFF		
	1	\&DLE	\&IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\& BF2U	\& BF2L
	1	\& JP	XOR		
00 Cl	;				
	REP13:	IMME	H\#1FFE		
	1	\&DLE	\&IEN	\&NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\& BF2L
	/	\&JP	XOR		
	;				
0002	REP14:	IMME	H\#3FFC		
	1	\&DLE	$\&$ IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\& BF2L
	/	\& J P	XOR		
00C3	;				
	REP15:	IMME	H\%7FF8		
	1	\&DLE	\&IEN	\& NOOEY	\&NOSRE
	1	\&NOJMPI	\& BT16	\&BF2U	\&BF2L
	/	\&JP	XOR		

## Disk Controller Application Note




## Disk Controller Application Note




## Disk Controller Application Note



00001100000111100000 00011111100011100000 00020000000000000000 00031111100011100000 00040000000000010000 00051101100001000011 00061101100011000100 00071101100001000100 00080111000101000000 00090111000101000000 000A OOB 0110101100100 000D 1.111100011100000 OOOE 0000000000010001 000F 1101100001000100 00100111000101000000 00110111000101000000 00120111000101000000 00130111000101000000 00141101110101100100 00151101100100000101 00160111000101000000 00170101100011000101 00181101100001000100 00191101100001000101 001A 11111100011100001 001 B 0000000000110110 001C 1000100000000000 001D 1111100011100001 $001 E 1100000000000001$ 001F 1101100100000100 00201101100001000001 00211101100011000101 00221100000011000101 00231100110001100100 00241101100001000010 00251101100011000101 00261100000011000101 00271100110001100100 00280111000101000000 00290111000101000000 002A 0111000101000000 002B 0111000101000000 002C 1101100011000101 002D 1001000111100001 002E 0111000101000000 002F 1101100011000101 00301001000111100010 00311101100011000101 00321001000111100100 00331101100001000000 00341101100000000000 00351101100001000000 00361101111000000011 00371101111000000011 00381101111010000100 00391101101010000101

0010011000110000 XXXX001011101111 XXXX001011101111 XXXX001011101111 XXXX001011000001 XXXX001111101111 XXXX010011101111 XXXX001011101111 XXXX011011101111 XXXX011011101111 $\times x \times 011011101111$ XXXX011011101111 XXXX010010010000 xxxx001011101111 XXXX001011000000 XXXX001011101111 XXXX011011101111 XXXX011011101111 XXXX011011101111 XXXX011011101111 XXXX010010010000 xxxx010011101111 XXXXO11011101111 XXXX010111101111 XXXX001011101111 XXXX001011101111 XXXX010011101111 XXXX010011101111 XXXX010011101111 XXXX010011101111 XXXX010011101111 Xxxx010011101111 xxxx010111000000 XXXX010011101111 XXXX010011101111 XXXX010010010000 xxxx010111000000 XXXX010011101111 xXXX010011101111 XXXX010010010000 XXXX011011000001 xxxx011011101111 XXXX011000110000 xxxx011000110000 XXXX010100110000 0010111000110000 XXXX011011101111 XXXX010100110000 0010111000110000 XXXX010111101111 0010111000110000 XxxX011010010000 XXXX010010101111 XXXX001011101111 XXXX010000110000 XXXX010000110011 XXXX000011000001 XXXX010000110000
$011010010011 \times x \times x$ XxXxXXXXXXXXXX10 $10 \times x X X X X X X X X X X X X X$ 111111XXXXXXXXXX XXXXXXXXXXXXXX10 $\mathbf{~ X X X X X X X X X X X X X X X X}$ 111111XXXXXXXXXX XXXXXXXX0XXXXX10 XXXXXXXXXXXXXXXX 111111XXXXXXXXXX XXXXXXXXXXXXXX10 $\mathbf{x X X X X X X X X X X X X X X X}$ 111111 XXXXXXXXXX XXXXXXXX0XXXXX10 XXXXXXXXXXXXXXXX 111111 1 XXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 111111XXXXXXXXXX XXXXXXXXXXXXXX10 $10 \times x X X X X X X X X X X X X$ 111111XXXXXXXXXX XXXXXXXXXXXXXX10 0 $10 \times X X X X X X X X X X X X X$ 111111XXXXXXXXXX XXXXXX0XXXXXXX10 $\mathbf{x X X X X X X X X X X X X X X X}$ 111111 XXXXXXXXXX XXXXXXXXXXX0XX10 XXXXXXXXXXXXXXX 111111 XXXXXXXXXX XXXXXXXXXXXXXX10 $10 \times \mathrm{XXXXXXXXXXXXXX}$ 111111XXXXXXXXXX XXXXXXX0XXXXXX10 $\mathbf{~ X X X X X X X X X X X X X X X X}$ $000111 \times x \times X X X X X X X \quad$ XXXXXXXXXXX0XX10 $10 \times X X X X X X X X X X X X$ 111111XXXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX $000010 \times X X X X X X X X X \quad$ XXXXXXXX0XXXXX10 $10 \times X X X X X X X X X X X X X X$ 111111XXXXXXXXXX XXXXXXXXXXX0XX10 0xXXXXXXXXXXXXXX 111111 XXXXXXXXXX XXXXXXXXX0XXXX10 $10 \times X X X X X X X X X X X X$ 111111 XXXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXX 111111XXXXXXXXXX XXXXXXXXXXX0XX10 $10 \times x X X X X X X X X X X X X ~$ 111111XXXXXXXXXX XXXXXXXXXXXX10 $\mathbf{~ X X X X X X X X X X X X X X X}$ 001111XXXXXXXXXX X00XXXXXXXXXXX10 XX0XXXXXXXXXXXX 111111XXXXXXXXXX XXXXXXXXXX0XX10 XXXXXXXXXXXXXXX 111111 XXXXXXXXXX XXXXXXXXX0XXXX10 $10 \times X X X X X X X X X X X X X ~$ 111111XXXXXXXXXX X0XXX0XXXXXXXX10 $10 \times x X X X X X X X X X X X X X ~$ $111111 \times X X X X X X X X X \quad$ XXXXXXXXXXXXXX10 $0 \times x \times X X X X X X X X X X X$ 111111XXXXXXXXXX 0XXXXXXXXXXXXX10 XX0XXXXXXXXXXXXX 111111 XXXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 111111 $x$ XXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 111111XXXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 111111XXXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 111111 1 XXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 111111XXXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX
 111111 $x \times x \times x \times X X X X ~ X X X X X X X X X X X X X X 10 ~ X X X X X X X X X X X X X X X X ~$ 111111XXXXXXXXXX XXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 100010 $x$ XXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 010000XXXXXXXXXX XXXXXXXXXXXX10 XXXXXXXXXXXXXX
 111111XXXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 100110 $x$ XXXXXXXX XXXXXXXXXXXXX10 XXXXXXXXXXXXXXX $000000 \times x \times X X X X X X X$ XXXXXXXXXXXXX010 $0 \times X X X X X X X 0 X X X X X X$
 1010101010010 XXX XXXXXXXXXXXXX010 XXXXXXXXX0XXXXXX 101011011011 XXXX XXXXXXXXXXXX010 XXXXXXXXX0XXXXXX $101100011011 \times x \times 0$ XXXXX0XXXXXXX010 XXXXXXXXX0XXXXXX $110011010010 \times x \times x$ XXXXXXXXXXXXX010 XXXXXXXXX0XXXXXX 111111XXXXXXXXXX XXXXXXXXXXXX010 XXXXXX0XX0XXXXXX $101111011011 \times x \times 0$ XXXXX0XXXXXXX010 XXXXXXXXX0XXXXXX $110011010010 \times x \times X$ XXXXXXXXXXXXX010 XXXXXX0XX0XXXXXX $111111 \mathrm{xxXXXXXXXO} \mathrm{XXXXX0XXXXXXX010} \mathrm{XXXXXXXXX0XXXXXX}$ 110101010010xxXX XXXXXXXXXXXXX010 XXXXXXXXX0XXXXXX
 $111111011110 \times x \times x$ XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXX 111111 $x \times x \times x X X X X X ~ X X X X X X X X X X X X X X 01 ~ X X X X X X X X X X X X X X X X ~$ $111000011110 \times \mathrm{XXX}$ XXXXXXXXXXXXXX10 $\mathrm{XXXXXXXXXX0XXXXX}$ $101101011110 \times x \times x$ XXXXXXXXXXXXXX10 $10 \times x \times x \times x \times x 0 \times x \times x$
 111001011011 XXXX XXXXXXXXXXXXX010 $\mathrm{xXXXXXXXX0XXXXXX}$

## Disk Controller Application Note

 003B 00000000000011 XXXX001011101111 111111XXXXXXXXXX XXXXXXXXXXXXX010 XXXXXXXXX0XXXXXX

003C 1111100011100000 003D 0000000000010011 003E 0111000101000000 003F 0111000101000000 00401101110101100101 00411101110101100100 00420111000101000000 00431101100101100101 00441101110101100100 00450111000101000000 00461101110101100101 00470111000101000000 00480111000101000000 00490111000101000000 004A 0111000101000000 004B 0111000101000000 004 C 0111000101000000 004D 1101100100000000 004 E 1111100011100000 004 F 0000000000011111 00501101100100001000 00511111100011100001 00520000000000010110 00530111000101000000 00541110000110000101 00551100011111001000 00561100000111001000 00570111000101000000 00581100001110000000 00591101100011101001 005A 0000000000001101 005B 1101100011101010 005C 0000000001011001 0.05D 1101100011101011 005E 0000000000010111 005F 1101100011101100 00600000000010010000 00611011111100101100 00620000000000000111 00631001110000001001 00640000000000001101 00651001110000001010 00660000000001011001 00671001110000001011 00680000000000010111 00691101100100000111 006A 1101100011101100 006B 1110011100100011 006C 1101100011101101 006D 0000000000000110 006E 1101100001001000 006 F 1011111110101000 00701100011110001101 00711101100001001001 00721101010100110000 00731100001110001101 XXXX010011000000

111111XXXXXXXXXX XXXXXXXXXXXXX010 111111 XXXXXXXXXX XXXXXXXXXXXXX010 111111XXXXXXXXXX XXXXXXXX0XXXX010 111111 XXXXXXXXXX XXXXXXXXXXXXX010 $111111011011 \times x \times 0$ 111111XXXXXXXXXX $111111 \times x \times X X X X X X X$ $000010011011 \times x \times 0$ $111111 \times X X X X X X X X X$ $111111 \times X X X X X X X X X$ $000001 \times X X X X X X X X X$ $111111 \times X X X X X X X X X$ $111111 \times X X X X X X X X X$ 111111XXXXXXXXXX 111111XXXXXXXXXX 000110XXXXXXXXXX XXXXXXX0XXX0x $001110010110 \times x \times x$ $111111011110 \times X X X$ 111111XXXXXXXXXX $111111 \times X X X X X X X X X$ 111111 XXXXXXXXXX XXXXXXXXXXXX10 $111111 \times x \times X X X X X X X$ 111111XXXXXXXXXX XXXXXXXXXXXXXX10 $011001010100 \times X X X$ XXXXXXXXXXXXXX10 $010110010000 \times x \times x$ XXXXXXXXXXX0XX10 010111011110XXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 010011010011XXXX XXXXXXXXXXXXXX10 111111011110XXXX 0XXXXXXX0XXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111 XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 l11111XXXXXXXXXX XXXXXXXXXXXXXX10 111111 XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111 XXXXXXXXXX XX0XX0XXXXXXXX10 100010011110XXXX Xx0xX0XXXXXXXX01 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXX10 111111 XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 $111111 \times x \times X X X X X X X \quad \mathrm{XXXXXXXXXXXXXX10}$ 111111 $000100 \times X X X X X X X X X$ XXXXXXXXXXXXXX10 $011011011110 \times x \times X$ XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 000011 XXXXXXXXXX XXXXXXXXXXXXXX10 $011011011110 \times x X X$ XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 $000110 \times \mathrm{XXXXXXXXX} \times \mathrm{XXXXXXXXXXXX} 10$

XXXXXXXXX0 $0 \times \times \times X X$ XXXXXXXXX0XXXXXX XXXXXX0XX0XXXXXX XX0XXXXXX0XXXXXX 0xXXXXXXX0XXXXXX 00xXXX0XX0XXXXXX XX0XXXXXX0XXXXXX 0XXXXXXXX0XXXXXX 00xXXX0XX0XXXXXX XXXXXXXXXXXXXXXX OXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX X0XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX X0XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXOXXXXXXXXXX XXXXXOXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXX

00751010100100101000 00761100011110001101 00771101100001001011 00780111000100000000 0079 1101100011101101 007A 0000010001110111 007B 1110111011100010 007C 007D 007E 007 F 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 008A 008B 008C 00901100000111101001 00911100000111101011 00921100000111101001 00931100000111101011 00941100000111101010 00951100000111101010 00961100000111101001 00971101100100000110 00980111000101000000 00990111000101000000 009A 0111000101000000 009B 0111000101000000 009C 0111000101000000 009D 1100000111101011 009E 1100000111101010 009F 1011111100101100 00AO 0000000000000111 00A1 1100000111101011 00A2 0111000101000000 00A3 1100000111101001 00A4 0111000101000000 00A5 1011001100101000 00A6 1011010100101000 00A7 1011011100101000 00A8 1011100100101000 00A9 1011101100101000 OOAA 1011110100101000 00AB 1011111100101000 OOAC 1010000100101000 OOAD 1010001100101000 OOAE 1010010100101000
xxxx010011101111 XXXX010011000000 XXXX001100010011 XXXX010011101111 XXXX000111000000 XXXX000100010011 XXXX010011101111 XXXX010011101111 XXXX010011101111 XXXX010011101111 XXXX010011101111 XXXX010011101111 XXXX010011101111 XXXX010011101111 XXXX010011101111 $\times \times \times \times 010011101111$ XXXX010011101111 XXXX000011101111 XXXX010011101111 XXXX000011101111 XXXX010111101111 xxxx001011101111 xxxx001011101111 xxxx010111101111 xxXx001011101111 XXXX000010101111 XXXX110000110010 XXXX110000110010 XXXX110000110010 XXXX110000110010 XXXX110000110010 XXXX110000110010 XXXX110000110010
xxxx110000110001 XXXX011000110010 XxXX011000110010 XXXX011000110010 XXXX011011101111 XXXX011000110010 0111110000110001 0111110000110001 0111010100110001 xxxx000000110010 0111110000110010 xxxx011000110001 0111110000110010 XXXX011000110001 xxxx010100110010 XxXX010100110010 xxxx010100110010 XXXX010100110010 xxxx010100110010 xxxx010100110010 XXXX010100110010 xxxx010100110010 xxxx010100110010 XXXX010100110010

XXXX001100010011 $011011011110 \times X X X ~ X X X X X X X X X X X X X X 10$ 111111XXXXXXXXXX XXXXXXXXXXXXXX10 $000100 \times X X X X X X X X X \quad$ XXXXXXXXXXXXXX10 011011011110XXXX XXXXXXXXXXXXXX10 111111 XXXXXXXXXX XXXXXXXXXXXXXX10 000110XXXXXXXXXX XXXXXXXXXXXXXX10 $100100011110 \times X X X$ XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111 XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111 $x$ XXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111 $\mathrm{XXXXXXXXXX} \times 10$ 111111XXXXXXXXXX XXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX01 111111 XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXX0XXXXXXXX10 111111XXXXXXXXXX 0XXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXXXXXXXXXXX10 111111XXXXXXXXXX XXXXX0XXXXXXXX10 111111XXXXXXXXXX 0xXXXXXXXXXXXX10 $111111011110 \times x \times X$ 0xXXXXXX0XXXXX10 $011101011110 \times x \times x$ XXXXXXXXXXX0XX10 $011000011110 \times x \times x$ XXXXXXXXXXX0XX10 $011001011110 \times x \times X$ XXXXXXXXXXX0XX10 $011011011110 \times x \times x$ XXXXXXXXXXX0XX10 $011010011110 \times x \times x$ XXXXXXXXXXX0XX10 $011011011110 \times x \times X \quad \times x \times X X X X X X X \times 0 \times 10$ $011011011110 \times x \times X$ XXXXXXXXXXX0XX10 $100011011110 \times x \times x$ XXXXXXXXXXXXXX10 $011110011110 \times \mathrm{XXX}$ XXXXXXXXXXX0XX10 100001011110XXXX XXXXXXXXXXX0XX10 $100011011110 \times x \times X$ XXXXXXXXXXX0XX10 111111XXXXXXXXXX XXXXXXXXXXX0XX10 $011111011110 \times x \times x$ xxxxxxxxxxx0xx10 $011000010010 \times x \times x$ XXXXXXXXXXX0XX10 $011000010010 \times x \times x$ xxxxxxxxxxxoxxlo $010111010010 \times x \times x$ XX0XX0XXXXXXXX10 $100000011110 \times x \times x$ xX0XX0 $x \times x \times x \times x \times 1$ 011111010011XXXX XXXXXXXXXXX0XX10 $011000011110 \times x \times x$ XXXXXXXXXXXXXX10 $011111010011 \times x \times X$ XXXXXXXXXXX0XX10 $011000011110 \times x \times x \quad$ xxxxxxxxxxxxxx10 $110101011110 \times x \times x$ x00xx0xXXXXXXX10 $110110011110 \times X X X ~ X 00 X X 0 X X X X X X X X 10$ $110111011110 \times x \times x$ x00xX0xXXXXXXX10 $111000011110 \times x \times x$ x00xx0xxxxxxxx10 111001011110xXXX $000 \times 0 \times x \times x \times x \times 10$ $111010011110 \times X X X \quad$ 000xX0 XXXXXXXX10 $111011011110 \times x \times X$ X00XX0XXXXXXXX10 $111100011110 \times x \times x$ X00xx0xxxxxxxx10 $111101011110 \times x \times X$ X00XX0XXXXXXXX10 $111110011110 \times X X X$ X00XX0XXXXXXXX10

XXXXXXXXXXXXXXXX $0 \times X X X X X X X X X X X X X X$ XXXXXXXXXXXXXXXX XX0 XXXXXXXXXXXXX 0 XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXOXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0XXXXXXXXXX $x \times x \times 10 \times x \times x \times x \times x$ XXXXX0 XXXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0 XXXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0 XXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0XXXXXXXXXX XXXXXOXXXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0XXXXXXXXXX XXXXX0XXXXXXXXXX XXXXXXXXXXXXXXXX XXXXX0XXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

OOAF 1010011100101000 XXXX010100110010 OOBO 1010100100101000 OOB1 1010101100101000 OOB2 1010110100101000 00B3 1010111100101000 00B4 1011000100101000 OOB5 0000000000000001 00B6 0000000000000011 00870000000000000111 00B8 00000000000011111 00B9 0000000000011111 00BA 0000000000111111 00BB 0000000001111111 00BC 0000000011111111 00BD 0000000111111111 00BE 0000001111111111 00BF 0000011111111111 00 O 0000111111111111 00C1 0001111111111110 00 C 20011111111111100 $00 C 30111111111111000$ $00 C 41111111111110000$ $00 C 51011001100101001$ $00 C 61011010100101001$ $00 C 71011011100101001$ $00 C 81011100100101001$ 00C9 1011101100101001 00CA 1011110100101001 00CB 1011111100101001 00CC 1010000100101001 OOCD 1010001100101001 00CE 1010010100101001 OOCF 1010011100101001 00D0 1111111111100000 00D1 1111111111000000 00D2 1111111110000000 00D3 1111111100000000 00D4 1111111000000000 00D5 1111110000000000 00D6 1111100000000000 00D7 1111000000000000 00D8 1110000000000000 0009 1100000000000000 OODA 1000000000000000 00DB 1100111010001000 OODC 1101100001001101 OODD 1101100000001100 OODE 1001100010000110 OODF 1001111010100111 OOEO 1100110000001100 OOE1 1100110001001101 0OE2 1100110010001000 OOE 3 1101100011101100 00E4 1101100000001100 OOE5 1001100001000110 00E6 1001111001100111 00E7 0111000101000000 00E8 1001100010000110

XXXX010100110011 xxxx010100110010 xxxx010100110010 xxxx010100110010 xxxx010100110010 xxxx010100110010 xxxx010100110011 xxxx010100110010 xxxx110011101111 xxxx001111101111 1000010000110011 xxxx110011101111 xxxx010011101111 xxxxl10011101111 xxxx000111101111 xxxx110010010011 xxxx010010101111 xxxx010011101111 xxxx110011101111 xxxx110011101111 0111010000110011 xxxxl10011101111
$111111011110 x x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $000000011110 x x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $000001011110 x x x$ x $000 x 0 x x x x x x \times x 10$ xxxxxxxxxxxxxxx $000010011110 \times x \times x$ x00xx0xxxxxxx10 xxxxxxxxxxxxxxxx $000011011110 \times x x$ x $000 \times x 0 x x x x x \times x x^{0} 0$ xxxxxxxxxxxxxxxx $000100011110 x x x x$ x00xx0xxxxxxxx10 Xxxxxxxxxxxxxxxx $000101011110 \times x \times x$ x00xx0xxxxxxxx10 $\operatorname{xxxxxxxxxxxxxxxx~}$ $000110011110 x x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $000111011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $001000011110 \times x x x$ x00xx0xxxxxxxxlo $\operatorname{xxxxxxxxxxxxxxxx~}$ $001001011110 \times x \times x$ x00xx0xxxxxxx10 xxxxxxxxxxxxxxxx $001010011110 \times x x x$ x00xx0xxxxxxxx10 $\operatorname{xxxxxxxxxxxxxxxx~}$ 001011011110xXXX X00xx0xxXXXXXX10 XXXXXXXXXXXXXXX $001100011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $001101011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $001110011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $001111011110 \times x \times x$ x00xx0xxxxxxx10 xxxxxxxxxxxxxxxx $000111011110 \times x \times x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx 000111011110xxxx x00xx0xxxxxxxx10 Xxxxxxxxxxxxxxxx $000111011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $000111011110 \times x \times x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $000111011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $010000011110 \times x x x$ x00xx0xxxxxxxx10 $\operatorname{xxxxxxxxxxxxxxxx~}$ $010001011110 x x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx 010010011110xxxx x00xx0xxxxxxxx10 $\operatorname{xxxxxxxxxxxxxxxx~}$ $010011011110 x \times x$ x00xx0xxxxxxxx10 XXXXXXXXXXXXXXX $010100011110 \times x \times x$ x00xx0xxxxxxxx10 $\operatorname{xxxxxxxxxxxxxxxx~}$ $010101011110 \times x x x$ x00xx0xxxxxxxx10 $\operatorname{xxxxxxxxxxxxxxxx~}$ $010110011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $010111011110 \times x$ xx x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $011000011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx 011001011110xxxx X00xx0xxxxxxxx10 Xxxxxxxxxxxxxxxx $011010011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx 000111011110xxxx x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx 000111011110xxxx x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $000111011110 \times x \times x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $000111011110 x x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx 000111011110xxxx x00xx0xxxxxxx10 xxxxxxxxxxxxxxxx 000111011110xxxx x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $000111011110 \times x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx 000111011110xxxx x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx $000111011110 x x x x$ x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx 000111011110xxxx x00xx0xxxxxxxx10 xxxxxxxxxxxxxxxx 000111011110xxxx X00xx0xxxxxxXx10 Xxxxxxxxxxxxxxxx 111111xxxxxxxxxx Xxxxxxxxxxxxxx10 xxxxxxxxxxxxxxxx 111111Xxxxxxxxxx $x x x x x x x x x x x x x 10$ xxxxxxxxxxxxxxxx $100000010011 \times x x x$ XxXXXXXXXXXXXX10 Xxxxxxxxxxxxxxxx
 111111xxxxxxxxxx xxxxxxxxxxxxx10 $\operatorname{xxxxxxxxxxxxxxxx~}$ 111111Xxxxxxxxxx XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX 111111XXXXXXXXXX XxXXXXXXXXXXXX10 $\operatorname{xxxxxxxxxxxxxxxx~}$ 011101xxxxxxxxxx xxxxxxxxxxxxxx10 xxxxxxxxxxxxxxxx $111111011110 \times x \times x$ xxxxxxxxxxxxx10 xxxxxxxxxxxxxxxxx 111111xxxxxxxxxx xxxxxxxxxxxxx10 xxxxxxxxxxxxxxxx 111111XXXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX
 $101010010011 \times x x x$ xxxxxxxxxxxxxx10 xxxxxxxxxxxxxxxx

```
00E9 1001111010100111 xxxx010011101111 111111xxxxxxxxxxx xxxxxxxxxxxxxx10 xxxxxxxxxxxxxxxx
OOEA 1100110010001101 XXXX100111101111 111111XXXXXXXXXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX
00EB 1100110011001100 xxxx010010010011 100101xxxxxxxxxx XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXXX
OOEC 1001110000000110 XXXX110010101111 1111111011110xXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX
OOED 1101111010000100 xxxx010011000000 000101XXXXXXXXXX XXXXXXXXXXXXXX10 0xX0xxxXXXXXXXXX
OOEE 01110000101000000 XXXX011000110011 101110011101XXXX XXXXXXXXXXXXXXX10 XXX0XXXXXXXX0XXX
OOEF 1111100100000000 xxxx001011101111 111111XxXxxxxxxx xxxxxxxxxxxxxxx10 Xxx0xxxxxxxxx0xxx
00F0 1111100100000000 xxxx001010010011 101110xxxxxxxxxxx 0xxx0xxxxxxxxx10 xxx0xxx0xxxx0xxx
```



```
00F2 1111111000000000 Xxxx001100110011 110001011101xxxx XxxXXXXXXXXXXX10 XXX0XXXXXXXXX0XXX
00F3 1111100011000000 xxxx001011101111 111111xxxxxxxxxxx 0xxxxxxxxxxxxx10 xxx0xxx0xxxx0xxx
00F4 1101100001000100 xxxx001011101111 111111xxxxxxxxxxx Xxxxxxxxxxxxxxx10 0xx0xxxxxxxx0xxx
```



```
00F6 0111000101000000 xxxx011010010011 110100xxxxxxxxxxx xxxx0xxxxxxxxx10, x0x0xxx0xxxx0xxx
00F7 1101100100000100 xxxx010011000000 000001xxxxxxxxxxx xxxxxxxxxxxxxxx10 xxx0xxxxxxxx0xxx
00F8 1101100001000100 Xxx0001000110011 111000011101XXXX XXXXXXXXXXXXXX10 XxX0xXXXXXXX0XXX
00F9 1101100001000100 xxxx001011101111 1111111xxxxxxxxxx 0xxxoxxxxxxxxx10 xxx0xxx0xxxx0xxx
00FA 0111000101000000 XXXX011010010011 111000xxxxxxxXXX XXXXXXXXXXXXXX10 XXX0XXXXXXXX0XXX
```



```
OOFC 1101100100000000 Xxxx010010101111 111111011110XXXX XXXXXXXXXXXXXX10 XXXXXXXXXXXXXXXX
```


## Disk Controller Application Note

## SYMBOLS



NSPASS	0040	R9	0009
OR	000A	RDITCT	0041
OVR	0003	RDSEC1	0038
PCPREL	0007	RDSEC2	003 F
PF1	0016	RDSEC3	0046
PF2	000D	RDSEC4	004 E
PF3	0059	RDYI	000D
PF4	0017	RDYO	000E
PM1	009 F	REP1	$00 \mathrm{B5}$
PM2	0015	REP10	00be
PM23	00A3	REP11	00 BF
PM234	009D	REP12	00 CO
PM 24	OOAI	REP13	00 Cl
PM3	0016	REP14	00 C 2
PM34	009E	REP15	00 C 3
PM 4	0017	REP16	00 C 4
POS	OOEA	REP17	OODO
PRIA	0008	REP18	00 D 1
PRID	0009	REP19	OOD2
PR1R	000B	REP2	$00 \mathrm{B6}$
PR1Y	000A	REP20	0003
PR2A	0000	REP21	00 D 4
PR2Y	0002	REP22	OOD5
PR 3A	0004	REP23	$00 \mathrm{D6}$
PR3D	0006	REP24	00D7
PR 3R	0003	REP25	00D8
PRA	0008	REP26	00D9
PRI	000B	REP27	00 DA
PRT1A	0007	REP3	$00 \mathrm{B7}$
PRTA	0004	REP4	$00 \mathrm{B8}$
PRTD	0006	REP5	0089
PRZ	000A	REP6	OOBA
R0	0000	REP7	OOBB
R1	0001	REP8	OOBC
R10	000A	REP9	OOBD
R11	000B	RFl	0006
R12	000C	RF2	0009
R13	000D	RF3	000A
R14	O00E	RL	0005
R15	000F	RM1	$00 C 5$
R16	0010	RM10	OOCE
R17	0011	RM11	OOCF
R18	0012	RM2	$00 \mathrm{C6}$
R19	0013	RM3	00 C 7
R2	0002	RM4	$00 \mathrm{C8}$
R20	0014	RM5	OOC9
R21	0015	RM6	00CA
R22	0016	RM7	00 CB
R23	0017	RM8	OOCC
R24	0018	RM9	OOCD
R25	0019	RONCZ	0003
R26	001A	RSTNA	0001
R27	0018	RSTND	0011
R28	001 C	RSTNR	000E
R29	001 D	RTAA	001 D
R3	0003	RTAR	0000
R30	001 E	RTAY	001 C
R31	$001 F$	RTDA	0019
R4	0004	RTDR	0001
R5	0005	RTDY	0018
R6	0006	RTRA	000C
R7	0007	RTRR	000F
R8	0008	RTRY	000E

## Disk Controller Application Note



# Am29116 Architecture Speeds Pixel Manipulation In Interactive Bit-Mapped Graphics 

By Paul Chu and Warren Miller

## Am29116 Architecture

Advantages	Disadvantages	
Stroke System	High resolution   Inexpensive video generation electronics   Fast image update	Expensive deflection circuitry - tube   Fast redraw requirement (flicker complexity of image)   DVST (no selective erasure)
Raster Scan   Conversion System	Lower cost than stroke system	Complex scan conversion circuits
Raster Scan   Bit-Mapped System	Traditional TV approach   Used for years in alphanumerics   Support graphics with bit maps   Support complex flicker free display	Lower resolution than stroke   Lots of memory

Figure 1. Comparison of Display Technologies

## INTRODUCTION

Bit-mapped raster scan technology is becoming increasingly popular due to the decreasing costs of high density random access memory and the availability of high spped, cost effective VLSI building blocks for implementing complex, flicker free images. This article shows how the Am29116 can be used in a bit-mapped graphics processor to draw vectors, characters and filled polygons at high speed and to support high bandwidth display update and motion dynamics interactively.
There are traditionally three basic cathode ray tube (CRT) graphics technologies - the stroke system, the raster scan conversion system and the raster scan bit-mapped system. (Figure 1). In a stroke system, vectors are represented by point coordinates and point-to-point plotting instructions. These instructions are used to randomly deflect an electron writing beam on the CRT. A line can also be moved or rotated very fast by re-calculating only the end-point coordinates. Very high resolution can be achieved; vector systems with $4096 \times 4096$ pixel spatial resolution are not uncommon; however, the complex deflection circuitry also make them expensive. Since the vector image has to be redrawn continuously (at least 30 times/second), there is an upper bound on the complexity of the image based on drawing speed of the stroke system to produce a flicker free display. The direct view storage tube (DVST) retains the image without the fast redraw requirement. However, the image cannot be manipulated and selectively erased without a complete redraw, thus making the DVST unsuitable for interactive designs. The raster scan conversion systems convert a vector into $X, Y$ coordinates for display by a raster scan beam, therefore allowing a standard tube to be used. The complexity of the scan conversion circuits limits its popularity. The raster scan display technology uses the traditional television's approach and has been the dominant display technology used in most alphanumeric terminals. For graphics applications, a bit-mapped approach is used.
In a bit-mapped system, the image is made up of an X-Y matrix of picture elements (pixels) which are stored in a display memory commonly known as frame buffer. The image is refreshed one raster line at a time by turning on the appropriate pixel at the right time on the display. The widespread acceptance of bit-mapped graphics has been limited in the past due to the density/cost of RAM. Figure 2 depicts the dramatic shrinkage of memory component requirement for various screen size displays for a black and white display; for color, these numbers increase by a factor of 3 to 4 . Thus, a 1024 x 1024 color display requiring thousands of chips in the early 70 s takes only tens of chips today. An advantage of the raster scan bit-mapped display is that the refresh rate of the image is inde-
pendent of the complexity of the image; whereas in vector systems, there is more chance that complex images might flicker since they take longer to be refreshed.

	Memory Size				
Screen Size	Bits	1K's	4K's	16K's	64K's
$256 \times 256$	$64 K$	64	16	4	1
$512 \times 512$	$256 K$	256	64	16	4
$1024 \times 1024$	$1 M$	1	256	64	16

Figure 2. Bit-Mapped Memory Requirements

## INTERACTIVE

## Bit-Mapped Design Approach

Bit-mapped displays range in applications from business graphics and office workstations to CAD/CAM and image processing. The performance requirements of a graphics system are determined by the needed resolution and the degree of real time interaction, or in other words, the amount of update and motion dynamics. Update dynamics is the ability to change color, shape or proportions of the displayed object, while motion dynamics is the ability to change the perspective between the object and the observer, perhaps by rotation, tumble or other movement. A bit-mapped graphics system has to handle a large memory array, especially when a color display is needed; a display with $1024 \times 1024$ spatial resolution and 16 colors requires 4 Megabits of storage. The frame buffer is often larger, to provide additional storage for multiple fonts, which vary in size and style, and display lists, containing host commands. A $1024 \times 1024$ picture, refreshed 30 times/second, requires one pixel to be read from the buffer and presented to the CRT, through video processing circuits, every 24 ns. Interactive use means updating the display rapidly, even for some conceptually fairly simple operations. For example, an office automation display might contain windows of different text, much like papers on a physical desk. These windows can be individually scrolled, or can overlap and can be dragged across the screen. Updating such a display requires the manipulation of hundreds of thousands of pixels within one frame time. The upper limit is obtained by computing the bandwidth required to update the whole screen in one frame time. A smooth scrolling of a $1024 \times 1024$ screen requires a bandwidth of 60 Megabits/ second because both a read and a write has to be performed for every pixel within $1 / 30$ of a second. Therefore, an interactive bit-mapped graphics system needs very high speed bit


Figure 3. Intelligent Bit-Mapped Graphics Control Architecture
level data movement ability. These problems are solved by putting the appropriate capabilities in a high performance graphics processor, as shown in Figure 3, thereby offloading the host computer with some of the time consuming graphical operations. Commands, in the form of higher level program primitives, are sent by the host to the graphics processor through a display list memory. They are in turn interpreted by the graphics processor to perform the desired functions. Real time interaction also means that the graphics processor has enough intelligence to decode the course of action (update/ motion dynamics) without much intervention of the host. The display memory, also called frame buffer, is typically a 3 dimensional memory where the $X, Y$ coordinates are the resolution (e.g., $512 \times 512$ or $1024 \times 1024$ ), and the $Z$ coordinates contain intensities or colors (e.g., a 4 (8) plane frame buffer allows 16 (256) colors to be simultaneously displayed). Furthermore, the frame buffer outputs are usually connected to a color look-up table, allowing the choice of colors from the palette. For example, a look-up table with 3 channels, each with 8 -bit outputs form a palette with 16.7 million colors.

The outputs of the color table are then converted to analog signals to drive the color video outputs. The display memory controler addresses the frame buffer and performs three functions - video refresh, video update and dynamic memory refresh. Video refresh requires the adjustment of the displayed image format at various update rates and the shifting out of the
bit-map contents to the CRT fast enough to provide a flicker free display. Video update takes place during retrace blanking for writing information into the bit-map to modify the display. Memory refresh takes place at regular intervals to refresh the dynamic RAMs used to implement the frame buffer.

The graphics processor is the heart of the system. Some of the required functions and desirable features of a graphic processor are:

1. Direct addressing of the frame buffer memory so that rapid update is possible. Display generation and display list management should be performed interactively.
2. Powerful data movement and bit level manipulation capability such as drawing vectors, characters and filling polygons.
3. Real time response to conditional tests such as Horizontal sync, since pixels are drawn only during display retrace blanking in order to avoid memory contention.
4. Distributed intelligence to respond to the operator and update the display interactively without intervention of the host.
5. Microprogrammable so that the flexibility of meeting the requirements of various macro commands, instruction set primitives, and I/O interfaces is possible in firmware.
6. Built-in diagnostics to insure reliable operations and serviceability demanded by most systems.


Figure 4. Am29116 Block Diagram

A very high performance, microprogrammable graphics controller can be implemented using a handful of Am2900 Family devices, the key member of which is the Am29116 16-bit microprocessor.

## Am29116 ARCHITECTURE

The Am29116 is a powerful 16 -bit microprocessor capable of supporting 100 nsec microinstruction cycle time. It contains features particularly suitable for the rapid data movement and bit level manipulation necessary in bit-mapped graphics applications.

The Am29116 includes an on-chip $32 \times 16$ RAM with latched outputs, a 16 -bit accumulator, a 16 -bit priority encoder, a status register, a condition-code generator/multiplexer, 16 three-state output buffers and a 16 -bit instruction latch and decoder (Figure 4).
The single-port RAM has output latches which are transparent when the clock input CP is HIGH and latched when CP is LOW. Data is written into the RAM while the clock is low if the IEN input is LOW and the instruction being executed selects the RAM as destination. Data is writien into the low-order 8 bits of the addressed word for byte instructions. Separate read and write RAM addresses may be used by supplying a multiplexer on instruction inputs $\mathrm{I}_{4}-\mathrm{I}_{0}$, using CP as the select signal.

The accumulator, which is edge-triggered, accepts data on the LOW-to-HIGH transition of CP if TEN is LOW and the instruction being executed selects it as the destination. As with RAM locations, byte instructions modify only the lower half of the accumulator, while word instructions modify the full register.
The data input latch ( $D$-latch) holds the data input to the ALU on the bidirectional $Y$ bus. The latch is transparent when the DLE input is HIGH and latched when the DLE input is LOW. The sources of the ALU operation are the RAM, the accumulator, the D-latch and the instruction inputs during IMMEDIATE instructions, and the 16 -bit barrel shifter is one of the ALU inputs. This permits rotating source data up to 15 positions in both byte and word modes.
The ALU, which can operate on one, two, or three operands depending upon the instruction being executed, contains full carry lookahead across all 16 -bits. All ALU operations can be performed in either word or byte mode. Status outputs Carry (C), Negative (N), and Overflow (OVR) are generated at the byte level for byte-mode operations and at the word level for word mode operations. A fourth flag, Zero (Z), is generated outside the ALU and also operates in either byte or word mode. The Stored Carry (QC) bit of the status register may be selected (along with 0 and 1) as the ALU carry input to support multi-precision arithmetic operations.

The Priority Encoder produces a binary-weighted code to indicate the location of the highest order ONE at its input. The input to the Priority Encoder is generated by the ALU which performs an AND operation on the operand to be prioritized and a mask. The mask determines the bit locations to be eliminated from prioritization. In the word mode, if no bit is HIGH, the output is a binary zero, if bit 15 is HIGH, the output is a binary one, bit 14 produces a binary two, etc. Finally, if only bit 0 is HIGH, a binary 16 is produced.

The 8 -bit status register and the condition code generator/ multiplexer contain the information and logic necessary to develop 12 condition-code test signals. The multiplexer selects one test signal and places it on the condition-code test (CT) output for use by the microprogram sequencer. The multiplexer is addressed in two ways. In the first, which is used to maximize throughput, the T-bus is used in input-only mode to specify the multiplexer select position directly. In the second, the CT output is selected through a test instruction.
The output enable Y -bus ( $\overline{\mathrm{OEY}}$ ) input enables the 16 threestate output buffers when it is LOW. When $\overline{\mathrm{OEY}}$ is HIGH, the output buffers are put in the high-impedance state (allowing data to be applied to the D-latch from the controller's 16 -bit data bus).
The 16 -bit instruction latch is normally transparent to allow decoding of the 16 instruction inputs, $\mathrm{I}_{15}-\mathrm{I}_{0}$, into internal control signals for the Am29116, and the execution of the instruction within a single clock cycle. The only exceptions to this rule are the immediate-operand instructions, which execute in two clock cycles rather than one. These are captured in the instruction latch during the first clock and executed during the second. It is during the second clock that the immediate operand, which resides in the $l_{15}-I_{0}$ field of the next microinstruction, is fetched and execution is completed. Immediate instructions are useful whenever masks and special arithmetic constants are needed. (The Am29116 allows the addition or subtraction of 2 N , and the use of 2 N and its complement as a mask, for any N between 0 and 15 within a single clock, so that for these 16 common numbers and 32 common masks, an immediate instruction is not required).

## Am29116 Instructions

The 16-bit instructions of the Am29116 can be grouped into eleven types, which correspond in a natural way with the Am29116's internal instruction decoding logic: single operand, two operand, single bit shift, rotate and merge, bit oriented, rotate by n bits, rotate and compare, prioritize, cyclic redundancy check, status and no-op. A system 29 AMDASM DEF file is available to provide the user with pre-defined mnemonics to microcode the Am29116
For example, the AMDASM SRC file line
SOR W,INC,SORY,R1
increments the full 16-bit contents of Am29116 RAM location 1 by one and places it onto the $Y$-bus and

## TOR1 B,SUBR,TORAR,R2

subtracts the low-order byte of the accumulator from the loworder byte of RAM location 2 while leaving the high-order byte of location 2 unchanged.

Table 1 summarizes the basic operations that Am29116 instructions can perform within a single cycle. (Two cycles are used if one operand is immediate data.) Note that for a typical line of this table, there are several Am29116 mnemonic operation codes, depending upon the choice of operand source(s) and destination. Many of the operations prove particularly
table 1. SINGLE-CLOCK Am29116 OPERATION
Add
Add with Carry
Add 2N
AND
Complement
Accumulate forward CRC
Accumulate reverse CRC
Exclusive NOR
Exclusive OR
Increment
Load $2 N$
Load $2 N$ Complemented
Move
NAND
Negate (2's complement)
NOR
OR
Prioritize under mask
Reset bit $N$
Reset status bit
Rotate $N$ bits
Rotate $N$ bits and compare under mask
Rotate $N$ bits and merge according to mask
Set bit $N$
Set status bit
Single bit shift
Subtrat
Subtract with Carry
Subtract $2 N$
Test bit $N$
Test status bit
Add
Add with Carry
Add $2^{N}$
Complement
Accumulate forward CRC
rse CRC
Exclusive NOR
Increment
Load 2 N
Move
Negate (2's complement)
NOR
OR
Reset bit N
Reset status bit
Rotate N bits and compare under mask
Set bit N
Set status bit
Single bit shift
Subtract
Subtract $2^{N}$
Test status bit
useful when implementing an intelligent graphics controller. For example, the manipulation of the arbitrary length, arbitrarilyaligned pixel data field is facilitated by the rotate and merge instruction. A 16 -bit operand is rotated by N bits and combined with a second 16 -bit operand under mask within a single cycle. The instructions which add and subtract 2 N , load $2^{\mathrm{N}}$ and its complement, allows creation of commonly used masks in a simple and efficient manner. Inverse video, image exclusive OR'ed with background requires bit level set, reset and test instructions. Detecting edge boundary in polygon filling requires the prioritize instructions.

## Am29116 BASED BIT-MAPPED SYSTEM ARCHITECTURE

Figure 5 is a simplified system block diagram of the Am29116 based bit-mapped graphics processor, and shows all of the required function and desirable features previously discussed. The Am29116 provides the capability of drawing graphics primitives into the frame buffer at high speed with minimal host computer involvement. The processor can draw vectors, characters and fill polygons at the rate of one pixel every $100 n s e c s$, with an average drawing speed of 2 million pixels per second.
The microprogrammed graphics processor contains a control section and a data path section. The control section consists of a microprogram sequencer (Am2910A) to produce the next microprogram address for the registered control memory (Am27S35), and ALU status flags, horizontal sync and other system test conditions are examined by the sequencer to determine the program flow. The macro commands are stored in some sort of display list memory and are interpreted by the sequencer. These commands are downloaded from the host

## Am29116 Architecture



Figure 5.

CPU through either programmed I/O or a DMA interface, readily implemented using the Am2940 DMA address generator and the Am2950 parallel I/O data port.
The display controller consists of three sections: dynamic memory refresh, video update and video refresh. Video update occurs during retrace blanking and is accomplished by writing pixels into the locations pointed to by the CPU X, Y counters. There is also a memory write data register (MWR) for the Am29116 so that the Am29116 does not have to wait a full memory cycle during write. Video refresh is performed through the display $\mathrm{X}, \mathrm{Y}$ counters with logic for automatic starting address reload. The frame buffer data is sent to a video shift register, and in conjunction with the color look-up table allows 16 colors to be displayed simultaneously from a palette of 16.7 million. There is also a readback path for the frame buffer data to be examined by the Am29116. The architecture shown uses one Am29116 to control multiple bit planes. There is associated with the display memory a write mask register which functions with the pattern circuitry in selectively modifying individual memory planes. The Am29116 is the heart of the system, providing the intelligent, high performance, high resolution color graphics capabilities through its controller oriented architecture and instruction set optimized for data movement and bit manipulation.

## GRAPHICS OPERATIONS

The architecture of the Am29116 is ideally suited for implementing the primitive graphics operations necessary in a bit-mapped graphics processor. An example of a graphics processor instruction set (courtesy of Metheus) is given in Table 2. Most operations reference two pointer registers ( $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$ ) resident in the graphics processor. For example the command $M_{1} V_{P_{1}} X, Y$ will load $P_{1}$ with the bit location specified by $X, Y$. The DRAW instruction will draw a line between $P_{1}$ and $P_{2}$.The
use of these two dedicated registers reduces the number of bits necessary to define an instruction; this allows the graphics processor to be easily interfaced to any 16-bit microprocessor bus, either as an I/O port or via DMA operation.

## DEFINE POINT

The most primitive graphics operation draws an individual point on the display, and when iterated, can be used to build more complex structures. Graphics structures such as lines, rectangles and polygons can be constructed out of individual points, and characters can also be drawn by plotting individual points using a technique similar to that used by dot matrix displays and printers. Additionally some of the more complicated algorithms require individual points to be added or removed. For example, line smoothing techniques (anti-aliasing) require individual points to be added adjacent to some lines to minimize their jagged appearance.
The algorithm for drawing a point on the display is a single address translation operation. The display processor is given the point in the form of an absolute coordinate (addresses relative to the cursor registers $P_{1}$ and $P_{2}$ are possible also, and easily implemented by computing an absolute address) on the display memory and must map that bit location into the bitmap memory. This logical-to-physical-address mapping is required because 1 K by 1 K logical display memory is actually implemented with 16 bits of 64 K memory chips.
Figure 6 shows the two memory organizations, and the different address formats. The translation operation simply takes the two 10 -bit addresses and generates a 16 -bit word address and the 4-bit bit address.
As shown in Figure 7, the rotate and merge instruction can be used to construct the new 16-bit word in two cycles. The first cycle left-justifies the 10 -bit $Y$ address by rotating it up 6 bit

## Am29116 Architecture

TABLE 2. DISPLAY CONTROLLER INSTRUCTION SET



Physical, Bit-Map Memory


Figure 6. Memory Organization and Address Translation


Figure 7. Simplified Am29116 Graphics Processor System Diagram


Figure 8. Line Draw Operation
positions. The upper 6 X address bits are then rotated down, and merged onto the 6 vacant bit positions to form the desired 16 -bit quantity. The remaining task of setting a single bit in the 16 -bit word can be easily accomplished by reading the word from the display memory and using the set 2 N instruction, with the 4 -bit $\mathrm{X}_{1}$ quantity as the index (either thru a jump table, or via an $N$ bit register). The modified word is then written back resulting in the desired bit being set in the display. Alternate implementations could do the mapping in hardware, but would be more difficult to change when upgrading memory. As seen in Figure 8, a horizontal line can result in 2 main cases: end points inside the 16 -bit word, and zero or more words separating end points. In the first case the bits between $P_{1}$ and $P_{2}$ must be set. This can be accomplished in the Am29116 by first setting all the bits above $\mathrm{P}_{1}$ and then resetting the bits above $P_{2}$. These operations can be easily implemented in the Am29116 by generating a mask word (either in microcode or hardware) to allow setting or resetting of the upper or lower bits of a word. The multiple word horizontal line can be handled by using the set instructions on the lower word, selectively setting all whole words (if any) between $P_{1}$ and $P_{2}$, and finally setting all bits'below $\mathrm{P}_{2}$.
Vertical lines are very easy. The lower 4 bits of the address specify which bit in the 16 -bit word is to be set; this operation is then iterated over the range between $Y_{1}$ and $Y_{2}$. The set $2^{N}$ operation in the Am29116 is ideal.
A more complicated situation exists when $P_{1}$ and $P_{2}$ are not orthogonal. In this situation a slope exists between $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$
$(\mathrm{Y} / \mathrm{X})$, and it is necessary to calculate the succession of points needed to draw the line. Calculation of the slope requires a divide operation, a 10 -bit divisor and a 20 -bit dividend with a 10-bit quotient.
Once the slope is calculated the line drawing algorithm uses successive add operations to compute dot locations. The X location is incremented by 1, and the Y location by the slope (the Y location count is a 20 -bit count to allow for the worst case slope of $1 / 1024$ ). As long as the upper 10 bits of the $Y$ counter don't change, the dot at the $X$ location is set. When the upper 10 bits of the $Y$ counter increment, the word is written into memory and the next word fetched. This algorithm terminates when $P_{2}$ is set.
The Am29116 contains all the resources and instructions necessary to implement the line drawing algorithm. The slope divide can be implemented in the Am29116 as a succession of subtract and shift operations; at 4 cycles per bit and 20 bits this will take about 80 cycles (at 100 ns per cycle, this is only 8 microseconds). The slope only needs to be computed once per line, and can be overlapped with the memory access time, resulting in almost no overhead.
The 20 -bit counter can be implemented with 2 of the 3216 -bit scratch pad storage registers. The increment with carry instruction is used to cascade to a 20 -bit address. More complicated draw instructions are possible, and one that is very useful is the draw rectangle instruction. It uses $P_{1}$ and $P_{2}$ to define a rectangle, and implementation is easy when the draw horizontal and draw vertical line instructions are implemented.


Figure 9. Polygon Fill Operation


Figure 10. Polygon Fill Algorithm

The locations of intermediate points A and B can be computed and calls to the appropriate horizontal or vertical line drawing routines executed.

## FILL OPERATIONS

One of the more complicated graphics functions is the FILL operation. This operation is used to replace the inside of a closed figure with a new value. Figure 9 illustrates how the FILL command, FILL POLYGON, would work. FILL POLYGON $\left(P_{1}\right)$ would replace the POLYGON enclosing $P_{1}$ with the seed value. This operation is used most often to "highlight" a particular structure of the display. For example, in a VLSI CAD system, a polygon might represent a particular diffusion pattern or metalization layer. Different areas need a different pattern or color to make it easy for the designer to distinguish one structure from another.
Nothing more than an interior point needs to be specified for the FILL POLYGON command. The algorithm is smart enough to figure out all internal points (or conversely all exterior points). The advantage of moving this intelligence to the drawing processor is a reduction in the host overhead. The host contains all the logical information about the polygon (verticles, line segments, etc.) in the figure data base. Computation of all the interior (or exterior) points from this information is possible, but the drawing processor can implement it much quicker by accessing the raw data and processing it. This is the main reason for the migration of intelligence from the process or to peripherals. In many cases a small amount of intelligence located at the data can provide sufficient processing capability to dramatically reduce the overhead on the central processor.

## POLYGON FILL ALGORITHM

As illustrated in Figure 10 the algorithm consists of scanning from the seed point $\left(\mathrm{P}_{1}\right)$ to the edge of the display (or alternately an enclosing rectangle, bounded by X and Y in Figure 10). Each time a line is crossed, the inside-flag is toggled, indicating a change from inside to outside or vice versa. (This is a topological tautology. Everytime a line of a closed figure is crossed the point changes from being enclosed to being outside, or from being outside to being inside). This is terminated when a line contains no inside portion. Once the "bottom" is detected, a scan from $P_{1}$ is generated upwards until a "blank" line is encountered. These two scans result in a completely filled polygon.

The Am29116 contains two special instructions which make it easy to implement the POLYGON FILL operation. The priority encode instruction and the N bit set instruction combine to implement a set-to-boundary primitive which can be used to construct the FILL POLYGON instruction. The set-to-boundary instruction takes a starting point and sets all elements to the right of the point (or left, depending on the direction specified) until a boundary is discovered. The words are fetched in 16 -bit increments. The priority encode instruction will return a value associated with the location of the first non-zero bit in the word. If no 1 is discovered the entire word is set and written to the display memory. The next word is read and the process is repeated until a 1 is discovered, at which time the output of the priority encoder indicates the address of the bit. The set instruction can then be used to set all bits up to the addressed bit. Once a perimeter point is discovered the inside/outside flag

## Am29116 Architecture

is toggled. Outside the polygon, a search-to-boundary instruction is used to find the next boundary (it terminates on the display boundary). This instruction is a simple modification to the set-to-boundary instruction; the set operation is deleted.

## BIT BLOCK TRANSFER (BITBLT)

One powerful basic operation commonly used in graphics involves the manipulation of a rectangular array of bits. Typically, the bit block transfer (BITBLT) operation accesses bits from a - source rectangle, performs a function on them, and stores the result in the destination rectangle. Figure 11 illustrates a possible configuration of the source and destination rectangle, embedded in separate bit maps. Successive bit pairs are taken from the source and destination bit stream respectively. The operation is iterated over all corresponding pixels of width W, and repeated again on a line by line basis to height $H$.
The BITBLT operation can be used to implement various functions. For example, the frame buffer memory is generally larger than the visible screen, and the invisible parts typically contain libraries of character fonts, menus, and various symbols. The particular text and symbols can be displayed by being specified as the source rectangle for the BITBLT operation, and moved to any part of the screen. Similarly, windows can be scrolled smoothly by copying them to the new location and clearing the reclaimed area.
To implement BITBLT effectively, parallel bits of data need to be accessed from and stored to the frame buffer memory. However, the source and destination rectangles can lie anywhere within the frame buffer and they are often not located conveniently along the arbitrary word boundaries. If it is necessary to write 16 non-aligned pixels into the frame buffer memory, the write might have to be split up as two separate writes into adjacent words of memory. The inner loop of BITBLT
reads 16 bits from the source and destination rectangles, operates on them and writes the result back to the destination. Neither of these rectangles need to be word-aligned; however, by handling the end conditions appropriately, the inner loop can be modified such that the destination word is aligned with the word boundary; the source can be across two words, as shown in Figure 12. A 16 -bit object is extracted from two adjacent words of the source rectangle and combined with the destination word to form the result. The two source words have to be rotated to allow the extraction of the desired 16 bits; the rotation count is the alignment difference between the source and destination rectangles. The two rotated words are then masked and combined to yield the destination word. The rotate count and required mask can be precomputed for each BITBLT operation.
Figure 13 illustrates an often used BITBLT variation - copy and the corresponding inner loop implemented by the Am29116. The mask is precomputed and stored in RAM $M_{0}$ of the Am29116. The rotate count, r , is also precomputed. It can be stored in an external N -register for instruction modification of the rotate instruction, or alternatively, the precomputed rotate count can be used as an index to a branch table with 16 separate instructions for each appropriate rotate count. Here, the tradeoff is between cycle time (having an N -count register externally will add a multiplexer stage delay to the Am29116 instruction path) and control memory (since each inner loop has to be repeated 16 times in memory with different rotate count). While the inner loop takes only three microcycles and two Am29116 microinstructions, two memory cycles from the frame buffer memory (one read and one write) are performed. The Am2925 can be used to stretch the microinstruction cycles during these times, or a frame buffer memory with a higher bandwidth can be designed to allow the inner loop to proceed at maximum speed.


Figure 11. BITBLT Operation


Figure 12. Modified Inner Loop of BITBLT


Figure 13. Inner Loop of Copy Operation

## Am29116 Architecture

## ADDITIONAL OPERATIONS

More complex operations can be implemented with the same primitives discussed previously. Polygon rotation allows a graphics object to be positioned in any orientation. For example, in a Computer Aided Design environment for mechanical equipment, a metal plate could be defined, then placed with a different orientation on the assembled structure. Windowing opens a viewport on the display to show a portion of a different diagram. This allows many multiple displays to be shown on the screen at a time, as in Defender, where a window showing a global, strategic view is placed above the more detailed tactical display. Finally zoom (magnification of a section of a display) and pan (moving a window to select a view from a larger display) allow the user greater flexibility in large graphics environments.

Up to this point the discussion has been limited to two dimensional graphics objects. The extension to three dimensional objects requires additional number crunching capabilities, and a hardware multiplier is necessary. The Am29116 combined with the Am29516/517 16-by-16 multiplier will allow some three dimensional graphics operations to be implemented. Three dimensional rotation algorithms are very multiply intensive and the 65ns multiply time of the Am29516/517 is fast enough to do the necessary calculations in real time. Two dimensional projections of three dimensional objects are also very useful in Computer Aided Machining applications, but are also very multiply intensive and the hardware multiply capability is a necessity in an interactive environment.

## Am29118

Eight-Bit Am29116 I/O Support


This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

## FUNCTIONAL DESCRIPTION

The Am29118 has two eight-bit wide registers (R-Register and S -Register) connected back to back for moving data in both directions between two buses. The R-Register serves the dual purpose of transmitting data from one bus (device's internal bus) to another (system bus), and serving as an additional accumulator for the Am29116.

The accumulator function is implemented by allowing the A-port to provide read and write data from the R-Register and read data from the S-Register; the B-port provides read data for the R-Register and write data for the S-Register (similar to the Am2952). This additional function in the Am29118 is implemented with a two-input multiplexer, as shown in Figure 1. Each register has an individual clock ( $\mathrm{CP}_{\mathrm{R}}$ and $\mathrm{CPS}_{\mathrm{S}}$ ), a Clock Enable, ( $\mathrm{CE}_{\mathrm{R}}$ and $\overline{\mathrm{CE}}_{\text {S }}$ ), and a three-state Output Enable ( $\overline{\mathrm{OE}}_{\mathrm{AS}}$ and $\overline{\mathrm{OE}}_{\mathrm{BR}}$ ). The clock enable signal for the R-Register ( $\overline{\mathrm{CE}}_{\mathrm{R}}$ ) and the Output Enable Signal for the S-Register ( $\overline{\mathrm{OE}}_{\mathrm{AS}}$ )
are encoded to make the R-Register an accumulator, in addition to all the Am2952 functions as shown in Table 1. Because of this encoding, transferring data from the S -Register to the RRegister is not permissible.

TABLE 1.

$\overline{\mathbf{O E}}_{\mathbf{A S}}$	$\overline{\mathbf{C E}}_{\mathbf{R}}$	Function
0	0	Read R, Disable $\mathrm{CP}_{\mathrm{R}}$
0	1	Read S, Disable $\mathrm{CP}_{\mathrm{R}}$
1	0	Enable $\mathrm{CP}_{\mathrm{R}}$
1	1	Disable $\mathrm{CP}_{\mathrm{R}}$

Figure 2. System Configuration


MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 to $+\mathrm{V}_{\mathrm{CC}} \mathrm{MAX}$
DC Input Voltage	-0.5 to +5.5 V

DC Output Current, into Outputs
DC Input Current

## OPERATING RANGE

Part Number	Range		V $_{\text {CC }}$	
Am29118DC	COM	$T_{A}=0$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$	$(\mathrm{MIN}=4.75 \mathrm{~V}, \mathrm{MAX}=5.25 \mathrm{~V})$
Am29118DM	MIL	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MIN}=4.50 \mathrm{~V}, \mathrm{MAX}=5.50 \mathrm{~V})$

## Am29118 <br> DC CHARACTERISTICS OVER OPERATING RANGE

Param	Description	Test Conditions			Min	Typ	Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$A_{0-7}, B_{0-7}$	MIL, $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$				Volts
				COML, $\mathrm{IOL}^{\prime}=-6.5 \mathrm{~mA}$				
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$A_{0-7}, B_{0-7}$	MIL, $\mathrm{IOL}^{\text {a }}=16 \mathrm{~mA}$				Volts
				$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{IOL}=24 \mathrm{~mA}$				
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs						Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs						Volts
$\mathrm{v}_{1}$	Input Clamp Voltage	$V_{C C}=M 1 N, \mathbb{I}_{N}=-18 \mathrm{~mA}$						Volts
ILIL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.5 \mathrm{~V}$		$\mathrm{A}_{0.7}, \mathrm{~B}_{0.7}$				$\mu \mathrm{A}$
				Others				$\mu \mathrm{A}$
${ }_{1} H_{1}$	Input HIGH Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mathrm{A}_{0.7}, \mathrm{~B}_{0-7}$				$\mu \mathrm{A}$
				Others				
1	Input HIGH Current	$V_{C C}=M A X$,	5.5 V					mA
	Output Off-state	$V_{C C}=$ MAX		$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				
10	Leakage Current	$V_{C C}=$ MAX	$A_{0-7}, B_{0-7}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$V_{C C}=M A X$						mA
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
				$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$				
$I^{\text {c }}$	Power Supply Current	$V_{C C}=M A X$		$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				mA
				$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$				
				$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$				

## SWITCHING CHARACTERISTICS

The tables below define the Am29118 switching characteristics. Tables A are setup and hold times relative to a clock LOW-toHIGH transition. Tables B are propagational delays. Tables C are pulse-width requirements. Tables D are enable/disable times. All measurements are made at 1.5 V with input levels at 0 or 3 V . All values are in ns with $R_{L}$ on $A_{i}$ and $B_{i}=220 \Omega$ and $R_{L}$ on $F S$ and $F R=300 \Omega$. $C_{L}=50 \mathrm{pF}$ except output disable times which are specified at $C_{L}=5 p F$.

## GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=4.75$ to $5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ )
A. Setup and Hold Times

Input	With   Respect to	$t_{s}$	$t_{n}$
$\mathrm{A}_{0.7}$	CPR 5		
$\mathrm{B}_{0.7}$	CPS 5		
$\overline{\mathrm{CE}}_{S}$	CPS 5		
$\overline{\mathrm{CE}}_{\mathrm{R}}$	CPR $\mathcal{F}$		

B. Propagation Delays

Input	$\mathbf{A}_{\mathbf{0} .7}$	$\mathbf{B}_{\mathbf{0}-\mathbf{7}}$
CPS J		
CPR		

C. Pulse-Width Requirements

Input	Min LOW   Pulse Width	Min HIGH   Pulse Width
CPS		
CPR		

D. Enable/Disable Times

From	To	Disable	Enable
$\overline{\mathrm{OE}}_{\mathrm{AS}}$	$\mathrm{A}_{0-7}$		
$\overline{\mathrm{OE}}_{\mathrm{BR}}$	$\mathrm{B}_{0-7}$		

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE
$\left(\mathrm{T}_{\mathrm{C}}=-55\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ )
A. Setup and Hold Times

Input	With Respect to	$\mathrm{t}_{\mathbf{s}}$	$t_{n}$
$\mathrm{A}_{0.7}$	CPR 5		
$\mathrm{B}_{0-7}$	CPS 5		
$\overline{\mathrm{CE}}_{S}$	CPS 5		
$\overline{\mathrm{CE}}_{\mathrm{F}}$	CPR 5		

C. Pulse-Width Requirements

Input	Min LOW   Pulse Width	Min HIGH   Pulse Width
CPS		
CPR		

B. Propagation Delays

Input	$\mathbf{A}_{\mathbf{0}-\mathbf{7}}$	$\mathbf{B}_{\mathbf{0}-\mathbf{7}}$
CPS $\mathbf{I}$		
CPR $\mathbf{I}$		

D. Enable/Disable Times

From	To	Disable	Enable
$\overline{\mathrm{OE}}_{\mathrm{AS}}$	$\mathrm{A}_{0.7}$		
$\overline{\mathrm{OE}}_{\mathrm{BR}}$	$\mathrm{B}_{0.7}$		

## Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

1. Insure the part is adequately decoupled at the test head. Large changes in $V_{C C}$ current as the device switches may cause erroneous function failures due to $\mathrm{V}_{\mathrm{CC}}$ changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground
cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach $\mathrm{V}_{\mathrm{IL}}$ or $V_{I H}$ until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 2.4 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

## APPLICATIONS

In the Am29116 system, there is only one 1/O port available for data communication with the ALU. In such a system, the Am29118 acts as an additional accumulator (temporary storage) to increase performance, and also provides capability of a bidirectional I/O port (like the Am2952).

Figure 2 shows the connections necessary for the Am29118 to be used as an accumulator as well as a bidirectional I/O port. The A-port is connected to the Y -bus (internal bus) of the Am29116, and B-port is connected to the system data bus. Four microcode bits are used for source and destination control for the Y -bus and the system data bus. Figure 3 shows the timing waveforms to modify an accumulator (R-Register) in two microcycles. During the first cycle, data is read from the R-Register, modified in the Am29116 and stored in one of the internal registers. A two-address architecture is required if the second operand to modify the R-Register is in one of the RAM registers, and the result has to be stored in another RAM register. For stable operation, data from the R-Register is latched in
the D-Latch halfway through the clock during the first cycle. The instruction is executed and the result stored into a scratchpad register. In the second cycle, data is moved from the internal result register to the R-Register of the Am29118. Figure 4 shows the timing waveforms to modify an accumulator (R-Register) in a single microcycle. In the first half of the cycle the source register is enable on the Y -bus into the D-Latch of the Am29116. The D-Latch is transparent during the first half of the cycle. In the second half of the cycle, data is latched in the D-Latch and the bus source is disabled. During the second half of the cycle, the output buffer of the Am29116 is enabled to bring the result on the Y -bus to be loaded into the destination. These two techniques provide different advantages and disadvantages to modify the external accumulator using the Am29116. The first technique (Figure 3) takes two microcycles but allow a shorter microcycle time. The second technique (Figure 4) takes only one microcycle but needs a longer microcycle time. There is also a requirement for the system bus to transfer data as input to the Am29116. The S-Register is used in this case to receive data from the system bus (like the Am2952).

Figure 3. Timing Waveforms for Modifying R-Register in Two Microcycle using the Am29116


Figure 4. Timing Waveforms for Modifying R-Register using the Am29116


## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am29118   Order Number	Package Type   (Note 1)	Operating Range   (Note 2)	Screening Level   (Note 3)
AM29118DC	D-24	C	C-1
AM29118DC-B	D-24	C	B-2 (Note 4)
AM29118DM	D-24	$M$	C-3
AM29118DM-B	D-24	$M$	B-3
AM29118XC	Dice	$C$	Visual inspection   AM29118XM
	Dice	$M$	MIL-STD-883
Method 2010B.			

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 96 hour burn-in.

liver
SEction

## NUMERIC DEVICE MOEX

functiontwox




Am2960/70
MEMORY
SUPPORT

> DMUVIC MEVORY CONTROL
> MEMORY YEG/CONTROU UNIS ERROR DETECTON AND CORAECTION

```
Am2900
PROCESSORS
AND PERIPHERALS
```

BT-SUCE PROCESSORS
MCROCODE EGUUNGERS
ISIPERPRERALS


Am29100
CONTHOLLER16-BIT MICROPROCESSOR   FAMLY   LSERRUPTBLESERUENCERS



## Am29500

ARRAY AND DIGITAL SIGNAL PROCESSING
$16 \times 16$ PARALLEL MULTIPLIERS
MULTIPORT PIPELINED PROCESSORS
FFT ADDRESS SEQUENCERS

Am29800
HIGH PERFORMANCE BUSINTERFACE
8,9, AND to-EIT MOX BUS INTERFACE DIAGNOSTICRECISTERS mox comparators
HICH PERFORMANCE SCHOTTKY LOGIC
Am25S
Am2LS
LOW-POWER SCHOTTKYLOGGC
B $\times 8$ PARALLELULTPLIERS

Am268

HHGH PERFORMANCE SCHOTTKY BUS INTERFACE DATA COMMUNICATIONS INTERFACE

8100
8200

MOS MICROPROCESSOR SUPPORT PRODUCTS FOR 8-BIT AND 16-BIT MICROPROCESSORS

## MEMORIES, <br> pals, <br> MOS'PERIPHERALS, AnALOG PROMS, EIPOLAR RAMS, MOS STATIC RAMS 20-PIN AND 24-PIN PALs, <br> MOSULI PERTPHERALS <br> YERY HIGH SPEED DATA ACOUISITION

general
information
PACKAGING, ORDERING INFORMATION
TESTING, QuALTY ASSURANCE/GUARANTEES GATE COUNTS, DIE SIZES, RELAABILITY

## Am29500

# Array Processing and Digital Signal Processing Index 

Am29500 Family Overview - Architecture ..... 7-1

- Concept ..... 7-1
- Complete System ..... 7-1
Record Signal-Processing Rates Spring from Chip Refinements reprinted from Electronics ..... 7-3
Am29501 Multi-Port Pipelined Processor (MPP): 8-Bit-Slice ..... 7-6
Am29510 High-Speed $16 \times 16$ Parallel Multiplier with Accumulator ..... 7-17
Am29516 High-Speed $16 \times 16$ Parallel Multiplier with Registers ..... 7-25
Am29516A . Super-Speed $16 \times 16$ Parallel Multiplier ..... 7-25
Am29517 High-Speed $16 \times 16$ Parallel Multiplier with Clock Enables ..... 7-25
Am29517A Super-Speed $16 \times 16$ Parallel Multiplier with Clock Enables ..... 7-25
Am29516/17 . $32 \times 32$ Multiplier (Application Note) ..... 7-34
Am29520 Multilevel Pipeline Registers (8-Bits) ..... 7-35
Am29521 Multilevel Pipeline Registers (8-Bits) ..... 7-35
Am29526 Multilevel Pipeline Registers (8-Bits) ..... $7-43$
Am29527 Multilevel Pipeline Registers (8-Bits) ..... 7-43
Am29528 Multilevel Pipeline Registers (8-Bits) ..... 7-43
Am29529 Multilevel Pipeline Registers (8-Bits) ..... 7-43
Am29540 Fast Fourier Transform (FFT) Address Generator ..... $7-48$
Am2910 Sequencer ..... See Section 5
Am2914 Interrupt Control ..... See Section 5
Am2925 Variable Clock ..... See Section 5
Am2927/28 Transceivers ..... See Section 5
Am2940 DMA ..... See Section 5
Am2942 Counter ..... See Section 5
Am2950/51 I/O Ports ..... See Section 5
Am29800 Bus Interface ..... See Section 8
Bipolar PROMs See Section 12
Design Aids
Am2900 Family Applications Literature ..... See Section 3
Customer Education Center Courses (including Am29500) ..... See Section 3
Videotape Seminar Kits (including Am29500) ..... See Section 3
System 29 Development System See Section 13 General Information


## The Am29500 Family <br> A New High-Performance Architecture for Digital Signal/Array Processing

The'new system designs of the '80s will continue to press the performance limits of technology. Parallel processing and pipelined architectures will become the standard approach. The new architectures are best implemented with a chip set that has been designed from the ground up with high speed array processing in mind.
The Am29500 Family is designed specifically for these new architectures. Every key product feature supports the system end objective of maximum performance and flexibility. These include:

- Microprogrammable, parallel functions
- Pipelined organization used throughout
- IMOX ${ }^{\text {TM }}$ process and ECL internal structures
- TTL I/O for easy interfacing

The first members of the family are targeted for the efficient execution of DSP and array processing algorithms. The most common include Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) digital filters and Fast Fourier Transform (FFT) processors.
The first major building blocks are designed to support maximum performance signal processing applications.
Included are:

## - Am29501 Multi-Port Pipelined Processor

A specialized parallel processor which executes multiple simultaneous data operations. Its Register/ALU structure provides the key functional element for a high performance signal processing system. Eight-bit slice!

## - Am29540 FFT. Address Sequencer

This algorithm-specific VLSI chip generates data and coefficient addresses for the Fast Fourier Transform. It supports a wide variety of FFT algorithms in either radix-2 or radix-4.

- Am29516/29517 High Speed $16 \times 16$-Bit Parallel Multipliers Both are $16 \times 16$-bit Parallel Multipliers. The Am29516 is pin and functionally compatible with the MPY-16HJ, but with an added multiplexer to output the LSP at the MSP port. The Am29517 is the same function, but with clock enables for microprogrammed applications.
- Am29520/29521 Multilevel Pipeline Registers

Both devices contain four 8-bit registers for dual two-stage (FFT butterfly) or single four-stage (general purpose) data or address pipelining. Combined load-and-shift (Am29520) or separate load-and-shift (Am29521) control options are available.

- Am29526/29527/29528/29529 High-Speed Sine/Cosine Function Generators
The sine and cosine functions are necessary for Fast Fourier Transforms (FFT). The Am29526/527 generate the most significant and least significant byte of the 16-bit sine function and the Am29528/529 generate the most significant and least significant byte of the 16 -bit cosine function. The sine and cosine functions are generated to provide a range of $\theta$ for a half cycle, $0 \leqslant \theta \leqslant \pi$, in increments of $\pi / 2048$. All four units have a 50 ns maximüm commercial generation time.


MPL-025

A high-performance signal processor may be constructed as shown in the diagram. The processor is built entirely with new Am29500 digital signal processing and Am2900 devices. Such a processor is attached as a slave to the main system bus to perform the multitude of arithmetic operations which prevail in DSP algorithms.
Using this architecture it is possible to implement a radix2FFT butterfly in four instruction cycles. This allows a 1024point complex FFT to be performed in approximately 2 ms .

Fast multiplication is the key to high-speed digital-signal processing and high-speed array processing. In addition to the Am29516 and Am29517, Advanced Micro Devices is developing an extensive family of multipliers. The first addition to the high-performance multiplier group:

- Am29510 High-Performance $16 \times 16$ Bit Multiply Accumulator

The multiply accumulator provides single cycle multiply accumulation or subtraction. The Am29510 is a pin- and function-compatible alternate source for the TRW TDC1010J. As illustrated with the Am29516/517, the multiply accumulator will have a speed improvement over existing multiply accumulators.

- Am295XX to be announced.
- More Multipliers

A proliferation of the existing multiplier architectures will generate a complete family of multipliers and multiplier accumulators.

- Floating Point Processors (FPP)

A 32 -bit FPP capable of performing single-cycle double-precision floating-point addition, subtraction, and multiplication. The FPP performs the arithmetic operations in DEC or IEEE format. Available 1984.

Am29500 ARRAY PROCESSOR


# Electronics 

# Record signal-processing rates spring from chip refinements 

Improved buses, reconfigurability, pipelining, and parallelism unite in a bipolar family for building array and signal processors

by Bernard New and Lyle Pittroff, Advanced Micro Devices Inc., Sunnyvale, Calif.

$\square$ The number-crunching microprocessor requirements of the 1980s are ill-served by today's comparatively slow, conventional central processing units. Instead, the algorithms executed by both general-purpose array processors and the more specialized digital-signal processors require highly individual architectures for maximum speed and performance. Jumping on the fast track is a new group of bipolar devices-the AM29500 family that combines internal emitter-coupled-logic circuit design for speed with TTL outputs for compatibility with the outside world.

The family is able to overcome such speed-retarding problems as inadequate data-bus memory and bandwidths and slow execution times through a redesigned bus structure and parallel and pipelined processing. In fact, the bus structure is designed so that there are enough parallel buses to keep a device's multiplier or its arithmetic processing unit, or both, busy during each cycle. These features, plus programmable reconfigurability, make the 29500 family the fastest group of large-scale integrated parts for signal processors to be commercially available. In one series of tests, a 29500based system had three times the speed achieved by the older 2900 family.
The 29500 series are general-purpose building blocks. They include a byte-slice, multiple-port programmable signal processor (the 29501), a 16 -by-16-bit parallel
multiplier with programmable input/output (the 29516/17), a multilevel pipeline register for data and address pipelining (the 29520/21), and a fast-Fouriertransform address sequencer (the 29540).

To increase processor speed, architectural enhancements had to be made to the older 2900 device designs. That family took some steps in the right direction because it provides many of the peripheral building blocks, like interface devices and direct-memory-access chips, needed for real-time signal processing. But the 2900's arithmetic devices are targeted at generalpurpose computing. They do not have the parallel channels that are required for a high-speed array or signal processor environment.

One way of satisfying this need was to upgrade the 2900 family's bus structure, number organization, and resource management. The new bus structure can support addition or subtraction and multiplication on every cycle because of extra parallel buses. Number organization can now handle complex numbers in parallel quickly. In addition, flexibility of resource management permits the building blocks to be interconnected in enough ways to support all algorithms of interest efficiently.

For dedicated-function and multiple-algorithm processing (Fig. 1), a special-purpose processor like the 29501 operates under the control of a host computer system that switches large blocks of data between its main memory and temporary slave through DMA transfer. Once this transfer is complete, the special-purpose processor operates under local program control. Each algorithm is executed by its own software routine, which is stored in its own local memory independently of the host computer and its high-level language.
Although the precise architecture of Fig. 1 varies with the algorithm used, all array- and signal-processing algorithms have similar needs for

1. Dual-purpose. In a typical array- or digi-tal-signal-processor architecture, both dedicated and multiple algorithm functions can be implemented. A host computer provides overall guidance and a large memory.

## Electronics

arithmetic and addressing-short, repetitive calculation loops requiring parallelism and pipelining. In addition, in digital-signal processing, arithmetic operations using complex numbers may be necessary, whereupon the computational load increases to twice as many additions or subtractions and four times as many multiplications as for real numbers.

Because calculation loops for arithmetic operations are short, the 29500 family surrounds the additions with continuous memory accesses - data is fetched, the calculation loop performed, and the results written back into memory. Hence there are many times more memory accesses than there are data points. For fFTs, the number of repetitive memory accesses is multiplied by the number of passes through the data. Fortunately, although the memory-access sequence is long, it is well structured, making it possible as a result to design dedicated address sequencers.

## Divide and rule

The purpose of pipelining is to allow lengthy operations to be divided into suboperations, so that when one piece of data has completed a suboperation, the same hardware can start on the next piece. In this way, the 29501 allows up to a $500 \%$ speed improvement.

For example, because a typical processor handles a set number of algorithms, its architecture can be very specific concerning arithmetic and address generation-no longer does the CPU have to mix addressing with arithmetic computations. Also, separate sections can be streamlined to calculate each type in parallel and fast.

A significant feature of the data path for the 29500 family is the fact that the devices handle only data and do no address calculations. The data path can, therefore, be optimized for arithmetic.

The 29501 multiport parallel processor also represents the current thinking about multiport organization. It has a data-bus port, an output port to a multiplier, and an input port from a multiplier. The chip can process an FFT fast because of its highly parallel internal bus structure. In this structure, six registers operate as pipelines and are connected to the I/O ports and an arithmetic and logic unit by 10 separate byte-wide internal buses.

A typical cycle on the 29501 consists of data input from memory, data output to the multiplier, retrieving a previous product from the multiplier, and register-toregister ALU operations and data moves. Because these operations can occur during the same cycle, data manipulation is limited only by the designer's creativity. This flexibility, plus the possibility of parallel processors operating on complex numbers, is what makes high-speed operation possible.

## Twice as fast

The 29500 family uses two high-speed parallel 16-by-16-bit multipliers - the 29516 and 29517. The 29516 is compatible with TRW's MPY-16HJ multiplier but is more than twice as fast and has an output multiplexer. Either the least or the most significant product can be selected at this multiplexer output for use in many pipelined architecture calculations.

On the other hand, the 29517 multiplier incorporates
all the features of the 29516 but has a modified $1 / 0-$ register clocking structure to provide a single-clock input with register enables. This approach is preferred to the older clock-gating method, which suffers from skews.

## Dedicated addressing

Address-sequencing complexity for array and signal processors can range from integer counting to the complicated number patterns of FFTs. To keep addressing speeds high, the 29500 series generates addresses in parallel to the data path. However, other architectural considerations must also be weighed.

For a specific application, several system implications affect the choice of algorithm from the diversity of FFTS available. This choice, together with the transform length (or lengths) to be implemented, determines the address sequence to be generated. Usually, the nestedcount nature of these sequences has forced the designer to use many medium-scale integrated-circuit packages.

The 29540 is a single-chip solution to the addresssequencing problem (Fig. 2). Four control inputs allow programmed or hardwired control of the actual number of data points in the transform. From this and other control-input commands, the 29540 can be sequenced through the entire transform while providing output flags. These flags indicate when each data pass is over and when the entire transform is complete.

For their part, the 29540 's control inputs accept the most common fFT formats. The designer can opt for bit-reversed output order or bit-reversed input order, radix-2 or radix-4 address sequences, and decimation-

2. Multiple sequences. Fast Fourier transforms may have unusual address sequences, and with its four control inputs, the addresssequencing 29540 chip is designed to handle all of them. It provides output flags when a calculation is complete.

3. Complete. A typical signal-processing system provides separate, paratlel paths for complex data. But in the 29500 setup, address pipelining handtes both data and coefficient addressing operations for fast Fourier and other common transforms.
in-frequency or decimation-in-time sequences.
The 16 -bit output port of the address sequencer is controlled by the counter and transform-length-input instructions. Any transform from 2 to 65,536 points long can be selected. The higher-order bits not required for the specified transforms (a 1,024-point transform only requires 10 -bit addresses) can be preloaded through a bidirectional address port to access the next data block.

## Easy address pipelining

Because the primary objective of this architecture is to operate on array- or signal-processor systems in a highly parallel manner, addresses must also be pipelined. As a result, each address must be tracked, which requires a pipeline register-such as the 29520 or 29521 . These are byte-slice pipelining registers configurable as a dual two-level or a single four-level pipeline. In both devices, the single four-level configuration operates as a pushonly stack. The selection of register is determined by the designer's choice of system timing and data movement.
The architecture of a typical 29500 signal-processing
system (Fig. 3) can employ separate parallel data paths for complex data. Three possible address-generator blocks are shown, and together they represent a generalpurpose processor. Address sequences for other than FFTs might be configured from programmable read-only memory or 2901-based designs. Address pipelining is shown for both data and coefficient addresses.
In this design, either bipolar or mOS static randomaccess memories store data temporarily, and high-speed bipolar PROMS and RAMS or MOS ROMS are used for coefficient look-up tables. The local-control store may be either a PROM or a writable control-store RAM and can be controlled by a 2910 program sequencer.
A common benchmark for signal processing is the execution speed of an FFT. The 29500 processor, operating at a 10 -megahertz clock rate, can perform the transform in 400 nanoseconds. This speed allows a $1,024-$ point complex radix-2 butterfly to be completed in 2.0 milliseconds. Compared with the best throughput available in current bit-slice CPU architectures, this figure is more than a twentyfold improvement.

# Am29501 <br> Multi-Port Pipelined Processor (Byte-Slice ${ }^{\text {M }}$ ) Advanced Bipolar VLSI ADVANCED INFORMATION 

## DISTINCTIVE CHARACTERISTICS

- Expandable Byte-Slice ${ }^{\text {TM }}$ Register-ALU
- Eight instruction ALU
- Four arithmetic operations
- Four logic operations
- Force/Inhibit carry modes
- Flexible expansion - has carry and $\overline{\mathrm{P}} / \overline{\mathrm{G}}$
- Ten internal data paths
- Highly parallel architectures
- Multiple simultaneous data manipulations
- Pipelining register file has six 8 -bit registers
- Multilevel pipelining
- Multiple register-to-register moves
- Completely microprogrammable
- No instruction encoding
- All operation combinations available
- Three I/O ports for maximum system interconnect flexibility
- 64-pin DIP
- Single 5V supply with TTL I/O
- IMOX ${ }^{\text {Th }}$ process with internal ECL

RELATED PRODUCTS	
Part No.	Description
Am2902	Carry look-ahead generator
Am29516/17	$16 \times 16$ bit high speed multipliers
Am25S558	$8 \times 8$ bit multiplier

## GENERAL DESCRIPTION

The Am29501 is an expandable Byte-Slice ${ }^{\text {TM }}$ register-ALU designed to bring maximum speed to array processor and digital signal processor systems. It provides a flexible processor building block for implementing highly pipelined, highly parallel architectures where speed is achieved by a combination of optimized integrated circuit technology (IMOX ${ }^{\text {TM }}$ process and internal ECL circuitry) and customized system architecture. I/O port flexibility and multiple concurrent data moves make it possible to construct processors capable of very high throughput. Parallel processors are especially efficient for array/vector operations or signal processing algorithms requiring complex number arithmetic (e.g. FFT, convolution, correlation, etc.).

The Am29501's Pipeline Register File provides data storage and pipelining flexibility. Any combination of register instructions, ALU instructions, and I/O instructions can be microprogrammed to occur in the same cycle. This allows overlap of external multiplication, ALU operations, and memory I/O.
Three I/O ports support a wide variety of parallel, pipelined architectures by providing separate I/O ports for the multiplier and the memory data bus. Either of two bidirectional I/O ports, DIO and MIO, can interface to the data bus or multiplier Y-input port and a separate MI port connects to the multiplier output port.




The following conditions apply unless otherwise specified:
COM'L $\quad \mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \quad(\mathrm{MIN}=4.75 \mathrm{~V} \quad \mathrm{MAX}=5.25 \mathrm{~V})$
MIL $\quad \mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \quad(\mathrm{MIN}=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.50 \mathrm{~V})$

## DC CHARACTERISTICS OVER OPERATING RANGE



Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature under Bias $-T_{C}$	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

## Am29501

Am29501
SWITCHING CHARACTERISTICS AT ROOM TEMPERATURE
Typical Setup/Hold Times and Propagation Delays
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

	Setup, $\mathrm{t}_{\mathrm{S}} /$ Hold, $\mathrm{t}_{\mathrm{H}}$		Propagation Delay Times, tpD									Units
	Register Input	Reg via ALU	$\begin{aligned} & \text { MIO } \\ & \text { Port } \end{aligned}$	MIO via ALU	$\begin{aligned} & \text { DIO } \\ & \text { Port } \end{aligned}$	Cout	P	G	Z	Overflow	SEOUT	
CLK			17	27	17	23	23	23	27	34	18	ns
DIO			12									ns
M1O						22	22	22	25	22	17	ns
MI				24		22	22	22	25	22	17	ns
$\mathrm{Cl}_{\text {IN }}$				16		10			17	13		ns
SEIN				23		19	19	16	22	19		ns
$\mathrm{l}_{2-3}$ (DIO)					14							ns
$\mathrm{I}_{4-6}$ (M1O)			15									ns
$17-18$ (REG)												ns
$1_{19-22}$ (ALU OP)			25			19	19	19		19		ns
$\mathrm{I}_{23-28}$ (ALU SEL)				31		20	20	20	25	22	14	ns

Minimum Setup/Hold Times and Maximum Propagation Delays
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

To Output	Setup, $\mathrm{t}_{\mathbf{S}} /$ Hold, $\mathrm{t}_{\mathbf{H}}$					opa	\%		s,			
From Input	Register Input	Reg via ALU	$\begin{aligned} & \hline \text { MIO } \\ & \text { Port } \end{aligned}$	MIO via   ALU				G	z	Overflow	SEOUT	Units
CLK												ns
DIO												ns
MIO												ns
MI												ns
$\mathrm{ClN}_{1 \mathrm{~N}}$												ns
$\mathrm{SE}_{\text {IN }}$												ns
$\mathrm{I}_{2-3}$ (DIO)												ns
$\mathrm{I}_{4-6}$ (MIO)												ns
$1_{7-18}$ (REG)												ns
$\mathrm{I}_{19-22}$ (ALU OP)												ns
$\mathrm{I}_{23-28}$ (ALU SEL)												ns

Am29501 Three-State Timing


SWITCHING CHARACTERISTICS, COMMERCIAL
Minimum Setup/Hold Times and Maximum Propagation Delays
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

	Setup, $\mathrm{t}_{\mathbf{S}} /$ Hold, $\mathrm{t}_{\mathbf{H}}$		Propagation Delay Times, $\mathrm{t}_{\text {PD }}$									
	Register Input	Reg via ALU	MIO Port	MIO via ALU	DIO Port	Cout	P	G	z	Overflow	SEOUT	Units
CLK			23	35	24	31	31	31	39	34	26	ns
DIO	10/5		17									ns
MIO	10/5	20/0				29	29	29	34	29	24	ns
MI	10/5	20/0		32		30	29	29.	34	29	24	ns
$\mathrm{ClN}_{\text {IN }}$		10/5		25		15			26	19		ns
SEIN		20/0		29		27	27	22	32	27		ns
$\mathrm{t}_{2-3}$ (DIO)					21							ns
$\mathrm{I}_{4-6}$ (MIO)			22									ns
17-18 (REG)	10/5											ns
$\mathrm{I}_{19-22}$ (ALU OP)		20/0	32			27	27	27	32	<29		ns
$\mathrm{I}_{23-28}$ (ALU SEL)		20/0				29	29	29	35	32	22	ns

Am29501
SWITCHING CHARACTERISTICS, MILITARY
Minimum Setup/Hold Times and Maximum Propagation Delays.
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$


Note: Please refer to Guidelines for Testing Am2900 Family Devices in section 13 of this data book.

Am29501 Minimum Clock Pulse Widths

Parameter				COM'L	MIL	
	Description		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \pm 5 \% \\ & T_{A}=0 \text { to }-70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=-55 \text { to }-125^{\circ} \mathrm{C} \end{gathered}$	Units
${ }^{\text {tpw }}$	Clock Pulse Width	High				ns
		Low				ns

## CONTROL INPUT FUNCTION TABLES

1. Data I/O Port (DIO) Output Select			
$\mathrm{I}_{3}$	$\mathrm{I}_{2}$	$\mathrm{I}_{0}$	Source
L	L	L	$A_{2}$
L	H	L	$A_{3}$
H	L	L	$B_{2}$
H	H	L	$B_{3}$
X	X	H	Output Disabled


5. Register $A_{3}$ Data Source Select		
$\mathrm{I}_{\mathbf{1 2}}$	$\mathrm{I}_{11}$	Source
L	L	MSP (MI)
L	$H$	$A L U$
$H$	L	$A_{2}$
$H$	$H$	$A_{3}$ (Hold)


2. Multiplier I/O Port (MIO) Output Select				
I $_{6}$	I $_{5}$	$\mathrm{I}_{4}$	$\mathrm{I}_{1}$	Source
L	L	L	L	$\mathrm{A}_{1}$
L	L	H	L	A $_{2}$
L	H	L	L	$A_{3}$
L	H	H	L	$B_{1}$
H	L	L	L	$B_{2}$
H	L	H	L	$B_{3}$
H	H	L	L	ALU
H	H	H	L	DI
X	X	X	H	Output Disabled


6. Register $B_{1}$ Data Source Select		
$l_{14}$	$l_{13}$	Source
$L$	$L$	$M S P(M I)$
$L$	$H$	$D I(D I O)$
$H$	$L$	$A_{3}$
$H$	$H$	$B_{1}$ (Hold)


3. Register $A_{1}$ Data Source Select		
$I_{8}$	$I_{7}$	Source
L	L	MSP (MI)
L	$H$	DI (DIO)
$H$	L	$B_{3}$
$H$	$H$	$A_{1}$ (Hold)


7. Register $\mathbf{B}_{\mathbf{2}}$ Data Source Select		
$\mathrm{I}_{\mathbf{1 6}}$	$\mathrm{I}_{\mathbf{1 5}}$	Source
L	L	LSP (MIO)
L	$H$	ALU
$H$	L	$B_{1}$
$H$	$H$	$B_{2}$ (Hold)


4. Register $A_{2}$ Data Source Select		
$\mathbf{I}_{\mathbf{1 0}}$	$\mathrm{l}_{\mathbf{9}}$	Source
$L$	L	LSP (MIO)
$L$	$H$	$A L U$
$H$	$L$	$A_{1}$
$H$	$H$	$A_{2}$ (Hold)


8. Register $B_{3}$ Data Source Select		
$L_{18}$	$l_{17}$	Source
$L$	$L$	MSP (MI)
L	$H$	ALU
$H$	$L$	$B_{2}$
$H$	$H$	$B_{3}$ (Hold)

## CONTROL INPUT FUNCTION TABLES (Cont.)

9. ALU Operating Instructions								
$\mathrm{l}_{22}$	$\mathrm{l}_{21}$	$\mathrm{I}_{20}$	$\mathrm{l}_{19}$	OP	Cout	$\overline{\mathbf{P}}$	$\overline{\mathbf{G}}$	
$\begin{aligned} & \text { L } \\ & \text { L } \\ & \text { H } \\ & \text { H } \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	L	L	$\begin{aligned} & R+S+C_{I N} \\ & R-S-C_{\mathbb{N}} \\ & R+C_{I N} \\ & -R+S-C_{I N} \end{aligned}$	Carry	$\overline{\mathrm{P}}$	$\overline{\mathrm{G}}$	Normal Operating Mode   Usually Carry Used for 16-Bit Expansion and $\bar{P} / \bar{G}$ Used with a Am2902A Carry-Lookahead for Larger Expansion
L L H $H$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	L	H	$\begin{aligned} & R+S+C_{I N} \\ & R-S-C_{\mathbb{I}} \\ & R+C_{I N} \\ & -R+S-C_{I N} \end{aligned}$	L	H	H	Inhibit Carry Mode
L L H H	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	H	L	$\begin{aligned} & R+S+C_{\mathbb{I N}} \\ & R-S-C_{\mathbb{N}} \\ & R+C_{\mathbb{N}} \\ & -R+S-C_{\mathbb{I}} \end{aligned}$	H	$\overline{\mathrm{P}}$	L	Force Carry Mode
L -L H H	$\begin{aligned} & \text { L } \\ & H \\ & \text { L } \\ & H \end{aligned}$	H	H	RXORS RANDS $\overline{\mathrm{R}}$ RORS	(L)*	(H)*	(H)*	Logic Operations

*COut, P and G are not applicable to logic operation, Am29501 functions as shown.

10. ALU R Operand Selection			
$\mathrm{I}_{\mathbf{2 5}}$	$\mathrm{I}_{\mathbf{2 4}}$	$\mathrm{I}_{\mathbf{2 3}}$	Source
L	L	L	$\mathrm{A}_{1}$
L	L	H	$\mathrm{A}_{2}$
L	H	L	$\mathrm{A}_{3}$
L	H	H	$\mathrm{B}_{1}$
H	L	L	$\mathrm{B}_{2}$
H	L	H	$\mathrm{B}_{3}$
H	H	L	Sign Extend Input   Bussed to All Bits
H	H	H	Arithmetic Zero   (All Inputs LOW)


11. ALU S Operand Selection			
$\mathrm{I}_{\mathbf{2 8}}$	$\mathrm{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{2 6}}$	Source
L	L	L	A $_{1}$
L	L	H	$A_{2}$
L	H	L	$A_{3}$
L	H	H	$B_{1}$
H	L	L	$B_{2}$
H	L	H	$B_{3}$
H	H	L	MSP (MI)
H	H	H	LSP (MIO)

Am29501 $\mu$ Programming Worksheet



$$
C_{1} \approx 5.0 \mathrm{pF}, \text { all inputs }
$$

MPL-026


[^12]

Am29501


## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Am29501   Order Number	Package Type   (Note 1)	Operating Range   (Note 2)	Screening Level   (Note 3)
AM29501DC	D-64-	C	C-1
AM29501DCB	D-64-	C	B-2 (Note 4)
AM29501DM	D-64-	M	C-3
AM29501DMB	D-64-	M	$\mathrm{B}-3$
AM29501LC	D-68-	C	$\mathrm{C}-1$
AM29501LM	D-68-	M	$\mathrm{C}-3$
AM29501LMB	D-68-	M	$\mathrm{B}-3$

Notes: 1. $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 160 hour burn-in.

## Am29510 <br> $16 \times 16$ Multiply Accumulator

## DISTINCTIVE CHARACTERISTICS

- High speed $16 \times 16$-bit multiplication and product accumulation
- Performs subtraction and double precision addition and multiplication
- Uses two's complement or unsigned inputs
- Round control
- 35-bit product accumulation result
- 32-bit multiply


## - 3-bit extended product

- Output register preload
- Three-state output control
- IMOX ${ }^{\text {TM }}$ processing
- ECL internal circuitry for speed
- TTLI/O
- Single 5V power


## FUNCTIONAL DESCRIPTION

The Am29510 is a high-speed $16 \times 16$-bit multiplier/ accumulator (MAC). It comprises a 16 -bit parallel multiplier followed by a 35 -bit accumulator. Two 16 -bit input registers are provided for the X and Y operands. A third register is used to store two control bits, TC and RND. TC specifies that the input are two's complement signed numbers (High) or unsigned numbers (Low). The RND control, when high, causes a bit to be added to the multiplier product with the weight of $P_{15}$. This causes the most significant 16 bits of product to be rounded to the value nearest to the full 32 -bit product. Using the RND control once during an accumulation causes the most significant 19 bits of the accumulator to be rounded to the value nearest the full 35 -bit accumulation. The TC/RND register is clocked whenever the $X$ or $Y$ input registers are clocked. The X, Y, TC/RND, and accumulator registers are all positive edge triggered.
The 32-bit multiplier output is zero-filled or sign-extended as appropriate to provide a 35 -bit input to the accumulator.

The accumulator has four functions; the product may be loaded into the accumulator, the product may be added into the accumulator value, the previous accumulator value may be subtracted from the product and the result stored in the accumulator or the accumulator may be preloaded from an extended source. The operation of the accumulator is controlled by the signals ACC, SUB, and PREL. For output and preloading purposes the accumulator is considered in three sections; least significant product (LSP, $\mathrm{P}_{0}-\mathrm{P}_{15}$ ) controlled by $\overline{\mathrm{OE}}_{\mathrm{X}}$. When PREL is low these controls are active low enables for the three-state output buffers. When PREL is high the output buffers automatically become high impedance, and the controls operate as active low load enables to the three sections of the accumulator to permit loading of data applied to the bidirectional $P$ port. The $P$ port has 35 bits, the least significant 16 of which share pins with the $Y$ input.

## Am29510

## ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise specified:
COM'L $\quad T_{A}=0$ to $+70^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$
$(\mathrm{MIN}=4.75 \mathrm{~V}$
$\mathrm{MAX}=5.25 \mathrm{~V}$ )
MIL $\quad T_{C}=-55$ to $+125^{\circ}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
$(\mathrm{MIN}=4.50 \mathrm{~V}$
MAX $=5.50 \mathrm{~V}$ )

## DC CHARACTERISTICS OVER OPERATING RANGE



Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

MAXIMUM RATINGS (Above which the useful life may be impaired)

| Storage Temperature | -65 to $+150^{\circ} \mathrm{C}$ |
| :--- | ---: | ---: |
| Temperature under Bias $-\mathrm{T}_{\mathrm{C}}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage to Ground Potential Continuous | -0.5 to +7.0 V |
| DC Voltage Applied to Outputs for High Output State | -0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$ |
| DC Input Voltage | -0.5 to +5.5 V |
| DC Output Current, into Outputs | 30 mA |
| DC Input Current | -30 to +5.0 mA |

RELATED PRODUCTS

Part No.	Description	Page
Am29526/527	High speed Sine function   generator	
Am29528/529	High speed Cosine.function   generator	

## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order   Number	Package   Type   (Note 1)	Operating   Range   (Note 2)	Screening   Level   (Note 3)
AM29510DC	D-64	C	$\mathrm{C}-1$
AM29510DC-B	D-64	C	$\mathrm{B}-1$
AM29510DM	D-64	M	$\mathrm{C}-3$
AM29510DM-B	$\mathrm{D}-64$	M	$\mathrm{B}-3$

Notes: 1. $D=$ Hermetic DIP.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}$, $V_{C C}=5 \mathrm{~V} \pm 10 \%$.
3. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C . Levels B-1 and B-3 conform to MIL-STD-883, Class B.

Parameters	Description			COM'L		MIL		Units	Test Conditions
			$\begin{gathered} T_{A}=25^{\circ} \mathrm{C} \\ V_{C C}=5.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% \end{aligned}$		$\begin{gathered} T_{C}=-55 \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \end{gathered}$			
			Typ	Min	Max	Min	Max		
${ }_{\text {t }}$ A	Multiply Accumulate Time							ns	
ts	$\begin{aligned} & X_{i}, Y_{i}, \text { RND, TC, ACC, SUB } \\ & \text { Setup Time } \end{aligned}$							ns	
$t_{H}$	$\begin{aligned} & X_{i}, Y_{i}, \text { RND, TC, ACC, SUB } \\ & \text { Hold Time } \end{aligned}$							ns	
${ }_{\text {ts }}$	PREI Setup Time							ns	
$t_{H}$	PREI Hold Time							ns	
$t_{\text {PWH }}$	Clock Pulse Width High							ns	
$t_{\text {PWL }}$	Clock Pulse Width Low							ns	
tPDP	Output Clock to P							ns	
$t_{\text {PDP }}$	Output Clock to $Y$							ns	
$t_{\text {PHZ }}$	$\begin{aligned} & \overline{\mathrm{OE}}_{X}, \overline{\mathrm{OE}}_{M} \text { to } \\ & \mathrm{P} \text { Disable Time } \end{aligned}$	High to Z						ns	
${ }^{\text {P PLZ }}$		Low to Z						ns	
${ }_{\text {tPZH }}$	$\begin{aligned} & \overline{\mathrm{OE}}_{X}, \overline{\mathrm{OE}}_{\mathrm{M}} \text { to } \\ & \mathrm{P} \text { Disable Time } \end{aligned}$	Z to High						ns	
$\mathrm{t}_{\mathrm{PLL}}$		Z to Low						ns	
tphz	$\overline{O E}_{\mathrm{L}}$ to Y Disable Time	High to Z						ns	
${ }^{\text {tPLZ }}$		Low to Z						ns	
${ }^{\text {t }}{ }^{\text {PZH }}$	$\overline{O E}_{\text {L }}$ to Y Disable Time	Z to High						ns	
tpZL		$Z$ to Low						ns	

## DEFINITION OF FUNCTIONAL TERMS

$x_{0}-x_{15}$
$Y_{15}$
$P_{0}-P_{15}$
$P_{15}-P_{31}$
$P_{32}-P_{34}$

ACC

SUB
Three-state control for the MSP port. Enabled (Low), disabled (High).
$\overline{\mathrm{OE}}_{\mathrm{L}}$
TSL*
Three-state control for the LSP port. Enabled (Low), disabled (High).
CLK $_{\mathbf{X}}$, CLK $\mathbf{Y}_{\mathbf{Y}}$ Loads $X$ and $Y$ data respectively and TC, RND $A C C$ and SUB on the rising edge.
CLK $\mathbf{p}$ Load data into XTP, MSP and LSP after ACC, SUB, PASS and for preload on rising edge.

## Multiplier Data Input

Data I loaded in X-register on the rising edge of CLK X .
Bidirectional Port
Multiplier data input or Least Significant Product (LSP) output ( $\mathrm{OE}_{\mathrm{L}}=$ Low) or LSP Register Preload Input $\left(\right.$ PREI $=$ High, and $O E_{L}=$ High).

## Bidirectional Port

Product output for the Most Significant Product (MSP) and input to preload MSP register.
Bidirectional Port
Product output for Extended Product (XTP) and input to preload XTP register.

## Accumulate

Controls the addition of a multiply product to the contents of the XTP, MSP and LSP registers (High), or performs a multiply only (Low).

## Subtraction

Controls the subtraction of the XTP, MSP and LSP registers from the multiply product (High and ACC = High). Both the ACC and SUB controls are loaded on the rising edge of CLKX or CLKY



Am29510


## PRELOAD FUNCTION

PREI	OEx	$0 \mathrm{E}_{\mathrm{M}}$	OEL	Output Register		
				XTP	MSP	LSP
0	0	0	0	Q	Q	Q
0	0	0	1	Q	Q	Z
0	0	1	0	Q	Z	Q
0	0	1	1	Q	Z	Z
0	1	0	0	Z	Q	Q
0	1	0	1	Z	Q	Z
0	1	1	0	Z	Z	Q
0	1	1	1	Z	Z	Z
1	0	0	0	Z	z	Z
1	0	0	1	z	Z	PL
1	0	1	0	Z	PL	Z
1	0	1	1	Z	PL	PL
	1	0	0	PL	Z	Z
1	1	0	1	PL	Z	PL
1	1	,	0	PL	PL	Z
1	1	1	1	PL	PL	PL

Z = output buffers at High impedance (disabled).
Q = output buffers at Low impedance. Contents of output register available through output ports.
PL = output disabled. Preload data supplied to the output pins will be loaded into the output register at the rising edge of CLK ${ }_{p}$.

## CHIP TOPOGRAPHY

Am29510


# Am29516•Am29517 Am29516A • Am29517A 

## $16 \times 16$-Bit Parallel Multipliers

## DISTINCTIVE CHARACTERISTICS

- High speed $16 \times 16$ parallel multiplier
- Two's complement, unsigned or mixed operands
- Full product multiplexed at output
- Am29516 pin and functionally compatible with TRW MPY-16HJ
- Am29517 optimized for microprogramming, single clock with register enables
- Am29516A and Am29517A are \% faster than the Am29516 and Am29517 respectively
- The Am29516A and Am29517A meet or exceed all of the specifications for the Am29516 and Am29517 respectively
- $\mathrm{IMOX}^{\text {M }}$ oxide isolated process
- ECL multiplier array provides 40 ns typical multiply time
- TTL I/O-single +5 V supply
- 64-pin package

RELATED PRODUCTS	
Part No.	Description
Am29501	Multiport pipelined processor
Am29526/27	Sine function generator
Am29528/29	Cosine function generator

## FUNCTIONAL DESCRIPTION

The Am29516/16A and Am29517/17A are high speed parallel $16 \times 16$-bit multipliers utilizing internal ECL logic to generate a 32-bit product. 17-bit input registers are provided for the $X$ and $Y$ operands and their associated mode controls $X_{M}$ and $Y_{M}$. These mode controls are used to specify the operands as two's complement or unsigned numbers.

At the output of the multiplier array a format adjust control (FA) allows the user to select either a full 32-bit product or a left shifted 31-bit product suitable for two's complement only.
Two 16-bit output registers are provided to hold the most and least significant halves of the product (MSP and LSP) as defined by FA. For asynchronous output these registers may be made transparent by taking the feed through control (FT) high. A round control (RND) allows the rounding of the MSP. This control is registered, and is entered whenever either input register is clocked.
The two halves of the product may be routed to a 16 -bit 3-state output port ( $P$ ) via a multiplexer. In addition the LSP is connected to the $Y$-input port through a separate 3-state buffer.
In the Am29516/16A the X, Y, MSP and LSP registers have independent clocks (CLKX, CLKY, CLKM, CLKL). The output multiplexer control ( $\overline{\mathrm{MSPSEL}})$ uses a pin which is a supply ground in the TRW MPY 16 HJ . When this control is LOW the function is that of the MPY16 HJ , thus allowing full compatibility.
The Am29517/17A differs in that it has a single clock input (CLK) and three register enables (ENX, ENY, ENP) for the two input registers and the entire product. This facilitates the use of the part in microprogrammed systems. In both parts data is entered into the registers on the positive edge of the clock.

Am29516/517• Am29516A/517A
Am29516/517
ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0$ to $+70^{\circ} \mathrm{C}$
$V_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
$(\mathrm{MIN}=4.75 \mathrm{~V} \quad \mathrm{MAX}=5.25 \mathrm{~V})$
MIL $\quad T_{C}=-55$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \% \quad(\mathrm{MIN}=4.50 \mathrm{~V} \quad M A X=5.50 \mathrm{~V})$

## DC CHARACTERISTICS OVER OPERATING RANGE

Param	Description	Test Conditions (Note 1)			$\begin{array}{cc} \text { Typ } \\ \text { Min } \end{array} \begin{gathered} \text { (Note 2) } \end{gathered}$		Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \end{aligned}$	$\mathrm{l}^{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2.4	2.7		Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{\mathbb{I}}=V_{\mathbb{I}} \text { or } V_{\mathbb{L}} \end{aligned}$	$\begin{aligned} \mathrm{V}_{\mathrm{IL}} & =.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}} & =2.0 \mathrm{~V} \\ l_{\mathrm{OL}} & =4.0 \mathrm{~mA} \end{aligned}$			. 3	. 5	Volts
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			. 8	Volts
				COM'L			. 8	
$\mathrm{V}_{1}$	Input Ciamp Voltage	$V_{C C}=M 1 N, I_{\text {I }}$	$=-18 \mathrm{~mA}$				-1.5	Volts
ILL	Input LOW Current	$V_{C C}=M A X$,	$\mathrm{N}=0.4 \mathrm{~V}$				-0.4	mA
${ }_{1 / H}$	Input HIGH Current	$V_{C C}=$ MAX,	$\mathrm{N}=2.4 \mathrm{~V}$				75	$\mu \mathrm{A}$
4	Input HIGH Current	$V_{C C}=$ MAX,	$\mathrm{N}=5.5 \mathrm{~V}$				1	mA
Iozh	Off State (High Impedance)	$V_{C C}=$ MAX	Product	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			25	$\mu \mathrm{A}$
lozL	Output Current			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-25	
Isc	Output Short Circuit Current	$C=\operatorname{MAX}$	Y	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-3		-30	mA
	(Note 3)		Product	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-3		-30	
			COM'L and MIL	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		600	(Note 5)	
			COM'L Only	$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$			800	
${ }^{\text {I CC }}$	Power Supply Current	$V_{C C}=\mathrm{MAX}$		$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			750	mA
	(Note 4)		MIL Only	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$			900	
				$\mathrm{T}_{\mathrm{C}}{ }^{\circ}=+125^{\circ} \mathrm{C}$			800	

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. $\overline{\mathrm{OEP}}$ and $\overline{\mathrm{OEL}}$ LOW with all product (MSP and LSP) bits LOW.
5. Low power multiplier, Am29L516/L517 also available.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature Under Bias $-\mathrm{T}_{\mathrm{C}}$	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

Am29516/517
SWITCHING CHARACTERISTICS

OVER OPERATING RANGE			29516/517			29516/517		$\begin{aligned} & 29516-1 / 517-1 \\ & 29516 A / 517 A \end{aligned}$		Units	Test Conditions
Parameters Description			$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{gathered}$	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=0 \\ \mathrm{~V}_{\mathrm{CC}}= \\ \quad(\mathrm{No} \end{array}$	$\begin{aligned} & +70^{\circ} \mathrm{C} \\ & \pm 5 \% \\ & \text { 1) } \end{aligned}$	$\begin{gathered} \text { MIL } \\ T_{C}=-55 \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=5 V \pm 10 \% \end{gathered}$		$\begin{gathered} T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{VV} \pm \mathbf{5 \%} \\ (\text { Note } 1) \end{gathered}$			
			Typ	Min	Max	Min	Max	Min	Max		
$t_{\text {MUC }}$	Unclocked Multiply Time		50		85		95			ns	Load 1
$t_{M C}$	Clocked Multiply Time		40		65		75			ns	
$t_{s}$	$\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$, RND Setup Time		10	20		25				ns	
$t_{H}$	$X_{i}, Y_{i}$, RND Hold Time		0	3		3				ns	
$t_{\text {PWH }}$	Clock Pulse Width High		10	15		15				ns	
$t_{\text {PWL }}$	Clock Pulse Width Low		10	20		15				ns	
$t_{\text {PDSEL }}$	$\overline{\text { MSPSEL }}$ to Product Out		20		30		35			ns	
$t_{\text {PDP }}$	Output Clock to P		20		30		35			ns	
tpDY	Output Clock to $Y$		20		30		35			ns	
${ }^{\text {tPHZ }}$	$\overline{\text { OEP }}$ Disable Time	High to Z	12		23		28			ns	Load 2
$t_{\text {PLZ }}$		Low to Z	15		23		28			ns	
${ }_{\text {tPZH }}$	$\overline{\text { OEP }}$ Enable Time	Z to High	25		40		45			ns	
$t_{\text {PZL }}$		Z to Low	25		40		45			ns	
$t_{\text {PHZ }}$	$\overline{\text { OEL }}$ Disable Time	High to Z	12		20		22			ns	
$t_{\text {PLZ }}$		Low to Z	15		23		28			ns	
$t_{\text {PZ }}$	$\overline{\text { OEL Enable Time }}$	$Z$ to High	25		40		45			ns	
$\mathrm{t}_{\mathrm{PLL}}$		Z to Low	25		40		45			ns	
ts	Clock Enable Setup Time (Am29517 Only)		5	10		15				ns	Load 1
${ }^{\text {H }} \mathrm{H}$	Clock Enable Hold Time (Am29517 Only)		0	3		3				ns	
$\mathrm{t}_{\mathrm{HCL}}$	Clock Low Hold Tim Relative to CLKML (see Note 2) (Am29	e CLKXY   516 Only)	0	0		0				ns	

Notes: 1. Switching Characteristics are measured and guaranteed for $T_{A}$ as specified with $200 \mathrm{Lf} / \mathrm{min}$ flowing across the device.
2. To ensure that the correct product is entered in the output registers, new data may not be entered into the input registers before the output registers have been clocked.

DEFINITION OF TERMS	
$\mathrm{X}_{15}-\mathrm{X}_{0}$	Multiplicand Data inputs.
$Y_{15}-Y_{0}$	Multiplier Data inputs or least significant product (LSP) output.
$\mathrm{P}_{0}-\mathrm{P}_{15}$	LSP product port when MSPSEL is (High).
$\mathrm{P}_{16}-\mathrm{P}_{31}$	MSP product port when MSPSEL is (Low).
$\begin{aligned} & X_{M}, Y_{M} \\ & (T C X, T C Y)^{*} \end{aligned}$	Mode control inputs for each data word; LOW for unsigned data and HIGH for two's complement data.
FA (RS)*	Format adjust control selects either a full 32bit product (HIGH) or a left shifted 31-bit product with the sign bit replicated in the LSP (LOW): This control is normally high, except for certain fractional two's complement applications. (See Multiplier output formats table).
FT	Feedthrough control (HIGH) makes both MSP and LSP registers transparent.
$\overline{\text { MSPSEL }}$	Selects either MSP (LOW) or LSP (HIGH) to be available at the product output port.

*TRW MPY 16 HJ pin designation.

RND
$\overline{\text { OEP }}$ (TRIM)*
$\overline{\mathrm{OEL}}$ (TRIL)* $\quad$ Three-state enable for routing LSP through $Y$ input/output port.

## Am29516 ONLY

CLKX Register Clock, $X_{15-0}, X_{M}$, RND

CLKY Register Clock, $Y_{15-0}, Y_{M}$, RND
CLKM MSP Register Clock
CLKL LSP Register Clock

## Am29517 ONLY

ENX Register Enable, $\mathrm{X}_{15-0}, \mathrm{X}_{\mathrm{M}}$, RND
$\overline{\text { ENY }} \quad$ Register Enable, $Y_{15-0,} Y_{M}$, RND
ENP Register Enable MSP, LSP
Control for rounding the MSP. Adds a binary one to the most significant bit of the LSP for two's complement and unsigned numbers. Rounding occurs before format adjust. (RND $=$ High).
Three-state enable for product output port.

Am29516 ONLY

CLKX	Register Clock, $X_{15-0}, X_{M}$, RND
CLKY	Register Clock, $Y_{15-0,} Y_{M}$, RND
CLKM	MSP Register Clock
CLKL	LSP Register Clock
Am29517 ONLY	
CLK	Clock, All Registers
$\overline{\text { ENX }}$	Register Enable, $X_{15-0}, X_{M}$, RND
$\overline{\text { ENY }}$	Register Enable, $Y_{15-0, Y_{M}, \text { RND }}$
$\mathbf{E N P}$	Register Enable MSP, LSP





## Am29516•Am29517 <br> INPUT FORMATS

$X_{M}, Y_{m}=1$

## Fractional Two's Complement Input Format


$X_{M}, y_{M}=1$
Integer Two's Complement Input Format

$X_{M}, Y_{M}=0$

## Unsigned Fractional Input Format


$X_{M}, Y_{m}=0$
Unsigned Integer Input Format

$F A=0$
Fractional 2's Complement (Shifted)* Output

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
$\begin{array}{c}\text { Sgn } \\ (20)\end{array} 2^{1}$	$2^{2}$	$2^{3}$	$2^{4}$	$2^{5}$	$2^{6}$	$2^{7}$	$2^{8}$	$2^{9}$	2	10	2	11	2	12	2
13	2	14	2	15											


$F A=1$

## Fractional 2's Complement Output

MSP																LSP							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	
$\begin{gathered} \substack{\operatorname{sgn} \\ \left(-2^{1}\right)} \end{gathered}$	20	21	$2{ }^{2}$	23	24	25	26	27	28	29	210	211	$2{ }^{12}$	$2{ }^{13}$	$2{ }^{14}$	215	216	217	$2{ }^{18}$	219	220	$2{ }^{21}$	

$F A=1$

## Integer Two's Complement Output

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Sgn   1 $2^{31}$,															


15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$2^{15}$	$2^{14}$	$2^{13}$	$2^{12}$	$2^{11}$	$2^{10}$	$2^{9}$	$2^{8}$	$2^{7}$	$2^{6}$	$2^{5}$	$2^{4}$	$2^{3}$	$2^{2}$	$2^{1}$	$2^{0}$

$F A=1$

## Unsigned Fractional Output

MSP																LSP															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11.	10	9	8	7	6	5	4	3	2	1	0
2	$2{ }^{2}$	$2^{3}$	2.4	2.5	26	27	2-8	2-9	210	211	$2^{12}$	213	214	215	2.16	217	218	219	$2 \cdot 20$	221	222	23	22	2.25	${ }^{26}$	$2{ }^{27}$	${ }^{28}$	- 29	${ }^{30}$	${ }^{31}$	232

$F A=1$

## Unsigned Integer Output





## Am29516/17 Application Note <br> 32 x 32 Multiplier

The Am29516/17 is $16 \times 16$-bit High-Speed Multiplier. Many applications, however, require larger word widths, thus larger multipliers. A $32 \times 32$-bit multiplier can be constructed using $16 \times 16$-bit multipliers.
To multiply two 32 -bit data words, each data word is divided into two 16 -bit portions. The two 16 -bit halves represent the most significant and least significant halves of the full 32-bit data words.
Let
$\mathrm{x}=32$-bit data word
$y=32$-bit data word
$x=2^{16} A+2^{0} B$
$y=2^{16} C+2^{0} D$

The product of the two 32-bit words is a cross product of x and y :

$$
\begin{aligned}
x^{*} y= & \left(2^{16} A+2^{0} B\right) *\left(2^{16} C+2^{0} D\right) \\
& =2^{32}(A C)+2^{16}(A D)+2^{16}(B D)+2^{0}(B D)
\end{aligned}
$$

Performing this algorithm using $16 \times 16$-bit multipliers is as simple as multiplying each of the partial products separately and then adding them.
A primary characteristic of many applications is speed. Figure 1 shows the architecture for a single cycle $32 \times 32$-bit multiplier using four Am29516/17s and an array of adders and carrylookahead generators. This system performs a full $32 \times 32$-bit two's complement or unsigned multiply in a single clock cycle. Simpler architectures can be used to perform the same algorithm but would require multiple clock cycles.

Figure 1.


## Am29520 • Am29521 <br> Multilevel Pipeline Registers



Am29520/521
Am29520/521

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0$ to $+70^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 5 \% \quad(\mathrm{MIN}=4.75 \mathrm{~V}$
MAX $=5.25 \mathrm{~V}$ )
MIL $\quad \mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$
$(\mathrm{MIN}=4.50 \mathrm{~V}$
MAX $=5.50 \mathrm{~V}$ )

## DC CHARACTERISTICS OVER OPERATING RANGE Typ



Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. All inputs LOW.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature Under Bias $-\mathrm{T}_{\mathrm{C}}$	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA


DEFINITION OF TERMS	
$\mathbf{D}_{\mathbf{0}}-\mathrm{D}_{\mathbf{7}}$	Register input port
CLK	Clock input enter data into registers on   LOW-to-HIGH transitions
$\mathbf{I O}_{\mathbf{0}}, \mathbf{I}_{1}$	Instruction inputs. See Figure 1 and   Instruction Control Tables.

$\mathbf{S}_{\mathbf{0}}, \mathbf{S}_{\mathbf{1}} \quad$ Multiplexer select inputs select either register
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}$ or $\mathrm{B}_{2}$ data to be available at the output port
$\overline{\mathbf{O E}} \quad$ Output enable for 3-state output port
$\mathbf{Y}_{\mathbf{0}}-\mathbf{Y}_{\mathbf{7}} \quad$ Register output port

						COM'L		MIL			
			$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \pm 5 \% \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{C}}=-55 \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \end{gathered}$			
Parameters		Description	Min	Typ	Max	Min	Max	Min	Max	Units	Test Conditions
tpd	$\mathrm{t}_{\text {PLH }}$	Clock to Data Output		12	18		21		24		
	$\mathrm{t}_{\text {PHL }}$			12	20		22		24		
tPDSEL	tpLH	$S_{0}, S_{1}$ to Data Output		12	18		20		22.		
	TPHL			12	18		20		22	n	$\square_{\text {P }}=280 \Omega$
$\mathrm{t}_{5}$		Input Data to Clock	10			10	\%	10		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }_{\text {H }}$			3			3	,	1:3			
$\mathrm{ts}_{5}$		Instruction (Register Enable) to Clock	10					10		ns	
${ }_{\text {H }}$			3					3			
tPHZ		$\overline{\mathrm{OE}}$ to Output			11		13		14	ns	$C_{L}=5 \mathrm{pF}$
${ }^{\text {t }}$ PLZ							15		16	ns	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
${ }_{\text {tPZH }}$					18		20		22	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=280 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$
tPZL				13	20		21	-	22	ns	
${ }_{\text {tPWH }}$		Cloek Pulse Widith HIGH	10			10		10		ns	
${ }_{\text {tPWL }}$		Clock Pulse Width LOW	10			10		10		ns	

Note: Please refer to Guidelines for Testing Am2900 Family Devices in Section 13 of this data book.

SET-UP AND HOLD TIME   Notes: 1. Diagram shown for HIGH data only. Output transition may be opposite sense.   2. Cross hatched area is don't care condition.   MPL-004	PULSE WIDTH
TEST LOADS FOR DELAY MEASUREMENTS	CHIP TOPOGRAPHY Am29520/21

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS


TEST WAVEFORMS

Test	Output Waveform - Measurement Level	
All tpos		$S_{1}$ Closed   $S_{2}$ Closed
$t_{\text {PHZ }}$		$S_{1}$ Closed   $\mathrm{S}_{2}$ Closed
${ }_{\text {tPLZ }}$		$\mathrm{S}_{1}$ Closed   $S_{2}$ Closed
$t_{\text {PZH }}$		$S_{1}$ Open   $\mathrm{S}_{2}$ Closed
$t_{\text {PZL }}$		$S_{1}$ Closed   $\mathrm{S}_{2}$ Open
MPL-007		

Am29520/21
TIMING DIAGRAM

MPL-009
Am29520/21
THREE-STATE TIMING


## DATA OUTPUT SELECT

$S_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	OUTPUT
$H$	$H$	$A 1$
$H$	$L$	$A 2$
$L$	$H$	$B 1$
$L$	$L$	$B 2$

## Am29520 INSTRUCTIONS

Inst	Mnemonic	$\mathrm{I}_{1}$	$\mathrm{I}_{0}$	Register Contents After Clock $\mathrm{t}_{\mathrm{n}}$			
				A1 ${ }_{n}$	$\mathrm{A}^{\mathrm{n}}$ n	B1n	B2 ${ }_{\text {n }}$
0	SHFT	L	L	D	$\mathrm{A}_{\mathrm{n}-1}$	$\mathrm{A} 2_{\mathrm{n}-1}$	$B 1_{n-1}$
1	LDB	L	H	$\mathrm{A}_{n-1}$	A2 $\mathrm{n}_{1}$	D	$B 1_{n-1}$
2	LDA	H	L	D	A1 ${ }_{n-1}$	$B 1_{n-1}$	$B 2{ }_{n-1}$
3	HLD	H	H	$\mathrm{A}_{1} \mathrm{n} 1$	A2 ${ }_{n-1}$	$B 1_{n-1}$	$B 2_{n-1}$

Am29521 INSTRUCTIONS

				Register Contents After Clock $\mathrm{t}_{\boldsymbol{n}}$			
Inst	Mnemonic	11	$I_{0}$	$\mathrm{Al}_{1}$	$\mathrm{A}^{\text {n }}$	$B 1_{n}$	B2n
0	SHFT	L	L	D	$\mathrm{A}_{1}{ }^{-1}$	$\mathrm{A}_{\mathrm{n}-1}$	$\mathrm{B1}_{n-1}$
1	LDB	L	H	$\mathrm{A}_{1} \mathrm{n} 1$	$A 2_{n-1}$	D	$\mathrm{B} 2 \mathrm{n}-1$
2	LDA	H	L	D	$A 2^{n-1}$	${ }^{B 1}{ }_{n-1}$	$B 2{ }_{n-1}$
3	HLD	H	H	$\mathrm{A}_{1} \mathrm{n} 1$	$\mathrm{A} 2_{n-1}$	$B 1_{n-1}$	$\mathrm{B} 2 \mathrm{n}-1$

ORDERING INFORMATION
Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Am29520   Order Number	Am29521   Order Number	Package Type   (Note 1)	Operating Range   (Note 2)	Screening Level   (Note 3)
AM29520DC	AM29521DC	D-24-SLIM	C	C-1
AM29520DCB	AM29521DCB	D-24-SLIM	C	B-2 (Note 4)
AM29520DM	AM29521DM	D-24-SLIM	M	C-3
AM29520DMB	AM29521DMB	D-24-SLIM	M	B-3
AM29520LC	AM29521LC	L-28	C	C-1
AM29520LM	AM29521LM	L-28	M	C-3
AM29520LMB	AM29521LMB	L-28	M	B-3

Notes: 1. $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B
4. 160 hour burn-in.

## APPLICATIONS

The IMOX™ Am29520 and Am29521 multilevel pipeline registers are specifically designed as a temporary address storing register for array processing and digital signal processing applications using the Am29500 Family.
In AP/DSP applications a single data address may be used a multiple number of times. The multilevel pipeline register allows saving addresses within its registers for use at a later time.

Below are a number of applications where the use of a multilevel pipeline register can be implemented.

## CLOCK CONTROLLER, BYTE-WIDE DELAY LINE/SHIFT REGISTER

The Am29520/21 can be utilized as a byte-wide shaft register (Figure 1a) capable of delaying a byte of data from one to four clock cycles. The number of delay cycles is controlled by the $\mathrm{S}_{0}$,
$S_{1}$ control inputs and can be changed by the user without interrupting the data flow.

Figure 1b shows the contents of all Am29520/21 registers during each clock cycle. With the instruction input set at $I=0$, the operation performed is that of a byte-wide shift register. The contents of any register can be accessed by appropriately setting $S_{0}, S_{1}$. In this example, $D_{1}$ input data is presented after the clock 0 rising edge. At the clock 1 rising edge, the $D_{1}$ data is loaded into $A_{1}$. At the clock 2 rising edge, the $D_{2}$ data is loaded in $A_{1}$ and the $D_{1}$ data is pushed into $A_{2}$. This action continues as long as clocks are provided (this is a static part; therefore, interrupting the clock does not cause data to be lost). Data pushed out of $\mathrm{B}_{2}$ is lost. The user determines the delay by setting the output MUX to one of the four registers via $\mathrm{S}_{0}, \mathrm{~S}_{1}$ controls. In this example, register $\mathrm{B}_{1}$ was selected ( $\mathrm{S}_{0}, \mathrm{~S}_{1}=$ 10). The data at the Am29520/21 output is delayed by three clock cycles.


Figure 1a. Block Diagram


Figure 1b. Timing Diagram


Figure 2. Am29520/21 Expansion in Width and Depth


Since the output is capable of three-state, a no-delay operation occurs if the input is tied to the output and $O E=1$.
The Am29520/21 is easily expandable to accommodate data widths of $16,24,32$, etc. bits and delays of $8,12,16$, etc. clock cycles as shown in Figure 2.
If greater delays are required by cascading devices are not acceptable, then consider controlling the clock input to the Am29520/21. An example of this is shown in Figure 1a. In this case, an Am2925 clock generator provides the clock inputs to the Am29520/21 (see Am2925 Data Sheet). The Am2925 digital control inputs $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}\right)$ allows the user to program the clock outputs to vary from $F_{0 / 3}$ to $F_{0 / 10}$ in eight steps ( $F_{0}=$ input fundamental clock frequency input to the Am2925). The Am2925 provides four duty cycle outputs $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ for each of the eight multiples of the fundamental period. Table 1 is a matrix showing all combinations of the Am2925 $L_{1}, L_{2}, L_{3}$ and the Am29520/21 $\mathrm{S}_{0}, \mathrm{~S}_{1}$ controls. Twenty-four meaningful combinations are available providing from 1 to 40 clock delays.

TABLE 1. CLOCK DELAY SELECT MATRIX

Am2925 Select Input		$\mathrm{F}_{0} \mathrm{~F}_{3} \mathrm{~F}_{4} \mathrm{~F}_{5}$				$\begin{gathered} 5 F_{6} F_{7} F_{8} \\ 110 \end{gathered}$				
	$L_{1}$	X	0	1	1				0	0
Am29520/21	$L_{2}$	X	0	0	0	1	1	1	1	0
$\mathrm{S}_{\mathbf{0}}, \mathrm{S}_{\mathbf{1}}$ Input	$\mathrm{L}_{3}$	X	0	0	1	1	0	0	1	1
1,1 ( $\mathrm{A}_{1}$ )		1	3	4	5	6	7	8		
$0,1\left(A_{2}\right)$		2	6	8	10	12		16		820
1,0 ( $\mathrm{B}_{1}$ )		3	9	12	15	18		24		
$0,0\left(B_{2}\right)$		4	12	16						

## ANALOG/DIGITAL BUFFER

In the example shown in Figure 7 the Am29520/21 acts as a 4-byte buffer between an A/D converter and a controller (or microprocessor). Four digitized samples are sequentially stored in the Am29520/21 from the A/D converter. This is accomplished by applying a READ control input to the clock input of the Am29520/21 as well as to the READ input of the A/D. Since $I=0$, the data output from the $A / D$ will be stored in the Am29520/21 as shown in Figure 8.

While the fifth sample is being acquired by the $A / D$, the controller will read all registers of the Am29520/21 by manipulating $\mathrm{S}_{0}$, $\mathrm{S}_{1}$. Note that the three-state output (controlled by OE) can be tied directly to a microprocessor bus and that the registers of the Am29520/21 can be easily memory mapped.

Figure 3. A/D Buffer


MPL-067

Figure 4. A/D Buffer Timing


$S_{0}, S_{1}$ INPUT


Am29520/21 OUTPUT


MPL-068

The A/D will acquire four more samples before the Am29520/21 registers need to be read.
Note that the Am29520/21 can be simultaneously written and read. A two byte ping-pong memory is realizable by switching between I modes 1 and 2 . While the $A / D$ is writing registers $B_{1}$ and $B_{2}$, the microprocessor can be reading registers $A_{1}$ and $A_{2}$.
Also, note that the Am29520/21 is easily cascadable in width (as previously described) for applications involving 12-bit and 16-bit A/D converters.

# Am29526 • Am29527 Am29528 • Am29529 <br> High Speed Sine, Cosine Generators 



## ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise specified:
COM'L
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 5 \% \quad(\mathrm{MIN}=4.75 \mathrm{~V}$
MAX $=5.25 \mathrm{~V}$ )
MIL $\quad T_{C}=-55$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \quad(\mathrm{MIN}=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.50 \mathrm{~V})$

## DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions		MinTyp   (Note 1)		Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4			Volts
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.50	Volts
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Level	Guaranteed input logical HI voltage for all inputs		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LO voltage for all inputs				0.8	Volts
$I_{\text {IL }}$	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 \mathrm{~V}$			-0.010	$-0.250$	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$				25	$\mu \mathrm{A}$
$1 /$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				1.0	mA
Isc	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=0.0 V \\ & (\text { Note 2) } \end{aligned}$	MIL	-15	-40	-90	mA
			COM'L	-20	-40	-90	
${ }^{\text {c C }}$	Power Supply Current	All inputs $=$ GND, $\mathrm{V}_{\mathrm{CC}}=\mathrm{M}$			115	185	mA
$V_{1}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
$I_{\text {CEX }}$	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S}=2.4 V \end{aligned}$	$V_{0}=V_{C C}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			4.0		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			8.0		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not $100 \%$ tested, but are periodically sampled.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

## DEFINITION OF FUNCTIONAL TERMS

| $\mathbf{A}_{10}-\mathbf{A}_{\mathbf{0}}$ | Data Input Values <br> Input, $\theta$, corresponding to $\theta=0(000)$ to $2047 \pi /$ <br> $2048(3 F F) . A_{10}$ is MSB. | $F_{7}-F_{0}$ |
| :--- | :--- | :--- |$\quad$| outputs $F_{0}-F_{7}$ are enabled. Otherwise the out- |
| :--- |
| puts are in the high impedance state or off. |
| Data Output Values |

Am29526/27/28/29
SWITCHING CHARACTERISTICS
OVER OPERATING RANGE

Parameters				COM'L	MIL	Units	Test Conditions
	Description		$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \pm 5 \% \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{C}}=-55 \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% \end{gathered}$		
			Typ	Max	Max		
tpLH	$\mathrm{Sin} / \mathrm{Cos}$ Generation Time $A_{i}$ to $F_{i}$		30	50	65	ns	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ \text { (Notes } 1 \text { and 2) } \end{gathered}$
tpHL			30	50	65	ns	
tpHz	$\begin{aligned} & \bar{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3} \\ & \text { Disable Time } \end{aligned}$	High to Z	10	25	30	ns	
tplz		Low to Z	10	25	30	ns	
tpzH	$\begin{aligned} & \bar{E}_{1}, E_{2}, E_{3} \\ & \text { Enable Time } \end{aligned}$	Z to High	10	25	30	ns	
tpZL		Z to Low	10	25	30	ns	

Notes: 1. $t_{P L H}$ and $t_{P H L}$ are tested with switch $S_{1}$ closed and $C_{L}=30 \mathrm{pF}$.
2. For three-state outputs, the disables time is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; $S_{1}$ is open for $Z$ to High test and closed for $Z$ to $L o w$ test. The enable time is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. High to Z tests are made to an output voltage to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ with $\mathrm{S}_{1}$ open; Low to Z tests are made to the $\mathrm{V}_{\mathrm{OL}}-0.5 \mathrm{~V}$ level with $\mathrm{S}_{1}$ closed.

## SWITCHING WAVEFORMS



## AC TEST LOAD



Am29526/27/28/29
TABLE 1. - $\operatorname{COS}(\theta)$ TABLE

Decimal   Input	Actual   Hexadecimal   Input	Angle   in Radians	Decimal Value   of $-\boldsymbol{C o s}(\theta)$	Hex Value   of $-\operatorname{Cos}(\theta)$	Am29526   MS Device	Am29527   LS Device
0	0	0	-1.000000	1000	10	00
512	200	$\pi / 4$	-0.707107	A57E	A5	$7 E$
1024	400	$\pi / 2$	0.000000	0000	00	00
1536	600	$3 \pi / 4$	+0.707107	$5 A 82$	$5 A$	82
2047	$7 F F$	$2047 \pi / 2048$	+0.999999	7FFF	$7 F$	FF

TABLE 2. - $\operatorname{SiN}(\theta)$ TABLE

Decimal   Input	Actual   Hexadecimal   Input	Angle   in Radians	Decimal Value   of $-\operatorname{Sin}(\boldsymbol{\theta})$	Hex Value   of $-\operatorname{Sin}(\boldsymbol{\theta})$	Am29528   MS Device	Am29529   LS Device
0	000	0	0	0000	00	00
512	200	$\pi / 4$	-0.707107	A57E	A5	$7 E$
1024	400	$\pi / 2$	-1.0000	8000	80	00
1536	600	$3 \pi / 4$	-0.707107	A57E	A5	$7 E$
2047	7FF	$2047 \pi / 2048$	-0.001534	FFCE	FF	CE

Figure 1. The Minus Sine Function


Figure 2. The Minus Cosine Function


## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number		Package Type (Note 1)	Operating Range (Note 3)	Screening Level (Note 2)
AM29526PC		P-24-1AA	C	C-1
AM29527PC		P-24-1AA	C	C-1
AM29528PC		P-24-1AA	C	C-1
AM29529PC		P-24-1AA	C	C-1
AM29526PC-B		P-24-1AA	C	B-1
AM29527PC-B		P-24-1AA	C	B-1
AM29528PC-B		P-24-1AA	C	B-1
AM29529PC-B		P-24-1AA	C	B-1
AM29526DC		D-24-1AA	C	C-1
AM29527DC		D-24-1AA	C	C-1
AM29528DC		D-24-1AA	C	C-1
AM29529DC		D-24-1AA	C	C-1
AM29526DC-B		D-24-1AA	C	B-1
AM29527DC-B		D-24-1AA	C	B-1
AM29528DC-B		D-24-1AA	C	B-1
AM29529DC-B		D-24-1AA	C	B-1
AM29526DM		D-24-1AA	M	C-3
AM29527DM		D-24-1AA	M	C-3
AM29528DM		D-24-1AA	M	C-3
AM29529DM		D-24-1AA	M	C-3
AM29526DM-B		D-24-1AA	M	B-3
AM29527DM-B		D-24-1AA	M	B-3
AM29528DM-B		D-24-1AA	M	B-3
AM29529DM-B		D-24-1AA	M	B-3
AM29526LC		L-32-2	C	C-1
AM29527LC		L-32-2	C	C-1
AM29528LC		L-32-2	C	C-1
AM29529LC		L-32-2	C	C-1
AM29526LM		L-32-2	M	C-3
AM29527LM		L-32-2	M	C-3
AM29528LM		L-32-2	M	C-3
AM29529LM		L-32-2	M	C-3
AM29526LM-B	${ }^{3}$	L-32-2	M	B-3
AM29527LM-B		L-32-2	M	B-3
AM29528LM-B		L-32-2	M	B-3
AM29529LM-B		L-32-2	M	B-3

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads. See
Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
3. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .

# Am29540 <br> Programmable FFT Address Sequencer ADVANCED DATA 

## DISTINCTIVE CHARACTERISTICS

- Generates data and coefficient addresses
- Programmable transform length 2 to 65,536 points
- Radix-2 or Radix-4
- Decimation in frequency (DIF) or decimation in time (DIT) FFT algorithms supported
- In-place or non-in-place transformation
- 40-pin DIP package
- 5 volt single supply


## RELATED PRODUCTS

Am29520/521 - Multilevel pipeline register Am29825 - High performance 8-bit register


## Am29540

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	$(\mathrm{MIN}=4.75 \mathrm{~V}$	MAX $=5.25 \mathrm{~V})$
MIL	$T_{C}=-55$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$(\mathrm{MIN}=4.50 \mathrm{~V}$	MAX $=5.50 \mathrm{~V})$

## DC CHARACTERISTICS OVER OPERATING RANGE

Param	Description	Test Conditions (Note 1)			Min	- Typ (Note 2)	Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}, \mathrm{COM}^{\prime} \mathrm{L}$	2.4			Volts
				$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{MIL}$				
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{\mathbb{I L}} \end{aligned}$		$\mathrm{lOL}=12 \mathrm{~mA}$			0.5	Volts
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.8	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$					-1.5	Volts
$1 / 1$	Input LOW Current	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$					-0.4	mA
${ }_{1 / H}$	Input HIGH Current	$V_{\text {CC }}=M A X, V_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
1	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=5.5 \mathrm{~V}$ (See Note 5)					100	$\mu \mathrm{A}$
$\begin{aligned} & \text { Iozh } \\ & \text { IozL } \end{aligned}$	Off State (High Impedance) Output Current	$V_{C C}=$ MAX		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$				$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=\mathrm{MAX}$			-30		-85	mA
${ }^{\text {I C C }}$	Power Supply Current (Note 4)	$V_{C C}=\operatorname{MAX}$	COM'L Only	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				mA
				$\mathrm{T}_{A}=0$ to $+70^{\circ} \mathrm{C}$				
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				
			MIL Only	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$				
				$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$				

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second
4. $\overline{O E}$ LOW and all inputs LOW.
5. It is limited to 5.5 V because $\mathrm{A}_{0}$ to $\mathrm{A}_{15}$ inputs also connect to output transistors.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature Under Bias $-T_{C}$	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA


Parameters		Description	Min	Max	Min	Max	Units	Test Conditions
1	tpD	$C P$ to $A_{0-15}(A S=0)$						
1	tPD	$C P$ to $A_{0-15}(A S=1)$						
1	${ }_{\text {t PD }}$	$C P$ to $A_{0-15}(A S=2)$						
1	$t_{P D}$	$C P$ to $A_{0-15}(A S=3)$						
1	${ }_{\text {t }}{ }_{\text {PD }}$	$C P$ to $A_{0-15}(A S=4)$						
1	$t_{\text {PD }}$	$C P$ to $A_{0-15}(A S=5)$						
1	${ }_{\text {tPD }}$	$C P$ to $A_{0-15}(\mathrm{AS}=6)$						
1	$t_{\text {PD }}$	$C P$ to $A_{0-15}(\mathrm{AS}=7)$						
1	${ }_{\text {tPD }}$	$C P$ to $A_{0-15}(A S=8)$						
1	$t_{\text {PD }}$	$C P$ to $A_{0-15}(\mathrm{AS}=9)$						
1	$t_{\text {PD }}$	$C P$ to $A_{0-15}(A S=10)$						
1	$t_{P D}$	$C P$ to $A_{0-15}(\mathrm{AS}=11)$						
1	tPD	$C P$ to $A_{0-15}(\mathrm{AS}=12)$						
1	tPD	$C P$ to $A_{0-15}(\mathrm{AS}=13)$						
1	$t_{\text {PD }}$	$C P$ to $A_{0-15}(A S=14)$						
1	tPD	$C P$ to $A_{0-15}(\mathrm{AS}=15)$						
2	tPD	Address Select to $A_{0-15}$						
3	tPHz	$\overline{\mathrm{OE}}$ to $\mathrm{A}_{0-15}$ Disable Time						-
4	tplz	$\overline{\mathrm{OE}}$ to $\mathrm{A}_{0-15}$ Disable Time						
5	${ }_{\text {tPZH }}$	$\overline{\mathrm{OE}}$ to $\mathrm{A}_{0-15}$ Enable Time						
6	$t_{\text {PZL }}$	$\overline{\mathrm{OE}}$ to $\mathrm{A}_{0-15}$ Enable Time						
7	tpD	CP to IT COMP						$C_{L}=50 \mathrm{pF}$
8	${ }_{\text {tPD }}$	CP to FFT COMP						See Test
9	$t_{\text {PD }}$	CP to ODD/ $\overline{\text { EVEN }}$ ( $\mathrm{KZ} / \overline{\mathrm{KNZ}}$ )						
10	$t_{\text {PD }}$	Address Select to ODD/EVEN/ (KZ/ $\overline{\text { KNZ }}$ )						
11	${ }^{\text {t }}$	Offset Address Input $A_{0-15}$ to CP Setup Time						
12	${ }_{H} \mathrm{H}$	Offset Address Input $\mathrm{A}_{0-15}$ to CP Hold Time						
13	$\mathrm{ts}_{5}$	Counter Instruction to CP Setup Time						
14	${ }_{\text {th }}$	Counter Instruction to CP Hold Time						
15	$\mathrm{t}_{5}$	Transform Length Select to CP Setup Time						
16	${ }_{\text {H }}^{\mathrm{H}}$	Transform Length Select to CP Hold Time						
17	ts	Transform Length Select to $\overline{\text { TSTRB }} \uparrow$ Setup Time						
18	$\mathrm{t}_{\mathrm{H}}$	Transform Length Select to $\overline{\text { TSTRB }} \uparrow$ Hold Time						
19	$\mathrm{t}_{5}$	$\overline{\text { TSEL }}$ (HIGH to LOW) to $\overline{\text { TSTRB }} \uparrow$ Setup Time						
20	$\mathrm{th}_{\mathrm{H}}$	$\overline{\text { TSEL }}$ to $\overline{\text { TSTRB }} \uparrow$ Hold Time						
21	$\mathrm{ts}_{5}$	RADIX 4/2 to CP Setup Time						
22	$\mathrm{th}_{\mathrm{H}}$	RADIX $4 / \overline{2}$ to CP Hold Time						
23	$\mathrm{t}_{5}$	RADIX 4/2, $\overline{\text { PSD }}$, DIT/ $\overline{\mathrm{DFF}}$ to $\overline{\text { STRB }} \uparrow$ Setup Time						
24	${ }_{\text {t }}^{\text {H }}$	RADIX 4/2, $\overline{\mathrm{PSD}}$, DIT/ $\overline{\overline{D I F}}$ to $\overline{\text { STRB }} \uparrow$ Hold Time						
25	$\mathrm{t}_{5}$	$\overline{\text { SEL }}$ (HIGH to LOW) to $\overline{\text { STRB }} \uparrow$						
26	${ }_{H} \mathrm{H}$	$\overline{\text { SEL }}$ Hold Time to $\overline{\text { STRB }} \uparrow$						
27	${ }^{\text {ts }}$	$\overline{\text { STRB }}$ or TSTRB to CP Setup Time						
28	$t_{\text {PWSL }}$	Minimum Strobe Pulse Width LOW						
29	$t_{\text {PWWH }}$	CP Pulse Width HIGH						
30	tPWL	CP Pulse Width LOW						

## Am29540 SWITCHING CHARACTERISTICS

Am29540 SWITCHING CHARACTERISTICS			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			Units	Test Conditions
Parameters		Description	Min	Typ	Max		
1	tpD	$C P$ to $\mathrm{A}_{0-15}(\mathrm{AS}=0)$					
1	tpD	$C P$ to $A_{0-15}(\mathrm{AS}=1)$					
1	tPD	$C P$ to $A_{0-15}(\mathrm{AS}=2)$					
1	tPD	CP to $\mathrm{A}_{0-15}(\mathrm{AS}=3)$					
1	${ }_{\text {tPD }}$	$C P$ to $A_{0-15}(A S=4)$					
1	tPD	CP to $A_{0-15}(\mathrm{AS}=5)$					
1	tpD	CP to $\mathrm{A}_{0-15}(\mathrm{AS}=6)$					
1	tpD	$C P$ to $A_{0-15}(A S=7)$					
1	$t_{\text {PD }}$	$C P$ to $A_{0-15}(\mathrm{AS}=8)$					
1	$t_{\text {PD }}$	$C P$ to $A_{0-15}(A S=9)$					
1	tPD	$C P$ to $A_{0-15}(\mathrm{AS}=10)$					
1	$t_{\text {PD }}$	$C P$ to $A_{0-15}(\mathrm{AS}=11)$					
1	tpD	$C P$ to $A_{0-15}(A S=12)$					
1	tpD	$C P$ to $A_{0-15}(A S=13)$					
1	tPD	$C P$ to $A_{0-15}(A S=14)$					
1	tpD	$C P$ to $A_{0.15}(\mathrm{AS}=15)$					
2	tPD	Address Select to $A_{0-15}$					
3	$t_{\text {tPHZ }}$	$\overline{\mathrm{OE}}$ to $\mathrm{A}_{0-15}$ Disable Time					
4	tplz	$\overline{\mathrm{OE}}$ to $\mathrm{A}_{0-15}$ Disable Time					
5	tpzH	$\overline{\mathrm{OE}}$ to $\mathrm{A}_{0-15}$ Enable Time					
6	tpZL	$\overline{\mathrm{OE}}$ to $\mathrm{A}_{0-15}$ Enable Time					
7	tpD	CP to IT COMP					$C_{L}=50 \mathrm{pF}$
8	tpd	CP to FFT COMP					See Test
9	tpd	CP to ODD/ $\overline{\text { EVEN }}$ (KZ/KNZ)					
10	${ }_{\text {tPD }}$	Address Select to ODD//-VEN/ (KZ/ $\overline{\text { KNZ }}$ )					
11	ts	Offset Address input $A_{0-15}$ to $C P$ Setup Time					
12	${ }_{\text {t }}^{\text {H }}$	Offset Address Input $\mathrm{A}_{0-15}$ to CP Hold Time					
13	$\mathrm{t}_{5}$	Counter Instruction to CP Setup Time					
14	${ }_{\text {t }}^{\text {H }}$	Counter Instruction to CP Hold Time					
15	$\mathrm{t}_{5}$	Transform Length Select to CP Setup Time					
16	${ }_{\text {th }}$	Transform Length Select to CP Hold Time					
17	$\mathrm{ts}^{\text {s}}$	Transform Length Select to $\overline{\text { TSTRB }} \uparrow$ Setup Time					
18	$\mathrm{th}_{\mathrm{H}}$	Transform Length Select to $\overline{\text { TSTRB }} \uparrow$ Hold Time					
19	$t_{s}$	$\overline{\text { TSEL }}$ (HIGH to LOW) to $\overline{\text { TSTRB }} \uparrow$ Setup Time					
20	${ }_{\text {t }}$	TSEL to TSTRB $\uparrow$ Hold Time					
21	$\mathrm{t}_{5}$	RADIX 4/2 to CP Setup Time					
22	$\mathrm{t}_{\mathrm{H}}$	RADIX $4 / \overline{2}$ to CP Hold Time					
23	$\mathrm{ts}_{s}$	RADIX 4/ $\overline{2}, \overline{\text { PSD }}, \mathrm{DIT} / \overline{\mathrm{DF}}$ to $\overline{\text { STRB }} \uparrow$ Setup Time					
24	$t_{H}$	RADIX 4/2, $\overline{\text { PSD }}, \mathrm{DIT} / \overline{\mathrm{DIF}}$ to $\overline{\text { STRB }} \uparrow$ Hold Time					
25	$\mathrm{t}_{5}$	$\overline{\text { SEL }}$ (HIGH to LOW) to $\overline{\text { STRB }} \uparrow$					
26	$t_{H}$	$\overline{\text { SEL }}$ Hold Time to $\overline{\text { STRB }} \uparrow$					
27	$\mathrm{t}_{\mathrm{s}}$	$\overline{\text { STRB }}$ or $\overline{\text { TSTRB }}$ to CP Setup Time					
28	tpwSL	Minimum Strobe Pulse Width LOW					
29	tpWH	CP Pulse Width HIGH					
30	tpWL	CP Pulse Width LOW					





## TEST LOADS FOR DELAY MEASUREMENTS

A. Three-state outputs


$$
\mathrm{R}_{1}=\frac{5.0-\mathrm{V}_{\mathrm{BE}}-V_{\mathrm{OL}}}{\mathrm{lOL}+\mathrm{V}_{\mathrm{OL}} / 1 \mathrm{~K}} \quad \mathrm{I}_{\mathrm{L}} \quad \mathrm{~s}_{3} \quad \mathrm{R}_{2}=\frac{2.4 \mathrm{~V}}{\mathrm{l}_{\mathrm{OH}}} \quad \mathrm{R}_{1}=\frac{5.0-V_{\mathrm{BE}}-V_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}+\mathrm{V}_{\mathrm{OL}} / \mathrm{R}_{2}}
$$

Notes: 1. $C_{L}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. $S_{1}, S_{2}, S_{3}$ are closed during function tests and all $A C$ tests except output enable tests.
3. $S_{1}$ and $S_{3}$ are closed while $S_{2}$ is open for tPZH test.
$S_{1}$ and $S_{2}$ are closed while $S_{3}$ is open for tpZL test.
4. $C_{L}=5.0 \mathrm{pF}$ for output disable tests.

## Am29540 DEFINITION OF FUNCTIONAL TERMS

$\mathbf{T L}_{\mathbf{0}}, \mathrm{TL}_{\mathbf{1}} \quad$ Transform length control determines the $\mathrm{TL}_{2}, \mathrm{TL}_{3} \quad$ number of points to be transformed. (See Figure 1)
$\overline{\text { TSEL, }} \overline{\text { TSTRB }}$
Transform length latch enables. These active LOW inputs are ANDed to control the latch. The latch is transparent when both TSEL and TSTRB are LOW.
$\mathbf{I}_{\mathbf{0}}, \mathbf{I}_{\mathbf{1}} \quad$ Counter Instruction inputs determine one of four available butterfly counter instructions Hold, Reset, Reset/Load and Count. (See Figure 2)
CP Butterfly counter clock (positive edge active).
Radix 4/2 The Radix control determines whether addresses will be generated for Radix-4 (HIGH) for Radix-2 (LOW) transforms.
$\overline{\text { PSD }} \quad$ The Pre-Scrambled Data, $\overline{\text { PSD }}$, input is used to select an appropriate transform for input data which has previously been digit reversed. $\overline{\text { PSD }}$ must be LOW for prescrambled input data. For in-place transforms with normally ordered input data, $\overline{\mathrm{PSD}}$ should be HIGH. Refer to individual transform flow charts ( p . to ) for other cases.
DIT/DIF Control input for selection of the Decimation Control input for selection of the Decimation
In Frequency algorithm (LOW) or Decimation in Time algorithm (HIGH).
$\overline{\text { SEL, }} \overline{\text { STRB }}$
$\mathrm{AS}_{\mathbf{0}}, \mathrm{AS}_{\mathbf{1}}$, $A_{2}, A_{3}$
$\overline{\mathbf{O E}}$

A0-15
Address Output (offset input) ODD/EVEN, (KZ/KNZ)

Transform type (Radix 4/2, PSD, DIF//T) latch enables. These active LOW inputs are ANDed to control the latch. The latch is transparent when both $\overline{\mathrm{SEL}}$ and $\overline{\mathrm{STRB}}$ are LOW.
Address Select control determines address selection. (See Figure 3)
Three-state output enable. The 3 -state output is controlled solely by $\overline{\mathrm{OE}}$. The output does not automatically become high impedance during the Reset/Load instruction.
Bidirectional 16-bit port to output selected addresses or to input an address offset.

For address select 0 to 11 the ODD/EVEN output controls the alternation of separate read and write memories for non-in-place transforms. For Address select 12 to $15 \mathrm{KZ} /$ $\overline{\mathrm{KNZ}}=(\mathrm{HIGH})$ indicates that the rotational constant to be used in the RVI transform is Wo and that an alternative butterfly must be implemented.
FFT COMP $\quad$ FFT Complete $=$ HIGH identifies the last butterfly (or end) of the transform. (See Figure 4)
Iteration Complete $=$ HIGH flags the bottom of a "column" of butterflies. (See Figure 4.)

Figure 1. Transform Length Control

$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{0}}$	Counter Function
L	L	Hold, No-Op   Leset, Reset counter to start of transform   L   with unused address outputs set to 0.
H	L	Reset/Load, Reset counter to start of transform   with unused address outputs set to the current   value of the address bus.   Count, increment butterly counter.

Figure 2. Counter Instruction Control

AS $=$	AS $_{\mathbf{3}}$	$\mathbf{A S}_{\mathbf{2}}$	$\mathbf{A S}_{\mathbf{1}}$	$\mathbf{A S}_{\mathbf{0}}$	Description	Usage
0	L	L	L	L	Data Address 1	Radix 2/4
1	L	L	L	H	Data Address 2	Radix 2/4
2	L	L	H	L	Data Address 3	Radix 4
3	L	L	H	H	Data Address 4	Radix 4
4	L	H	L	L	Alt. Data Address 1	Radix 2/4
5	L	H	L	H	Alt. Data Address 2	Radix 2/4
6	L	H	H	L	Alt. Data Address 3	Radix 4
7	L	H	H	H	Alt. Data Addres 4 4	Radix 4
8	H	L	L	L	Const Address 1	Radix 2/4, Shading
9	H	L	L	H	Const Address 2	Radix 4
10	H	L	H	L	Const Address 3	Radix 4
11	H	L	H	H	Const Address 1	Shading
12	H	H	L	L	RVI Data Address 1	RVI
13	H	H	L	H	RVI Data Address 2	RVI
14	H	H	H	L	RVI Data Address 3	RVI
15	H	H	H	H	RVI Data Address 4	RVI

Figure 3. Address Select Control




## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Am29540   Order Number	Package Type   (Note 1)	Operating Range   (Note 2)	Screening Level   (Note 3)
AM29540DC	D-40-1	C	$\mathrm{C}-1$
AM29540DCB	$\mathrm{D}-40-1$	C	B-2 (Note 4)
AM29540DM	$\mathrm{D}-40-1$	M	C-3
AM29540DMB	$\mathrm{D}-40-1$	M	$\mathrm{B}-3$
AM29540LC	$\mathrm{L}-44$	C	$\mathrm{C}-1$
AM29540LM	$\mathrm{L}-44$	M	$\mathrm{C}-3$
AM29540LMB	$\mathrm{L}-44$	M	B-3

Notes: 1. $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak. Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to

MIL-STD-883, Class B.
4. 160 hour burn-in.


## TRANSFORM CHARACTERISTICS

- 16-Point $(\mathrm{N}=16)$
- RADIX-2
- DIF
- Normally ordered output data (Bit-reversed input data order)
- In-place
- Complex valued input data


FORWARD TRANSFORM
$A^{\prime}=A+B$
$B^{\prime}=(A-B) W^{k}$

INVERSE TRANSFORM
$A^{\prime}=A+B$
$B^{\prime}=(A-B) W^{-k}$

$$
W=e^{-j \pi}
$$



DIT/信F	$\overline{\text { PSD }}$	RADIX 4/्र
L	L	L


Address of	A	B	$\mathrm{A}^{\prime}$	B	$\mathrm{W}_{\mathrm{k}}$
$\mathbf{A S}=$	0	1	0	1	8


TRANSFORM CHARACTERISTICS   - 16-Point ( $\mathrm{N}=16$ )   - RADIX-2   - DIF   - Normally ordered input and output data (Non-bit-reversing)   - Non-in-place   - Complex valued input data	
	FORWARD TRANSFORM$A^{\prime}=A+B$    $B^{\prime}=(A-B) W^{k}$                 $A^{\prime}=A+B=(A-B) W^{-k}$  



DIT/们F	$\overline{\text { PSD }}$	RADIX 4/्̄2
$L$	$H$	$L$


Address of	A	B	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{W}^{k}$
$\mathbf{A S}=$	0	1	4	5	8

## TRANSFORM CHARACTERISTICS

- 16-Point $(N=16)$
- RADIX-2
- DIT
- Normally ordered input data (Bit-reversed output data order)
- In-place
- Complex valued input data

TYPICAL BUTTERFLY


FORWARD TRANSFORM
INVERSE TRANSFORM
$A^{\prime}=A+B W^{k}$
$B^{\prime}=A-B W^{k}$
$A^{\prime}=A+B W^{-k}$
$B^{\prime}=A-B W^{-k}$

$$
W=e^{-j \pi}
$$



DIT/ $\overline{\text { DIF }}$	$\overline{\text { PSD }}$	RADIX 4/2
H	H	L


Address of	A	B	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{W}^{k}$
AS $=$	0	1	0	1	8


TRANSFORM CHARACTERISTICS   - 16-Point ( $\mathrm{N}=16$ )   - RADIX-2   - DIT   - Normally ordered input and output data (Non-bit-reversing)   - Non-in-place   - Complex valued input data	TYPICAL BUTTERFLY



DIT/DIF	$\overline{\text { PSD }}$	RADIX 4/ $\overline{\mathbf{2}}$
H	L	L


Address of	A	B	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{W}^{\mathrm{k}}$
$\mathrm{AS}=$	4	5	0	1	8

TRANSFORM CHARACTERISTICS

- 16-Point ( $\mathrm{N}=16$ )
- RADIX-4
- DIF
- Normally ordered input data (Digit-reversed output data order)
- In-place
- Complex valued input data


## TYPICAL BUTTERFLY



## FORWARD TRANSFORM

$A^{\prime}=A+B+C+D$
$B^{\prime}=(A-j B-C+j D) W^{k}$
$A^{\prime}=A+B+C+D$
$B^{\prime}=(A+j B-C-j D) W^{-k}$
$C^{\prime}=(A-B+C-D) W^{-2 k}$
$D^{\prime}=(A-j B-C+j D) W^{-3 k}$

$$
\mathrm{W}=\mathrm{e}^{-\mathrm{j} \pi}
$$



DIT/伩F	$\overline{\text { PSD }}$	RADIX 4/2
$L$	$H$	$H$


Address of	A	B	C	D	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{C}^{\prime}$	$\mathrm{D}^{\prime}$	$\mathrm{W}^{k}$	$\mathrm{~W}^{2 k}$	$\mathrm{~W}^{3 k}$
$\mathbf{A S}=$	0	1	2	3	0	1	2	3	8	9	10

TRANSFORM CHARACTERISTICS

- 16-Point $(N=16)$
- RADIX-4
- DIF
- Normally ordered input and output data (Non-digit reversing)
- Non-in-place
- Complex valued input data

TYPICAL BUTTERFLY


## FORWARD TRANSFORM

$A^{\prime}=A+B+C+D$
$B^{\prime}=(A-j B-C+j D) W^{k}$
$C^{\prime}=(A-B+C-D) W^{2 k}$
$D^{\prime}=(A+j B-C-j D) W^{3 k}$

## INVERSE TRANSFORM

$A^{\prime}=A+B+C+D$
$B^{\prime}=(A+j B-C-j D) W-k$
$C^{\prime}=(A-B+C-D) W-2 k$
$D^{\prime}=(A-j B-C+j D) W-3 k$

$$
\mathrm{W}=\mathrm{e}^{-\mathrm{j} \pi}
$$



DIT/伩F	PSD	RADIX 4/2
L	$H$	$H$


Address of	A	B	C	D	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{C}^{\prime}$	$\mathrm{D}^{\prime}$	Wk	$\mathrm{W}^{2 k}$	$\mathrm{~W}^{3 k}$
$\mathbf{A S}=$	0	1	2	3	4	5	6	7	8	9	10

TRANSFORM CHARACTERISTICS

- 16 -Point $(\mathrm{N}=16)$
- RADIX-4
- DIT
- Normally ordered input data
(Digit-reversed output data order)
- In-place
- Complex valued input data
FORWARD TRANSFORM

\[\)| $A^{\prime}$ | $=A+B W^{k}+C W^{2 k}+D W^{3 k}$ |
| ---: | :--- |
| $B^{\prime}$ | $=A-j B W^{k}-C W^{2 k}+j D W^{3 k}$ |
| $C^{\prime}$ | $=A-B W^{k}+C W^{2 k}-D W^{3 k}$ |
| $D^{\prime}$ | $=A+j B W^{k}-C W^{2 k}-j D W^{3 k}$ |

\]

## TYPICAL BUTTERFLY


$A^{\prime}=A+B W^{k}+C W^{2 k}+D W^{3 k}$
$B^{\prime}=A-j B W^{k}-C W^{2 k}+j D W^{3 k}$
$C^{\prime}=A-B W^{k}+C W^{2 k}-D W^{3 k}$
$D^{\prime}=A+j B W^{k}-C W^{2 k}-j D W^{3 k}$

## INVERSE TRANSFORM

$$
\begin{aligned}
& A^{\prime}=A+B W^{-k}+C W^{-2 k}+D W^{-3 k} \\
& B^{\prime}=A+j B W^{-k}-C W^{-2 k}-j D W^{-3 k} \\
& C^{\prime}=A-B W^{-k}+C W^{-2 k}-D W^{-3 k} \\
& D^{\prime}=A-j B W^{-k}-C W^{-2 k}+j D W^{-3 k}
\end{aligned}
$$

$$
\mathrm{W}=\mathrm{e}^{-\mathrm{j} \pi}
$$



DIT/市F	$\overline{\text { PSD }}$	RADIX 4/̄2
$H$	$H$	$H$


Address of	A	B	C	D	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{C}^{\prime}$	$\mathrm{D}^{\prime}$	Wk	$\mathrm{W}^{2 k}$	$\mathrm{~W}^{3 k}$
$\mathbf{A S}=$	0	1	2	3	0	1	2	3	8	9	10

## TRANSFORM CHARACTERISTICS

- 16-Point ( $\mathrm{N}=16$ )
- RADIX-4
- DIT
- Normally ordered output data (Digit-reversed input data order)
- In-place
- Complex valued input data


## TYPICAL BUTTERFLY



## FORWARD TRANSFORM

$$
\begin{aligned}
& A^{\prime}=A+B W^{k}+C W^{2 k}+D W^{3 k} \\
& B^{\prime}=A-j B W^{k}-C W^{2 k}+j D W^{3 k} \\
& C^{\prime}=A-B W^{k}+C W^{2 k}-D W^{3 k} \\
& D^{\prime}=A+j B W^{k}-C W^{2 k}-j D W^{3 k}
\end{aligned}
$$

## INVERSE TRANSFORM

$A^{\prime}=A+B W^{-k}+C W^{-2 k}+D W^{-3 k}$
$B^{\prime}=A+j B W^{-k}-C W^{-2 k}-j D W^{-3 k}$
$C^{\prime}=A-B W^{-k}+C W^{-2 k}-D W^{-3 k}$
$D^{\prime}=A-j B W^{-k}-C W^{-2 k}+j D W^{-3 k}$
$W=e^{-j \pi}$


DIT/DIF	$\overline{\text { PSD }}$	RADIX 4/2
H	L	H


Address of	A	B	C	D	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{C}^{\prime}$	$\mathrm{D}^{\prime}$	$\mathrm{W}^{k}$	$\mathrm{~W}^{2 k}$	$\mathrm{~W}^{3 k}$
$\mathrm{AS}=$	0	1	2	3	0	1	2	3	8	9	10

## TRANSFORM CHARACTERISTICS

- 16-Point $(\mathrm{N}=16)$
- RADIX-4
- DIT
- Normally ordered input and output data (Non-digit reversing)
- Non-in-place
- Complex valued input data

FORWARD TRANSFORM
$A^{\prime}=A+B W^{k}+C W^{2 k}+D W^{3 k}$
$B^{\prime}=A-j B W^{k}-C W^{2 k}+j D W^{3 k}$
$C^{\prime}=A-B W^{k}+C W^{2 k}-D W^{3 k}$
$D^{\prime}=A+j B W^{k}-C W^{2 k}-j D W^{3 k}$

TYPICAL BUTTERFLY


FORWARD TRANSFORM	
$A^{\prime}$	$=A+B W^{k}+C W^{2 k}+D W^{3 k}$
$B^{\prime}$	$=A-j B W^{k}-C W^{2 k}+j D W^{3 k}$
$C^{\prime}=A-B W^{k}+C W^{2 k}-D W^{3 k}$	
$D^{\prime}$	$=A+j B W^{k}-C W^{2 k}-j D W^{3 k}$


Address of	A	B	C	D	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{C}^{\prime}$	$\mathrm{D}^{\prime}$	$\mathrm{W}^{k}$	$\mathrm{~W}^{2 k}$	$\mathrm{~W}^{3 k}$
$\mathbf{A S}=$	4	5	6	7	0	1	2	3	8	9	10

TRANSFORM CHARACTERISTICS

- 16-Point $(N=16)$
- RADIX-4
- DIF
- Normally ordered output data (Digit-reversed input data order)
- In-place
- Complex valued input data



## FORWARD TRANSFORM

$A^{\prime}=A+B+C+D$
$B^{\prime}=(A-j B-C+j D) W^{k}$
$C^{\prime}=(A-B+C-D) W^{2 k}$
$D^{\prime}=(A+j B-C-j D) W^{3 k}$

$$
W=e^{-j \pi}
$$



DIT/矿	$\overline{\text { PSD }}$	RADIX 4/̄2
$L$	$L$	$H$


Address of	A	B	C	D	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{C}^{\prime}$	$\mathrm{D}^{\prime}$	$\mathrm{W}^{\mathbf{k}}$	$\mathrm{W}^{2 k}$	W3k
AS $=$	0	1	2	3	0	1	2	3	8	9	10


DIT/伊	$\overline{\text { PSD }}$	RADIX 4/2
$H$	$H$	L


Address of	A	B	C	D	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{C}^{\prime}$	$\mathrm{D}^{\prime}$	$\mathrm{W}_{\mathrm{N}}^{\mathrm{k}}$
AS $=$	12	13	14	15	12	13	14	15	8

## TRANSFORM CHARACTERISTICS

- 16-Point $(\mathrm{N}=16)$
- RADIX-2
- DIF
- Normally ordered output data (Unique input data order)
- In-place
- Real valued output data
- Inverse transform


## TYPICAL BUTTERFLIES

$\mathrm{KZ} / \overline{\mathrm{KNZ}}=\mathrm{HIGH}$
( $k=0$ )

$A^{\prime}=\operatorname{Re}[A+j B+C-j D]$
$B^{\prime}=\operatorname{lm}[A+j B+C-j D]$
$C^{\prime}=\operatorname{Re}\left[(A+j B-C+j D) W_{N}^{0}\right]$
$D^{\prime}=\operatorname{Im}\left[(A+j B-C+j D) W_{N}^{0}\right]$

$$
W_{N}=e^{j} \frac{2 \pi}{N}
$$



DIT/矿	$\overline{\text { PSD }}$	RADIX 4//2
L	L	L


Address of	A	B	C	D	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	$\mathrm{C}^{\prime}$	$\mathrm{D}^{\prime}$	$\mathrm{W}_{\mathrm{N}}$
AS $=$	12	13	14	15	12	13	14	15	8

## TRANSFORM CHARACTERISTICS

- 16-Point ( $\mathrm{N}=16$ )
- RADIX-2
- DIT
- Normally ordered output data (Bit-reversed input data order)
- In-place
- Complex valued input data


## TYPICAL BUTTERFLY



FORWARD TRANSFORM
INVERSE TRANSFORM

$$
\begin{aligned}
& A^{\prime}=A+B W^{k} \\
& B^{\prime}=A-B W^{k}
\end{aligned}
$$

$A^{\prime}=A+B W^{-k}$
$B^{\prime}=A-B W^{-k}$

$$
W=e^{-j \pi}
$$



DIT/伩F	$\overline{\text { PSD }}$	RADIX 4/्̄2
$H$	L	L


Address of	A	B	$\mathrm{A}^{\prime}$	$\mathrm{B}^{\prime}$	Wk
AS $=$	0	1	0	1	8

INDEX NUNEFIC DEVICE INDEX
SECTION TUNGIION NDEX

SYSTEMS
DESIGN
CONSIDERATIONS EROLAR LSIVVLSITECHNOLOGIES
CTROPOSYSTEMS SOLUTIONS


```
Am2960/70
MEMORY
SUPPORT
```

DYNAMIC MEMORY CONTROL
MEMORY TIMING/CONTROL UNITS
ERROR DETECTION AND CORRECTION
Am2900
PROCESSORS
ANDSLICEPROCESSORS
ANDERIPHERALS
MSROCODE SEQUENGERS
Am29100
CONTROLLER
FAMILY
Am29500 $16 \times 16$ PARALEL MULTPLERS
ARRAYAND DIGITAL
MULITIPORT PIPELINED PROCESSORS
SIGNAL PROCESSNG
Am29800
HIGH PERFORMANCE BUS INTERFACE
8, 9, AND 10-BIT IMOX BUS INTERFACE DIAGNOSTIC REGISTERS IMOX COMPARATORS


HIGH PERFORMANCE SCHOTTKY LOGIC LOW-POWER SCHOTTKY LOGIC $8 \times 8$ PARAELEL MULTIPLIERS

Am265

HIGH PERFORMANCE SCHOTTKY BUS INTERFACE data communications interface

8100
8200 MOS MCROPROCESSOR SUPPORT PRODUCTS

## 8200

 FOR B-BIT AND 16-BIT MICROPROCESSORS
## MEMORIES, <br> PALS.

PROMS, BIPOLAR RAMS, MOS STATIC RAMS
MOS PERIPHERALS, 20-PIN AND 24 -PIN PALs,

ANALOG
MOSLSI PERIPHERALS
VERY HIGH SPEED DATA ACQUISITION


```
GENERAL
INFORMATION
```


## Am29800 <br> High Performance Bus Interface and Logic Index

Am29800 Family Overview ..... 8-1
Am29803A 16-Way Branch Control Unit ..... See Section 5
Am29806/09 6-Bit Chip Select Decoder, 9-Bit Equal-to Comparator ..... 8-9
Am29811A Next Address Control Unit See Section 5
Am29818 SSR ${ }^{\text {TM }}$ Diagnostics/WCS Pipeline Register ..... 8-15
Am29821/22 High Performance Bus Interface Registers ..... 8-27
Am29823/24 High Performance Bus Interface Registers ..... 8-27
Am29825/26 High Performance Bus Interface Registers ..... 8-27
Am29827/28 High Performance Buffers ..... 8-34
Am29833/34 Parity Bus Transceivers ..... 8-38
Am29841/42 High Performance Bus Interface Latches ..... 8-47
Am29843/44 High Performance Bus Interface Latches ..... 8-47
Am29845/46 High Performance Bus Interface Latches ..... 8-47
Am29853/54 Parity Bus Transceivers ..... 8-38
Am29861/62 High Performance Bus Transceivers ..... 8-55
Am29863/64 High Performance Bus Transceivers ..... 8-55
Design Aids
Am2900 Family Applications Literature ..... See Section 3
Customer Education Center Courses ..... See Section 3
Am29203 Education Board ..... See Section 3
System 29 Development System ..... See Section 3
General Information ..... See Section 13

High Performance Bus Interface Family Standardizes Around Slim 24-Pin Package

## The Octal Explosion

David A. Laws and Peter Alfke Advanced Micro Devices, Inc. Sunnyvale, CA

Most IC designers tend to focus their attention on ever more complex VLSI solutions to improve the package count, cost and reliability of microprocessor based systems. In many cases, however, greater impact could be achieved with much less effort by designing a more efficient bus interface. The last major innovation in this area was the advent of the popular 20-pin octal interface, which occurred not so coincidentally with the boom in 8-bit microprocessor sales.

The 20-pin package was ideal for 8-bit interface elements as it allowed for eight input lines, eight output lines, two control inputs, power supply and ground. Octal configurations of registers, latches and transceivers, appeared in Schottky, low-power Schottky and CMOS technologies from every major integrated circuit supplier, and as technology improved, a proliferation of polarity, pin rotation, high current drive and low power options became available to meet every conceivable 8-bit need.

However, as the designers' world became more complex, it became apparent that modular sizes larger than 8 bits were needed. For example, systems that use a parity check scheme need 9 bits for each byte, and if a clock line is added, a 10-bit part is needed. The 10-bit part also fits nicely with the 20 -bit addressing schemes used with many 16-bit microprocessors.
A 9- or 10-bit function previously required the one octal and one 4-bit part, which left the designer with two packages and potential problems. Clearly, the answer was a new approach.

## The 24-Pin Solution

Two factors contributed to the 24-pin solution. First was the development of a more compact 24-pin package. Until recently the only package available for this pin count was a 600-mil wide DIP. Now a slimline, 24 -pin 300-mil wide package, called Thin-DIP by AMD, is entering production at a number of package manufacturers. Second, advanced Schottky technologies made it possible to pack increased functional complexity onto chips small enough to fit into the narrow cavities of these new packages. AMD calls its version of this process IMOX ${ }^{\text {M }}$, an acronym which means ion-implanted and oxide-isolated. The fabrication and packaging problems overcome, AMD proceeded to define a complete family of functions from the ground up. While the previous 20-pin octal interface devices had been a great improvement over their predecessors, the piecemeal approach to their conception had led to a bewildering array of inconsistent configurations. So before starting design on any one device, AMD applications engineers looked at all the essential interface functions required by a system. The result is the new Am29800 series.
The Am29800 family includes registers, latches, buffers and transceivers; most functions are supplied in 8-or 9 - and 10-bit wide configurations. De facto standards have determined that most systems are noninverting internally, while most bus configurations are inverting. To meet all these needs, both inverting and noninverting versions of the Am29800 devices are available to the designer.
Now that two-layer metal interconnect is an established manufacturing process, it is possible to give careful consideration to the physical location of input and output pins. All inputs on the new Am29800 family have been placed on one side of the package with corresponding outputs on the other, so data can flow in a direct physical path from the microprocessor CPU through the interface unit and onto the bus. This permits a much cleaner board layout. In addition, power supply, ground and control function pins are always in the same position.

AMD also decided to standardize pinouts between logic functions. For example, all 10-bit elements, i.e., latches, registers or transceivers, have the same input and output pin assignment, as do all 9-and 8-bit devices.

## Electrical Performance

## Registers

For many years, TTL devices, such as the 'S240 series, employed PNP inputs to achieve very low input current characteristics. Unfortunately, while the DC input current is indeed low, the dynamic performance of the device is severely downgraded because of the large capacitance associated with the PNPs. The Am29800 devices were designed with low capacitance loading at the inputs and outputs.
Most IC data sheets specify AC performance at 15pF test conditions only. While this is adequate for general purpose logic applications, a realistic bus structure will typically see much higher loading, and all Am29800 series devices are designed to provide optimum performance under more realistic system conditions. Specified sink currents of 48 mA over the commercial temperature operating range ( 0 to $70^{\circ} \mathrm{C}$ ) and 32 mA over the military temperature range ( -55 to $+125^{\circ} \mathrm{C}$ ) ensure adequate capacitance drive and fan-out for bus systems. And since drivers must charge load capacitance in both falling and rising directions, source current is also fully characterized at both 2.0 and 2.4 V .

Critical AC specifications such as propagation delays and disable times for the three-state outputs are specified for 300 pF load conditions both at $25^{\circ} \mathrm{C}$ and over the full operating temperature range and power supply tolerance; specific delays depend on the function being considered. Typical values for a D-type register at 50pF are 6 to 7 ns , comparable to those achieved with AS or FAST devices under the same conditions and an improvement over higher power Schottky products. At 350pF, loading delays increase to the 12 to 14 ns range. Simple buffers and inverters exhibit typical values of 4 ns .

The Am29821-26 Bus Interface Registers are specifically designed to provide extra width for wide address or data paths and buses carrying parity.

The Am29821 is a 10 -bit wide version of the popular '374 8-bit register. It has ten inputs, ten outputs, common buffered clock enable and three status Output Enable lines. The inverting version, Am29822, is comparable with the '534 8-bit device.

The 9-bit registers, Am29823 and Am29824, give up one bit to gain two additional control lines which are used for Clock Enable (EN), and Clear (CLR). This combines '273, '374 and '377 functions in one single package. The extra pins available on the 8-bit parts, Am29825 and Am29826, provide gate output enable capability, which eliminates the need for external gate packages when used in DMA or

Multibus ${ }^{\circledR}$ control applications. The Am29825 can also be used to implement high source/sink drive on the data port
for the AmZ8000 ${ }^{\text {TM }}$ or 808616 -bit CPUs. The registers can be controlled from WR and CS, can be cleared and can be disabled for DMA operations. The two 24-pin parts replace four of the earlier octal devices plus one gate package and system performance is improved up to three or four times because of the reduced number of gate delays and shorter wiring traces.

## Metastable Operation

## Other Functions

The Am29800 Family registers provide an additional bonus; they recover extremely fast from a metastable condition.
The metastable condition occurs in all flip-flops any time the active clock edge interrogates the input at exactly the same time the input changes state. When this happens the cross coupled latch at the output can reach a balanced, symmetrical condition which it will hold for some microseconds or even milliseconds before returning to its proper state. Previously, the designer of asynchronous system had only one remedy for the metastable problem. Two or even three synchronizer flip-flops could be cascaded. This reduced probability of a metastable output but increased throughput delay.
The Am29800 registers, while not totally immune to this problem are "metastable hardened" by means of a unique circuit design that reduces both the probability and the delay of any metastable condition under test. Artificially induced, a metastable condition failed to produce any output oscillations and increased the clock-to-input delay by a mere 6 ns . This is an improvement of many orders of magnitude over previously available designs.

Other functions in the Am29800 family iriclude latches, buffers and transceivers, comparators and special parity transceivers.

The Am29841 through Am29846 latches follow the pattern as the registers. The 10 -bit device is similar in function to the popular 'S373 octal latch; control lines available are latch enable (LE) and three-state output enable (OE). The noninverting device is analogous to the ' 533 element. The 9 -bit latches add preset (PRE) and clear (CLR) and the 8-bit options have added gated output enable controls.
Buffers and inverters, Am29827 and Am29828, are 10-bit wide high performance versions of the ' 240 and '244 devices, while the transceivers emulate the ' 245 and 8304B octal elements. For improved operation in a noisy bus environment, all data inputs have 200 mV minimum input hysteresis.

IMOX is a trademark of Advanced Micro Devices, Inc.
Multibus is a registered trademark of Intel Corporation.
Z8000 is a trademark of Zilog, Inc.

## The Metastable Problem

## When Does This Cause A Problem?

One problem faced by designers is the interfacing of asynchronous digital signals. Although most difficulties can be overcome somewhat easily, there is also a more fundamental problem that defies a perfect solution. The following is a general overview of the metastable problem.
Latches and flip-flops are normally considered bistable devices, since they have two unconditionally stable operating points, either HIGH or LOW. There is, however, a third operating point when the cross-coupled arrangement is exactly balanced. This operating point is stable only if there is no noise in the system and the system is perfectly balanced. The condition is called metastable (meta = Greek for "between"). A metastable condition will last only long enough for the circuit to fall into one of the two stable operating points. This time can be many microseconds, even milliseconds, for devices as fast as a 74574 flip-flop. In other words, if a flip-flop has reached the balanced, metastable condition, it may remain in this state for an undetermined time, perhaps 1000 times longer than its normal response speed.

In almost every digital system certain asynchronous events (key-strokes, incoming data, interrupts), must be synchronized to the computer clock. The textbook solution is a fast, clocked flip-flop, like the 74S74, in which the asynchronous signal is applied to the D input and clocked with the system clock. This results in a perfectly synchronized output (usually).

Let's analyze the timing more carefully: the data sheet specified a setup time requirement (for this device, $\left.\mathrm{t}_{\mathrm{s}}=3 \mathrm{~ns}\right)$. This means that any signal that arrives at least $3 n s$ before the clock edge will achieve the intended result, i.e., an H will set, an L will reset the flip-flop. Great for synchronous systems. But what happens when the asynchronous input violates this setup time requirement and changes less than $3 n s$ before the clock edge? Well, most of the time nothing. The actual moment where the flip-flop samples the Dinput is somewhere in the guaranteed range, i.e., somewhere less than $3 n s$ before the clock. So the flip-flop makes the decision. It either senses the change on the asynchronous input and therefore changes its Q output, or it ignores the change and doesn't change the Q output. So the only thing lost is one clock cycle. Unfortunately that's not always true.

## It is Now Necessary to Look Beyond the Data Sheet

If the $D$ input changes exactly at the same moment that the flip-flop makes its decision, it might transfer exactly the amount of energy to kick the output latch into the metastable balanced condition, from which it will recover after an unpredictable delay (measured in nanoseconds, microseconds or even milliseconds).
In other words: any latch, flip-flop or register has a "moment of truth" somewhere inside the guaranteed range of setup time where it actually makes up its mind, and if the input changes at that very moment, the output is no longer synchronous. This "moment of truth" is a very short window. For TTL flip-flops it is of the order of 10ps, for MOS devices it is more like 50ps to 100ps. For purposes of this discussion this timing window will be called " t ."

How often does this happen?
Here are two extreme examples. In each case there is a need to synchronize asynchronous inputs that have no phase or frequency relationship with the computer clock.

- Date signal derived from a disk, roughly 6 MHz with enough frequency modulation and jitter to make it totally asynchronous to the 10 MHz computer clock. How often will the TTL synchronizer go metastable?
The answer is, every time the Data Signal falls into the "window." The probability of hitting the window is t divided by the clock period, or even simpler: clock frequency times $t$.
$\begin{array}{ll}M=\text { Metastable Rate } & =f_{D} \cdot f_{C} \cdot t \\ f_{D}=\text { Device Frequency } & =6 \mathrm{MHz} \cdot 10 \mathrm{MHz} \cdot 10 \mathrm{ps} \\ f_{C}=\text { Clock Frequency } & \\ & \end{array}$
The synchronizer goes metastable 600 times per second.
- Keyboard entry: one keystroke per second synchronized with a 100 KHz clock.
$M=$ Metastable Rate $=1 \mathrm{~Hz} \cdot 10^{5} \mathrm{~Hz} \cdot 10 \mathrm{ps}=10^{-6} \mathrm{~Hz}$
The synchronizer goes rnetastable with a statistical probability of once per 106 sec , i.e., once every six weeks (assuming 5 eight-hour days/week).


## In Conclusion:

"Going metastable" here means that the synchronizer output is within a mid-level or oscillation range for an unpredictable time. Most occurrences will last less than 50ns, but may oćcasionally last much longer - perhaps many microseconds. This certainly can upset the timing chain.
A metastable latch or flip-flop has an unpredictable delay and will therefore change its output at a time that differs from the value obtained from the worst case timing analysis. In a slow system this usually doesn't matter, but in a fast system it can lead to a "crash."

The AMD Am29821-26 registers have been "metastable-hardened" by means of a new circuit design approach. They show no oscillations and only a minimal increase in output delay when hit right in the window.

Metastable operation is an inherent, so far incurable disease of all asynchronous interfaces. Once understood, the problem can be handled by reducing its probability to an acceptable level. AMD's Am29821-26 registers vastly minimize this problem.

## 29800 Design Guidelines

The 29800 Family offers short delay and setup times, high drive capability (fan-out), and low input capacitance attractive features for modern high performance TTL systems.
As in any high speed bus interface ('S240 series, FAST or Advanced Schottky), high edge rates and high drive capability mean that a certain amount of care must be exercised in the design of both signal paths and the grounding system. Since every data path is really a transmission line, the relationships between loading, termination, noise margins and ringing must be given more than cursory consideration.

Similarly, the grounding network may require either heavier busing or a grid approach depending on the number of drivers in a given area. 48mA per bit, plus the AC impact of charging bus lines can cause large ground currents. Distributed supply decoupling is required to provide local charging current for bus drive.
Here are some general suggestions to minimize the potential for system induced grounding and noise problems. These suggestions, in conjunction with the designer's own practical experience handling similar problems with high performance S, AS or FAST logic families, will result in an optimum Am29800 design.

## - Minimize Crosstalk

Provide Tight Ground

- Use topside links to create a ground "grid"
- In multi-layer boards use a ground plane
- In flat cables make every other wire a ground
- Minimize spacing between signal lines and ground
- Maximize spacing between signal lines

For backplane or wire-wrap systems use a twisted pair for sensitive functions - clock, asynchronous set/clear lines.

Use of 4 layer boards.is recommended.

## - Increase Decoupling

Distribute System Capacitance

- Provide one bypass cap close to each buffer package
- Provide one bypass cap for every two logic packages
Use High Frequency Capacitors
- Take care in the selection of decoupling capacitor materials. Good choices include high frequency tantalum and ceramic types.
- Do not use low frequency capacitors or aluminum electrolytics
- Be Sure All Lines Are Terminated


## Am29806/Am29809

## 6-Bit Chip Select Decoder 9-Bit Equal-to Comparator ADVANCED INFORMATION

## DISTINCTIVE CHARACTERISTICS

- High-speed, expandable, 9 -bit "equal-to" comparator (Am29809)
- High-speed comparator with chip select decoder (Am29806)
- Multibus ${ }^{\text {TM }}$ compatible, open-collector acknowledge output
- Internal pull-up resistors on all B inputs
- Acknowledge timing control input
- 24-pin, $0.3^{\prime \prime}$ space-saving package
- Fully TTL-compatible inputs and outputs
- IMOX™ high-performance IMplanted OXide isolated process


## FUNCTIONAL DESCRIPTION

## Am29809 9-Bit Comparator

The Am29809 is a 9-bit "equal-to" comparator. Its combinatorial, active LOW output, $\bar{E}_{\text {OUT }}$, responds to the combination of a LOW input on the enable input $\bar{G}$ and a match between input words A and B .

## Am29806 Chip Select Decoder

The Am29806 combines a 6-bit "equal-to" comparator with a 2- to 4 -line decoder to select one-of-four active LOW chip select outputs. The selected output becomes active in response to the select inputs $\mathrm{S}_{0}, \mathrm{~S}_{1}$ and is enabled by an active LOW input on the enable input $\bar{G}$ and a match between comparator inputs A and B . The active LOW output, Any Enable ( $\overline{\mathrm{ANYE}}$ ), responds to a valid comparison of A and $B$ and is intended for use as an output enable control for data path buffers associated with the selected peripheral or board.
Both devices have open collector, active LOW acknowledge outputs with a conditional timing input $\overline{\mathrm{C}}$ that may be driven by a timing circuit or wait state generator. The acknowledge output responds to a valid comparison, $\overline{\mathrm{G}}=$ LOW and $\overline{\mathrm{C}}=\mathrm{LOW}$.

Both devices have internal pull-up resistors on the comparator B-inputs for easy connection to SPST switches to ground selected input lines. The comparator function is described by:
$\bar{E}_{\text {OUT }}=\overline{\left(A_{0} \cdot B_{0}\right)\left(A_{1} \cdot B_{1}\right)\left(A_{2} \cdot B_{2}\right) \ldots\left(A_{i} \cdot B_{i}\right) G}$


This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am29806/809
ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \quad \mathrm{MIN}=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.5$
MIL $\quad T_{C}=-55$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \quad \mathrm{MIN}=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.5$

## DC CHARACTERISTICS OVER OPERATING RANGE

Param	Description	Test Conditions (Note 1)			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage (Note 3)	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		MIL $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	2.5			Volts
				$\mathrm{COM'L}^{\prime} \mathrm{IOH}=-6.5 \mathrm{~mA}$	2.7			
V OL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\overline{\text { ACK }} \mathrm{IOL}_{\mathrm{OL}}=32 \mathrm{~mA}$			0.5	Volts
				All Others IOL $=24 \mathrm{~mA}$				
$\mathrm{V}_{1 H}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs			2.0			Volts
$\mathrm{V}_{\mathrm{IL}}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs					0.8	Volts
$v_{1}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		$\mathrm{A}_{\mathrm{i}}$			-0.4	mA
				$\mathrm{B}_{\mathrm{i}}$			-0.8	
				All Others			-0.8	
IH	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mathrm{A}_{\mathrm{i}}$			20	$\mu \mathrm{A}$
				$\mathrm{B}_{\mathrm{i}}$ (Note 5)			-150	
				All Others			40	
I	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		$\mathrm{A}_{\mathrm{i}}$			0.1	mA
				$\mathrm{B}_{\mathrm{i}}$			0.2	
				All Others			0.2	
Isc	Output Short Circuit Current (Note 3, 4)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA
${ }^{\text {Icc }}$	Power Supply Current (Note 6)	$V_{C C}=\operatorname{MAX}$	Am29806	0 to $70^{\circ} \mathrm{C}$				mA
				$+70^{\circ} \mathrm{C}$				
				-55 to $+125^{\circ} \mathrm{C}$			54	
				$+125^{\circ} \mathrm{C}$				
			Am29809	0 to $70^{\circ} \mathrm{C}$				
				$+70^{\circ} \mathrm{C}$				
				-55 to $+125^{\circ} \mathrm{C}$			63	
				$+125^{\circ} \mathrm{C}$				

Notes: 1. For conditions shown as MIN or MAX, use the applicable value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Except open-collector acknowledge output.
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
5. Due to internal pull-up resistor; $27 \mathrm{~K} \Omega$ nominal.
6. 29806: Worst-case is with all inputs LOW.

29809: Worst-case is with $A=\overline{\mathrm{G}}=\overline{\mathrm{C}}=\mathrm{HIGH} ; \mathrm{B}=$ LOW.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Conditions	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+V_{\text {cc }} \mathrm{Max}$
DC Input Voltage (Note 7)	-0.5 to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5.0 mA

Note: 7. $\mathrm{B}_{\mathrm{i}}$ input voltage must not exceed $\mathrm{V}_{\mathrm{C}}$.

SWITCHING CHARACTERISTICS
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ )

Parameters	Description	Test Conditions (See Figure 2)	Min	Typ	Max	Units
tpLH	$\mathrm{A}_{\mathrm{i}}$ or $\mathrm{B}_{\mathrm{i}}$ to $\overline{\mathrm{E}}_{\mathrm{i}}$ and $\overline{\mathrm{ANYE}}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \end{aligned}$				ns
$\mathrm{t}_{\text {PHL }}$						
${ }_{\text {tPLH }}$	$\overline{\mathrm{G}}$ to $\overline{\mathrm{E}}_{\mathrm{i}}$ and $\overline{\mathrm{ANYE}}$					ns
$t_{\text {PHL }}$						
$\mathrm{tpLH}^{(N o t e ~ 1)}$	$\overline{\mathrm{C}}$ to $\overline{\mathrm{ACK}}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=375 \Omega \end{aligned}$				ns
$\mathrm{t}_{\text {PHL }}$						
${ }^{\text {PPLH }}$ (Note 1)	$\overline{\mathrm{G}}$ to $\overline{\mathrm{ACK}}$					ns
tPHL						
tPLH	$\mathrm{S}_{\mathrm{i}}$ to $\overline{\mathrm{E}}_{\mathrm{i}}$ (Two-Level Delay)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=1 \mathrm{~K} \Omega \end{aligned}$				ns
$t_{\text {PHL }}$						
${ }_{\text {tPLH }}$	$\mathrm{S}_{\mathrm{i}}$ to $\overline{\mathrm{E}}_{\mathrm{i}}$ (Three-Level Delay)					ns
${ }_{\text {tPHL }}$						
						ns

## Am29806

SWITCHING CHARACTERISTICS
OVER OPERATING RANGE


Note: 1. This propagation time is dependent on the $\mathrm{R}_{\mathrm{C}}$ time constant of the external load applied.

Am29806/809
Am29809
SWITCHING CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )


## Am29809

SWITCHING CHARACTERISTICS
OVER OPERATING RANGE

Parameters	Description	Test Conditions (See Figure 2)	COM'L		MIL		Units
			$\begin{gathered} T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \hline \end{gathered}$		$\begin{gathered} T_{A}=-55 \text { to }+125^{\circ} C \\ V_{C C}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$		
			Min	Max	Min	Max	
tPLH	$A_{i}$ or B	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \end{aligned}$					ns
$\mathrm{t}_{\text {PHL }}$							
tpie	$\overline{\mathrm{G}}$ to $\overline{\mathrm{E}_{\text {OUT }}}$						ns
$\mathrm{t}_{\text {PHL }}$							
$\mathrm{t}_{\text {PLH }}$ (Note 1)	$\overline{\mathrm{C}}$ to $\overline{\mathrm{ACK}}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=375 \Omega \end{aligned}$					ns
$\mathrm{t}_{\text {PHL }}$							
$t_{\text {PLL }}$ (Note 1)	$\overline{\mathrm{G}}$ to $\overline{\mathrm{ACK}}$						ns
${ }^{\text {tPHL }}$							
							ns
							ns
							ns
							ns
							ns

Note: 1. This propagation time is dependent on the $R_{C}$ time constant of the external load applied.

## DEFINITION OF FUNCTIONAL TERMS

$A_{i}, B_{i}$	Comparator data inputs. Each $A_{i}$ is compared   with each $B_{i}$ on a bit basis. The comparator   output is valid when all $A_{i}$ bits match all $B_{i}$ bits.
$\overline{\text { ACK }}$	Active LOW open collector acknowledge out-   put. This output acknowledges memory or I/O   transfers when $A$ and $B$ match and $\bar{C}$ and $\bar{G}$   are LOW.
$\overline{\text { ANYE }}$	Active LOW output. Any Enable $(\overline{\text { ANYE }})$ is   (Am29806)   LOW when $\bar{G}=$ LOW and there is a match   between $A$ and $B$.
$\bar{C}$	Active LOW input. This input is used to control   when $\overline{A C K}$ is active. It will normally be con-   nected to GND when no wait states or timing   delays need to be inserted. It may be con-   nected to a wait state generator or timer.

## EOUT <br> (Am29809)

LOW output. The comparator output is active for $\mathrm{G}=$ LOW and a match between A and $B$.
Active LOW input. The comparator's input enable determines if the comparator's output is valid. $\overline{\mathrm{G}}$ is normally used as an expansion input (connected to Am29809 EOUT).

## Am29806 Only

$\mathbf{S}_{1}, \mathbf{S}_{\mathbf{0}}$
$E_{0}, E_{1}, E_{2}, E_{3}$

Decoder select inputs. These inputs are decoded to produce a 1 -of-4 selection of the $\bar{E}_{i}$ outputs.
Active LOW outputs. 1-of-4 outputs is active as selected by $\mathrm{S}_{1}$ and $\mathrm{S}_{0}$.



Figure 2.

## Am29818

## SSR ${ }^{\text {TM }}$ Diagnostics/WCS Pipeline Register ADVANCED INFORMATION

## DISTINCTIVE CHARACTERISTICS

- High-speed noninverting 8-bit parallel register for any data path or pipelining application
- High-speed 8-bit "shadow register" with serial shift mode for Serial Shadow Register (SSR) Diagnostics
- Controllability: serial scan in new machine state
- Observability: serial scan out diagnostics routine results
- WCS (Writable Control Store) pipeline register
- Load WCS from serial register
- Read WCS via serial scan
- IMOX™ high performance IMplanted OXide isolated process
- 24-pin, $0.3^{\prime \prime}$ space saving package
- Alternate sourced as SN54/74S818


IMOX and SSR are trademarks of Advanced Micro Devices, Inc.
This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

## Am29818

## ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise specified:
COM'L

$$
T_{A}=0 \text { to }+70^{\circ} \mathrm{C}
$$

$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
$(\mathrm{MIN}=4.50 \mathrm{~V}, \mathrm{MAX}=5.50 \mathrm{~V})$
MIL
$T_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
( $\mathrm{MIN}=4.50 \mathrm{~V}, \mathrm{MAX}=5.50 \mathrm{~V}$ )

## DC CHARACTERISTICS OVER OPERATING RANGE

Param	Description	Test Conditions (Note 1)		Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 2) } \end{aligned}$	Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & Y_{0}-Y_{7}: I_{O H}=-3 \mathrm{~mA} \\ & D_{0}-D_{7}, S D O: I_{O H}=-1 \mathrm{~mA} \end{aligned}$	2.4			Volts
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & Y_{0}-Y_{7}: \mathrm{lOL}_{1}=16 \mathrm{~mA} \\ & D_{0}-D_{7}, S D O: 10 L=4 \mathrm{~mA} \end{aligned}$			0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for all Inputs		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for all Inputs				0.8	Volts
$V_{1}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.5 \mathrm{~V}$	PCLK			-2.0	mA
			DCLK			-0.6	
			MODE, SDI, $\overline{\text { OEY }}$			-0.4	
			$Y_{0}-Y_{7}, D_{0}-D_{7}$			-0.45	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	DCLK, $\overline{O E Y}, \mathrm{MODE}, \mathrm{SDI}$			50	$\mu \mathrm{A}$
			PCLK, $Y_{0}-Y_{7}, D_{0}-D_{7}$			100	
4	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
10	Off-State (High-Impedance) Output Current	$V_{C C}=M A X$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-450	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			100	
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$	$\mathrm{Y}_{0}-Y_{7}$	-30		-100	mA
			$\mathrm{D}_{0}$ - $\mathrm{D}_{7}$, SDO	-15		-50	
${ }^{\text {I Co }}$	Power Supply Current (Note 4)	$V_{C C}=\mathrm{MAX}$	0 to $+70^{\circ} \mathrm{C}$		120	155	mA
			$+70^{\circ} \mathrm{C}$			140	
			-55 to $+125^{\circ} \mathrm{C}$		120	165	
			$+125^{\circ} \mathrm{C}$			130	

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test shouid not exceed one second.
4. All three-state outputs are in the HIGH impedance state.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 to $+\mathrm{V}_{\text {CC }} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, into Outputs	25 mA
DC Input Current	-30 to +5.0 mA

Am29818
Am29818
SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

*AC performance over the operating range is guaranteed by testing defined in Group A, Subgroup 9.

Am29818
Am29818
SWITCHING CHARACTERISTICS

Parameters	Description	Test Conditions	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$			Units
			Min	Typ	Max	
${ }_{\text {tPD }}$	PCLK $\rightarrow \mathrm{Y}_{\mathrm{x}}$	See Test Output Load Conditions		10	12	ns
	MODE $\rightarrow$ SDO			10	14	ns
	SDI $\rightarrow$ SDO			10	14	ns
	DCLK $\rightarrow$ SDO			17	22	ns
ts	$\mathrm{D}_{\mathrm{x}} \rightarrow$ PCLK		8		.	ns
	MODE $\rightarrow$ PCLK		12			ns
	$\mathrm{Y}_{\mathrm{x}} \rightarrow$ DCLK		5			ns
	MODE $\rightarrow$ DCLK		10			ns
	SDI $\rightarrow$ DCLK		10			ns
	DCLK $\rightarrow$ PCLK		12			ns
	DCLK $\rightarrow$ DCLK		35			ns
$t_{H}$	$\mathrm{D}_{\mathrm{x}} \rightarrow$ PCLK		0			ns
	MODE $\rightarrow$ PCLK		0			ns
	$\mathrm{Y}_{\mathrm{x}} \rightarrow$ DCLK		5			ns
	MODE $\rightarrow$ DCLK		0			ns
	SDI $\rightarrow$ DCLK		0			ns
tLz	$\overline{\mathrm{OEY}} \rightarrow \mathrm{Y}_{\mathrm{x}}$				12	ns
	DCLK $\rightarrow \mathrm{D}_{\mathrm{x}}$				35	ns
$t_{H Z}$	$\overline{\mathrm{OEY}} \rightarrow \mathrm{Y}_{\mathrm{x}}$				22	ns
	DCLK $\rightarrow \mathrm{D}_{\mathrm{x}}$				80	ns
tzL	$\overline{\mathrm{OEY}} \rightarrow \mathrm{Y}_{\mathrm{x}}$				15	ns
	DCLK $\rightarrow \mathrm{D}_{\mathrm{x}}$				25	ns
${ }_{\text {t }}^{\text {Z }}$	$\overline{\mathrm{OEY}} \rightarrow \mathrm{Y}_{\mathrm{x}}$				15	ns
	DCLK $\rightarrow \mathrm{D}_{\mathrm{x}}$				20	ns
${ }^{\text {tpW }}$	PCLK (HIGH and LOW)		15			ns
	DCLK (HIGH and LOW)		25			ns

## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM29818DC	D-24-SLIM	C	C-1
AM29818DC-B	D-24-SLIM	C	B-2 (Note 4)
AM29818DM	D-24-SLIM	M	C-3
AM29818DM-B	D-24-SLIM	M	B-3
AM29818LC	L-28-1	C	C-1
AM29818LC-B	L-28-1	C	B-2 (Note 4)
AM29818LM	L-28-1	M	C-3
AM29818LM-B	L-28-1	M	B-3
$\begin{aligned} & \text { AM29818XC } \\ & \text { AM29818XM } \end{aligned}$	$\begin{aligned} & \text { Dice } \\ & \text { Dice } \end{aligned}$	$\begin{gathered} \mathrm{C} \\ \mathrm{M} \end{gathered}$	Visual inspection to MIL-STD-883. Method 2010B

Notes: 1. $\mathrm{D}=$ Hermetic DIP, L = Chip-Pak, Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 160 hour burn-in.

Am29818

## TEST OUTPUT LOAD CONFIGURATIONS FOR Am29818 SDO OUTPUT



Note 1. $C_{L}=50 p F$ includes scope probe, wiring and stray capacitances without device in test fixture.


## PROPAGATION DELAY



ENABLE AND DISABLE TIMES

Enable Disable
$\qquad$


ABL-020

Notes: 1. Diagram shown for Input Control Enable-LOW and Input Control Disable-HIGH.
2. $S_{1}$ and $S_{2}$ of Load Circuit are closed except where shown.

Am29818


ABL-021
ABL. 022


ABL-023
ABL-024


SHADOW REGISTER


## Am29818 FUNCTION TABLE DESCRIPTION

Data transfers into the shadow register occur on the LOW-toHIGH transition of DCLK. MODE and SDI determines what data source will be loaded. The pipeline register is loaded on the LOW-to-HIGH transition of PCLK. MODE selects whether the
data source is the data input or the shadow register output. Because of the independence of the clock inputs data can be shifted in the shadow register via DCLK and loaded into the pipeline register from the data input via PCLK simultaneously. As long as no set-up or hold times are violated, this simultaneous operation is legal.

Inputs				Outputs			Operation
SDI	MODE	DCLK	PCLK	SDO	Shadow Register	Pipeline Register	
X	L	$\uparrow$	X	$\mathrm{S}_{7}$	$\begin{aligned} & S_{i} \leftarrow S_{i-1} \\ & S_{0} \leftarrow S D I \end{aligned}$	NA	Serial Shift; $\mathrm{D}_{7}-\mathrm{D}_{0}$ Disabled
X	L	X	$\uparrow$	$\mathrm{S}_{7}$	NA	$\mathrm{P}_{\mathrm{i}} \leftarrow \mathrm{D}_{\mathrm{i}}$	Normal Load Pipeline Register
L	H	$\uparrow$	x	L	$\mathrm{S}_{\mathrm{i}} \leftarrow \mathrm{Y}_{\mathrm{i}}$	NA	Load Shadow Register from $Y$; $D_{7}-D_{0}$ Disabled
X	H	X	$\uparrow$	SDI	NA	$\mathrm{P}_{\mathrm{i}} \leftarrow \mathrm{S}_{\mathrm{i}}$	Load Pipeline Register from Shadow Register
H	H	$\uparrow$	X	H	Hold	NA	Hold Shadow Register; $\mathrm{D}_{7}-\mathrm{D}_{0}$ Enabled

## FUNCTION TABLE DEFINITIONS

inputs
H $=\mathrm{HIGH}$

## OUTPUTS

$\mathbf{S}_{\mathbf{7}}-\mathbf{S}_{\mathbf{0}}=$ Shadow Register outputs
$\mathrm{P}_{\mathbf{7}}-\mathrm{P}_{\mathbf{0}}=$ Pipeline Register outputs
$D_{7}-D_{0}=$ Datal/Oport
$\mathbf{Y}_{\mathbf{7}}-\mathbf{Y}_{\mathbf{0}}=Y_{1 / O}$ port
NA = Not applicable; output is not a function of the specified input combinations.

## AN INTRODUCTION TO SERIAL SHADOW REGISTER (SSR) DIAGNOSTICS

## DIAGNOSTICS

A diagnostics capability provides the necessary functionality as well as a systematic method for detecting and pin-pointing hardware related failures in a system. This capability must be able to both observe intermediate test points and control intermediate signals - address, data, control and status - to exercise all portions of the system under test. These two capabilities, observability and controllability, provide the ability to establish a desired set of input conditions and state register values, sample the necessary outputs, and determine whether the system is functioning correctly.

## TESTING COMBINATIONAL

## AND SEQUENTIAL NETWORKS

The problem of testing a combinational logic network is well understood (Figure 1). Sets of input signals (test vectors) are applied to the network and the network outputs are compared to the set of computed outputs (result vectors). In some cases sets of test vectors and result vectors can be generated in a computer-aided environment, minimizing engineering effort. Additionally, fault coverage analysis can be automated to provide a measure of how efficient a set of test vectors is at pinpointing hardware failures. For example, a popular measure of fault coverage computes the percentage of stuck-at-ones (nodes with outputs always HIGH) and stuck-at-zeros (nodes with outputs always LOW) a given set of test vectors will discover.

A sequential network (Figure 2) is much more difficult to test systematically. The outputs of a sequential network depend not only on the present inputs but also on the internal state of the network. Initializing the internal state register to the value necessary to test a given set of inputs is difficult at best, and not easily automated. Additionally, observing the internal state of a sequential network can be very difficult and time consuming if the state information is not directly available. For example, consider the problem of determining the value of an internal 16 -bit counter if only a carry-out signal is available. The counter must be clocked until it reaches the carry-out state and the starting value computed. Up to 65,535 clock cycles may be necessary! An easier method must exist. Serial Shadow Register diagnostics provides this method.

## SERIAL SHADOW REGISTER DIAGNOSTICS

Serial Shadow Register diagnostics provides sufficient observability and controllability to turn any sequential network into a combinational network. This is accomplished by providing the means to both initialize (control) and sample (observe) the state elements of a sequential network. Figure 3 shows the method by which serial shadow register diagnostics accomplishes these two functions.

Serial Shadow Register diagnostics utilizes an extra multiplexer on the input of each state register and a duplicate or shadow of each state flip/flop in an additional register. The shadow register can be loaded serially via the serial data input (thus the name

Figure 1.


Figure 2.


Figure 3.


Figure 4.


Serial Shadow Register diagnostics) for controllability. Once the desired state information is loaded into the serial register it can be transferred into the internal state register by selecting the multiplexer and clocking the state register with PLCK. This allows any internal state to be set to a desired state in a simple, quick, and systematic manner.
Internal state information can be sampled by loading the serial register from the state register outputs. This state information can then be shifted out via the serial data output to provide observability. Notice that the serial data inputs and outputs can
be cascaded to make long chains of state information available on a minimum number of connections.
In effect, Serial Shadow Register diagnostics breaks the normal feedback path of the sequential network and establishes a logical path with which inputs can be defined and outputs sampled (Figure 4). This means that those techniques which have been developed to test combinational networks can be applied to any sequential network in which Serial Shadow Register diagnostics is utilized.

## A TYPICAL COMPUTER ARCHITECTURE WITH SSR DIAGNOSTICS

When normal pipeline registers are replaced by SSR diagnostics pipeline registers system debug and diagnostics are easily implemented. State information which was inaccessible is now both observable and controllable. Figure 5 shows a typical computer system using the Am29818.
Serial paths have been added to all the important state registers (macro instruction, data, status, address, and micro instruction registers). This extra path will make it easier to diagnose system failures by breaking the feed-back paths and turning sequential state machines into combinatorial logic blocks. For example, the
status outputs of the ALU may be checked by loading the micro instruction register with the necessary micro instruction. The desired ALU function is then executed and the status outputs captured in the status register. The status bits can then be serially shifted out and checked for validity.
A single diagnostic loop was shown in Figure 5 for simplicity, but several loops can be employed in more complicated systems to reduce scan time. Additionally, the Am29818's can be used to sample intermediate test points not associated with normal state information. These additional test points can further ease diagnostics, testability and debug.

Figure 5. Typical System Configuration


SSR DIAGNOSTICS/WCS PIPELINE REGISTERS
REPLACE NORMAL REGISTERS WITH DIAGNOSTICS LOOP

## USE OF THE Am29818 PIPELINE REGISTER IN WRITABLE CONTROL STORE (WCS) DESIGNS

The Am29818 SSR diagnostics/WCS Pipeline Register was designed specifically to support writable control store designs. In the past, designers of WCS based systems needed to use an excessive amount of support circuitry to implement a WCS. As shown in Figure 7 additional input and output buffers are necessary to provide paths from the parallel input data bus to the memory, and from the instruction register to the output data bus. The input port is necessary to write data to the control store, initializing the micromemory. The output port provides the access to the instruction register, indirectly allowing the RAM to be read. Additionally, access to the instruction register is useful during system debugging and system diagnostics.
The Am29818 supports all of the above operations (and more) without any support circuitry. Figure 6 shows a typical WCS
design with the Am29818. Access to memory is now possible over the serial diagnostics port. The instruction register contents may be read by serially shifting the information out on the diagnostics port. Additionally, the instruction register may be written from the serial port via the shadow register. This simplifies system debug and diagnostics operations considerably.

## CONCLUSION

Serial Shadow Register diagnostics provides the observability and controllability necessary to take any sequential network and turn it into a combinational network. This provides a method for pin-pointing digital system hardware failures in a systematic and well understood fashion.

Figure 6. Am29818 Based WCS Application.


Figure 7. WCS Application without Am29818s.


ABL-033

# Am29821/822 • Am29823/824 Am29825/826 <br> High Performance Bus Interface Registers 

## DISTINCTIVE CHARACTERISTICS

- High-speed parallel registers with positive edge-triggered D-type flip-flops
- Noninverting CP-Y tPD $=7.5$ ns typ
- Inverting CP-Y tpD $=7.5$ ns typ
- Buffered common Clock Enable (EN)
- Buffered common asynchronous Clear input ( $\overline{\mathrm{CLR}}$ )
- Three-state outputs glitch free during power-up and down
- Outputs have Schottky clamp to ground
- 48mA Commercial Iol, 32mA MIL Iol
- Low input/output capacitance
- 6 pF inputs (typical)
- 8pF outputs (typical)
- Metastable "Hardened" Registers
- OH specified at 2.0 V and 2.4 V
- 24-pin $0.3^{\prime \prime}$ space saving package
- IMOX ${ }^{\text {M }}$ high performance IMplanted OXide isolated process


## FUNCTIONAL DESCRIPTION

The Am29820 Series bus interface registers are designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider address/data paths or buses carrying parity. The Am29821 and Am29822 are buffered, 10 -bit wide versions of the popular ' $374 /$ ' 534 functions. The Am29823 and Am29824 are 9-bit wide buffered registers with Clock Enable (EN) and Clear ( $\overline{\mathrm{CLR}}$ ) ideal for parity bus interfacing in high performance microprogrammed systems. The Am29825 and Am29826 are 8 -bit buffered registers with all the ' $823 / 4$ controls plus multiple enables ( $\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}, \overline{\mathrm{OE}} 3$ ) to allow multiuser control of the interface, e.g., CS, DMA, and RD/WR. They are ideal for use as an output port requiring high $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{IOH}$.
All of the Am29800 high performance interface family are designed for high capacitance load drive capability while providing low capacitance bus loading at both inputs and outputs. All inputs are Schottky diode inputs, and all outputs are designed for low capacitance bus loading in the high impedance state.


## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$
$\mathrm{MIN}=4.50 \mathrm{~V}$
MAX $=5.50 \mathrm{~V}$
MIL $\quad T_{C}=-55$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$
$\mathrm{MIN}=4.50 \mathrm{~V}$
MAX $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters Description		Test Conditions (Note 1)			Min	Typ (Note 2)	Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\mathrm{IOH}^{(1)}=-15 \mathrm{~mA}$	2.4	3.3		Volts
				$-24 \mathrm{~mA}$	2.0	3.1		
VoL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{\mathbb{I N}}=V_{\mathbb{I H}} \text { or } V_{\mathbb{I L}} \end{aligned}$		$\mathrm{OL}=32 \mathrm{~mA}$		0.31	0.5	Volts
				COM'L, $1 \mathrm{OL}=48 \mathrm{~mA}$		0.38	0.5	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\mathrm{IL}}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
$\mathrm{v}_{1}$	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$				-0.7	-1.2	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		Data, $\overline{C L R}$		-0.3	-1.0	mA
				$\overline{\mathrm{OE}, \mathrm{EN}, \mathrm{CP}}$		-1.2	-2.0	mA
$\mathrm{I}_{\mathrm{H}}$	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$
4	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$					1.0	mA
loz	Output Off-state (High Impedance) Output Current	$V_{C C}=\mathrm{MAX}$		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-50	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$			-75	-160	-250	mA
${ }^{\text {ICC }}$	Supply Current (Note 4)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$ Outputs Open $\overline{\mathrm{EN}}=$ LOW	Outputs Enabled ( $\overline{O E}=$ LOW)	0 to $+70^{\circ} \mathrm{C}$		86	125	mA
				$+70^{\circ} \mathrm{C}$		65	105	mA
				-55 to $+125^{\circ} \mathrm{C}$		86	125	mA
				$+125^{\circ} \mathrm{C}$		65	105	mA
			Outputs Disabled $\overline{(O E}=\mathrm{HIGH})$	0 to $+70^{\circ} \mathrm{C}$		97	140	mA
				$+70^{\circ} \mathrm{C}$		83	120	mA
				-55 to $+125^{\circ} \mathrm{C}$		97	140	mA
				$+125^{\circ} \mathrm{C}$		83	120	mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
2. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
4. Clock input, CP, is HIGH after clocking in data to produce outputs = LOW.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 to $+V_{\text {CC }}$ max
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	100 mA
DC Input Current	-30 to +5.0 mA

Am29821/22/23/24/25/26
SWITCHING CHARACTERISTICS
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$


Note: 4. See test circuit and waveforms.



Note: 4. See test circuit and waveforms.

## INPUT/OUTPUT CURRENT INTERFACE CONDITIONS



## DEFINITION OF FUNCTIONAL TERMS

$D_{i} \quad$ The $D$ flip-flop data inputs.
$\overline{\mathrm{CLR}}$ For both inverting and noninverting registers, when the clear input is LOW and $\overline{O E}$ is LOW, the $Q_{i}$ outputs are LOW. When the clear input is HIGH, data can be entered into the register.

CP Clock Pulse for the Register; enters data into the register on the LOW-to-HIGH transition.
$\mathbf{Y}_{\mathbf{i}}, \overline{\mathbf{Y}}_{\mathbf{i}}$ The register three-state outputs.

EN Clock Enable. When the clock enable is LOW, data on the $D_{i}$ input is transferred to the $Q_{i}$ output on the LOW-to-HIGH clock transition. When the clock enable is HIGH, the $Q_{i}$ outputs do not change state, regardless of the data or clock input transitions. (Note 5.)
$\overline{\mathrm{OE}}$ Output Control. When the $\overline{\mathrm{OE}}$ input is HIGH, the $Y_{i}$ outputs are in the high impedance state. When the $\overline{O E}$ input is LOW, the TRUE register data is present at the $Y_{i}$ outputs.


Note 5: The Am29823 thru Am29826 registers achieve short throughput delay and setup time and reduced power consumption by means of a clock gating and latching circuit. This circuit is sensitive to very short ( $<3 \mathrm{~ns}$ ) HIGH-to-LOW-to-HIGH going spikes on $\overline{\mathrm{EN}}$ while CP is HIGH. The designer should be aware of this and avoid the use of decoders or other potentially glitching devices in the EN logic.

## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type   $($ Note 1)	Operating Range   $($ Note 2)	Screening Level   (Note 3)
AM2982_DC	D-24-SLIM	C	C-1
AM2982_DCB	D-24-SLIM	C	B-2 (Note 4)
AM2982_DM	D-24-SLIM	M	C-3
AM2982_DMB	D-24-SLIM	M	B-3
AM2982_LC	L-28-1	C	C-1
AM2982_LCB	L-28-1	C	B-2 (Note 4)
AM2982_LM	L-28-1	M	C-3
AM2982_LMB	L-28-1	$M$	B-3
AM2982_XC	Dice	C	Visual inspection
AM2982_XM	Dice	M	to MIL-STD-883

Notes: 1. $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels $\mathrm{C}-1$ and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 160 hour burn-in.


## Am29827/Am29828

## High Performance Buffers ADVANCED INFORMATION



IMOX is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Output for High Output State	-1.5 to $\mathrm{VCC}_{\mathrm{CC}} \mathbf{~ m a x}$
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	100 mA
DC Input Current	-30 to +5.0 mA

## ELECTRICAL CHARACTERISTICS

COM'L $T_{A}=0$ to $+70^{\circ} \mathrm{C}, \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIN}=4.5 \mathrm{~V}, \mathrm{MAX}=5.5 \mathrm{~V})$
MIL $\quad T_{C}=-55$ to $+125^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIN}=4.5 \mathrm{~V}, \mathrm{MAX}=5.5 \mathrm{~V})$

Parameter	Description		tions	Min	Typ	Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4			V
			$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.0			
$\mathrm{VOL}_{\text {O }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{IOL}=32 \mathrm{~mA}$			0.5	V
			COM'L, $\mathrm{IOL}=48 \mathrm{~mA}$			0.5	
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			V
$\mathrm{V}_{\mathrm{IL}}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	V
$V_{1}$	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	V
V HYST	Input Hysteresis	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		200			mV
$I_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$				-1.0	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				1.0	mA
Iozh	Output Off-state Output Current ( $\mathrm{HI}-\mathrm{Z}$ )	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{0}=2.4 \mathrm{~V}$				50	$\mu \mathrm{A}$
Iozl	Output Off-state Output Current (HI-Z)	$V_{C C}=M A X, V_{0}=0.4 V$				-50	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ MAX		-75		-250	mA
$I^{\text {cc }}$	Supply Current	$V_{C C}=M A X$   Outputs Open	Outputs Enabled			145	mA
			Outputs Disabled			155	

## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type   $($ Note 1)	Operating Range   (Note 2)	Screening Level   (Note 3)
AM2982_DC	D-24-SLIM	C	C-1
AM2982_DCB	D-24-SLIM	C	B-2 (Note 4)
AM2982_DM	D-24-SLIM	M	C-3
AM2982_DMB	D-24-SLIM	M	B-3
AM2982_LC	L-28-1	C	C-1
AM2982_LCB	L-28-1	C	B-2 (Note 4)
AM2982_LM	L-28-1	M	C-3
AM2982_LMB	L-28-1	M	B-3
AM2982_XC	Dice	C	Visual inspection
AM2982_XM	Dice	M	MIL-STD-883
			Method 2010B.

Notes: 1. $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak. Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 160 hour burn-in.

Am29827/828
Am29827/Am29828 SWITCHING CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Parameter	Description	Test Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$	Data $\left(D_{i}\right)$ to Output $\left(Y_{i}\right)$ Am29827 (Noninverting)	$C_{L}=50 \mathrm{pF}$		4.5	5.5	ns
$\mathrm{t}_{\text {PHL }}$				4.5	5.5	ns
$\mathrm{t}_{\text {PLH }}$		$C_{L}=300 \mathrm{pF}$			11	ns
$\mathrm{t}_{\text {PHL }}$					11	ns
tPLH	Data $\left(D_{i}\right)$ to Output $\left(Y_{i}\right)$ Am29828 (Inverting)	$C_{L}=50 p$ F		4.0	5	ns
tpHL				4.0	5	ns
$t_{\text {PLH }}$		$\mathrm{C}_{1}=300 \mathrm{pF}$			10	ns
$t_{\text {PHL }}$					10	ns
$\mathrm{t}_{\mathrm{ZH}}$				6.5		ns
$\mathrm{t}_{\mathrm{ZL}}$				9.5		ns
$\mathrm{t}_{\mathrm{ZH}}$						ns
$\mathrm{t}_{\mathrm{ZL}}$						ns
$t_{H Z}$		$C_{L}=5 \mathrm{pF}$				ns
$t_{L Z}$						ns
$t_{H Z}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		11.2		ns
$t_{L Z}$				4.2		ns

Am29827/Am29828 SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$		$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V} \pm 10 \%$		Units
			Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Data $\left(D_{i}\right)$ to Output $\left(Y_{i}\right)$   Am29827 (Noninverting)	$C_{L}=50 \mathrm{pF}$		10		12	ns
$\mathrm{t}_{\text {PHL }}$				10		12	ns
$\mathrm{tpLH}^{\text {che }}$		$C_{L}=300 \mathrm{pF}$		1	,	17	ns
${ }_{\text {tPHL }}$				15		17	ns
$\mathrm{tPLH}^{\text {P }}$	Data $\left(D_{i}\right)$ to Output $\left(Y_{i}\right)$ Am29828 (Inverting)	$C_{L}=50 p F$	,			11	ns
$\mathrm{t}_{\text {PHL }}$				9		11	ns
$\mathrm{tPLH}^{\text {P }}$		$\epsilon_{\mathrm{E}}=300 \mathrm{e}$		14		16	ns
$t_{\text {PHL }}$				14		16	ns
$\mathrm{t}_{\mathrm{ZH}}$	Output Enable Time वै to $Y$$C_{L}=300 \mathrm{pF}$			15		17	ns
$\mathrm{t}_{\mathrm{ZL}}$				15		17	ns
$\mathrm{t}_{\mathrm{ZH}}$				18.5	1	20.5	ns.
$\mathrm{t}_{\mathrm{ZL}}$				18.5		20.5	ns
$t_{\text {Hz }}$	Output Disable Time $\overline{O E}$ to $Y_{i}$	$C_{L}=5 \mathrm{pF}$		10		12	ns
tLz				10		12	ns
$\mathrm{t}_{\mathrm{Hz}}$		$C_{L}=50 \mathrm{pF}$		13.5		20	ns
tLz				13.5		20	ns



## SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS



ABI-129
LOAD TEST CIRCUIT


# Am29833/34 • Am29853/54 <br> Parity Bus Transceivers <br> PRELIMINARY 

## DISTINCTIVE CHARACTERISTICS

- High-speed bidirectional bus transceiver for processor organized devices
- Error flag with open-collector output
- Generates odd parity for all-zero protection
- Buffered direction three-state control
- Separate Transmit and Receive enable controls
- Output short-circuit protected to $\mathrm{V}_{\mathrm{CC}}$ limits
- 200 mV minimum input hysteresis on input data ports
- High-capacitance drive capability 48mA commercial IOL 32 mA military lol
- 24-pin $0.3^{\prime \prime}$ slim DIP package
- $100 \%$ product assurance screening to MIL-STD-883 requirements

CONNECTION DIAGRAMS - Top Views
Leadless Chip Carrier
L-28-1


ABI-105

## 8-BIT TO 9-BIT PARITY TRANSCEIVERS



AB1-106
AB1-107

## FUNCTIONAL DESCRIPTION

The Am29833/34/53/54 are high-performance bus transceivers designed for two-way communications. They each contain an 8-bit data path from the $A$ (port) to the $B$ (port), a 9 -bit data path from the B (port) to the A (port), and a 9 -bit parity checker/generator. Two options are available. The Am29833/34 register option, and the Am29853/54 latch option. With the register option, the error flag can be clocked and stored in a register and read at the open-collector ERR output. The clear ( $\overline{\mathrm{CLR}}$ ) input is used to clear the error flag register. With the latch option, the error can be either passed, stored, sampled or cleared at the error flag output by using the $\overline{\mathrm{EN}}$ and $\overline{\mathrm{CLR}}$ controls.
The output enables $\overline{O E T}$ and $\overline{O E R}$ are used to force the port outputs to the high-impedance state so that the device can drive bus lines directly. In addition, the $\overline{\mathrm{OER}}$ and $\overline{\mathrm{OET}}$ can be used to force a parity error by enabling both lines simultaneously. This transmission of inverted parity gives the designer more system diagnostic capability. The Am29833 and Am29853 are noninverting, while the Am29834 and Am29854 present inverting data at the outputs. The devices are specified at 48 mA output sink current over the commercial range and 32 mA over the military range.

## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order   Number	Package Type (Note 1).	Operating Range (Note 2)	Screening Level (Note 3)
AM2983_/5.-DC	D-24-SLIM	C	C-1
AM2983_/5_DCB	D-24-SLIM	C	B-2 (Note 4)
AM2983_/5_DM	D-24-SLIM	M	C-3
AM2983_/5_DMB	D-24-SLIM	M	B-3
AM2983_/5_LC	L-28-1	C	C-1
AM2983./5_LCB	L-28-1	C	B-2 (Note 4)
AM2983_/5.LM	L-28-1	M	C-3
AM2983_/5_LMB	L-28-1	M	B-3
AM2983_/5_XC	Dice	C	Visual inspection to MIL-STD-883
AM2983_/5_XM	Dice	M	Method 2010B.

Notes: 1. $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak. Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 160 hour burn-in.

## TABLE OF CONTENTS

Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-38
Block Diagrams ....................................... 8-39
Definition of Functional Terms . . . . . . . . . . . . . . . . . . . . 8-40
Electrical Characteristics .............................. . . 8-40
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 8-41
Switching Waveforms .................................. . . 8-44

*Note that the inverting device converts the positive logic " $A$ " bus levels to negative logic levels on the " $B$ " bus.

## Am29833/34 • Am29853/54

MAXIMUM RATINGS

Supply Voltage	7.0 V
Common Mode Range	0 to $\mathrm{V}_{\text {cC }}$
Logic Inputs	5.5 V
Storage Temperature Range	-65 to $+150^{\circ} \mathrm{C}$

## OPERATING RANGE

Part No.	Temperature	VCC
Am2983X/5XDC	$T_{A}=0$ to $+70^{\circ} \mathrm{C}$	$5.0 \pm 10 \%$
Am2983X/5XDM	$T_{C}=-55$ to $+125^{\circ} \mathrm{C}$	$5.0 \pm 10 \%$

## ELECTRICAL CHARACTERISTICS

$\begin{array}{llll}\text { COM'L } & T_{A}=0 \text { to }+70^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 10 \% & (\operatorname{Min}=4.5 \mathrm{~V} \text { Max }=5.5 \mathrm{~V}) \\ \text { MIL } & T_{\mathrm{C}}=-55 \text { to }+125^{\circ} \mathrm{C} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% & (\mathrm{Min}=4.5 \mathrm{~V} \text { Max }=5.5 \mathrm{~V})\end{array}$
Parameters Description Test Conditions

DEFINITION OF FUNCTIONAL TERMS
Am29833/34

| DEFINITION OF FUNCTIONAL TERMS |
| :--- | :--- |
| Am29853/54 |

$C O M L \quad T_{A}=0$ to $+70^{\circ} \mathrm{C} V_{C C}=5.0 \mathrm{~V} \pm 10 \%$

Parameters	Description	Test Conditions	Min	Typ	Max	Units
${ }_{\text {tPLH }}$	Propagation Delay $\mathrm{D}_{\mathrm{ai}}$ to $\mathrm{D}_{\mathrm{bi}}, \mathrm{D}_{\mathrm{bi}}$ to $\mathrm{D}_{\mathrm{ai}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			12	ns
$\mathrm{t}_{\text {PHL }}$					12	ns
tpLH		$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$			16	ns
${ }_{\text {tPHL }}$					16	ns
tplH	Propagation Delay $\mathrm{D}_{\mathrm{ai}}$ to $\mathrm{D}_{\mathrm{bp}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			15	ns
${ }^{\text {tpHL }}$					15	ns
${ }_{\text {tpLH }}$		$C_{L}=300 \mathrm{pF}$			22	ns
$\mathrm{t}_{\text {PHL }}$					22	ns
$\mathrm{t}_{\mathrm{ZH}}$	Output Enable Time $\overline{O E R}, \overline{O E T}$ to $\mathrm{Dai}_{\text {a }}, \mathrm{D}_{\mathrm{bi}}$	$C_{L}=50 \mathrm{pF}$$C_{L}=300 \mathrm{pF}$			15	ns
$\mathrm{t}_{\mathrm{ZL}}$					- 5	ns
$\mathrm{t}_{\mathrm{ZH}}$					22	ns
tzL					22	ns
$\mathrm{t}_{\mathrm{Hz}}$	Output Disable Time $\overline{O E R}, \overline{O E T}$ to $\mathrm{Dai}_{\text {ai }}, \mathrm{Dbi}$				10	ns
tzz					10	ns
$\mathrm{t}_{\mathrm{HZ}}$					17	ns
tLz					17	ns
$t_{s}$	$\mathrm{D}_{\mathrm{bi}}, \mathrm{D}_{\mathrm{bp}}$ to CLK S Setup Time		15			ns
$t_{H}$	$\mathrm{D}_{\mathrm{b}}, \mathrm{D}_{\mathrm{bp}}$ to CLK Hold Timer		0			ns
$t_{s}$	Clear Recovery Time CLF to Cuk	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	15			ns
tpWH $^{\text {d }}$			10			ns
tpwL			10			ns
$t_{\text {PWL }}$	ar Puse Widh LOW		10			ns
$\mathrm{t}_{\text {PHL }}$	aragation Delay CLK to ERR	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			15	ns
tpLH	Prepagation Delay CLR to ERR (Am29833/34)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			15	ns
tPLH	Propagation Delay $\overline{\mathrm{CLR}}$ to $\overline{\mathrm{ERR}}$ (Am29853/54)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			15	ns
${ }_{\text {tPLH }}$	Propagation Delay $\mathrm{D}_{\mathrm{bi}}, \mathrm{D}_{\mathrm{bp}}$ to $\overline{\mathrm{ERR}}$ (PASS Mode Only) Am29853/54	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			22	ns
$\mathrm{t}_{\text {PHL }}$					18	ns
tpLH	Propagation Delay $\overline{O E R}$ to $\mathrm{D}_{\mathrm{bp}}$	$C_{L}=50 \mathrm{pF}$ Test Ckt \#1			15	ns
$t_{\text {PHL }}$			+		15	ns
$\mathrm{tPLH}^{\text {P }}$		$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$ Test Ckt \#1			22	ns
$\mathrm{t}_{\text {PHL }}$					22	ns

Note: For Am29853/54 replace CLK with $\overline{\mathrm{EN}}$

CIRCUIT NO. 1


Note: Test Circuit No. 1 is used with Propagation delay on the Data Lines, $\overline{\mathrm{OER}}$ and $\overline{\mathrm{OET}}$ tests. Test Circuit No. 2 is used with all parameters involving CLK, $\overline{C L R}, \overline{E N}$ and $\overline{E R R}$.

## ERROR FLAG OUTPUT TRUTH TABLE

Am29833/Am2983 (REGISTER OPTION)'					
Inputs  Internal   to Device Output's   Pre-State Output					
CLR	CLK	Point "P"	$\overline{\text { ERR }}_{\text {n-1 }}$	$\overline{\text { ERR }}$	Function
H	$\uparrow$	H	H	H	Sample*
H	$\uparrow$	-	L	L	(1's Capture)
H	$\uparrow$	L	-	L	
L	-	-	-	H	Clear

*Enable is used as strobe for the latch in sampled operation.

Am29853/Am29854 (LATCH OPTION)					
Inputs		Internal to Device	Output's Pre-State	Output	Function
$\overline{\text { EN }}$	$\overline{\text { CLR }}$	Point "P"	$\overline{E R R}_{n-1}$	$\overline{\text { ERR }}$	
$\stackrel{L}{L}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	--	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Pass
$\begin{aligned} & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \bar{L} \\ & \bar{H} \end{aligned}$	$\begin{aligned} & \bar{L} \\ & H \end{aligned}$	$\begin{aligned} & \text { L } \\ & \text { L } \\ & H \end{aligned}$	Sample* (1's Capture)
H	L	-	-	H	Clear
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	-	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Store*

FUNCTION TABLES
Am29833 NONINVERTING OPTION

Inputs						Outputs				Function
OET	$\overline{\text { OER }}$	$\overline{\text { CLR }}$	CLK	$\mathrm{D}_{\mathrm{ai}}$ ( $\Sigma$ of H's)	$\mathrm{D}_{\text {bi }}$ Incl $\mathrm{D}_{\mathrm{bp}}$ ( $\Sigma$ of H's)	$\mathrm{D}_{\mathrm{ai}}$	$\mathrm{D}_{\text {bi }}$	$\mathrm{D}_{\text {bp }}$	$\overline{\text { ERR }}$	
L	H	-	-	H (Odd)	NA	NA	H	L	NA	Transmit data from A Port
L	H	-	-	H (Even)	NA	NA	H	H	NA	to B Port with parity,
L	H	-	-	L (Odd)	NA	NA	L	L	NA	receiving path is disabled
L	H	-	-	L (Even)	NA	NA	L	H	NA	
H	L	H	$\uparrow$	NA	H (Odd)	H	NA	NA	H	Receive data from B Port
H	L	H	$\uparrow$	NA	H (Even)	H	NA	NA	L	to A Port with parity
H	L	H	$\uparrow$	NA	L (Odd)	L	NA	NA	H	test resulting in flag,
H	L	H	$\uparrow$	NA	L (Even)	L	NA	NA	L	transmitting path is disabled
-	-	L	-	-	-	-	NA	NA	H	Clear the state of error flag register
H	H	-	-	-	-	Z	Z	Z	-	Both transmitting and receiving paths are disabled
L	L	-	-	H (Odd)	NA	NA	H	H	NA	Forced-error checking
L	L	-	-	H (Even)	NA	NA	H	L	NA	
L	L	-	-	L (Odd)	NA	NA	L	H	NA	
L	L	-	-	L (Even)	NA	NA	L	L	NA	

Am29834 INVERTING OPTION*

Inputs						Outputs				Function
OET	$\overline{\text { OER }}$	$\overline{\text { CLR }}$	CLK	$\mathrm{D}_{\mathrm{ai}}$ ( $\Sigma$ of H's)	$\mathrm{D}_{\mathrm{bj}}$ Incl $\mathrm{D}_{\mathrm{bp}}$ ( $\Sigma$ of L's)	$\mathrm{D}_{\text {ai }}$	$\mathrm{D}_{\text {bi }}$	$\mathrm{D}_{\text {bp }}$	ERR	
L	H	-	-	H (Odd)	NA	NA	L	H	NA	Transmit data from A Port
L	H	-	-	H (Even)	NA	NA	L	L	NA	to B Port with parity,
L	H	-	-	L (Odd)	NA	NA	H	H	NA	receiving path is disabled
L	H	-	-	L (Even)	NA	NA	H	L	NA	
H	L	H	$\uparrow$	NA	H (Odd)	L	NA	NA	H	Receive data from B Port
H	L	H	$\uparrow$	NA	H (Even)	L	NA	NA	L	to A Port with parity
H	L	H	$\uparrow$	NA	L (Odd)	H	NA	NA	H	test resulting in flag,
H	L	H	$\uparrow$	NA	L (Even)	H	NA	NA	L	transmitting path is disabled.
-	-	L	-	-	-	-	-	-	H	Clear the state of error flag register
H	H	-	-	-	-	Z	Z	Z	-	Both transmitting and receiving paths are disabled
L	L	-	-	H (Odd)	NA	NA	L	L	NA	Forced-error checking
L	L	-	-	H (Even)	NA	NA	L	H	NA	
L	L	-	-	L (Odd)	NA	NA	H	L	NA	
L	L	-	-	L (Even)	NA	NA	H	H	NA	


H	$=$ High	Z	= High impedance	Odd = Odd number of logic one's
L	= Low	NA	= Not applicable	Even $=$ Even number of logic one's
$\uparrow$	= Low to high transition of clock	-	= Don't care or irrelevant	$=0,1,2,3,4,5,6,7$

*Note that for the negative logic levels on the B Port, an " H " represents a logic " 0 " while an " L " represents a logic " 1 ."

## FUNCTION TABLES (Cont.)

Am29853 NONINVERTING OPTION

Inputs						Outputs				Function
$\overline{\text { OET }}$	$\overline{\text { OER }}$	$\overline{\text { CLR }}$	EN	$\mathrm{D}_{\mathrm{ai}}$ ( $\mathrm{\Sigma}$ of H 's)	$\mathrm{D}_{\mathrm{bi}} \operatorname{Incl} \mathrm{D}_{\mathrm{bp}}$ ( $\Sigma$ of H 's)	$\mathrm{D}_{\mathrm{ai}}$	$\mathrm{D}_{\mathrm{bi}}$	$\mathrm{D}_{\text {bp }}$	ERR	
L	H	-	-	H (Odd)	NA	NA	H	L	NA	Transmit data from A Port
L	H	-	-	H (Even)	NA	NA	H	H	NA	to B Port with parity,
L	H	-	-	L (Odd)	NA	NA	L	L	NA	receiving path is disabled
L	H	-	-	$L$ (Even)	NA	NA	L	H	NA	
H	L	L	L	NA	H (Odd)	H	NA	NA	H	Receive data from B Port
H	L	L	L	NA	H (Even)	H	NA	NA	L	to A Port with parity
H	L	L	L	NA	L (Odd)	L	NA	NA	H	test resulting in flag,
H	L	L	L	NA	L (Even)	L	NA	NA	L	transmitting path is disabled
H	L	H	L	NA	H (Odd)	H	NA	NA	H	Receive data from B Port
H	L	H	L	NA	H (Even)	H	NA	NA	L	to A Port, pass the
H	L	H	L	NA	L (Odd)	L	NA	NA	H	error test resulting to
H	L	H	L	NA	L (Even)	L	NA	NA	L	error flag, transmitting
										path is disabled
H	L	H	H	NA	-	-	NA	NA	$\mathrm{ERR}_{n-1}$	Store the state of error
-	-	L	H	-	-	-	NA	NA	H	Clear the state of error flag register
H	H	-	-	-	-	z	z	z	-	Both transmitting and receiving paths are disabled
L	L	-	-	H (Odd)	NA	NA	H	H	NA	Forced-error checking
L	L	-	-	H (Even)	NA	NA	H	L	NA	
L	L	-	-	L (Odd)	NA	NA	L	H	NA	
L	L	-	-	L (Even)	NA	NA	L	L	NA	

Am 29854 INVERTING OPTION*

Inputs						Outputs				Function
$\overline{\text { OET }}$	OER	CLR	EN	$\mathrm{Dai}_{\text {( }} \mathrm{\Sigma}$ of H 's)	$\mathrm{D}_{\mathrm{bi}} \operatorname{lncl} \mathrm{D}_{\text {bp }}$ ( $\mathrm{\Sigma}$ of L's)	$\mathrm{Dai}_{\text {a }}$	$\mathrm{D}_{\mathrm{bi}}$	$\mathrm{D}_{\text {bp }}$	ERR	
L L L L	$H$ $H$ $H$ $H$			H (Odd) H (Even) L (Odd) L (Even)	NA   NA   NA   NA	NA   NA   NA   NA	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	NA   NA   NA   NA	Transmit data from A Port to $B$ Port with parity, receiving path is disabled
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L L	L L L	L L L	NA   NA   NA NA	H (Odd)   H (Even)   L(Odd)   L (Even)	L L H H	NA NA NA NA	NA   NA   NA   NA	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Receive data from B Port to A Port with parity test resulting in flag, transmitting path is disabled
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L	NA   NA   NA   NA	H (Odd)   H (Even)   L(Odd)   L (Even)	L L H H	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$H$ L H L	Receive data from B Port to A Port, pass the error test resulting to error flag, transmitting path is disabled
H	L	H	H	NA	-	-	NA	NA	$\overline{\operatorname{ERR}}_{n-1}$	Store the state of error flag register
-	-	L	H	-	-	-	NA	NA	H	Clear the state of error flag register
H	H	-	-	-	-	z	z	z	-	Both transmitting and receiving paths are disabled
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	-   -   -	-	H (Odd)   H (Even)   L(Odd)   L (Even)	NA   NA   NA   NA	NA   NA   NA   NA	$\begin{aligned} & \text { L } \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	Forced-error checking
H L Z	$\begin{aligned} & =\text { High } \\ & =\text { Low } \\ & =\text { High impedance } \end{aligned}$				$\begin{aligned} \frac{N A}{} & =\text { Not applicable } \\ \overline{E R R}_{n-1} & =\text { Pre-state of ERR } \\ - & =\text { Don't care or irrelevant } \end{aligned}$				Odd Even i	= Odd number of logic one's.   = Even number of logic one's   $=0,1,2,3,4,5,6,7$

[^13]



## Am29841/842 • Am29843/844 Am29845/846 <br> High Performance Bus Interface Latches

## DISTINCTIVE CHARACTERISTICS

- High-speed parallel latches
- Noninverting transparent tpD $=5.25 \mathrm{~ns}$ typ
- Inverting transparent tpD $=6.0 \mathrm{~ns}$ typ
- Buffered common latch enable, clear and preset input
- Three-state outputs glitch-free during power-up and down
- Outputs have Schottky clamp to ground
- 48 mA Commercial IOL 32 mA MIL IOL
- Low input/output capacitance
- 6pF inputs (typical)
- 8pF outputs (typical)
- $\mathrm{I}^{\mathrm{OH}}$ specified 2.0 V and 2.4 V
- 24-pin $0.3^{\prime \prime}$ space saving package
- Fully TTL compatible inputs and outputs
- IMOXTM high performance IMplanted OXide isolated process


## FUNCTIONAL DESCRIPTION

The Am29840 Series bus interface latches are designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity. The Am29841 and Am29842 are buffered, 10 -bit wide versions of the popular ' 373 function. The Am29843 and Am29844 are 9-bit wide buffered latches with Preset ( $\overline{\mathrm{PRE}}$ ) and Clear ( $\overline{\mathrm{CLR}}$ ) - ideal for parity bus interfacing in high performance systems. The Am29845 and Am29846 are 8 -bit buffered latches with all the '843/4 controls plus multiple enables ( $\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}, \overline{\mathrm{OE}}_{3}$ ) to allow multiuser control of the interface, e.g., $\overline{C S}, \mathrm{DMA}$, and RD/WR. They are ideal for use as an output port requiring high $\mathrm{IOL}^{\prime} / \mathrm{lOH}$.
All of the Am29800 high performance interface family are designed for high capacitance load drive capability while providing low capacitance bus loading at both inputs and outputs. All inputs are Schottky diode inputs, and all outputs are designed for low capacitance bus loading in the high impedance state.

	Device		
	10-Bit	9-Bit	8-Bit
Noninverting	Am29841	Am29843	Am29845
Inverting	Am29842	Am29844	Am29846

## CONNECTION DIAGRAMS

Am29841/Am29842
10-BIT LATCHES
Top Views


ABI-011

Am29843/Am29844
9-BIT LATCHES
Top Views



AB1-012
Am29845/Am29846
8-BIT LATCHES
Top Views


MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$ max
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	100 mA
DC Input Current	-30 to +5.0 mA

ELECTRICAL CHARACTERISTICS The following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0$ to $+70^{\circ} \mathrm{C}$
MIL $\quad T_{C}=-55$ to $+125^{\circ} \mathrm{C}$
$\begin{array}{ll}V_{C C}=5.0 \mathrm{~V} \pm 10 \% & M I N=4.50 \mathrm{~V} \\ V_{C C}=5.0 \mathrm{~V} \pm 10 \% & M I N=4.50 \mathrm{~V}\end{array}$
$\mathrm{MAX}=5.50 \mathrm{~V}$
DC CHARACTERISTICS OVER OPERATING RANGE

Parameters Description		Test Conditions ${ }^{1}$			Min	Typ ${ }^{2}$	Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I I} \end{aligned}$		$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4	3.3		Volts
				$=-24 \mathrm{~mA}$	2.0	3.1		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\mathrm{MLL}, \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$			0.5	Volts
			COM	$\mathrm{L}, \mathrm{loL}=48 \mathrm{~mA}$			0.5	
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\mathrm{IL}}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Voits
$\mathrm{V}_{1}$	Input Clamp Voitage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
ILL	Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$					-1.0	mA
${ }_{1 / \mathrm{H}}$	Input HIGH Current	$V_{\text {CC }}=M A X, V_{\text {IN }}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
loz	Output Off-state (High Impedance) Output Current	$V_{C C}=M A X$		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-50	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	
Isc	Output Short Circuit Current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-75		-250	mA
$\mathrm{I}_{\mathrm{cc}}$	Supply Current	$\begin{aligned} & V_{C C}=M A X \\ & \text { Outputs Open } \end{aligned}$	Outputs Enabled$(\overline{\mathrm{OE}}=\mathrm{LOW})$	0 to $+70^{\circ} \mathrm{C}$		60	120	mA
				$+70^{\circ} \mathrm{C}$		60	120	mA
				-55 to $+125^{\circ} \mathrm{C}$		60	120	mA
				$+125^{\circ} \mathrm{C}$		60	120	mA
			Outputs Disabled$(\overline{O E}=\mathrm{HIGH})$	0 to $+70^{\circ} \mathrm{C}$		70	120	mA
				$+70^{\circ} \mathrm{C}$		70	100	mA
				-55 to $+125^{\circ} \mathrm{C}$		70	120	mA
				$+125^{\circ} \mathrm{C}$		70	100	mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
2. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Am29841/42/43/44/45/46
SWITCHING CHARACTERISTICS
OVER OPERATING RANGE


Note: 4. See test circuit and waveforms.

Am29841/42/43/44/45/46
SWITCHING CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}\right)$
Test Conditions


Notes: 4. See test circuit and waveforms.
5. Not tested.

## INPUT/OUTPUT CURRENT INTERFACE CONDITIONS




Note: Pulse Generator for All Pulses: Rate $\leqslant 10 \mathrm{MHz} ; \mathrm{Z}_{\mathrm{O}}=50 \Omega ; \mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$.

## DEFINITION OF FUNCTION TERMS

Am29841/43/45 (Noninverting)
$\overline{\text { CLR }}$ When $\overline{\mathrm{CLR}}$ is LOW, the outputs are LOW if $\overline{\mathrm{OE}}$ is LOW. When $\overline{C L R}$ is HIGH, data can be entered into the latch.
$\mathrm{D}_{\mathbf{i}} \quad$ The latch data inputs.
LE The latch enable input. The latches are transparent when LE is HIGH. Input data is latched on the HIGH-to-LOW transition.
$\mathbf{Y}_{\mathbf{i}}$ The 3-state latch outputs.
$\overline{\mathrm{OE}}$ The output enable control. When $\overline{\mathrm{OE}}$ is LOW, the outputs are enabled. When OE is HIGH, the outputs $Y_{i}$ are in the high-impedance (off) state.
$\overline{\text { PRE }}$ Preset line. When $\overline{\text { PRE }}$ is LOW, the outputs are HIGH if $\overline{O E}$ is LOW. Preset overrides CLR.

## DEFINITION OF FUNCTION TERMS

## Am29842/44/46 (Inverting)

$\overline{\text { CLR }}$ When $\overline{\text { CLR }}$ is LOW, the outputs are LOW if $\overline{O E}$ is LOW. When $\overline{\text { CLR }}$ is HIGH, data can be entered into the latch.
$D_{\mathbf{i}} \quad$ The latch inverting data inputs.
LE The latch enable input. The latches are transparent when LE is HIGH. Input data is latched on the HIGH-to-LOW transition.
$Y_{i}$ The 3-state latch outputs.
$\overline{\mathrm{OE}}$ The output enable control. When OE is LOW, the outputs are enabled. When OE is HIGH, the outputs $Y_{i}$ are in the high-impedance (off) state.
$\overline{\text { PRE }}$ Preset line. When $\overline{\text { PRE }}$ is LOW, the outputs are HIGH if $\overline{\mathrm{OE}}$ is LOW. Preset overrides $\overline{C L R}$.

FUNCTION TABLE

Inputs					Internal	Outputs	
$\overline{C L R}$	PRE	$\overline{O E}$	LE	$\mathrm{D}_{\mathrm{i}}$	$Q_{i}$	$\mathrm{Y}_{\mathrm{i}}$	Function
H	H	H	X	x	X	z	$\mathrm{Hi}-\mathrm{Z}$
H	H	H	H	H	L	z	Hi-Z
H	H	H	H	L	H	z	Hi-Z
H	H	H	L	X	NC	Z	Latched   (Hi-Z)
H	H	L	H	H	L	L	Transparent
H	H	L	H	L	H	H	Transparent
H	H	L	L	x	NC	NC	Latched
H	L	L	X	x	H	H	Preset
L	H	L	x	x	L	L	Clear
L	L	L	x	x	H	H	Preset
L	H	H	L	X	L	z	Latched   (Hi-Z)
H	L	H	L	x	H	z	Latched   ( $\mathrm{Hi}-\mathrm{Z}$ )

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2984_DC	D-24-SLIM	C	C-1
AM2984_DCB	D-24-SLIM	C	B-2 (Note 4)
AM2984_DM	D-24-SLIM	M	C-3
AM2984_DMB	D-24-SLIM	M	B-3
AM2984_LC	L-28-1	C	C-1
AM2984_LCB	L-28-1	C	B-2 (Note 4)
AM2984_LM	L-28-1	M	C-3
AM2984_LMB	L-28-1	M	B-3
AM2984_XC AM2984_XM	Dice Dice	C $M$	Visual inspection to MIL-STD-883 Method 2010B.

Notes: 1. $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. $C=0$ to $+70^{\circ} \mathrm{C}, V_{C C}=4.5$ to $5.5 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 160 hour burn-in.


# Am29861 • Am29862 Am29863 • Am29864 

## High Performance Bus Transceivers ADVANCED INFORMATION



This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.


MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+\mathbf{1 2 5 ^ { \circ } \mathrm { C }}$
Supply Voltage to Ground Potential Continuous	-0.5 to $+\mathbf{7 . 0 \mathrm { V }}$
DC Voltage Applied to Output for High Output State	-1.5 to $\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
DC Output Current, Into Outputs	100 mA
DC Input Current	-30 to +5.0 mA

## ELECTRICAL CHARACTERISTICS

COM'L $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIN}=4.5 \mathrm{~V}, \mathrm{MAX}=5.5 \mathrm{~V})$
MIL $\quad \mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}, \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIN}=4.5 \mathrm{~V}, \mathrm{MAX}=5.5 \mathrm{~V})$

Parameter	Description	Test Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4			V
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$	$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.0			
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	MIL, $\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$			0.5	V
			COM'L, $\mathrm{I}_{\text {OL }}=48 \mathrm{~mA}$			0.5	
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			V
$\mathrm{V}_{\mathrm{IL}}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	V
$\mathrm{V}_{1}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	V
$\mathrm{V}_{\text {HYST }}$	Input Hysteresis	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$		200			mV
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$				$-1.0$	mA
$\mathrm{I}_{\mathrm{IH}}$	Input HIGH Current	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$				100	$\mu \mathrm{A}$
$1 /$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				1.0	mA
Iozh	Output Off-state Output Current (HI-Z)	$V_{C C}=M A X, V_{0}=2.4 \mathrm{~V}$				100	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{OZL}$	Output Off-state   Output Current (HI-Z)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{0}=0.4 \mathrm{~V}$				-1.0	mA
${ }^{\text {ISC }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-75		-250	mA
${ }^{1} \mathrm{Cc}$	Supply Current	$V_{C C}=M A X$   Outputs Open	Outputs Enabled			145	mA
			Outputs Disabled			155	

## ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type   (Note 1)	Operating Range   (Note 2)	Screening Level   (Note 3)
AM2982_DC	D-24-SLIM	C	C-1
AM2982_DCB	D-24-SLIM	C	B-2 (Note 4)
AM2982_DM	D-24-SLIM	M	C-3
AM2982_DMB	D-24-SLIM	M	B-3
AM2982_LC	L-28-1	C	C
AM2982_LCB	L-28-1	C	B-2 (Note 4)
AM2982_LM	L-28-1	M	C-3
AM2982_LMB	L-28-1	M	B-3
AM2982_XC	Dice	C	Visual inspection
AM2982_XM	Dice	$M$	to MIL-STD-883
			Method 2010B.

Notes: 1. $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak ${ }^{\mathrm{TM}}$. Number following letter is number of leads.
2. $\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to $5.50 \mathrm{~V}, \mathrm{M}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50$ to 5.50 V .
3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 160 hour burn-in.

Parameter	Description	Test Conditions	Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay from $R_{i}$ to $T_{i}$ or $T_{i}$ to $R_{i}$ Am29861/Am29863 (Noninverting)	$C_{L}=50 \mathrm{pF}$			5.5	ns
$t_{\text {PHL }}$				4.5	5.5	ns
$t_{\text {PLH }}$					11	ns
$\mathrm{t}_{\text {PHL }}$					11	ns
$t_{\text {PLH }}$	Propagation Delay from $R_{i}$ to $\bar{T}_{i}$ or $\bar{T}_{i}$ to $R_{i}$ Am29862/Am29864 (Inverting)			4.0	5	ns
$t_{\text {PHL }}$				4.0	5	ns
$t_{\text {PLH }}$					10	ns
$\mathrm{t}_{\text {PHL }}$					10	ns
${ }^{\text {Z }} \mathrm{H}$	Output Enable Time   to Thand OER to	$C_{L}=50 \mathrm{pF}$		6.5		ns
$\mathrm{t}_{\mathrm{ZL}}$				9.5		ns
${ }^{\text {t }} \mathrm{H}$		$C_{L}=300 \mathrm{pF}$				ns
$\mathrm{t}_{\mathrm{ZL}}$						ns
$t_{\text {HZ }}$	Quput Disable Time OET to $T_{i}$ and OEF to $R_{i}$	$C_{L}=5 \mathrm{pF}$	.			ns
$t_{\text {LZ }}$						ns
$t_{\text {HZ }}$		$C_{L}=50 \mathrm{pF}$		11.2		ns
$t_{L Z}$				4.2		ns

Am29861/Am29862/Am29863/Am29864 SWITCHING CHARACTERISTICS OVER OPERATING RANGE


## DEFINITION OF FUNCTIONAL TERMS

Am29861/Am29862
IER When LOW is in conjunction with $\overline{\text { OET }}$ HIGH indicates the RECEIVE mode.
OET When LOW in conjunction with OER HIGH indicates the TRANSMIT mode.
$\mathbf{R i}_{\mathbf{i}} \quad$ 10-bit RECEIVE input/output.
$T_{i} \quad$ 10-bit TRANSMIT input/output.

## Am29863/Am29864

$\overline{\mathbf{O E R}}_{\mathbf{i}}$ When both are LOW in conjunction with $\overline{\mathrm{OET}}_{i}$ both HIGH indicates the RECEIVE mode.
$\overline{\mathrm{OET}}_{\mathbf{i}}$ When both are LOW in conjunction with $\overline{\mathrm{OER}}_{i}$ both HIGH indicates the TRANSMIT mode.
$\mathbf{R}_{\mathbf{j}} \quad$ 9-bit RECEIVE input/output.
$\mathbf{T}_{\mathbf{i}} \quad$ 9-bit TRANSMIT input/output.

## FUNCTION TABLES

Am29861/Am29863 (Noninverting)

Inputs				Outputs		
$\overline{\text { OET }}$	$\overline{\text { OER }}$	$\mathbf{R}_{\mathbf{i}}$	$\mathbf{T}_{\mathbf{i}}$	$\mathbf{R}_{\mathbf{i}}$	$\mathbf{T}_{\mathbf{i}}$	
L	H	L	N/A	N/A	L	Transmitting
L	H	H	N/A	N/A	H	Transmitting
H	L	N/A	L	L	N/A	Receiving
H	L	N/A	H	H	N/A	Receiving
$H$	$H$	X	X	Z	Z	HI-Z

Am29862/Am29864 (Inverting)

Inputs					Outputs	
	$\overline{\mathbf{O E R}}$	$\mathbf{R}_{\mathbf{i}}$	$\overline{\mathbf{T}}_{\mathbf{i}}$	$\mathbf{R}_{\mathbf{i}}$	$\overline{\mathbf{T}}_{\mathbf{i}}$	Function
L	H	L	N/A	N/A	H	Transmitting
L	H	H	N/A	N/A	L	Transmitting
H	L	N/A	L	H	N/A	Receiving
H	L	N/A	H	L	N/A	Receiving
H	H	X	X	Z	Z	HI-Z

H = HIGH $\quad X=$ Don't Care
L = LOW $\quad \mathrm{N} / \mathrm{A}=$ Not Applicable
$Z=$ High Impedance
SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS

PROPAGATION DELAY


ABI.096

ENABLE AND DISABLE TIMES


Notes: 1. Diagram shown for Input Control Enable-LOW and Input Control Disable-HIGH.
2. $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ of Load Circuit are closed except where shown.
MDDEX
SECTION
NUMERIC DEVCE (HDEX
systems
DESTGN
CONSIDERATIONS
bipoLar LsivŨSITECHNOLOEIES Am2900 Systens solutions

desicen
DEVELORMENTSYCTEUS ANO SOFTVARE
Evacuation eoarde knokis
ThAMINE AND APPLICATHONS MATERIAL

Mn2950/70
SUPRORYT

> DYwamc wevionv cowtroe
> TEMORY TMMcjcontnoLumis
> ERROR DETECTION AND CORNECTION


Albs


Am2900
processors
AND PERIPHERALS
BIT-SHICE PROCESSORS
ulcrocode seouenceris
LSIPERIPHERALS

```
Am29100 = - 6.BITMICROPROCESSOR
CONTROLLER = INTERRUPTBLESEOUENCERS
FAMLY
LSI PERMPHERALS
```

Am29500
ARRAY AND DICITAL SIGNALPROCESSING
$16 \times 16$ PAMALLELMULTELIERS
MULTIPORTPIPEUNESPROCESSORS FFTABDRESS sEOUENCERS


	HIGH PERFORMANCE SCHOTTKY LOGIC
Am25S	LOW-POWER SCHOTTKY LOGIC
Am25LS	$\mathbf{8 \times 8} \mathbf{8}$ PARALLEL MULTIPLIERS



## 8100 <br> 8200 <br> MOS MCROPROCESSOR suppontrfoaicts <br> FOR 8 -BIT AMD $16-$-EIY MICROPAOCEssOns

MEMORIES, PALE, MOS PERIPHERALS, ANALOC	PROMs, EIPOLAR RAMS, MOS STATIC RNMS 20-PIN AND 24-PIN PALE, MOS LSI PERIPHERALS VERYHIEN SREED DATA ACQUITION



CETERAL

nronmation
PACKAGING, ORDERIG INFORMATION TESTING, ©UALITYASSURANCE/CUARATTEES CATE COUITS, DESIZES, RELADUUY

## Am25S and Am25LS Logic Family Index

Am25S05 4-Bit by 2-Bit Two's Complement Multiplier ..... 9-1
Am25S07 Hex Parallel D-Register with Register Enable ..... 9-9
Am25S08 Quad Parallel D-Register with Register Enable ..... 9-9
Am25S09 Quad 2-Input, High-Speed Register ..... 9-17
Am25S10 4-Bit Shifter with 3-State Outputs ..... 9-21
Am25S10 4-Bit Shifter ..... 9-25
Am25S18 Quad D-Register with Standard and 3-State Outputs ..... 9-54
Am25S557 $8 \times 8$ Parallel Multiplier, with Latch ..... 9-69
Am25S558 $8 \times 8$ Parallel Multiplier ..... 9-69
Am25S557, Am25S558 Multipliers in Expanded Arrays ..... 9-75
Am25LS07 6-Bit Register, Common Enable ..... 9-6
Am25LS08 4-Bit Register, Common Enable ..... 9-6
Am25LS09 4-Bit Register, Multiplexer Inputs ..... 9-13
Am25LS14A 8-Bit Serial/Parallel Two's Complement Multiplier ..... 9-35
A High-Speed Serial/Parallel Multiplier the Am25LS14A ..... 9-41
Am25LS15 4-Bit Serial/Parallel Adder Subtractor ..... 9-50
Am25LS22 8-Bit Serial/Parallel Register; Sign Extend ..... 9-59
Am25LS23 8-Bit Universal Shift Register; Synchronous Clear ..... 9-65
Am25LS2513 Priority Encoder, 3-State Outputs, Eight-Line to Three-Line ..... 9-80
Am25LS2516 8-Bit by 8-Bit Multiplier Accumulator ..... 9-86
The Am25LS2516 LSI Multiplier Accumulator ..... 9-95
Am25LS2517 4-Bit ALU/Function Generator; Overflow Detection ..... 9-98
Understanding the Am25LS2517 Arithmetic Logic Unit ..... 9-106
Am25LS2518 Quad Register with Standard and 3-State Outputs ..... 9-112
Am25LS2519 Quad Register with Dual 3-State Outputs ..... 9-117
Am25LS2520 Octal D-Register, Common Clear and Enable, 3-State Outputs ..... 9-122
Am25LS2521 8-Bit Comparator ..... 9-127
Am25LS2535 8-Bit Multiplexer, Control Storage ..... 9-131
Am25LS2536 8-Bit Decoder with Control Storage ..... 9-136
Am25LS2537 One-of-Ten Decoder, 3-State Outputs ..... 9-140
Am25LS2538 One-of-Eight Decoder, 3-State Outputs ..... 9-145
Am25LS2539 Dual One-of-Four Decoder, 3-State Outputs ..... 9-150
Am25LS2548 Chip Select Address Decoder ..... 9-155
Am25LS2568 BCD Decade Up/Down Counter, 3-State Outputs ..... 9-161
Am25LS2569 4-Bit Up/Down Counter, 3-State Outputs ..... 9-161

## Am25S05

Four-Bit by Two-Bit Two's Complement Multiplier

## Distinctive Characteristics

- Provides 2's complement multiplication at high speed without correction.
- Can be used in a combinatorial array or in a time sequenced mode.
- Multiplies two 12 -bit signed numbers in typically 115 ns.
- Multiplies in active HIGH (positive logic) or active LOW (negative logic) representations.
- Reduced input loading as compared to Am2505.
- $100 \%$ reliability assurance testing in compliance with MIL-STD-883.


## FUNCTIONAL DESCRIPTION

The Am25S05 is a high-speed digital multiplier that can multiply numbers represented in the 2 's complement notation and produce a 2 's complement product withou correction. The device consists of a $4 \times 2$ multiplier that can be connected to form terative arrays able to multiply numbers either directly, or in a time sequenced negative we. and can theres be in multiplier have different word lengths. The multiplier uses the quaternary algorithm and performs the function $S=X Y+K$ where $K$ is the input field used to add partial products eenerated in the array. At the beginning of the array the $K$ inputs are avail rbact of $m$ bit number by an $n$ bit number in an array results in a product having $m$ bits so that all possibe 2 's complement product is required the most significant bit can be ignored and overflow conditions can be detected by comparing the last two product digits.
A number of connection schemes are possible. Figure 1 shows the connection scheme that results in the fastest multiply. If higher speed is required an array can be split into several parts, and the parts added with high-speed look-ahead carry adders.
Provision is made in the design for multiplication in the active high (positive logic) or active low (negative logic) representations simply by reinterpreting the active level of the input operands, the prod $\mu \mathrm{ct}$, and a polarity control $\overline{\mathrm{P}}$.


RELATED PRODUCTS

Part No.	Description
Am25LS14A	8-Bit Serial/Parallel Multiplier
Am25LS557/8	8-Bit by 8-Bit Multiplier
Am29516/7	16-Bit by 16-Bit Multiplier

## LOGIC DIAGRAM




Am25S05
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

## Am25S05XC, DC, PC

Am25S05XM, DM
Am25S05FM
$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=4.75 \mathrm{~V}$ to 5.25 V
$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V
$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to 5.50 V

Parameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	XM	2.5	3.3		Volts
		$V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$	XC	2.7	3.3		
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=20 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			0.3	0.5	Volts
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
IIL (Note 2)	Unit Load Input LOW Current	$V_{C C}=$ MAX., $V_{\text {IN }}=0.5 \mathrm{~V}$				-2.0	mA
${ }_{1 / H}$ (Note 2)	Unit Load Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
	Input HIGH Current	$V_{C C}=M A X ., V_{1 N}=5.5 \mathrm{~V}$				1.0	mA
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$		-40		-100	mA
${ }^{\prime} \mathrm{CC}$	Power Supply Current	$V_{C C}=$ MAX., $Y_{1}=.0 \mathrm{~V}$			120	175	mA

Note 1. Typical Limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ Ambient and maximum loading.
Note 2. Actual input currents are obtained by multiplying unit load current by the input load factor. (See loading rules)

Switching Characteristics ( $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$ )

Parameters	From (Input)	To (Output)	Test Conditions	Min.	Typ.	Max.	Units
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\mathrm{C}_{n}$	$C_{n+4}$	See Test Table	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \text { t }_{\text {PHL }} \end{aligned}$	$\mathrm{C}_{n}$	$S_{0,1,2,3}$		$\begin{array}{r} 6 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 15 \\ & \hline \end{aligned}$	ns
${ }^{t} \mathrm{PLH}$ ${ }^{\text {tPHL }}$	$C_{n}$	$\mathrm{S}_{4,5}$		$\begin{aligned} & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL }^{2} \end{aligned}$	Any k	$C_{n+4}$		$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{gathered} 6.5 \\ 10 \end{gathered}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	ns
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$	Any k	$\mathrm{S}_{0,1,2,3}$		$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{array}{r} 13.5 \\ 9.5 \end{array}$	$\begin{aligned} & 20 \\ & 14 \end{aligned}$	ns
${ }^{\text {tpLH}}$ ${ }^{\text {tPHL }}$	Any k	$\mathrm{S}_{4,5}$		$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 23 \\ & 19 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Any x	$C_{n+4}$		$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Any x	$S_{0,1,2,3}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Any x	$S_{4,5}$		$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 21.5 \end{aligned}$	$\begin{aligned} & 35 \\ & 32 \end{aligned}$	ns
${ }^{\text {tpLH }}$ tPHL	Any y	$C_{n+4}$		$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 23 \\ & 20 \end{aligned}$	$\begin{aligned} & 34 \\ & 30 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL }^{2} \end{aligned}$	Any y	$S_{0,1,2,3}$		$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \end{aligned}$	$\begin{aligned} & 34 \\ & 34 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { t }_{\text {PHL }} \end{aligned}$	Any y	$S_{4,5}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \\ & \hline \end{aligned}$	ns

## SWITCHING TIME TEST TABLE

Input	Outputs	Inputs at 0 V (remaining inputs at 4.5 V )	
$\mathrm{c}_{\mathrm{n}}$	$\mathrm{C}_{\mathrm{n}+4}, \mathrm{~S}_{0123}, \mathrm{~S}_{45}$	$P, Y_{-1}, Y_{1}, A \\| X$	
$\begin{aligned} & k_{0} \\ & k_{1} \\ & k_{2} \\ & k_{3} \\ & k_{3} \end{aligned}$	$\begin{gathered} c_{n+4}, s_{0123}, s_{45} \\ c_{n+4}, s_{123}, s_{45} \\ c_{n+4}, s_{23}, s_{45} \\ s_{3} \\ s_{45} \end{gathered}$	$\begin{aligned} & P, Y_{-1}, Y_{1}, \text { All } X \\ & P, Y_{-1}, Y_{1}, A l l X \\ & P, Y_{-1}, Y_{1}, A l l X \\ & P, Y_{-1}, Y_{1}, A l l \\ & P, Y_{-1}, Y_{1}, A l l X, C_{n} \end{aligned}$	
$\begin{aligned} & x_{-1} \\ & x_{0} \\ & x_{1} \\ & x_{2} \\ & x_{3} \\ & x_{3} \\ & x_{4} \end{aligned}$	$\begin{gathered} c_{n+4}, s_{0123}, s_{45} \\ c_{n+4}, s_{0123}, s_{45} \\ c_{n+4}, s_{123}, s_{45} \\ c_{n+4}, s_{123}, s_{45} \\ s_{3} \\ s_{45} \\ s_{45} \end{gathered}$	$\begin{aligned} & P, Y_{1}, \text { All } k \\ & P, Y_{-1}, Y_{1}, \text { All } k \\ & P, Y_{-1}, Y_{1}, \text { All } k \\ & P, Y_{-1}, Y_{1}, \text { All } k \\ & P, Y_{-1}, Y_{1}, \text { All k } \\ & P, Y_{-1}, Y_{1}, \text { All }, C_{n} \\ & P, Y_{1}, \text { All }, C_{n} \end{aligned}$	
$\begin{aligned} & y_{-1} \\ & y_{0} \\ & y_{1} \end{aligned}$	$\begin{aligned} & c_{n+4}, s_{0123}, s_{45} \\ & c_{n+4}, s_{0123}, s_{45} \\ & c_{n+4}, s_{0123}, s_{45} \end{aligned}$	$\begin{aligned} & P, X_{1}, X_{2}, X_{3}, X_{4}, \text { All } k \\ & P, X_{1}, X_{2}, X_{3}, X_{4}, \text { All } k \\ & X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, \text { All } \end{aligned}$	

## DEFINITION OF TERMS

## SUBSCRIPT TERMS:

H HIGH, applying to a HIGH logic level or when used with $V_{C C}$ to indicate high $V_{C C}$ value.
I Input.
L LOW, applying to LOW logic level or when used with $\mathrm{V}_{\mathrm{CC}}$ to indicate low $V_{C C}$ value.
O Output.

## FUNCTIONAL TERMS

$\mathrm{C}_{\mathrm{n}}$ The carry input to the high-speed adder.
$\mathrm{C}_{\mathrm{n}+4}$ The carry output from the high-speed adder.
$\mathbf{k}_{\mathbf{i}}$ The constant field used for accumulating partial products.
$i=0,1,2,3$. At the beginning of the array the $K$ field can be used to add a 2 's complement number to the least significant half of the double length product.
$\overline{\mathbf{P}}$ The polarity control input. This input must be at a low-logic level for numbers in the active high logic representation, and held high for numbers in the active low logic representation.
$\mathbf{S}_{\mathrm{i}}$ The product outputs. $\mathrm{i}=0,1,2,3,4,5$.
$\mathbf{x}_{\boldsymbol{i}}$ The multiplicand inputs. $\mathbf{i}=-1,0,1,2,3,4$. At the first column
of the array $\mathrm{x}_{-1}$ must be held at logic ' 0 ', and at the last column of the array $x_{4}$ is connected to $x_{3}$.
$y_{i}$ The multiplier inputs. $i=-1,0,1$.
At the first row of the array $y_{-1}$ must be held at logic ' 0 '.

## OPERATIONAL TERMS:

ILL Forward input load current.
$\mathrm{I}_{\mathrm{OH}}$ Output HIGH current, forced out of output in $\mathrm{V}_{\mathrm{OH}}$ test.
$I_{\text {OL }}$ Output LOW current, forced into the output in $V_{O L}$ test.
ICC The current drawn by the device from $V_{C C}$ power supply with input and output terminals open.
$\mathbf{I}_{\text {IH }}$ Reverse input load current.
Negative Current Current flowing out of the device.
Positive Current Current flowing into the device.
$\mathrm{V}_{\mathrm{IH}}$ Minimum logic HIGH input voltage.
$V_{I L}$ Maximum logic LOW input voltage.
$\mathrm{V}_{\mathrm{IN}}$ Input voltage applied in $\mathrm{I}_{\mathrm{IL}}$, $\mathrm{l}_{\mathrm{IH}}$ tests.
$\mathrm{V}_{\mathrm{OH}}$ Minimum logic HIGH output voltage with output HIGH current $\mathrm{I}_{\mathrm{OH}}$ flowing out of output.
$\mathrm{V}_{\text {OL }}$ Maximum logic LOW output voltage with output LOW current IOL flowing into output.

Am25S05

MSI INTERFACING RULES					
Interfacing Digital Family				Equ Input HIGH	nt Load LOW
Advanced Micro Devices 54/7400 Series				1.25	1.25
Advanced Micro Devices 9300/2500 Series				1.25	1.25
FSC Series 9300				1.25	1.25
TI Series 54/7400				1.25	1.25
Signetics Series 8200				2.5	2.5
National Series DM 75/85				1.25	1.25
DTL Series 930				15	1.25
OPERATION TABLE					
Y Multiplier			Operation X Multiplicand		
Y-1	Yo	$y_{1}$			
0	0	0	$K+0$		
1	0	0	$K+X$		
0	1	0	$K+X$		
1	1	0	$K+2 X$		
0	0	1	$K-2 X$		
1	0	1	$\mathrm{K}-\mathrm{X}$		
0	1	1	$K-X$		
1	1	1	$K-0$		
Active Low Inputs and Outputs '1' = Low, ${ }^{\prime} 0$ ' $=$ High, $\mathrm{P}=$ High Active High Inputs and Outputs ' 1 ' = High, ' 0 ' = Low, $\overline{\mathrm{P}}=$ Low					


Am25S05 LOADING RULES IN UNIT LOADS					
		Input Unit Load		Fanout	
Input/Output	Pin No.'s	Input HIGH	Input LOW	Output HIGH	Output LOW
$\times 4$	1	0.2	0.2	-	-
$\mathrm{C}_{\mathrm{n}}$	2	0.2	0.2	-	-
$\mathrm{x}_{3}$	3	0.2	0.2	-	-
$\mathrm{x}_{2}$	4	0.4	0.4	-	-
$\mathrm{x}_{1}$	5	0.4	0.4	-	-
$\mathrm{x}_{0}$	6	0.4	0.4	-	-
$\mathrm{x}_{-1}$	7	0.2	0.2	-	-
$\mathrm{S}_{0}$	8	-	-	20	10
$\mathrm{s}_{1}$	9	-	-	20	10
$\mathrm{S}_{2}$	10	-	-	20	10
$\mathrm{s}_{3}$	11	-	-	20	10
GND	12	-	-	-	-
$\mathrm{C}_{\mathrm{n}+4}$	13	-	-	20	10
$\mathrm{S}_{4}$	14	-	-	20	10
$\mathrm{S}_{5}$	15	-	-	20	10
$\mathrm{k}_{3}$	16	2	2	-	-
$\mathrm{k}_{2}$	17	2	2	-	-
$k_{1}$	18	2	2	-	-
$\mathrm{k}_{0}$	19	2	2	-	-
$\overline{\mathbf{P}}$	20	1	1	-	-
$\mathrm{y}_{1}$	21	0.6	0.6	-	-
$y_{0}$	22	0.6	0.6	-	-
Y-1	23	0.6	0.6	-	-
$\mathrm{v}_{\mathrm{CC}}$	24	-	-	-	-

A Schottky TTL Unit Load is defined as $50 \mu \mathrm{~A}$ at 2.7 V at the HIGH Logic Level and -2.0 mA at 0.5 V at the LOW Logic Level.

## USER NOTES

1. Arithmetic in the multiplier is performed in the 2's complement notation, which requires a carry in at the first stage. This is accomplished by connecting the Yi multiplier bit to the appropriate carry input terminal $i=1,3,5 \ldots$
2. The multiplier can perform multiplication in either the active high (positive logic) or active low (negative logic) representations by reinterpreting the active logic level and by grounding or leaving the polarity control pin $\bar{P}$ open circuit respectively.
3. Multiplication can be performed in number representations other than 2's complement by either correcting the 2 's complement product or adding in a correction at the beginning of the multiplication at the K inputs. $2^{\prime} \mathrm{s}$ complement numbers are represented as: $X_{2}=x-x_{s} 2^{n-1}$.

## Number

representation	Correction
2's complement	None
1's complement	Add $x_{s} Y_{2}+y_{s} X_{2}+x_{s} y_{s}$ at $k$ inputs
Unsigned (magnitude)	Extend multiplier and multiplicand one bit at the least significant end.
	Form $x_{0} y_{0}+y_{0} x+x_{0} y$ with conditional adder and add to array shifted
	two places up at $k$ inputs. Force
	$k_{s}, y_{s}, x_{s}=0$.

Sign magnitude $x_{s}=0, y_{s}=0$ None
$x_{s}=1, y_{s}=0$ Form $\left[(X Y)_{2}+2^{n-1} y\right]$
$x_{s}=0, y_{s}=1$ Form $\left[(X Y)_{2}+2^{n-1} x\right]$
$x_{s}=1, y_{s}=1$ Add $2^{n-1}(x+y)-2^{2 n-2}$
4. For the highest speed array with the multipliers arranged in a parallelogram structure carries between certain multipliers are exchanged with the y carry-ins needed for 2 's complement subtract. The delays in the array are then equalized as best possible as shown in Figure 1.
5. For higher speed multiplication the array can be split into several parts that can be added together with highspeed adders.
6. Rounding off to a single length product can be achieved by adding a ' 1 ' to the array at the most significant positive k input of the array, ignoring the most significant product digit, and using the remainder of the most significant part of the product.
7. Truncation of a product without round off enables some of the multipliers in the array to be removed.

Am25S05


Fig. 2

## Am25LS07•Am25LS08

## Hex/Quad ParalleI D Registers with Register Enable



## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \quad$ (MIN. $=4.75 \mathrm{~V}$
MAX. $=5.25 \mathrm{~V}$ )
MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$v_{C C}=5.0 \mathrm{~V} \pm 10 \%$
(MIN. $=4.50 \mathrm{~V}$ MAX. $=5.50 \mathrm{~V}$ )

## DC CHARACTERISTICS OVER OPERATING RANGE

Typ.

Parameters	Description	Test Conditions (Note 1)		Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOH}=-440 \mu \mathrm{~A}$	COM'L	2.7	3.4		Volts
		$V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$	MIL	2.5	3.4		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\text {CC }}=$ MIN.	$1 \mathrm{OL}=4 \mathrm{~mA}$			0.4	Volts
		$V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$	$1 \mathrm{OL}=8 \mathrm{~mA}$			0.45	
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs	COM'L			0.8	Volts
			MIL			0.7	
$\mathrm{v}_{1}$	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., IIN $=-18 \mathrm{~mA}$				-1.5	Volts
IIL	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.4 V$	Clock, $\overline{\mathrm{E}}$			-0.36	mA
			Others			-0.24	
$\mathrm{I}_{\mathbf{H}}$	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	Clock, $\overline{\mathrm{E}}$			20	$\mu \mathrm{A}$
			Others			14	
$1 /$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$				0.1	mA
ISC	Output Short Circuit Current (Note 3)	$\mathrm{V}_{C C}=\mathrm{MAX}$.		-15		-85	mA
${ }^{\prime} \mathrm{CC}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ MAX. ( Note 4)	LS07		16	22	mA
			LS08		11	18	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Outputs open; enable grounded; data inputs at 4.5 V , measured after a momentary ground, then 4.5 V applied to the clock input.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	$-30 \mathrm{~mA} \mathrm{to} \mathrm{+5.0mA}$

## SWITCHING CHARACTERISTICS

$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
tPLH	Clock to Output		13	20	ns	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {tPHL }}$	Clock to Output		13	20	ns	
${ }^{\text {tpw }}$	Clock Pulse Width	17			ns	
$\mathrm{t}_{\text {s }}$	Data	20			ns	
$\mathrm{t}_{\text {s }}$	Enable	30			ns	
$t_{\text {h }}$	Data	5.0			ns	
$t_{h}$	Enable	5.0			ns	
$f_{\text {max }}$ (Note 1)	Maximum Clock Frequency	40	65		MHz	

Note 1. Per industry convention, $f_{\text {max }}$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}, t_{f}$, pulse width or duty cycle.

Am25LS07•Am25LS08
SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description	$\begin{aligned} & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\ & \text { Min. } \quad \text { Max. } \end{aligned}$		$\begin{gathered} T_{A}=-1 \\ V_{C C} \\ \text { Min. } \end{gathered}$	$\begin{aligned} & +125^{\circ} \mathrm{C} \\ & \pm 10 \% \\ & \text { Max. } \end{aligned}$	Units	Test Conditions
$t_{\text {PLH }}$	Clock to Output		30		35	ns	$\begin{aligned} C_{\mathrm{L}} & =50 \mathrm{pF} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
$t_{\text {PHL }}$	Clock to Output		30		35	ns	
$t_{\text {pw }}$	Clock Pulse Width	26		30		ns	
$t_{\text {s }}$	Data	30		35		ns	
$t_{\text {s }}$	Enable	43		50		ns	
$t_{h}$	Data	11		12		ns	
$t_{\text {h }}$	Enable	11		12		ns	
$f_{\text {max }}$ (Note 1)	Maximum Clock Frequency	30		25		MHz	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

## DEFINITION OF FUNCTIONAL TERMS

$D_{i}$ The D flip-flop data inputs.
E Enable. When the enable is LOW, data on the $D_{i}$ inputs is transferred to the $\mathrm{Q}_{\boldsymbol{i}}$ outputs on the LOW-to-HIGH clock transition. When the enable is HIGH, the $\mathrm{Q}_{\boldsymbol{i}}$ outputs do not change regardless of the data or clock input transitions.
CP Clock Pulse for the register. Enters data on the LOW-toHIGH transition.
$\mathbf{a}_{\mathbf{i}}$ The TRUE register outputs.
$\overline{\mathrm{Q}}_{\mathrm{i}}$ The complement register outputs

LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS


FUNCTION TABLE

Inputs			Outputs		
$\overline{\mathbf{E}}$	$\mathrm{D}_{\boldsymbol{i}}$	$\mathbf{C P}$	$\mathbf{Q}_{\mathbf{i}}$	$\overline{\mathbf{O}}_{\boldsymbol{i}}$	
$H$	$X$	$X$	$N C$	$N C$	
$L$	$X$	$H$	$N C$	$N C$	
$L$	$X$	$L$	$N C$	$N C$	
$L$	$L$	$\uparrow$	$L$	$H$	
$L$	$H$	$\uparrow$	$H$	$L$	

$\mathrm{H}=\mathrm{HIGH}$
X = Don't Car
$\uparrow=$ LOW-to-HIGH Transition
$\overline{\mathrm{O}}_{\mathrm{i}}$ on Am25LS08 Only

## LOGIC SYMBOLS

Am25LS07


Am25LS08

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

# Am25S07•Am25S08 <br> Hex/Quad Parallel D Registers with Register Enable 

Distinctive Characteristics

- 4-bit and 6-bit high-speed parallel registers
- Common clock and common enable
- Positive edge triggered D flip-flops


## FUNCTIONAL DESCRIPTION

The Am25S07 is a 6-bit, high-speed Schottky register with a buffered common register enable. The Am25S08 is a 4-bit register with a buffered common register enable. The devices are similiar to the Am54S/74S174 and Am54S/74S175 but feature the common register enable rather than common clear.
Both registers will find application in digital systems where information is associated with a logic gating signal. When the enable is LOW, data on the $D$ inputs is stored in the register on the positive going edge of the clock pulse. When the enable is HIGH, the register will not change state regardless of the clock or data input transitions.


RELATED PRODUCTS

Part No.	Description
Am25LS07/08	Low Power Versions
Am2918	Quad D Register
Am2919	Quad Register
Am29821-26	$8,9,10$-Bit Register

## LOGIC DIAGRAMS

Am25S07


	ORDERING INFORMATION	
Package	Temperature   Range	Order   Number
Molded DIP	0 to $+70^{\circ} \mathrm{C}$	AM25SO7/08PC
Herretic DIP	0 to $+70^{\circ} \mathrm{C}$	AM25SO708DC
Dice	0 to $+70^{\circ} \mathrm{C}$	AM25S07/08xC
Hermetic DIP	-55 to $+125^{\circ} \mathrm{C}$	AM25SO7/08DM
Hermetic Flat Pack	-55 to $+125^{\circ} \mathrm{C}$	AM25SO7/08FM
Dice	-55 to $+125^{\circ} \mathrm{C}$	AM25SO7/08XM

## CONNECTION DIAGRAMS <br> Top Views



## Am25S07•Am25S08

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)


Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents $=$ Unit Load Current $\times$ Input Load Factor (See Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
5. Outputs open; enable grounded; data inputs at 4.5 V , measured after a momentary ground, then 4.5 V applied to the clock input.

Switching Characteristics ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ).

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
tPLH	Clock to Output	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$	4	8	12	ns
tpHL	Clock to Output		4	11.5	17	ns
${ }_{\text {t }}^{\text {w }}$ w	Clock Pulse Width		7			ns
$\mathrm{t}_{5}$	Data		5.5			ns
$\mathrm{t}_{\mathrm{s}}$	Enable		9			ns
th	Data		3			ns
th	Enable		3			ns



## APPLICATIONS



Selective Register Loading of Data on Synchronous Clock.

Metallization and Pad Layout

## Am25S07



Am25S08


## Am25LS09 <br> Quad Two-Input, High-Speed Register



## Am25LS09

ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$	(MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$ )
MIL	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	(MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$ )

## DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)		Min.	Typ.   (Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\mathrm{OH}}=-440 \mu \mathrm{~A}$	COM'L	2.7	3.4		Volts
		$V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$	MIL	2.5	3.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$V_{C C}=$ MIN.	$1 \mathrm{OL}=4 \mathrm{~mA}$			0.4	Volts
		$V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$	$\mathrm{IOL}=8 \mathrm{~mA}$			0.45	
$\mathbf{V I H}_{\text {I }}$	Input HIGH Level	Guaranteed input,logical HIGH voltage for all inputs		2.0			Volts
$\mathrm{V}_{\mathrm{IL}}$.	Input LOW Level	Guaranteed input logical LOW voltage for all inputs	MIL		1	0.7	Volts
			COM'L			0.8	
$\mathrm{V}_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., IN $=-18 \mathrm{~mA}$				-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{C C}=$ MAX., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	Clock, S			-0.36	mA
			Others			-0.24	
	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	- Clock, S			20	$\mu \mathrm{A}$
IIH			Others			14	
$1 /$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$				0.1	mA
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX .		-15		-85	mA
ICC	Power Supply Current	$\mathrm{V}_{\text {CC }}=$ MAX. $($ Note 4)			11	18	mA

Notes: 1. For conditions shown as MIN. or MAX. use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Measured with Select and Clock inputs at 4.5 V ; all data inputs at OV ; all outputs open.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Oütput State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

## SWITCHING CHARACTERISTICS

( $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description	Min.	Tур.	Max.	Units	Test Conditions
${ }^{\text {tPLH }}$	Clock to Q HIGH		13	20	ns	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {tPHL }}$	Clock to Q LOW		13	20	ns	
$t_{\text {pw }}$	Clock Pulse Width	17			ns	
$\mathrm{t}_{5}$	Data Set-up Time	20			ns	
$\mathrm{t}_{\mathrm{s}}$	Select Input Set-up Time	30			ns	
$t_{h}$	Data Hold Time	5			ns	
$t_{\text {h }}$	Select Input Hold Time	0			ns	
$f_{\text {max }}$ (Note 1)	Maximum Clock Frequency	40	65		MHz	

Note 1. Per industry convention, $f_{\max }$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}$, $t_{f}$, pulse width or duty cycle.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

## DEFINITION OF FUNCTIONAL TERMS

$D_{0 A}, D_{1 A}, D_{2 A}, D_{3 A}$ The " $A$ " word into the two-input multiplexer of the $D$ flip-flops.
$\mathrm{D}_{0 \mathrm{~B}}, \mathrm{D}_{1 \mathrm{~B}}, \mathrm{D}_{2 \mathrm{~B}}, \mathrm{D}_{3 \mathrm{~B}}$ The " B " word into the two-input multiplexer of the $D$ flip-flops.
$\mathbf{O}_{\mathbf{n}}, \mathbf{Q}_{1}, \mathbf{Q}_{\mathbf{2}}, \mathbf{O}_{3}$ The outputs of the four D-type flip-flops of the register.
S Select. When the select is LOW, the A word is applied to the D inputs of the flip-flops. When the select is HIGH the B word is applied to the D inputs of the flip-flops.

CP Clock Pulse. Clock pulse for the register. Enters data on the LOW-to-HIGH transition of the clock line.

FUNCTION TABLE

SELECT   S	CLOCK   CP	DATA   $\mathrm{D}_{\text {iA }}$	INPUTS   $\mathrm{D}_{\mathbf{i B}}$	OUTPUT   $\mathbf{Q}_{\mathbf{i}}$
L	$\uparrow$	L	X	L
L	$\uparrow$	H	X	H
$H$	$\uparrow$	X	L	L
$H$	$\uparrow$	X	H	H

$H=$ HIGH Voltage Level
L $=$ LOW Voltage Level
X = Don't Care
$i=0,1,2$, or 3
$\uparrow=$ LOW-to-HIGH Transition

Am25LS • Am54LS/74LS
LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

## APPLICATIONS



Am25LSO9 used in $258 \times 4$ memory system with load/recirculate control, and $1 \times 4$ static test capability for the system. MOS interface is one load at each end. This circuit is especially useful in digital filtering where special algorithms require a static single step operation for testing purposes.


Am25LS09 used to store a word from either data bus A or data bus B.


## Am25S09

Quad Two-Input, High-Speed Register

## Distinctive Characteristics

- Four-bit register accepts data from one of two 4-bit input fields.
- Edge triggered clock action
- High-speed Schottky technology.

Am25S09
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Oütput State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am25S09xc $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Am25S09 M $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Parameters	Description	Test Conditions (Note 1)		Min.	Typ.(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	COM'L	2.7	3.4		Volts
		$V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$	MIL	2.5	3.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\text { MIN., } \mathrm{I}_{\mathrm{OL}}=20.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } V_{I L} \end{aligned}$			0.3	0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
$\mathrm{V}_{1}$	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
IIL (Note 3)	Unit Load. Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.5 \mathrm{~V}$				-2.0	mA
$I_{1 H}$   (Note 3)	Unit Load Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
${ }^{\text {I SC }}$	Output Short Circuit Current (Note 4)	$V_{C C}=$ MAX .		-40		-100	mA
$I_{\text {CC }}$	Power Supply Current	$\mathrm{V}_{\text {CC }}=$ MAX. ( Note 5)			75	120	mA

Notes: 1. For conditions shown as MIN. or MAX. use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents $=$ Unit Load Current $\times$ Input Load Factor (See Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
5. Measured with Select and Clock inputs at 4.5 V ; all data inputs at 0 V ; all outputs open.

Switching Characteristics ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ )

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
tPLH	Clock to Q HIGH	${ }^{\prime} \mathrm{CCC}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$		8	12	ns
${ }_{\text {tPHL }}$	Clock to Q LOW			11.5	17	ns
${ }_{\text {t }}^{\text {pw }}$	Clock Pulse Width		7			ns
$\mathrm{t}_{\text {s }}$	Data Set-up Time		5.5			ns
$t_{s}$	Select Input Set-up Time		10			ns
$t^{\prime}$	Data Hold Time		3			ns
$t_{\text {h }}$	Select Input Hold Time		3			ns


FUNCTION TABLE				
$\begin{aligned} & \text { SELECT } \\ & S \end{aligned}$	$\begin{gathered} \text { CLOCK } \\ \text { CP } \end{gathered}$	$\begin{aligned} & \text { DATA } \\ & \mathrm{D}_{\mathrm{i}} \mathrm{~A} \end{aligned}$	$\begin{gathered} \text { INPUTS } \\ \mathrm{D}_{\mathrm{iB}} \end{gathered}$	$\begin{aligned} & \text { OUTPUT } \\ & \mathbf{o}_{\mathbf{i}} \end{aligned}$
L	$\uparrow$	L	$\times$	L
L	$\uparrow$	H	X	H
H	$\uparrow$	X	L	L
H	$\uparrow$	x	H	H
$H=$ HIGH Voltage Level $x=\text { Don't Care }$   $\uparrow=$ LOW-to-HIGH Transition $\begin{aligned} & L=\text { Low Voltage Level } \\ & i=0,1,2, \text { or } 3 \end{aligned}$				

## LOADING RULES (In Unit Loads)

Input/Output	Pin No.'s	Input Unit Load	Fan-out	
			Ouţput HIGH	Output LOW
S	1	1	-	-
$\mathrm{O}_{0}$	2	-	20	10
$\mathrm{D}_{0 \mathrm{~A}}$	3	1	-	-
$\mathrm{D}_{0 \mathrm{~B}}$	4	1	-	-
$\mathrm{D}_{18}$	5	1	-	-
$\mathrm{D}_{1} \mathrm{~A}$	6	1	-	-
$\mathbf{O}_{1}$	7	-	20	10
GND	8	-	-	-
CP	9	1	-	-
$\mathrm{O}_{2}$	10	-	20	10
$\mathrm{D}_{2} \mathrm{~A}$	11	1	-	-
$\mathrm{D}_{2 \mathrm{~B}}$	12	1	-	-
$\mathrm{D}_{3 \mathrm{~B}}$	13	1	-	-
$\mathrm{D}_{3}$ A	14	1	-	-
$\mathbf{O}_{3}$	15	-	20	10
$\mathrm{V}_{\mathrm{CC}}$	16	-	-	-

A Schottky TTL Unit Load is defined as $50 \mu \mathrm{~A}$ measured at 2.7 V HIGH and -2.0 mA measured at 0.5 V LOW.

## DEFINITION OF FUNCTIONAL TERMS

$D_{0 A}, D_{1 A}, D_{2 A}, D_{3 A}$ The "A" word into the two-input multiplexer of the $D$ flip-flops.
$\mathrm{D}_{0 \mathrm{~B}}, \mathrm{D}_{1 \mathrm{~B}}, \mathrm{D}_{2 \mathrm{~B}}, \mathrm{D}_{3 \mathrm{~B}}$ The " B " word into the two-input multiplexer of the $D$ flip-flops.
$\mathbf{Q}_{\mathbf{0}}, \mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}$ The outputs of the four D-type flip-flops of the register.
S Select. When the select is LOW, the A word is applied to the D inputs of the flip-flops. When the select is HIGH the B word is applied to the $D$ inputs of the flip-flops.
CP Clock Pulse. Clock pulse for the register. Enters data on the LOW-to-HIGH transition of the clock line.

## SCHOTTKY INPUT/OUTPUT

 CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown

Am25S09

## APPLICATIONS



Am25S09 used in $258 \times 4$ memory system with load/recirculate control, and $1 \times 4$ static test capability for the system. MOS interface is one load at each end. This circuit is especially useful in digital filtering where special algorithms require a static single step operation for testing purposes.


Am25S09 used to store a word from either data bus A or data bus B.


## Am25S10

Four-Bit Shifter with Three-State Outputs

## Distinctive Characteristics

- Shifts 4-bits of data to 0,1, 2 or 3 places under control of two select lines.
- Three-state outputs for bus organized systems.


## FUNCTIONAL DESCRIPTION

The Am25S10 is a combinatorial logic circuit that accepts a four-bit data word and shifts the word $0,1,2$ or 3 places. The number of places to be shifted is determined by a twobit select field $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$. An active-LOW enable controls the three-state outputs. This feature allows expansion of shifting over a larger number of places with one delay.
By suitable interconnection, the Am25S10 can be used to shift any number of bits any number of places up or down. Shifting can be logical, with logic zeroes pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.

- 6.5 ns typical data propagation delay
- Alternate source is $54 \mathrm{~S} / 74 \mathrm{~S} 350$


Am25S10
MAXIMUM RATINGS (Above which the useful life may be impaired)

Starage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

$A m 25 S 10 \times C$	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$ (COM'L)	$\mathrm{MIN}=4.75 \mathrm{~V}$	$\mathrm{MAX}=5.25 \mathrm{~V}$
$\mathrm{Am} 25 \mathrm{~S} 10 \times \mathrm{M}$	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$ (MIL)	$M 1 N=4.5 \mathrm{~V}$	$M A X=5.5 \mathrm{~V}$

Am25S10×M $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIL}) \quad \mathrm{MiN}=4.5 \mathrm{~V} \quad \mathrm{MAX}=5.5 \mathrm{~V}$
Parameters Description $\quad$ Test Conditions (Note 1) Min. Typ.(Note 2) Max. Units

$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{XM} \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4	3.4		Volts
			$\mathrm{XC} \mathrm{I}_{\mathrm{OH}}=-6.5 \mathrm{~mA}$	2.4	3.2		
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=\text { MIN., } I_{O L}=20 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
$\mathrm{V}_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
$\begin{aligned} & I_{1 L} \\ & \text { (Note 3) } \end{aligned}$	Unit Load Input LOW Current	$\mathrm{V}_{C C}=$ MAX., $\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$				-2.0	mA
$I_{1 H}$   (Note 3)	Unit Load Input HIGH Current	$V_{C C}=$ MAX., $V_{\text {IN }}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
${ }^{1} \mathrm{O}$	Off State (High Impedance) Output Current	$V_{C C}=$ MAX.	$=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
			$=0.5 \mathrm{~V}$			-50	
11	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
ISC	Output Short Circuit Current (Note 4)	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$		-40		-100	mA
${ }^{1} \mathrm{CC}$	Power Supply Current	$V_{C C}=$ MAX., All outputs open, All inputs = GND			60	85	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents $=$ Unit Load Current $x$ input Load Factor (See Loading Rules)
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Switching Characteristics ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ )

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
tPLH	Data Input to Output	$V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$		5	7.5	
${ }_{\text {tPHL }}$				8	12	
${ }^{\text {tPLH}}$	Select to Output			11	17	ns
${ }_{\text {tPHL }}$				13	20	
$\mathrm{t}_{\mathrm{ZH}}$	Output Control $\overline{\mathrm{OE}}$ to Output			.	19.5	ns
${ }^{2} \mathrm{ZL}$					21	
$\mathrm{t}_{\mathrm{HZ}}$	Output Control $\overline{\mathrm{OE}}$ to Output	$V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$		5	8	ns
${ }^{t} \mathrm{LZ}$				10	15	

## DEFINITION OF FUNCTIONAL TERMS

$\mathbf{I}_{\mathbf{i}}$ The seven data inputs of the shifter.
$\overline{\mathrm{OE}}$ Enable. When the enable is HIGH, the four outputs are in the high impedance state. When the enable is LOW, the selected $I_{i}$ inputs are present at the outputs.
$\mathbf{S}_{0}, \mathbf{S}_{1}$ Select inputs. Controls the number of places the inputs are shifted.
$Y_{i}$ The four outputs of the shifter.

## LOADING RULES (In Unit Loads)

Input/Output	Pin No.'s	Input Unit Load (Note 1)	Fan-out		
			Output HIGH		Output LOW
			XM	XC	
$1-3$	1	1	-	-	-
$\mathrm{I}_{-2}$	2	1.5	-	-	-
I-1	3	1.5	-	-	-
${ }_{1}$	4	1.5	-	-	-
11	5	1.5	-	-	-
$\mathrm{I}_{2}$	6	1.5	-	-	-
$\mathrm{I}_{3}$	7	1	-	-	-
GND	8	-	-	-	-
$S_{1}$	9	1	-	-	-
$\mathrm{S}_{0}$	10	1	-	-	-
$\mathrm{V}_{3}$	11	-	40	130	10
$\mathrm{V}_{2}$	12	-	40	130	10
$\overline{\mathrm{OE}}$	13	1	-	-	-
$Y_{1}$	14	-	40	130	10
$\mathrm{Y}_{0}$	15	-	40	130	10
$\mathrm{v}_{\mathrm{CC}}$	16	-	-	-	-

A Schottky TTL Unit Load is defined as $50 \mu \mathrm{~A}$ measured at 2.7 V HIGH and -2.0 mA measured at 0.5 V LOW.

Note: 1. The fan-in on $I_{-2}, I_{-1}, I_{0}, I_{1}$ and $I_{2}$ will not exceed 1.5 Unit Loads when measured at $V_{I L}=0.5 \mathrm{~V}$. As $V_{I L}$ is decreased to 0 V , the input current $I_{I L}$ MAX. increases to -4, -6, -8, -6 and -4 mA respectively due to the decrease in current sharing with the internal select buffer outputs.

SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS


Note: Actual current flow direction shown.

PERFORMANCE CURVES SWITCHING CHARACTERISTICS


Select to Output
(Typical)


## LOGIC EQUATIONS

$\mathbf{Y}_{0}=\bar{S}_{0} \bar{S}_{1} I_{0}+S_{0} \bar{S}_{1} I_{-1}+\bar{S}_{0} S_{1} I_{-2}+S_{0} S_{1} I_{-3}$
$\mathbf{V}_{1}=\bar{S}_{0} \bar{S}_{1} I_{1}+S_{0} \bar{S}_{1} I_{0}+\bar{S}_{0} S_{1} I_{-1}+S_{0} S_{1} I_{-2}$
$Y_{2}=\bar{S}_{0} \bar{S}_{1} I_{2}+S_{0} \bar{S}_{1} I_{1}+\bar{S}_{0} S_{1} I_{0}+S_{0} S_{1} l_{-1}$
$Y_{3}=\bar{S}_{0} \bar{S}_{1} I_{3}+S_{0} \bar{S}_{1} I_{2}+\bar{S}_{0} S_{1} I_{1}+S_{0} S_{1} I_{0}$

Note: For additional information, see page 5-54

TRUTH TABLE

$\overline{\mathrm{OE}}$	$\mathrm{s}_{1} \mathrm{~s}_{0}$	$\begin{array}{lll}13 & 12\end{array}$	$1{ }_{1} 10$	$\begin{array}{lll}\text { l } & \mathrm{l}-2\end{array}$	I-3	$Y_{3}$	$\mathrm{V}_{2}$	$\mathrm{Y}_{1}$	$\gamma_{0}$
H	X $\times$	$\times \mathrm{X}$	$\times \times$	$x \times$	X	Z	Z	z	z
L	L L	$\mathrm{D}_{3} \mathrm{D}_{2}$	$D_{1} D_{0}$	$x \quad x$	x	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$		$\mathrm{D}_{0}$
L	L H	$\times \quad \mathrm{D}$	$\mathrm{D}_{1} \mathrm{D}_{0}$	$D_{-1} \mathrm{X}$	x	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$		-1
1	H	$\times \quad \mathrm{x}$	$\mathrm{D}_{1} \mathrm{D}_{0}$	$\mathrm{D}_{-1} \mathrm{D}_{-2}$	X	$\mathrm{D}_{1}$	D0	D-1	D-2
L	H H	x	$\times \mathrm{D}_{0}$		D-3	$\mathrm{D}_{0}$			D-3

$$
\begin{array}{ll}
H=\text { HIGH } & X=\text { Don't Care } \\
L=\text { LOW } & Z=\text { High Impedance State }
\end{array}
$$

$$
D_{n} \text { at input } I_{n} \text { may be either HIGH or LOW and output } Y_{m} \text { will }
$$

$$
\text { follow the selected } D_{n} \text { input level. }
$$

Am25S10


# Am25S10 Four-Bit Shifter <br> By John R. Mick 

## INTRODUCTION

The Am25S10 is a high-speed MSI combinatorial logic block built using advanced Schottky technology. The device has the ability to shift four bits of data $0,1,2$ or 3 places. The Am25S10 has two select lines that are decoded internally to determine the number of places the data is shifted. The device has seven data inputs $I_{-3}, I_{-2}, I_{-1}, I_{0}, I_{1}, I_{2}$, and $I_{3}$ and 4 three-state data outputs $Y_{0}, Y_{1}, Y_{2}$, and $Y_{3}$ as shown in the logic symbol diagram of Figure 1. The three-state outputs allow several devices to be bus organized for shifts of more than three places with a single level device propagation delay time. The three-state outputs are controlled by a single buffered active-LOW output control $\overline{\mathrm{OE}}$. When the output control is LOW, the data outputs will follow the selected data inputs. When the output control is HIGH, the data outputs offer a high-impedance to the data bus.

## FUNCTIONAL DESCRIPTION

The logic equations describing the output shifting capability of the Am25S10 when the output control is LOW are:
$\mathrm{Y}_{0}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} l_{0}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{-1}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{I}_{-2}+\mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{I}_{-3}$
$Y_{1}=\bar{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{l}_{1}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{l}_{0}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{l}_{-1}+\mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{l}_{-2}$
$\mathrm{Y}_{2}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} \mathrm{l}_{2}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{l}_{1}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{l}_{0}+\mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{l}_{-1}$
$Y_{3}=\bar{S}_{0} \bar{S}_{1} l_{3}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{l}_{2}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{l}_{1}+\mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{l}_{0}$
From these equations it is seen that each output is operationally equivalent to a four-input multiplexer with the inputs connected such that the select code generates successive
one-bit shifts of the input data word. The logic diagram of Figure 2 shows the internal connection of each multiplexer with respect to the seven data inputs. Because of this internal connection scheme, several devices can be connected to perform shifts of $0,1,2$, or 3 places on words of any length.


Note: Pin 1 is marked for orientation
Figure 1. Logic Symbol and Connection Diagram.


Figure 2. Logic Diagram of the Am25S10.

## Am25S10

The operation of the Am25S10 is pictorially depicted in Figure 3. Here, the four shift positions of the data outputs with respect to the data inputs are shown via the dashed lines for the four possible select codes. Figure 4 shows a similiar operation only the notation now represents a seven-bit input word $A_{0}$ through $A_{6}$. The output code for each of the select field combinations applied to the $S_{0}$ and $S_{1}$ inputs is shown in the accompanying Function Table. In addition, the four outputs $\mathrm{Y}_{0}$ through $\mathrm{Y}_{3}$ can be forced to the high-impedance state by applying a HIGH to the "output control" input. This allows additional shifters to be cascaded on the same output lines, or the shifter array to be connected to a common data bus.


Figure 3. The Four Shift Positions of the Am25S10.


FUNCTION TABLE

$\mathrm{s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{Y}_{0}$	$\mathrm{Y}_{1}$	$\mathrm{Y}_{2}$	$\mathrm{Y}_{3}$
0	0	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{6}$
0	1	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$
1	0	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$
1	1	$\mathrm{~A}_{0}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$

Positive Logic

## INPUT LOADING

The logic diagram of Figure 2 shows the input connection scheme for the seven data inputs of the Am25S10. Table I shows the number of multiplexer inputs connected to each data input as well as the expected an actual Unit Load weighting on each input.

TABLE I

Pin   $\#$	Data   Input	Number of   Multiplexer Inputs   Connected	Expected   Unit   Loads	Actual   Unit   Loads
1	$I_{-3}$	1	1	1
2	$I_{-2}$	2	2	1.5
3	$I_{-1}$	3	3	1.5
4	$I_{0}$	4	4	1.5
5	$I_{1}$	3	3	1.5
6	$I_{2}$	2	2	1.5
7	$I_{3}$	1	1	1

Since the number of gate inputs for $I_{-2}, I_{-1}, I_{0}, I_{1}$ and $I_{2}$ data inputs is $2,3,4,3$, and 2 respectively, this could be expected to be the unit load fan-in for these data inputs. However, IIL current sharing occurs internally with the select buffer outputs to reduce the external fan-in. Since a Schottky TTL unit load is defined as -2.0 mA measured at 0.5 V LOW, the maximum $\mathrm{I}_{\mathrm{IL}}$ when measured at $\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$ is -3 mA ol 1.5 STTL unit loads. As the measure voltage $V_{I L}$ on these daté inputs is decreased to 0 V , the measured input current on $\mathrm{I}_{-2}$ $I_{-1}, I_{0}, I_{1}$, and $I_{2}$ can increase to an $I_{I L}$ maximum of $-4,-6$, $-8,-6$ and -4 mA respectively because of the decrease in current sharing with the internal select buffer outputs.

A plot of the typical input voltage versus input current for the data inputs is shown in Figure 5. This Figure shows the increased input current flow (negative current) as the input voltage is decreased. It also shows the effect of the input clamp diode as forward bias in applied.


Figure 5. Typical Input Current Characteristics.

## LOGIC EQUIVALENTS OF THE Am25S10

The Am25S10 exhibits several symmetrical properties that may be of advantage in some designs. These symmetrical properties involve the labeling of the inputs and outputs and the polarity of the select inputs. By relabeling the inputs in reverse order, labeling the outputs in reverse order, and considering the select inputs in positive logic (active-HIGH) or negative logic (active-LOW), eight logic equivalents for the device are possible. Figure 6 shows the operation of the device for the four combinations of input and output definitions for
the positive logic notation while Figure 7 shows the operation of the device for the four combinations for the negative logic notation. The logic symbol for each set of definitions for the input pins and output pins is shown adjacent to the truth table.
This relabeling of pins can provide the designer with some flexibility in printed circuit board layout. Likewise, the select code can be either positive logic or negative logic and the input data will be passed non-inverted. In some cases, the redefinition allows the designer to visualize shifting up versus shifting down for the same select code.


Figure 6. Four Possible Input and Output Combinations for the Positive Logic Definition.


Figure 7. Four Possible Input and Output Combinations for the Negative Logic Definition.

## Am25S10 APPLICATIONS

The four-bit shifter is an ideal MSI element for high-speed shifting and scaling in digital systems. By suitable interconnection of the inputs and outputs, shifts of any number of places up or down can be made with a propagation delay of only one device. Shifting can be logical, with zeroes pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop. The three-state outputs can be used to increase the number of places shifted and also facilitate rapid data bus access in bus organized systems.

The Connection Diagram and Function Table of Figure 8 show a 16 -bit word shifted up $0,1,2$ or 3 places. In this example, the most significant bits $\left(A_{13}, A_{14}, A_{15}\right)$ are discarded and logic zeroes are shifted in at the least significant end.

Figure 9 shows a Connection Diagram and Function Table for a 12 -bit word shifted down $0,1,2$ or 3 places. In this example, zeroes are shifted into the most significant bits and the least significant bits are discarded. Notice that one of the alternate definitions and pin assignments has been used to define the Am25S10.

A complete end-around barrel shift of $0,1,2,3,4,5,6$ or 7 places is shown in Figure 10. In this configuration, the threestate capability of the outputs is used to connect one of two Am25S10's to the data output under the control of the $S_{2}$ and
$\overline{\mathrm{S}}_{2}$ select inputs. This technique can be expanded for longer word lengths by using one-of-four or one-of-eight decoders to control the active-LOW "output control" input.

A 13-bit two's complement scaler is shown in Figure 11. For this connection, the sign bit is pulled in at the most significant end and the least significant bits are truncated. Thus, the $13-$ bit two's complement binary output number is scaled to 1 , $1 / 2,1 / 4$, or $1 / 8$ of its input value.

A two-level 16-bit barrel shifter and its associated Function Table are shown in Figure 12. Only eight Am25S10's are required to perform this function. For clarity, the intermediate level of inputs and outputs have been labeled $\mathrm{B}_{\mathrm{i}}$. The sixteenbit output word can be bus connected and controlled via the $\overline{\mathrm{OE}}$ input.

Figure 13 demonstrates a unique way to convert a fixed point positive number to a floating-point mantisa and exponent. The priority encoder is used to determine the most significant bit position of the input word with a binary " 1 ". The priority encoder output is a binary weighted code representing the number of places the input word is to be shifted up. This code controls the Am25S10 shifting array and shifts the input word such that the $\mathrm{Y}_{7}$-bit of the mantisa is always a binary one (except for $A=0$ ). The exponent is of the form $2^{-n}$ where $n$ is the value of the binary weighted code from the priority encoder. Thus, the output of this functional block is of the form Y2-n.


Figure 8. 16-Bit Shift-Up 0, 1, 2 or 3 Places.


FUNCTION TABLE

$\mathrm{s}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{0}}$	$\mathrm{Y}_{\mathbf{0}}$	$\mathrm{Y}_{1}$	$\mathrm{Y}_{\mathbf{2}}$	$\mathrm{Y}_{\mathbf{3}}$	$\mathrm{Y}_{4}$	$\mathrm{Y}_{5}$	$\mathrm{Y}_{6}$	$\mathrm{Y}_{7}$	$\mathrm{Y}_{8}$	$\mathrm{Y}_{9}$	$\mathrm{Y}_{10}$	$\mathrm{Y}_{11}$
0	0	$\mathrm{~A}_{0}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{7}$	$\mathrm{~A}_{8}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{11}$
0	1	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{7}$	$\mathrm{~A}_{8}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{11}$	0
1	0	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{7}$	$\mathrm{~A}_{8}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{11}$	0	0
-1	1	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{7}$	$\mathrm{~A}_{8}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{11}$	0	0	0

Positive Logic (Alternate Definitions)

Figure 9. 12-Bit Shift-Down 0, 1, 2 or 3 Places.


FUNCTION TABLE

$\mathrm{S}_{2}$	$\mathrm{S}_{1}$	$\mathrm{S}_{0}$	$\mathrm{Y}_{0}$	$\mathrm{Y}_{1}$	$\mathrm{Y}_{2}$	$\mathrm{Y}_{3}$	$\mathrm{Y}_{4}$	$\mathrm{Y}_{5}$	$\mathrm{Y}_{6}$	$\mathrm{Y}_{7}$
0	0	0	$\mathrm{A}_{0}$	$A_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$	$A_{5}$	$\mathrm{A}_{6}$	$A_{7}$
0	0	1	$\mathrm{A}_{7}$	$\mathrm{A}_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$	$\mathrm{A}_{5}$	$\mathrm{A}_{6}$
0	1	0	$\mathrm{A}_{6}$	$\mathrm{A}_{7}$	$\mathrm{A}_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$	$\mathrm{A}_{5}$
0	1	1	$\mathrm{A}_{5}$	$\mathrm{A}_{6}$	$\mathrm{A}_{7}$	$\mathrm{A}_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$
1	0	0	$\mathrm{A}_{4}$	$\mathrm{A}_{5}$	$\mathrm{A}_{6}$	$\mathrm{A}_{7}$	$\mathrm{A}_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$
1	0	1	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$	$\mathrm{A}_{5}$	$\mathrm{A}_{6}$	$A_{7}$	$A_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$
1	1	0	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$	$\mathrm{A}_{5}$	$\mathrm{A}_{6}$	$A_{7}$	$A_{0}$	$\mathrm{A}_{1}$
1	1	1	$A_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$	$\mathrm{A}_{5}$	$A_{6}$	$\mathrm{A}_{7}$	$\mathrm{A}_{0}$

Figure 10. Eight-Bit End Around Shift 0, 1, 2, 3, 4, 5, 6 or 7 Places.


Figure 11. 13-Bit 2's Complement Scaler.


FUNCTION TABLE


EXPONENT			MANTISSA							
$\mathrm{S}_{2}$	$\mathrm{S}_{1}$	$\mathrm{S}_{0}$	$\mathrm{Y}_{0}$	$\mathrm{Y}_{1}$	$\mathrm{Y}_{2}$	$\mathrm{Y}_{3}$	$\mathrm{Y}_{4}$	$\mathrm{Y}_{5}$	$\mathrm{Y}_{6}$	$\mathrm{Y}_{7}$
0	0	0	$A_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$	$\mathrm{A}_{5}$	$\mathrm{A}_{6}$	$\mathrm{A}_{7}$
0	0	1	0	$\mathrm{A}_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$	$\mathrm{A}_{5}$	$A_{6}$
0	1	0	0	0	$\mathrm{A}_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$	$\mathrm{A}_{5}$
0	1	1	0	0	0	$\mathrm{A}_{0}$	$A_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$	$\mathrm{A}_{4}$
1	0	0	0	0	0	0	$A_{0}$	$A_{1}$	$\mathrm{A}_{2}$	$\mathrm{A}_{3}$
1	0	1	0	0	0	0	0	$\mathrm{A}_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$
1	1	0	0	0	0	0	0	0	$A_{0}$	$\mathrm{A}_{1}$
1	1	1	0	0	0	0	0	0	0	$\mathrm{A}_{0}$

Positive Logic
Figure 13. Binary Scaling to Give Mantissa and Exponent.


Figure 12. Full 16-Bit Barrel Shifter.

## Am25S10

## FIXED MULTIPLIERS

Digital systems requiring multiplication by a constant interger or constan't fraction can make effective use of the Am25S10 if the constant must be varied over several values. By using four-bit shifters and high-speed adders, very high-speed "constant coefficient" or fixed multipliers can be built. The technique is shown diagrammatically in Figure 14. Here, the input word $C$ is wired to the adder $A$ inputs such that a shift of $\frac{1}{2} \mathrm{C}$ is "built-in". The Am25S10 shifter is wired to the B inputs of the adder such that its four select states represent prescaling of $\frac{1}{4} C, \frac{1}{8} C, \frac{1}{16} C$, and $\frac{1}{32} C$ of the $C$ input word. If the $\overline{\mathrm{OE}}$ input is used to disable the outputs (high impedance), the adder $B$ inputs will assume the logical one state (HIGH). By adding a "one" at the adder carry input least significant end, the contribution of the $B$ inputs to the sum output is zero and the adder $A$ input will be passed to the output. Thus, the OE input can be used to generate a zero $C$ value from the shifter.
Figure 15 shows the actual connection diagram for a 12 -bit two's complement fixed multiplier using the scheme of Figure 14. The $Y$ output weighting is the same as shown in the

Function Table of Figure 14. The $\overline{\mathrm{OE}}$ input is tied directly to the adder least significant $\mathrm{C}_{\mathrm{n}}$ input to complete the shifter "zero" output function.

Figure 16 shows two shifter arrays used in conjunction with one adder. For the shifter A and shifter B select codes shown, twenty multiplication constants are realized with seventeen constants being unique. Other combinations could be used to realize different outputs. The combinations possible can be extended greatly by using multiple adders and multiple shifting arrays. For the example of Figure 16, the zero shifter output (high-impedance state) is used with only one shifter since only one $\mathrm{C}_{\mathrm{n}}$ input is available.

This technique for fixed constant multipliers can be applied to two's complement, one's complement, sign-magnitude, or magnitude only arithmetic. In so doing, the sign must be handled appropriately and the adder output word size and number range must be considered. For the one's complement case, the all ones representation for zero must be handled separately.


FUNCTION TABLE

			4-BIT SHIFTER		A INPUT	OUTPUT
$\mathbf{O E}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{0}}$	\#SHIFTS	B INPUT   OF ADDER	ODDER   $\mathbf{Y}$	
0	0	0	Two	$\frac{1}{4} \mathrm{C}$	$\frac{1}{2} \mathrm{C}$	$\frac{3}{4} \mathrm{C}$
0	0	1	Three	$\frac{1}{8} \mathrm{C}$	$\frac{1}{2} \mathrm{C}$	$\frac{5}{8} \mathrm{C}$
0	1	0	Four	$\frac{1}{16} \mathrm{C}$	$\frac{1}{2} \mathrm{C}$	$\frac{9}{16} \mathrm{C}$
0	1	1	Five	$\frac{1}{32} \mathrm{C}$	$\frac{1}{2} \mathrm{C}$	$\frac{17}{32} \mathrm{C}$
1	X	X	Hi-Z	OC	$\frac{1}{2} \mathrm{C}$	$\frac{1}{2} \mathrm{C}$

Positive Logic

Figure 14. Parallel "Constant Coefficient" Multiplier Block Diagram and Function Table.


Figure 15. 12-Bit 2's Complement "Constant Coefficient" Multiplier.


> SHIFTER $A=C, \frac{C}{2}, \frac{C}{4}, \frac{C}{8}$
> SHIFTER $B=\frac{C}{4}, \frac{C}{8}, \frac{C}{16}, \frac{C}{32}, 0$

FIXED MULTIPLIER OUTPUT W

SHIFTER $B$					
SHIFTER A	$\frac{C}{8}$	$\frac{\mathrm{C}}{16}$	$\frac{\mathrm{C}}{32}$	0	
C	$\frac{5}{4} \mathrm{C}$	$\frac{9}{8} \mathrm{C}$	$\frac{17}{16} \mathrm{C}$	$\frac{33}{32} \mathrm{C}$	C
$\frac{\mathrm{C}}{2}$	$\frac{3}{4} \mathrm{C}$	$\frac{5}{8} \mathrm{C}$	$\frac{9}{16} \mathrm{C}$	$\frac{17}{32} \mathrm{C}$	$\frac{1}{2} \mathrm{C}$
$\frac{\mathrm{C}}{4}$	$\frac{1}{2} \mathrm{C}$	$\frac{3}{8} \mathrm{C}$	$\frac{5}{16} \mathrm{C}$	$\frac{9}{32} \mathrm{C}$	$\frac{1}{4} \mathrm{C}$
$\frac{\mathrm{C}}{8}$	$\frac{3}{8} \mathrm{C}$	$\frac{1}{4} \mathrm{C}$	$\frac{3}{16} \mathrm{C}$	$\frac{5}{32} \mathrm{C}$	$\frac{1}{8} \mathrm{C}$

Figure 16. Two Shifter Arrays and One Adder Array in a Fixed Multiplier Connection.

## CONCLUSION

The Am25S10 four-bit shifter is a new unique combinatorial logic element offering the system designer new shifting and scaling capability not previously available in a single package.

The three-state output design of the Am25S10 provides increased flexibility in its use and the advanced Schottky construction offers minimum propagation delay. The device can be used to shift any number of bits any number of places; up, down or end-around.

## Am25LS14A

## 8-Bit Serial/Parallel Two's Complement Multiplier

## DISTINCTIVE CHARACTERISTICS

- Two's complement multiplication without correction
- Magnitude only multiplication
- Cascadable for any number of bits
- 8-bit parallel multiplicand data input
- 50 MHz minimum clock frequency
- Second sourced by T.I. as the SN54LS/74LS384
- IMOX ${ }^{\text {TM }}$ process with ECL internal


## FUNCTIONAL DESCRIPTION

The Am25LS14A is an 8 -bit by 1 -bit sequential logic element that performs digital multiplication of two numbers represented in two's complement form to produce a two's complement product without correction. The device accepts an 8-bit multiplicand ( X input) and stores this data in eight internal latches. The X latches are controlled via the clear input. When the clear input is LOW, all internal flip-flops are cleared and the $X$ latches are opened to accept new multiplicand data. When the clear input is HIGH, the latches are closed and are insensitive to $X$ input changes.
The multiplier word data is passed by the $Y$ input in a serial bit stream - least significant bit first. The product is clocked out the S output least significant bit first.

The multiplication of an m-bit multiplicand by an $n$-bit multiplier results in an $m+n$ bit product. The Am25LS14A must be clocked for $m+n$ clock cycles to produce this two's complement product. Likewise, the $n$-bit multiplier ( Y -input) sign bit data must be extended for the remaining $m$-bits to complete the multiplication cycle.
The device also contains a $K$ input so that devices can be cascaded for longer length $X$ words. The sum (S) output of one device is connected to the K input of the succeeding device when cascading. Likewise, a mode input $(M)$ is used to indicate which device contains the most significant bit. The mode input is wired HIGH or LOW depending on the position of the 8 -bit slice in the total X word length.


Am25LS14A
ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)
Am25LS14AXC
Am25LS14AXM
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 5 \%\left(C O M^{\prime} \mathrm{L}\right)$
MIN. $=4.75 \mathrm{~V}$
MAX. $=5.25 \mathrm{~V}$
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 V \pm 10 \%$ (MIL)
MIN. $=4.5 \mathrm{~V}$
MAX. $=5.5 \mathrm{~V}$

Parameters	Description	Test Conditions(Note 1)		Min.	Typ.   (Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-1.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	MIL	2.5	3.4	\%	Volts
			COM ${ }^{\prime}$ L	2.7	3.4		
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I H} \text { or } V_{I L}^{\prime} \end{aligned}$	${ }^{\prime} \mathrm{OL}=8.0 \mathrm{~mA}$			0.4	Volts
			${ }^{\prime} \mathrm{OL}=12 \mathrm{~mA}$		,	0.45	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{1 N}=-18 \mathrm{~mA}$				-1.2	Volts
IIL	Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	X, M			-0.48	mA
			K, $\overline{\mathrm{CLR}}$			-1.2	
			CP			-1.6	
			$Y$			-3.2	
${ }^{1} \mathrm{H}$	Input HIGH Current	$V_{C C}=M A X . ; V_{I N}=2.7 \mathrm{~V}$	X, M			20	$\mu \mathrm{A}$
			$\mathrm{K}, \overline{\mathrm{CLR}}$			30	
			CP			40	
			$Y$			80	
1	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=\mathrm{MAX}$.		-15		-85	mA
${ }^{\prime} \mathrm{Cc}$	Power Supply Current	$V_{C C}=M A X$.			$45^{\text {i }}$	65	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Duration of the short circuit test should not exceed-one second.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{cc} \text { max }}$
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
tPLH	Clock to Output		8	14	ns	$\begin{gathered} C_{L}=15 \mathrm{pF} \\ R_{L}=2.0 \mathrm{k} \Omega \end{gathered}$
tPHL			10	18		
tPHL	Clear to Output		9	17	ns	
$\mathrm{t}_{\mathrm{s}}$	Y to Clock	15			ns	
$t_{\text {h }}$		0				
$t_{s}$	K to Clock	15			ns	
$t_{h}$		0				
$t_{s}$	$\mathrm{X}_{\mathrm{i}}$ to Clear	13			ns	
th		0				
${ }^{\text {tpw }}$	Clock (HIGH)	10			ns	
	Clock (LOW)	10				
$t_{\text {pw }}$	Clear Pulse Width	10			ns	
$\mathrm{t}_{\mathrm{s}}$	Clear Recovery Time (Inactive State)	5			ns	
$f_{\text {max }}$ (Note 1)	Maximum ${ }^{\top}$ Clock Frequency	50	60		MHz	

Note 1. Per industry convention, $f_{m a x}$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}, t_{f}$, pulse width or duty cycle.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$		$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$		Units	Test Conditions
		Min.	Max.	Min.	Max.		
tPLH	Clock to Output		18		20	ns	$\begin{aligned} C_{L} & =50 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
${ }^{\text {tPHL }}$			22		25	ns	
tPHL	Clear to Output		22		25	ns	
$t_{\text {s }}$	$Y$ to Clock	22		25		ns	
$t^{\text {h }}$		0		0			
$t_{\text {s }}$	K to Clock	20		22		ns	
$t_{\text {h }}$		0		0			
$t_{s}$	$\mathrm{X}_{\mathrm{i}}$ to Clear	20		22		ns	
$t_{\text {h }}$		0		0			
${ }^{\text {tpw }}$	Clock (HIGH)	10		10		ns	
	Clock (LOW)	10		10			
${ }^{\text {t }}$ w w	Clear Pulse Width	10		10		ns	
$\mathrm{t}_{5}$	Clear Recovery Time (Inactive State)	5		5		ns	
$f_{\text {max }}($ Note 1)	Maximum Clock Frequency	50		50		MHz	

[^14]
## DEFINITION OF FUNCTIONAL TERMS

$\mathbf{X}_{0}, \mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{X}_{4}, \mathbf{X}_{5}, \mathbf{X}_{6}, \mathbf{X}_{7}$ The eight data inputs for the multiplicand $(X)$ data.
$\mathbf{Y}$ The serial input for the multiplier ( Y ) data-least significant bit first.
$S$ The serial output for the product of $X \bullet Y$-least significant bit first.
CP Clock. The buffered common clock input for the serial/ parallel multiplier. All functions occur on the LOW-to-HIGH transition of the clock.
CLR Clear. The buffered common clear for all flip-flops within the device. When the clear is LOW all flip-flops are cleared. Also the buffered X-input latch enable. When the clear' input is LOW, the X latches will accept new X -input data.
K The sum expansion input to the serial/parallel multiplier. Allows for cascading devices.
M The mode control input for the most significant bit of the multiplier. It is used in conjunction with cascading to determine the most significant bit.


Note: Actual current flow direction shown.

FUNCTION TABLE

- INPUTS						INTERNAL	OUTPUT	FUNCTION
$\overline{C L R}$	CP	K	M	$\mathrm{X}_{\mathbf{i}}$	Y	Y-1	S	
-	-	L	L	-	-	-	-	Most Significant Multiplier Device
-	-	CS	H	-	-	-	-	Devices Cascaded in Multiplier String
L	-	-	-	OP	-	L	L	Load New Multiplicand and Clear Internal Sum and Carry Registers
H	-	-	-	-	-	-	-	Device Enabled
H	$\uparrow$	-.	-	-	L	L	AR	Shift Sum Register
H	$\uparrow$	-	-	-	L	H	$A R$	Add Multiplicand to Sum Register and Shift
H	$\uparrow$	-	-	-	H	L	AR	Subtract Multiplicand fromı Sum Register and Shift
H	$\uparrow$	-	-	-	H	H	AR	Shift Sum Register

$H=H I G H$
L = LOW
$\uparrow=$ LOW-to-HIGH transition
CS = Connected to'S output of higher order device
$O P=X_{i}$ latches open for new data ( $i=0,7$ )
$A R=$ Output as required.

## LOGIC SYMBOL


$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

METALLIZATION AND PAD LAYOUT


DIE SIZE 0.084" $\times 0.095^{\prime \prime}$

## APPLICATIONS

See also Digital Signal Processing Applications Section for more information.



## LOW CURRENT SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS



Note: Refer to Electrical Characteristics for measure currents.

## DEFINITION OF STANDARD TERMS

H HIGH, applying to a HIGH voltage level.
L LOW, applying to a LOW voltage level.
1 Input.
O Output.
Negative Current Current flowing out of the device.
Positive Current Current flowing into the device.
$I_{I L}$ LOW-level input current with a specified LOW-level voltage applied.
$I_{I H}$ HIGH-level input current with a specified HIGH-level voltage applied.
IOL LOW-level output current
$\mathrm{IOH}_{\mathrm{OH}} \mathrm{HIGH}$-level output current.
ISC Output short-circuit source current.
$I_{C C}$. The supply current drawn by the device from the $V_{C C}$ power supply.
$V_{\text {IL }}$ Logic LOW input voltage.
$\mathrm{V}_{\mathrm{IH}}$ Logic HIGH input voltage.
$V_{\mathrm{OL}}$ LOW-level output voltage with $\mathrm{I}_{\mathrm{OL}}$ applied.
$\mathrm{V}_{\mathrm{OH}} \mathrm{HIGH}$-level output voltage with $\mathrm{I}_{\mathrm{OH}}$ applied.

# A High-Speed Serial/Parallel Multiplier The Am25LS14A* 

By John Mick, John Springer and Clive Ghest

## INTRODUCTION

The Am25LS14A is a complete 8 -bit Serial/Parallel Multiplier fabricated as a single $16-\mathrm{pin}$ LSI chip. The device accepts a parallel two's complement or unsigned multiplicand and multiplies it by any arbitrary length serial two's complement or unsigned multiplier. The resulting product is a correct and complete serial two's complement or unsigned product. The complete product of an $8 \times 8$ multiplication can be performed in 16 clock cycles. Any number of Am25LS14A devices can be cascaded with no additional logic, so that the parallel multiplicand can be easily expanded to any number of bits. Mixed signed (two's complement) and unsigned multiplication is possible, generating a product in signed two's-complement form.

## MULTIPLIER CHARACTERISTICS

The requirements for a good general purpose IC multiplier for use in a wide range of commercial applications are as follows:

- It should be inexpensive
- It should be fast
- It should be easy to use
- It should be adaptable to any word length
- It should handle signed numbers in two's complement notation without correction.

The first two of these requirements tend to be incompatible and in the past have required two types of circuits: one which was designed to be as fast as possible and another which compromised speed for cost. The last two requirements limit the method used to perform the multiplication to an algorithm which works in two's complement notation and is the same for all bits, so that the "sign bit" is treated identically with the other bits.


Figure 2. Logic Symbol for the Am25LS14A (16-Pin Device)

The Am25LS14A offers an optimum solution to these requirements. It operates by taking the whole multiplicand in parallel and utilizing a single bit at a time of the multiplier word to form partial products in an internal register. The output is a serial bit stream representing the product of the parallel multiplicand word and the serial multiplier word.

## THE LOGIC FUNCTION

A simplified logic diagram of the Am25LS14A Serial/Parallel multiplier is shown in Figure 1 and the 16-pin logic symbol for the device is shown in Figure 2. The multiplier consists of four basic parts; a storage register used to hold the multiplicand word during the multiplication, the adder/subtractor logic containing both a partial product register and a carry/borrow register, a flip-flop and exclusive-NOR gate operating on the serial multiplier string presented at the Y input to provide a


Figure 1. Functional Logic Diagram for the Am25LS14A
*The Am25LS14A is manufactured under U.S. Patent No. 3,878,985 issued April 22, 1975.
control signal to the adder/subtractor logic, and a logic mode circuit to alter the multiplicand from two's complement to unsigned notation as controlled by the $M$ input. The adder/ subtractor logic and product and carry/borrow register is iterative; that is, it consists of eight identical cells with a small change in the eighth cell to efficiently incorporate the multiplicand word sign logic. For a detailed description of the logic design of the Serial/Parallel multiplier, refer to the application note "Mechanization of the Serial/Parallel Multiplier" by John R. Mick.

Prior to a multiplication, the internal multiplier sum and carry registers are reset by applying a LOW to the clear input. The 8 -bit multiplicand data is applied to the $X$ inputs and is latched into the multiplicand register as the clear input goes HIGH. This internal multiplicand storage is useful because the multiplicand need not be held constant during the multiplication allowing these inputs to be bus organized. The Serial/ Parallel multiplier is now ready to receive the first least significant multiplier bit. The least significant bit of the multiplier word is presented at the $Y$ serial input and when the clock changes from LOW to HIGH, the multiplier produces the first least significant product bit at the serial data output, S. In each succeeding clock period, the next more significant multiplier bit is presented at the Y input and the next more significant product bit is present at the S output. After 8 clock periods, the multiplier serial input string has been exhausted but the most significant half of the product is still in the internal registers of the Am25LS14A Serial/Parallel multiplier and must be clocked out. If the multiplier is an unsigned word, then during the extraction of the most significant half of the product, the multiplier $Y$ input must be held at logic zero. If, however, the multiplier is a two's-complement signed word, then the most significant bit (sign bit) of the multiplier word must be repeated at the $Y$ input until the complete product has been obtained. The multiplicand can be either an unsigned number or a two's-complement number depending upon the logic polarity of the mode input, $M$. This mode input should be held at a LOW logic level (ground) if the multiplicand is in two's-complement notation and the $X_{7}$ input is a two's complement sign bit, and it should be held at a HIGH logic level (pulled up through a register to $V_{C C}$ ) if the 8-bit multiplicand is unsigned (magnitude only number).

The $K$ input is used for expansion purposes. To increase the length of the multiplicand word by using multiple devices, the $S$ output of a higher order device is connected to the $K$ input of the next lower order devices. The clear lines are connected together and the clock lines are connected together. All the mode inputs except the one on the most significant device are held at a HIGH logic level. Whether the multiplicand is signed or unsigned is determined only by the $M$ input of the most significant device. A 24-bit by $n$-bit multiplier is shown in Figure 3. The $K$ input is held LOW at the most significant device indicating a two's complement multiplicand. The multiplier input can be any length, with $n+24$ clock periods required for the multiplication. The resulting product is $n+24$ bits long.

If the multiplicand is not an even multiple of 8 bits, then for an unsigned multiplicand the remaining most significant multiplicand inputs are heid LOW at logic zero, while for a two's-complement multiplicand, the remaining multiplicand inputs must be connected to the multiplicand sign bit so that the sign is extended and can be interpreted correctly. Figure 4 shows a $12 \times \mathrm{n}$ Serial/Parallel multiplier connection for a two's-complement signed multiplicand. The resulting product is $n+12$ bits long and only $n+12$ clock periods are required to generate the correct product.

The Function Table for the Am25LS14A multiplier operation is given in Figure 5. As shown, the $K$ input is the sum expansion input and allows for the cascading of devices. The mode input, M , is used in conjuction with cascading to determine the most significant bit of the multiplicand and controls the multiplicand sign definition.

## TIMING

Although the Serial/Parallel multiplier requires only $m+n$ clock periods to produce a full length product, (where $m$ is the multiplicand word length and $n$ is the multiplier word length) a practical system may use two additional clock periods. The first additional clock period is used to reset the multiplier at the beginning of a multiplication by using the clear input. This is shown in the timing diagram of Figure 6. This clears the partial product register, the carry/borrow register and the


Figure 3. Three Am25LS14A's Cascaded to Make a 1-Bit by 24-Bit Serial-Parallel Multiplier


Figure 4. A 12-Bit by N-Bit Two's Complement Multiplier Using Two Am25LS14A's.

INPUTS						INTERNAL	OUTPUT	FUNCTION
$\overline{\text { CLR }}$	CP	K	M	$\mathrm{x}_{\mathrm{i}}$	Y	$Y_{-1}$	S	
-	-	L	L	-	-	-	-	Most Significant Multiplier Device
-	-	CS	H	-	-	-	-	
L	-	-	-	OP	-	L.	L.	Load New Multiplicand and Clear Internal Sum and Carry Registers
H	-	-	-	-	-	-	-	Device Enabled
H	$\uparrow$	-.	-	-	L	L	AR	Shift Sum Register
H	$\uparrow$	-	-	-	L	H	AR	Add Multiplicand to Sum Register and Shift
H	$\uparrow$	-	-	-	H	L.	AR	Subtract Multiplicand from Sum Register and Shift
H	$\uparrow$	-	-	-	H	H	AR	Shift Sum Register

[^15]Figure 5. Function Table Showing the Operation of the Am25LS14A
control flip flop, and loads the new multiplicand into the $X$ holding latch. At this same time, the multiplier word can be loaded into a Parallel-to-Serial converter (such as the Am25LS22) ready for presenting to the Serial/Parallel multiplier $Y$ input. During the first time period after the clear
signal, the least significant bit of the multiplier is presented to the $Y$ input of the Am25LS14A and in the next clock period the first bit of the product, $S_{0}$, is available at the $S$ output of the device. For the next $n-1$ clock periods, the multiplier bits are presented one at a time to the multiplier $Y$ input and the


Figure 6. Timing Diagram Showing 18 Clock Cycle Operation of $8 \times 8$ Multiplication

## The Am25LS14A

product bits are available one at a time from the $S$ output. For the remaining $m$ clock periods, the Serial/Parallel multiplier requires that either the most significant bit of the multiplier word, Y, be repeated (two's complement operation) or a string of zeroes be applied (if the multiplier is to be treated as an unsigned number) to the Y input.

It is possible to perform an $m+n$ multiplication using only one additional clock cycle. This requires that the clear pulse is presented at the same time as $Y_{0}$, the least significant $Y$ multiplier bit. Since the minimum clear pulse width is 20 ns and the clear recovery time is 18 ns , the time duration must be at least 38 ns minimum for this clock period. A timing diagram for this mode of operation is shown in Figure 7.

Many applications, especially when using two's complement operands, do not required a full $n+m$ bit product but only an $m+n-1$ bit product. For example, if fractional operands in
the number range of -1 to $1-2^{-(n-1)}$ and -1 to $1-2^{-(m-1)}$ are assumed, only the case of -1 times -1 requires $m+n$ bits to represent the product. All other combinations can be represented correctly in two's complement notation by $m+n-1$ bits. That is, when dealing with fractions, only one bit to the left of the binary point carrying a weight of -1 is required except for the one special case. This can be used to remove one additional clock cycle from the multiplication process as shown in Figure 8. The same reasoning applies to integer representations where the largest negative numbers are $-2^{(m-1)}$ and $-2^{(n-1)}$. Only $m+n$ bits are required to handle the case of $\left(-2^{(m-1)}\right)$ $\left(-2^{(n-1)}\right)$. All other products require only $m+n-1$ bits for a correct two's complement product. Let's take an example. If $m=4$ and $n=3$, then seven bits are required to represent ( -8 )-$(-4)=(+32)$ in two's complement. All other products for a 3-bit and 4-bit multiplicand and multiplier can be represented correctly in two's complement form with a 6-bit representation.


Figure 7. Timing Diagram Showing 17 Clock Cycle Operation of $8 \times 8$ Multiplication


Figure 8. Timing Diagram Showing 16 Clock Cycle Operation for an $8 \times 8$ Multiplication (Assumes a 15-Bit Product Representation)

## ROUNDING AND TRUNCATION

Truncation is performed in the Am25LS14A by ignoring the appropriate number of least significant bits (LSB's). Unfortunately, no clock cycles can be saved when truncating because the product is being developed LSB first. Therefore, the truncated bits are the first bits out of the Am25LS14A multiplier. The subsystem must be clocked the total number of times ( $m+n$ ) to develop the two's complement product. This does have the advantage of saving register bits to hold the product from the device.

To date, the recommended method of rounding is to use onefourth of an Am25LS15 to perform rounding. This technique involves adding a one at the bit prior to the LSB of the final product using one input of the Am25LS15. The product from the multiplier is connected to the other input. This does require one extra clock cycle to implement rounding. This technique works for any combination of multiplicand bits, multiplier bits and desired product bits.

## APPLICATIONS

## Eight-Bit by Eight-Bit Multiplier

A circuit which generates a 16 -bit product from an 8 -bit by 8 -bit multiplication is depicted in Figure 9. This sub-system consists of one Am25LS14A serial/parallel multiplier and two Am25LS22 8-bit registers. This configuration accepts an 8-bit multiplicand and an 8-bit multiplier from an 8-bit data bus. It will return a 16 -bit product ( 8 -bit upper byte and 8 -bit lower byte) using the same 8 -bit bus.

The Am25LS22 is an 8-bit register designed for performing various functions with the Am25LS14A. It can be used to hold the multiplier word initially, perform the sign-extend function and then hold part of the product. It has separate serial input/output capability as well as shared parallel input/outputs.

The timing sequence for controlling this circuit is shown in Figure 10. Twenty-two clock cycles are used in this example to fully load, multiply and unload the multiplier subsystem. Thus, such an arrangement can be used with any of the popular 8 -bit MOS microprocessors such as the 8080, 6800, 2650, F8 and others. This allows the multiplication to be performed outside of the MOS microprocessor with about two to three orders of magnitude improvement in speed.

Referring to the timing sequence of Figure 10, the multiplier word is loaded into the Am25LS22 register at time $\mathrm{T}_{1}$ and the multiplicand word is loaded in the Am25LS14A latches during time $T_{1}$. The multiplicand and multiplier words must be loaded in this order since there is no hold function on the Am25LS14A multiplier.

During time $T_{2}$ through $T_{10}$, the least significant product bits are generated and clocked into holding register B . Meanwhile the multiplier sign bit is being extended in Register A. The sign extend is performed only for the eight clock cycles $T_{2}$ through $T_{9}$. During time $T_{11}$ through $T_{18}$, the most significant 8 -bits of the product are developed in the Am25LS14A multiplier. T8 is used to load the product sign bit from the multiplier into the Am25LS22 B register. During the time $\mathrm{T}_{1}$ through $\mathrm{T}_{8}$, the least significant half of the product is transferred from register $B$ to register $A$. The remaining two clock cycles, $\mathrm{T}_{1} 9$ and $\mathrm{T}_{20}$ are used to unload the product upper and lower byte back onto the 8 -bit data bus.

The control signals required for this multiplier are shown in Figures 9 and 10. Notice that the clear input to the Am25LS14A and the Serial/Parallel (S/P) input to the Am25LS22 can be connected together with the appropriate don't cares eliminated. Other control signals to the Am25LS22 include the register enable (RE), sign extend (SE), and the three-state control $(\overline{\mathrm{OE}})$. These signals can be generated using a counter and combinatorial logic gates or a counter and small PROM.


The Am25LS14A

		Am25LS14A			Am25LS22's					FUNCTION
TIME	I/O BUS	Y	CLR	S	S/P	RE	SE			
$T_{0}$	Multiplier	x	X	X	L	L	$x$	H	H	Load Multiplier (Y)
T1	Multiplicand	x	L	K	X	H	x	H	H	Load Multiplicand (X)
$\mathrm{T}_{2}$	$\times$	$Y_{0}$	H	L	H	L	L	H	H	
$\mathrm{T}_{3}$	$x$	$Y_{1}$	H	$\mathrm{S}_{0}$	H	L	L	H	H	
T4	x	$\mathrm{Y}_{2}$	H	$\mathrm{S}_{1}$	H	L	L	H	H	
$T_{5}$	X	$\mathrm{Y}_{3}$	H	$\mathrm{S}_{2}$	H	L	L	H	H	Present $\mathrm{Y}_{\mathrm{i}}$ to multiplier. Read $\mathrm{S}_{\mathrm{i}}$ into Register B .
$\mathrm{T}_{6}$	X	$Y_{4}$	H	$\mathrm{S}_{3}$	H	L	L	H	H	Extend $Y$ sign.
$\mathrm{T}_{7}$	$x$	$Y_{5}$	H	$\mathrm{S}_{4}$	H	L	L	H	H	
$\mathrm{T}_{8}$	X	$\mathrm{Y}_{6}$	H	$\mathrm{S}_{5}$	H	L	L	H	H	
T9	X	$Y_{S}$	H	$\mathrm{S}_{6}$	H	L	L	H	H	
T10	$x$	$\mathrm{Y}_{S}$	H	$\mathrm{S}_{7}$	H	L	H	H	H	
T11	$x$	$Y_{S}$	H	$\mathrm{S}_{8}$	H	L	H	H	H	
T12	X	$Y_{S}$	H	$\mathrm{S}_{9}$	H	L	H	H	H	
T13	x	$\mathrm{Y}_{S}$	H	$\mathrm{S}_{10}$	H	L	H	H	H	Continue Multiplication using $\mathrm{Y}_{\mathrm{S}}$ in register. Load
T14	x	$\mathrm{Y}_{S}$	H	$\mathrm{S}_{11}$	H	L	H	H	H	least significant part of product into Register $A$
T15	x	$Y_{S}$	H	$\mathrm{S}_{12}$	H	L	H	H	H	and most significant in Register B.
$\mathrm{T}_{16}$	$x$	$Y_{S}$	H	$\mathrm{S}_{13}$	H	$L$	H	H	H	
T17	$x$	$Y_{S}$	H	$\mathrm{S}_{14}$	H	$L$	H	H	H	
T18	X	X	H	$\mathrm{S}_{15}$	H	L	H	H	H	Load MSB into Register.
T19	Product Lower Byte	. $\times$	X	X	X	H	X	L	H	Unload product Lower byte onto bus.
$\mathrm{T}_{20}$	Product Upper Byte	X	X	X		H	X	H	L	Unload product Upper byte onto bus.

$H=$ HIGH $L=$ LQW $X=$ Don't Care
Figure 10. Timing Sequence for an $8 \times 8$ Multiplier with Full 16-Bit Product Register


Figure 11. Complex Arithmetic Multiply $P_{C}=\left(A_{R} B_{R}-A_{1} B_{1}\right)+j\left(A_{R} B_{1}+A_{1} B_{R}\right)$

## COMPLEX ARITHMETIC MULTIPLIER

The Am25LS14A serial/parallel multiplier, the Am25LS15 adder/subtractor, and the Am25LS22 eight-bit register can be used to perform rapid multiplication in complex arithmetic processors. In complex arithmetic notation, each variable is assumed to have a real part and an imaginary part. Thus, complex variables $A_{C}$ and $B_{C}$ may be represented as:

$$
\begin{aligned}
& A_{C}=A_{R}+j A_{I} \\
& B_{C}=B_{R}+j B_{1}
\end{aligned}
$$

The product of $A_{C}$ and $B_{C}$ is, of course, complex product $P_{C}$ where:

$$
\begin{aligned}
& P_{C}=P_{R}+j P_{1}=A_{C} B_{C} \\
& P_{C}=\left(A_{R}+j A_{1}\right)\left(B_{R}+j B_{1}\right) \\
& P_{C}=\left(A_{R} B_{R}-A_{1} B_{1}\right)+j\left(A_{R} B_{1}+A_{1} B_{R}\right)
\end{aligned}
$$

From this discussion, the real and imaginary values of the product $P_{C}$ are readily identified. These are:

$$
\begin{aligned}
& P_{R}=A_{R} B_{R}-A_{1} B_{1} \\
& P_{1}=A_{R} B_{1}+A_{1} B_{R}
\end{aligned}
$$

The circuitry required to implement this complex multiplier is shown in Figure 11. In this example, the real and imaginary values of the $A_{C}$ variable are loaded into the two Am25LS22 registers. The real and imaginary values of the $B_{C}$ variable are
loaded into the latches of the Am25LS14A. This loading of the data could be performed simultaneously using all four inputs $A_{R}, A_{1}, B_{R}$ and $B_{1}$ or it could be performed sequentially using a pair of inputs or a single input at a time.

Once the incoming $A_{C}$ and $B_{C}$ data have been loaded, the devices are clocked such that the four intermediate products are formed as shown in Figure 11. Then, two of the four adder/subtractors in the Am25LS15 are used to complete the generation of real product term $P_{R}$ and the imaginary product term $\mathrm{P}_{1}$.

These product terms $P_{R}$ and $P_{\boldsymbol{I}}$ can be loaded into four additional Am25LS22 registers to hold the double length product terms $P_{R}$ and $P_{\mathrm{l}}$ (assume least significant bit truncation). After the complex multiplication has been completed, the $P_{R}$ and $P_{1}$ variables can be returned to the processor, memory or other destination by using the parallel bus outputs of the Am25LS22.

## OTHER APPLICATIONS

Other examples of applications using the Am25LS14A as well as the Am25LS15 and Am25LS22 are shown in Figures 12 through 15. Each of these applications is intended to give the design engineer a new approach to solving numerical problems involving digital multiplication.


Four Am25LS14A's can be used to implement the product of five variables $Y, X_{A}, X_{B}, X_{C}$ and $X_{D}$. if each input variable is eight bits, a 40 -bit product results and the multiplier array must be clocked 40 times. This requires the 8 -bit $Y$ variable to be sign extended for 32 additional clock cycles.

Figure 12. Multiple Operand Multiplications

## The Am25LS14A



One Am25LS14A, Am25LS15 and Am25LS22 can be used to perform several arithmetic functions. Four such functions are shown above. All use a product equal to the multiplicand times the multiplier in combination with a function of the multiplier. Additional combinations are possible, especially if more flip-flops are used to change the relative weight of the multiplier or product function.

Figure 13.


A 12 -bit by 8 -bit unsigned multiplication is performed by tying the four most significant multiplicand bits LOW to logic zero. The Am25LS22 is loaded with the 8 -bit unsigned multiplier. As the multiplier is shifted, a "zero-fill" is accomplished using the $D_{A}$ input on the Am25LS22. Note the MSB M-input is HIGH on the most significant Am25LS14A.

Figure 14.


One Am25LS14A and Am25LS22 can be used to perform the function $A^{2}$ on an input variable A. The 8 -bit value for $A$ is loaded into the Am25LS22 register in serial form using the $\mathrm{D}_{\mathrm{A}}$ input. Once loaded, the A value can be transferred to the Am25LS14A multiplicand latches via the $D Y_{i}$ outputs. Then the product of $A \cdot A$ is formed resulting in $A^{2}$ at the Am25LS14A output.

Figure 15.

## Am25LS15

Quad Serial Adder/Subtractor


## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	$($ MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V})$
MIL	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$($ MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V})$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions ( N		Min.	(Note 2)	Max.	Units
$\mathrm{v}_{\mathrm{OH}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOH}=-440 \mu \mathrm{~A}$	MIL	2.5			Volts
		$V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$	COM'L	2.7			
$\mathrm{v}_{\mathrm{OL}}$	Output LOW Voltage	$V_{C C}=$ MIN.	$\mathrm{IOL}=4.0 \mathrm{~mA}$			0.4	Volts
		$V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.45	
$\mathrm{V}_{1} \mathrm{H}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs	MIL			0.7	Volts
			COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{IIN}=-18 \mathrm{~mA}$				-1.5	Volts
$I_{\text {IL }}$	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.4 V$				-0.36	mA
$\mathrm{I}_{1} \mathrm{H}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$1 /$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$				0.1	mA
${ }^{\text {I SC }}$	Output Short Circuit Current (Note 3).	$V_{C C}=M A X$.		-15		-85	mA
${ }^{\prime} \mathrm{Cc}$	Power Supply Current (Note 4)	$V_{C C}=$ MAX.			48	75	mA

Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. All inputs HIGH, measured after a LOW-to-HIGH clock transition.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

## SWITCHING CHARACTERISTICS

$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Parameters		Description	Min.	Typ.	Max.	Units	Test Conditions
${ }_{\text {tPLH }}$	Clock to Output			14	22	ns	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {tPHL }}$				14	22		
${ }_{\text {tPHL }}$	Clear to	Output		20	30	ns	
$\mathrm{t}_{\mathrm{s}}$	A, B, S		10			ns	
$t_{\text {h }}$			0				
$\mathrm{t}_{\text {s }}$	Clear Recovery		25			ns	
$t_{\text {h }}$	Clear Hold Time		0.			ns	
$t_{\text {pw }}$	Clock	HIGH	17			ns	
		LOW	17				
$t_{\text {pw }}$	Clear LOW		20			ns	
$\mathrm{f}_{\text {max }}$ (Note 1)	Maximum Clock Frequency		30	40		MHz	

Note 1. Per industry convention, $f_{\text {max }}$ is the worst case value of the maximum device operating frequency with no constraints on the $t_{r}, t_{f}$, pulse width or duty cycle.

Am25LS15
SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\ & \text { Min. } \quad \text { Max. } \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \text { Min. } \quad \text { Max. } \end{gathered}$		Units	Test Conditions
$\mathbf{t}_{\text {PLH }}$	Clock to Output			33		38	ns	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {tPHL }}$				33		38		
$t_{\text {PHL }}$	Clear to Output			43		50	ns	
$\mathrm{t}_{\text {s }}$	A, B, S		17		20		ns	
$t_{\text {h }}$			4		5			
$t_{s}$	Clear		37		42		ns	
$t_{\text {h }}$	Clear H		4		5		ns	
	Clock	HIGH	26		30		ns	
$t_{\text {pw }}$	Clock	LOW	26		30		ns	
$\mathrm{t}_{\mathrm{pw}}$	Clear L		30		35		ns	
$f_{\text {max }}$ (Note 1)	Maxim	ck Frequency	23		20		MHz	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

## DEFINITION OF FUNCTIONAL TERMS

$\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}$ The " $A$ " input into each adder/subtractor
$\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}, \mathbf{B}_{\mathbf{4}}$ The " $\mathbf{B}$ " input into each adder/subtractor
$\mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}, \mathbf{S}_{\mathbf{3}}, \mathrm{S}_{\mathbf{4}}$ The add subtract control for each adder/ subtractor. When S is LOW, the F function is $A+B$. When $S$ is HIGH, the $F$ function is $A-B$.
$F_{1}, F_{2}, F_{3}, F_{4}$ The four independent serial outputs of the adder/subtractor.

CP Clock

CLR Clear
The clock input for the device. All internal flip-flops change state on the LOW-to-HIGH transition.
When the clear input is LOW, the four independent adder/subtractors are asynchronously reset. The sum flip-flop is always set to logic " 0 ". The carry flip-flop is set to logic " 0 " in the add mode and logic " 1 " in the subtract mode.

## FUNCTION TABLE

External Inputs								Internal   Point		Output	
CP	CLR	S	A	B	C	C 1	F	Function			
X	L	L	X	X	L	L	L	Clear			
X	L	H	X	X	H	H	L				
L	H	X	X	X	NC	NC	NC				
H	H	X	X	X	NC	NC	NC				
$\uparrow$	H	L	L	L	L	L	L				
$\uparrow$	H	L	L	L	H	L	H				
$\uparrow$	H	L	L	H	L	L	H				
$\uparrow$	H	L	L	H	H	H	L	Add			
$\uparrow$	H	L	H	L	L	L	H				
$\uparrow$	H	L	H	L	H	H	L				
$\uparrow$	H	L	H	H	L	H	L				
$\uparrow$	H	L	H	H	H	H	H				
$\uparrow$	H	H	L	L	L	L	H				
$\uparrow$	H	H	L	L	H	H	L				
$\uparrow$	H	H	L	H	L	L	L				
$\uparrow$	H	H	L	H	H	L.	H	Subtract			
$\uparrow$	H	H	H	L	L	H	L				
$\uparrow$	H	H	H	L	H	H	H				
$\uparrow$	H	H	H	H	L	L	H				
$\uparrow$	H	H	H	H	H	H	L				

C = Data In the Carry Flip-Flop Before the Clock Transition
$C_{1}=$ Data In the Carry Flip-Flop After the Clock
$X=$ Don't Care
NC = No Change
$\mathrm{H}=\mathrm{HIGH}$
L = LOW
$\uparrow=$ LOW-to-HIGH Transition

Am25LS • Am54LS/74LS LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS


## APPLICATIONS

The normal butterfly network associated with the CooleyTukey Fast Fourier Transform (FFT) algorithm is shown below. Here we assume $A, B, C, D$ and $W$ are all complex numbers such that:
$A=A_{R}+j A_{1}$
$B=B_{R}+j B_{1}$
$W=W_{R}+j W_{1}$
The outputs $C$ and $D$ are also complex numbers and are evaluated as:
$C=C_{R}+j C_{1}=\left(A_{R}+B_{R} W_{R}-B_{1} W_{1}\right)+j\left(A_{1}+B_{R} W_{1}+B_{1} W_{R}\right)$
$D=C_{R}+j D_{1}=\left(A_{R}-B_{R} W_{R}+B_{1} W_{1}\right)+j\left(A_{1}-B_{R} W_{1}-B_{1} W_{R}\right)$

The four multiplications can be implemented using four Am25LS14 serial-parallel multipliers (the appropriate number of bits must, of course, be used). The additions and the subtractions are implemented using the Am25LS15 quad serial adder/subtractors. This diagram depicts only the basic data flow; binary weighting of the numbers, rounding, truncation, etc. must be handled as required by the individual design parameters.

FAST FOURIER TRANSFORM (FFT) BUTTERFLY


An FFT butterfly connection for complex arithmetic inputs and outputs.


## Am25S18

## Distinctive Characteristics

- Advanced Schottky technology
- Four D-type flip-flops
- Four standard totem-pole outputs

	ORDERING INFORMATION	
Package	Temperature   Range	Order   Number
Molded DIP	0 to $+70^{\circ} \mathrm{C}$	AM25S18PC
Hermetic DIP	0 to $+70^{\circ} \mathrm{C}$	AM25S18DC
Dice	0 to $+70^{\circ} \mathrm{C}$	AM25S.18XC
Hermetic DIP	-55 to $+125^{\circ} \mathrm{C}$	AM25S18DM
Hermetic Flat-Pak	-55 to $+125^{\circ} \mathrm{C}$	AM25S18FM
Dice	-55 to $+125^{\circ} \mathrm{C}$	AM25S18XM


#### Abstract

\section*{FUNCTIONAL DESCRIPTION}

The Am25S18 consists of four D-type flip-flops with a buffered common clock. Information meeting the set-up and hold requirements on the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock.

The same data as on the Q outputs is enabled at the threestate Y outputs when the "output control" ( $\overline{\mathrm{OE}})$ input is LOW. When, the $\overline{\mathrm{OE}}$ input is HIGH, the Y outputs are in the highimpedance state.

The Am25S18 is a 4-bit, high speed Schottky register intended for use in real-time signal processing systems where the standard outputs are used in a recursive algorithm and the three state outputs provide access to a data bus to dump the results after a number of iterations.

The device can also be used as an address register or status register in computers or computer peripherals.

Likewise, the Am25S18 is also useful in certain display applications where the standard outputs can be decoded to drive LED's (or equivalent) and the three-state outputs are bus organized for occasional interrogation of the data as displayed.


- Four three-state outputs
- 75 MHz clock frequency


MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{cC}}$ max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)
$A m 25 S 18 \times C \quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad, V_{C C}=5.0 \mathrm{~V}+5 \%(C O M 1 \mathrm{~L}) \quad \mathrm{MIN}=4.75 \mathrm{~V} \quad \mathrm{MAX}=5.25 \mathrm{~V}$
$A m 25 S 18 \times M \quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V}+10 \%(\mathrm{MIL}) \quad$ MIN $=4.5 \mathrm{~V} \quad \mathrm{MAX}=5.5 \mathrm{~V}$

: 1. For conditions shown as MIN, or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents $=$ Unit Load Current $x$ Input Load Factor (see Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test shoud not exceed one second.
5. I CC is measured with all inputs at 4.5 V and all outputs open.
6. Measured on $Q$ outputs with $Y$ outputs open. Measured on $Y$ outputs with $Q$ outputs open.

Am25S18
Switching Characteristics ( $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=280 \Omega$ )

Parameters	Description		Test Conditions	Min.	Typ.	Max.	Units	
tPLH	Clock to Q Output		$C_{L}=15 p F$		6.0	9.0	ns	
tPHL			,	8.5	13			
${ }^{\text {t }}$ pw	Clock Pulse Width	HIGH		7.0			ns	
		LOW		9.0				
$\mathrm{t}_{5}$	Data			5.0			ns	
$t^{\prime}$	Data			3.0			ns	
tpLH	Clock to $Y$ Output ( $\overline{O E}$ LOW)				6.0	9.0	ns	
tPHL				8.5	13			
t ZH	Output Control to Output			$C_{L}=15 \mathrm{pF}$		12.5	19	ns
$\mathrm{t}_{\mathrm{ZL}}$					12	18		
${ }^{\text {t }} \mathrm{HZ}$			$C_{L}=5.0 \mathrm{pF}$		4.0	6.0		
$\mathrm{t}_{\mathrm{L}} \mathrm{Z}$				7.0	10.5			
$f_{\text {max }}$	Maximum Clock Frequency			$C_{L}=15 \mathrm{pF}$	75	100		MHz

Metallization and Pad Layout


DIE SIZE 0.0:7" $\times 0.079^{\prime \prime}$


## LOADING RULES (In Unit Loads)

Input/Output	Pin No.'s	Input Unit Load	Fan-out	
			Output HIGH	Output LOW
$\mathrm{D}_{0}$	1	1	--	$\cdots$
$\mathrm{O}_{0}$	2	-	20	10*
$\mathrm{Y}_{0}$	3	-	40/130	10*
$\mathrm{D}_{1}$	4	1	-	-
$\mathbf{Q}_{1}$	5	-	20	10*
$\mathrm{V}_{1}$	6	-	40/130	10*
$\overline{O E}$	7	1	-	-
GND	8	-	-	-
CP	9	1	-	-
$\mathrm{Y}_{2}$	10	-	40/130	10*
$\mathrm{O}_{2}$	11	-	20	10*
$\mathrm{D}_{2}$	12	1	-	-
$\mathrm{Y}_{3}$	13	-	40/130	10*
$\mathrm{O}_{3}$	14	-	20	10*
$\mathrm{D}_{3}$	15	1	-	-
$\mathrm{v}_{\mathrm{CC}}$	16	-	-	-
A Schottky TTL Unit Load is defined as $50 \mu \mathrm{~A}$ measured at 2.7 V  				
*Fan-out on eac loads ( 30 mA ) fo	$\begin{aligned} & Q_{i} \text { and } Y_{i} \\ & i=0,1,2,3 \end{aligned}$	put pair sho	d not exc	15 unit




THE Am25S18 USED AS DISPLAY REGISTER WITH BUS INTERROGATE CAPABILITY.


THE Am25S18 AS A VARIABLE LENGTH (1, 2, 3 or 4 WORD) SHIFT REGISTER.


## Am25LS22

ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:

COM'L	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$	$(\mathrm{MIN} .=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V})$
MIL	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	$($ MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V})$

## DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1 )				Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{O}_{0} \cdot 1 \mathrm{OH}=-440 \mu \mathrm{~A}$		MIL	2.5			Volts
					COM'L	2.7			
			$D Y_{i}, 1 \mathrm{OH}=-1.0 \mathrm{~mA}$		MIL	2.4			
			$\mathrm{DY}_{\mathrm{i}}, \mathrm{IOH}=-2.6 \mathrm{~mA}$		COM'L	2.4			
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$1 \mathrm{OL}=4.0 \mathrm{~mA}$				0.4	Volts
					$\mathrm{I} \mathrm{OL}=8.0 \mathrm{~mA}$			0.45	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level ${ }^{\text {- }}$	Guaranteed input logical HIGH voltage for all inputs				2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL				0.7	Volts
				COM				0.8	
$v_{1}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$						-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		$\overline{\text { SE }}$				-1.08	mA
				S				-0.72	
					Others			-0.36	
$\mathrm{I}_{1} \mathrm{H}$	Input HIGH Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{I N}=2.7 \mathrm{~V} \\ & \text { (Except DY }{ }_{\mathrm{i}} \text { ) } \end{aligned}$		$\overline{\mathrm{SE}}$				60	$\mu \mathrm{A}$
				S				40	
					Others			20	
1	Input HIGH Current	$\begin{aligned} & V_{C C}=M A X ., \\ & \left(\text { Except } D Y_{i}\right) \end{aligned}$	7.0V	$\overline{O E}, \mathrm{~S} / \mathrm{P}, \mathrm{RE}$,	CP, CLR			0.1	mA
			$=5.5 \mathrm{~V}$	$\overline{\text { SE }}$				0.3	
				S				0.2	
				Others				0.1	
$\mathrm{I}_{\mathrm{OZ}}$	Off State (High Impedance) Output Current ( $D Y_{i}$ )	$V_{C C}=$ MAX .			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}$	0.4 V			-100	
${ }^{\text {I SC }}$	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$.				-15		-85	mA
${ }^{1} \mathrm{CC}$	Power Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$.					40	65	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under-Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage ( $\overline{\mathrm{OE}, \mathrm{S} / \mathrm{P}, ~ R E, ~ C P, ~ C L R) ~}$	-0.5 V to +7.0 V
DC Input Voltage (Others)	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Parameters		cription	Min.	Typ.	Max.	Units	Test Conditions
tPLH	Clock to DYi			16.5	24	ns	$\begin{aligned} R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \end{aligned}$
tPHL				18	26		
tPHL	Clear to $\mathrm{DY}_{i}$			23	30	ns	
tPLH	Clock to $\mathrm{Q}_{0}$			16.5	24	ns	
${ }^{\text {P PHL }}$				18	26		
tPHL	Clear to $\mathrm{Q}_{0}$			23	30	ns	
$\mathrm{t}_{\mathrm{ZH}}$	$\overline{O E}$ to DYi			13	21	ns	
${ }_{t} \mathrm{ZL}$				18	26		
thZ				13	21		$\begin{gathered} \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{gathered}$
$t_{L} \mathrm{Z}$				18	26		
$\mathrm{t}_{\mathrm{ZH}}$	SER/PAR to DYi			18	26	ns	$\begin{aligned} & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
t ZL				23	32		
${ }_{\mathbf{H}}^{\mathrm{HZ}}$				18	26		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$,
$t_{L Z}$				23	32		$C_{L}=5 \mathrm{pF}$
$t_{s}$	RE to		20				
$t_{\text {s }}$	SE to		10				
$t_{\text {S }}$	S to Cl		15			ns	
$t_{\text {s }}$	$\mathrm{D}_{\mathrm{A}}$ and	Clock	15			, ns	
$t_{s}$	DY ${ }_{\text {' }}$ L	- Clock	15				
$t_{\text {s }}$	Clear R	y to Clock	8.0				$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$,
$t_{\text {S }}$	S/P to		15			ns	$C_{L}=15 p F$
$t_{\text {h }}$	Any In		0			ns	
$t_{\text {h }}$	Clear H		0			ns	
$t_{\text {pw }}$	Clock	HIGH	8.0			ns	
${ }^{\text {p }}$ pw		LOW	8.0			ns	
${ }^{\text {tpw }}$	Clear		20			ns	
$f_{\text {max }}$ (Note 1)	Maxim	ck Frequency	35	50		MHz	

Note 1. Per industry convention, $f_{\text {max }}$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}, t_{f}$, pulse width or duty cycle.

FUNCTION TABLE

	INPUTS							OUTPUTS								
Mode	Clear	Register Enable	Serial/ Parallel	Sign Extend	Mux Select	$\overline{\text { OE* }}$	Clock	DY7	DY 6	DY 5	$\mathrm{Dr}_{4}$	$\mathrm{DY}_{3}$	$\mathrm{DY}_{2}$	DY 1	DY 0	$Q_{0}$
Clear	L L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & X \\ & H \\ & L \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{Z} \\ & \mathrm{Z} \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & L \\ & Z \\ & Z \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & L \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & L \\ & L \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & L \\ & L \\ & Z \\ & Z \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & L \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & L \\ & L \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{Z} \\ & \mathrm{Z} \\ & \hline \end{aligned}$	L $L$ $L$ $L$
Parallel Load	H	L	L	X	X	X	$\uparrow$	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	$\mathrm{D}_{0}$
Shift Right	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\uparrow$	$\begin{array}{\|l} \hline \mathrm{D}_{\mathrm{A}} \\ \mathrm{D}_{\mathrm{B}} \end{array}$	$\begin{aligned} & Y_{7 n} \\ & Y_{7 n} \end{aligned}$	$\begin{aligned} & Y_{6 n} \\ & Y_{6 n} \end{aligned}$	$\begin{aligned} & Y_{5 n} \\ & Y_{5 n} \end{aligned}$	$\begin{aligned} & Y_{4 n} . \\ & Y_{4 n} \end{aligned}$	$\begin{aligned} & Y_{3 n} \\ & Y_{3 n} \end{aligned}$	$\begin{aligned} & Y_{2 n} \\ & Y_{2 n} \end{aligned}$	$\begin{aligned} & Y_{1 n} \\ & Y_{1 \text { n }} \end{aligned}$	$\begin{aligned} & Y_{1 \text { n }} \\ & Y_{1 \text { n }} \end{aligned}$
Sign Extend	H	L	H	L	X	L	$\uparrow$	$Y_{7 n}$	$Y_{7 n}$	$Y_{6 n}$	$Y_{5 n}$	$Y_{4 n}$	$\mathrm{Y}_{3}$	$Y_{2 n}$	$Y_{1 n}$	$\mathrm{Y}_{1 \mathrm{n}}$
Hold	H	H	X	x	x	L	$\uparrow$	NC								

L = LOW
$H=H I G H$
= Clock LOW-to-HIGH Transition
$N C=$ No Change
$\mathbf{X}=$ Don't Care $\quad \mathbf{Z}=$ High-Impedance Output State
*When the OE input is HIGH, all input/output terminals are at the high-impedance state; sequential operation or clearing of the register is not affected.
$D_{7}, D_{6} \ldots D_{0}=$ the level of the steady-state input at the respective $D Y_{n}$ terminal is loaded into the flip-flop while the flip-flop outputs (except $\mathrm{O}_{0}$ ) are isolated from the DY $n$ terminal.
$D_{A}, D_{B}=$ the level of the steady-state inputs to the serial multiplexer input.
$\mathrm{Y}_{7 n}, Y_{6 n} \ldots Y_{0 n}=$ the level of the respective $Q_{n}$ flip-flop prior to the last Clock LOW-to-HIGH transition.

Am25LS22

## SWITCHING CHARACTERISTICS

 OVER OPERATING RANGE*| Parameters | Description |  | $\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\ & \text { Min. } \quad \text { Max. } \end{aligned}$ |  | $\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} & \pm 10 \% \\ \text { Min. } \quad \text { Max. } \end{array}$ |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {tpLH }}$ | Clock to DY |  |  | 35 |  | 41 | ns | $\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$ |
| ${ }_{\text {PPHL }}$ |  |  |  | 38 |  | 44 |  |  |
| ${ }_{\text {t }}$ | Clear to DY ${ }_{i}$ |  |  | 43 |  | 50 | ns |  |
| ${ }_{\text {tPLH }}$ | Clock to $\mathrm{Q}_{0}$ |  |  | 35 |  | 41 | ns |  |
| $\mathrm{t}_{\text {PHL }}$ |  |  |  | 38 |  | 44 |  |  |
| $\mathrm{t}_{\text {PHL }}$ | Clear to $\mathrm{Q}_{0}$ |  |  | 43 |  | 50 | ns |  |
| $\mathrm{t}_{\mathrm{zH}}$ | OE to $\mathrm{Dr}_{\mathrm{i}}$ |  |  | 32 |  | 36 | ns |  |
| ${ }_{\text {t }}$ |  |  |  | 38 |  | 44 |  |  |
| ${ }_{\text {t }}$ |  |  |  | 28 |  | 31 |  | $\begin{aligned} \mathrm{C}_{\mathrm{L}} & =5.0 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$ |
| $\mathrm{t}_{\mathrm{LZ}}$ |  |  |  | 34 |  | 39 |  |  |
| ${ }^{\text {z }}$ | SER/PAR to DY ${ }_{i}$ |  |  | 38 |  | 44 | ns | $\begin{aligned} C_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$ |
| $\mathrm{t}_{\mathrm{zL}}$ |  |  |  | 46 |  | 53 |  |  |
| $\mathrm{t}_{\mathrm{HZ}}$ |  |  |  | 34 |  | 39 |  | $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ |
| $\mathrm{t}_{\text {LZ }}$ |  |  |  | 42 |  | 48 |  | $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ |
| $t_{\text {s }}$ | RE to |  | 30 |  | 35 |  |  |  |
| $\mathrm{t}_{\text {s }}$ | SE to |  | 17 |  | 20 |  |  |  |
| $\mathrm{t}_{\text {s }}$ | S to C |  | 24 |  | 27 |  | ns |  |
| $t_{\text {s }}$ | $\mathrm{D}_{\mathrm{A}}$ and | o Clock | 24 |  | 27 |  |  |  |
| $t_{\text {s }}$ | DY ${ }_{\text {i }}$ (L | o Clock | 24 |  | 27 |  |  |  |
| $t_{\text {s }}$ | Clear | ery to Clock | 15 |  | 17 |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |
| $\mathrm{t}_{5}$ | S/P to |  | 24 |  | 27 |  | ns | $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ |
| $t_{n}$ | Any In |  | 4 |  | 5 |  |  |  |
| $t_{\text {h }}$ | Clear |  | 4 |  | 5 |  | ns |  |
|  | Clock | HIGH | 15 |  | 17 |  | ns |  |
| $t_{\text {pw }}$ |  | LOW | 15 |  | 17 |  |  |  |
| $\mathrm{t}_{\mathrm{pw}}$ | Clear |  | 30 |  | 35 |  | ns |  |
| $f_{\text {max }}$ (Note 1 ) | Maxim | lock Frequency | 26 |  | 23 |  | MHz |  |

[^16]
## DEFINITION OF FUNCTIONAL TERMS

DY $\mathbf{i} \quad$ The multiplexed parallel input/output port to the device. Data may be parallel loaded into the register or data can be read in parallel from the register on these pins. These outputs can be forced to the high-impedance state, $\mathrm{i}=0$ through 7 .
$Q_{0}$ The continuous output from the $\mathrm{Q}_{0}$ flip-flop of the register. This output is used for serial shifting.
$\overline{\mathbf{R E}} \quad$ Register Enable. When $\overline{\mathrm{RE}}$ is LOW, the register functions are enabled. When $\overline{R E}$ is HIGH, the register functions (parallel load, shift right and sign extend) are inhibited.

S/P Serial/Parallel. When S/P is LOW, the register can be synchronously parallel loaded. This input forces the register output buffers to the high-impedance state independent of the $\overline{O E}$ input. When $S / P$ is HIGH, the register contents are shifted right on the clock LOW-to-HIGH transition.
$\overline{\mathbf{S E}} \quad$ Sign Extend. When the $\overline{\mathrm{SE}}$ input is LOW, the contents of the $\mathrm{Q}_{7}$ flip-flop will be repeated in the $\mathrm{Q}_{7}$ flip-flop as the register is shifted right. When $\overline{\mathrm{SE}}$ is HIGH, the two-input multiplexer ( $\mathrm{D}_{\mathrm{A}}$ and $\mathrm{D}_{\mathrm{B}}$ ) is enabled to enter data during the serial shift right. The $Q_{7}$ flip-flop ( $D Y_{7}$ ) is normally considered the MSB of the register for arithmetic definitions.
$D_{A}, D_{B}$ The serial inputs to the device.

S Multiplexer Select. When $S$ is LOW, the DA serial input is selected. When S is HIGH, the DB serial input is selected.

CLR Clear. The asynchronous clear to the register. When the clear is LOW, the outputs of the flipflops are set LOW independent of all other inputs. When the clear is HIGH, the register will perform the selected function.

CP Clock. The clock pulse for the register. Register operations occur on the LOW-to-HIGH transition of the clock pulse.
$\overline{\mathrm{OE}} \quad$ Output Control. When the $\overline{\mathrm{OE}}$ input is HIGH , the eight DY $Y_{i}$ outputs are in the high-impedance state. When $\overline{O E}$ is LOW, data in the eight flip-flops will be present at the register parallel outputs unless $\mathrm{S} / \mathrm{P}$ is LOW.

## CURRENT INTERFACE CONDITIONS

$$
D Y_{i} \text { Only }
$$



Am25LS22
APPLICATION


SYSTEM OPERATION	Am25LS22 UPPER BYTE				$\begin{aligned} & \text { Am25LS22 } \\ & \text { LOWER BYTE } \end{aligned}$				FUNCTION
	$\overline{\text { SE }}$	S/P,	$\overline{\mathrm{RE}}$	$\overline{O E}$	$\overline{\text { SE }}$	S/P	$\overline{\mathrm{RE}}$	$\overline{\mathrm{OE}}$	Description
Load lower byte and extend lower byte sign to upper byte	H	H	L	x	X	L	L	x	Load from Bus
	L	H	L	H	X	X	H	H	7 clock cycles to extend sign
Load upper byte and extend upper byte sign while shifting value to lower byte position	X	L	L	X	X	X	X	X	Load from Bus
	H	H	L	H	H	H	L	H	8 clock cycles to extend upper byte sign and shift upper byte into lower byte position
Read 16-bit word to Bus	X	x	x	L	x	$\times$	X	L	Unload

Two Am25LS22 8-bit registers can be used to perform the sign extend associated with two's complement 8-bit bytes for arithmetic operations in a 16 -bit machine. If the upper byte value is to be used, it is shifted to the lower bit positions and its sign is extended. If the lower byte value is to be used, it is held in place while the sign is extended downward from the MSB position of the upper byte.

## Metallization and Pad Layout



# Am25LS23 <br> 8-Bit Shift/Storage Register with Synchronous Clear 



## Am25LS23

ELECTRICAL CHARACTERISTICS The following conditions apply unless otherwise specified:
COM'L $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \quad$ (MIN. $=4.75 \mathrm{~V}$ MAX. $=5.25 \mathrm{~V}$ )
MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \% \quad$ (MIN. $=4.50 \mathrm{~V} \quad$ MAX. $=5.50 \mathrm{~V}$ )

## DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)					Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} V_{C C} & =M I N \\ V_{I N} & =V_{I H} \text { or } \\ & V_{O L} \end{aligned}$	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	$\mathrm{I}^{\text {OH }}=-440 \mu \mathrm{~A}$		MIL	2.5			Volts
						COM'L	2.7			
			$\mathrm{DY}_{0}-\mathrm{DY}_{7}$	$\mathrm{MIL}, \mathrm{IOH}=-1.0 \mathrm{~mA}$			2.4			
				COM ${ }^{\prime}$, $\mathrm{IOH}^{=}=-2.6 \mathrm{~mA}$			2.4			
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			$\mathrm{I}^{\mathrm{OL}}=$	4.0 mA		0.25	0.4	Volts
					$\mathrm{I}^{\mathrm{OL}}=$	8.0 mA		0.35	0.45	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs					2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs			MIL.				0.7	Volts
					COM ${ }^{\prime}$				0.8	
$v_{1}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}^{\prime}$	$N=-18 \mathrm{~mA}$						-1.5	Volts
IIL	Input LOW Current	$V_{C C}=$ MAX., $V_{\text {IN }}=0.4 \mathrm{~V}$			$\mathrm{s}_{0}, \mathrm{~s}_{1}$				-0.8	mA
					All ot	hers			-0.4	
I/H	Input HIGH Current	$\begin{aligned} & V_{C C}=M A X ., V_{I N}=2.7 V \\ & \text { (Except } D Y_{i} \text { ) } \end{aligned}$			$\mathrm{S}_{0}, \mathrm{~S}_{1}$				40	$\mu \mathrm{A}$
					All ot	hers			20	$\mu \mathrm{A}$
1	Input HIGH Current.	$\begin{aligned} & V_{C C}=M A X ., \\ & \text { (Except } D Y_{i} \text { ) } \end{aligned}$	$V_{\text {IN }}=7 \mathrm{~V}$		$\mathrm{S}_{1}$				0.2	mA
					, $\overline{\mathrm{G}}_{2}, \mathrm{C}$	LR, CP			0.1	
			$V_{\text {IN }}=5$		hers				0.1	
$\mathrm{I}_{\mathrm{OZ}}$	Off-State (High Impedance) Output Current	$V_{C C}=$ MAX.			$\mathrm{V}_{\mathrm{O}}=$	0.4 V			-100	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{O}}=$	2.4 V			40	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX					-15		-85	mA
$I_{\text {CC }}$	Power Supply Current	$\mathrm{V}_{\text {CC }}=$ MAX. (Note 4)						38	60	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time.
4. I ${ }^{\circ} \mathrm{CC}$ - measured with clock input HIGH and output controls HIGH.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \overline{\mathrm{G}}_{1}, \overline{\mathrm{G}} \overline{\mathrm{F}}_{2}, \mathrm{CLR}, \mathrm{CP}\right.$ )	-0.5 V to +7.0 V
DC Input Voltage (Others)	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
tPLH	Clock to $\mathrm{Q}_{0}$ or $\mathrm{Q}_{7}$		18	26	ns	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL			23	28		
tPLH	Clock to DY		18	26	ns	
${ }_{\text {tPHL }}$			21	28		
$\mathrm{t}_{5}$	$\mathrm{S}_{1}, \mathrm{~S}_{0}$ Set-up Prior to Clock	12			ns	
$\mathrm{t}_{5}$	DY ${ }_{\text {i }}$ or $S_{R}, S_{L}$ Set-up Prior to Clock	12			ns	
tPW	Pulse Width (Clock)	15			ns	
$\mathrm{t}_{5}$	Clear to Clock	15			ns	
$\mathrm{t}_{\mathrm{ZH}}$	$\mathrm{s}_{1}, \mathrm{~s}_{0}, \overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}$ to DY ${ }_{\text {i }}$		18	30	ns	
$\mathrm{t}_{\mathrm{ZL}}$			20	30		
$t_{L} \mathrm{Z}$	$\mathrm{S}_{1}, \mathrm{~S}_{0}, \overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}$, to DY ${ }_{i}$	"	22	33	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {t }} \mathrm{HZ}$			16	23		$R_{L}=2.0 \mathrm{k} \Omega$
$f_{\text {max }}$	Maximum Clock Frequency (Note 1)	35	50		MHz	

Note 1. Per industry convention, $f_{\text {max }}$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}$, $t_{f}$, pulse width or duty cycle.

Parameters	Description	Min.	Max.	Min.	Max.	Units	Test Conditions
${ }^{\text {tPLH }}$	Clock to $\mathrm{Q}_{0}$ or $\mathrm{Q}_{7}$		38		44	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {t }}$			40		47		
$\mathrm{t}_{\text {PLH }}$	Clock to DY ${ }_{\text {i }}$		38		44	ns	
$\mathrm{t}_{\text {PHL }}$			40		47		
$t_{s}$	$\mathrm{S}_{1}, \mathrm{~S}_{0}$ Set-up Prior to Clock	20		23		ns	
$t_{s}$	DY ${ }_{\text {i }}$ or $S_{R}, S_{\text {L }}$ Set-up Prior to Clock	20		23		ns	
$\mathrm{t}_{\mathrm{p} w}$	Pulse Width (Clock)	24		27		ns	
$t_{s}$	Clear to Clock	24		27		ns	
$\mathrm{t}_{\mathrm{ZH}}$	S		43		50	ns	
$\mathrm{t}_{\mathrm{ZL}}$			43		50		
$\mathrm{t}_{\text {LI }}$	$\mathrm{S}_{1}, \mathrm{~S}_{0}, \overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}$ to DY ${ }_{\text {i }}$		43		50	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
$\mathrm{t}_{\mathrm{HZ}}$	$S_{1}, S_{0}, G_{1}, \mathrm{G}_{2}$, 0 DV ${ }_{1}$		30		35		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$
$f_{\text {max }}$	Maximum Clock Frequency (Note 1)	26		23		MHz	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

## DEFINITION OF FUNCTIONAL TERMS

$\mathbf{S}_{\mathbf{R}} \quad$ Shift right data input to $\mathrm{Q}_{7}$
$S_{L} \quad$ Shift left data input to $Q_{0}$
Clear Active LOW synchronous input forcing the $Q_{0}$ through $\mathrm{Q}_{7}$ register to see LOW conditions, visable only if outputs are enabled

Clock
$\mathbf{S}_{\mathbf{0}}, \mathbf{S}_{\mathbf{1}}$
$\overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}$
$\mathrm{O}_{0}, \mathrm{O}_{7}$
$D Y_{0}-D Y_{7}$

Mode selection control lines used to control input (output during load) conditions
Active LOW input to control three-state output in active LOW AND configuration
The only two direct outputs; used to cascade shift operations
Input/Output line dependent on mode and output control. Input only with mode select LOAD. Output in all other modes but subject to output select ( $\overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}$ ).

## TRUTH TABLE

FUNCTION		INPUTS						OUTPUTS		INPUTS/OUTPUTS							
		$S_{R}$	$S_{L}$	CLEAR	CLOCK	$\mathrm{S}_{0} \quad \mathrm{~S}_{1}$	$\overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2}$	$\mathrm{O}_{0}$	$0_{7}$	DY0	DY1	DY 2	$\mathrm{DY}_{3}$	DY4	DY5	DY6	$\mathrm{DY}_{7}$
Clear		x	X	L	$\uparrow$	(Note 1)	L L	L	L	L	L	L	L	L	L	L	L
Output Control		X	X	X	$x$	$x \quad x$	H L	NC	NC	Z	Z	z	z	z	z	z	z
		$\times$	$x$	$x$	$x$	$x \quad x$	L H	NC	NC	Z	$z$	$z$	z	z	z	Z	z
		X	X	X	X	$\times \quad \mathrm{X}$	H H	NC	NC	Z	Z	Z	Z	Z	Z	Z	Z
MODE	Hold	$x$	$x$	H	$x$	L L	L L	NC									
	Load (Note 2)	$x$	$x$	H	$\uparrow$	H H	L L		H	A	B	C	D	E	$F$	G	H
	Shift Right	L	$x$	H	$\uparrow$	H L	L L		$\mathrm{DY}_{6}$	L	$\mathrm{DY}_{0}$	DY 1	DY2	$\mathrm{DY}_{3}$	$\mathrm{DY}_{4}$	$\mathrm{DY}_{5}$	$\mathrm{DY}_{6}$
	Shift Right	H	x	H	$\uparrow$	H L	L L	H	$\mathrm{DY}_{6}$	H	$\mathrm{DY}_{0}$	DY 1	$\mathrm{DY}_{2}$	$\mathrm{DY}_{3}$	$\mathrm{DY}_{4}$	DY5	$\mathrm{DY}_{6}$
	Shift Left	X	L	H	$\uparrow$	L H	L L	DY1	L	DY 1	$\mathrm{DY}_{2}$	$\mathrm{DY}_{3}$	$\mathrm{DY}_{4}$	DY 5	$\mathrm{DY}_{6}$	$\mathrm{DY}_{7}$	L
	Shift Left	x	H	H	$\uparrow$	L H	L L	DY1	H	DY 1	$\mathrm{DY}_{2}$	$\mathrm{DY}_{3}$	$\mathrm{DY}_{4}$	DY 5	$\mathrm{DY}_{6}$	$\mathrm{DY}_{7}$	H

$$
\begin{array}{lll}
L=\text { LOW } & Z=\text { High Impedance } & \uparrow=\text { Transition LOW-to-HIGH } \\
H=\text { HIGH } & X=\text { Don't Care } & N C=\text { No Change }
\end{array}
$$

Notes: 1. Either LOW to observe outputs.
2. In this mode $D Y_{i}$ are inputs.

Am25LS23


## Am25S557•Am25S558

## Eight-Bit by Eight-Bit Combinatorial Multiplier



## Am25S557 • Am25S558

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM' $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
$(\mathrm{MIN} .=4.75 \mathrm{~V}$
MAX. $=5.25 \mathrm{~V}$ )
MIL $\quad T_{C}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
$(\mathrm{MIN} .=4.50 \mathrm{~V}$
MAX. $=5.50 \mathrm{~V}$ )

## DC CHARACTERISTICS OVER OPERATING RANGE

Param	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & V_{I L}=0.8 \mathrm{~V} \\ & V_{I H}=2.0 \mathrm{~V} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	2.4	3.0		Volts
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N: \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$			0.3	0.5	Volts
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.8	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=M I N ., I_{I N}=-18 \mathrm{~mA}$					$-1.5$	Volts
IIL	Input LOW Current	$V_{C C}=M A X ., V_{\text {iN }}=0.5 \mathrm{~V}$					$-1.0$	mA
$\mathrm{I}_{1 \mathrm{H}}$	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.4 \mathrm{~V}$					100	$\mu \mathrm{A}$
$I_{1}$	Input. HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$					1	mA
10	Off-State (High-Impedance) Output Current	$V_{C C}=M A X$.	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				+100	
${ }^{\text {ISC }}$	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX .			-20		-90	mA
$\mathrm{I}_{\mathrm{CC}}$	Power Supply Current (Note 4)	$V_{C C}=M A X$					280	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Test with pin 21 at 4.5 V , all other input pins at GND, all outputs open Am25S557 conditions the same except initialize with G (pin 11) at 4.5 V , then GND .

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V CC
max	
DC Input Voltage	-0.5 V to +5.5 V
$D C$ Input Current	30 mA

Am25S557
SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Am25S COM'L	Am25S MIL
$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$	$\mathrm{T}_{A}=-55$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$


Parameters	Description	Min	Typ	Max	Min	Typ	Max	Units	Test Conditions
${ }^{\text {tPD }}$	$\mathrm{X}_{\mathrm{i}}, Y_{i}$ to $\mathrm{S}_{0}$ to $\mathrm{S}_{7}$		45	60		55	70	ns	$\begin{gathered} C_{L}=30 \mathrm{pF} \\ R_{L}=560 \Omega \\ \text { (See test figures) } \end{gathered}$
${ }_{\text {tPD }}$	$X_{i}, Y_{i}$ to $S_{8}$ to $S_{15}$ or $\bar{S}_{15}$		50	80		60	90	ns	
$t_{s}$	$X_{i}, Y_{i}$ to $G$ Set-up Time	65			75			ns	
$t_{n}$	$X_{i}, Y_{i}$ to G Hold Time	-5			-5			ns	
$t_{\text {PD }}$	$G$ to $S_{i}$		30	45		30	50	ns	
$t_{\text {PW }}$	Latch Enable Pulse Width	25	15		30	15		ns	
$\mathrm{t}_{\mathrm{PHZ}}$	$\overline{\mathrm{OE}}$ to $\mathrm{S}_{0}$ to $\mathrm{S}_{15}$		15	30		15	40	ns	
$t_{\text {PHZ }}$	$\overline{\mathrm{OE}}$ to $\overline{\mathrm{S}}_{15}$		25	40		25	50	ns	
$t_{\text {PLZ }}$	$\overline{\mathrm{OE}}$ to $\mathrm{S}_{\mathrm{i}}$		15	30		15	40	ns	
${ }_{\text {tPzH }}$	$\overline{\mathrm{OE}}$ to $\mathrm{S}_{\mathrm{i}}$		20	35		20	40	ns	
$\mathrm{t}_{\text {PZL }}$	$\overline{\mathrm{OE}}$ to $\mathrm{S}_{\mathrm{i}}$		20	35		20	40	ns	

[^17]
*AC performance over the operating temperature range is guaranteed by testing defined in Group A, subgroup 9.


Am25S557•Am25S558




ORDERING INFORMATION

Package   Type	Temperature   Range		Am25S557   Order   Number	Am25S558   Order   Number
Hermetic DIP	0 to $+70^{\circ} \mathrm{C}$	AM25S557DC	AM25S558DC	
	-55 to $+125^{\circ} \mathrm{C}$	AM25S557DM	AM25S558DM	
Leadless	0 to $+70^{\circ} \mathrm{C}$	AM25S557LC	AM25S558LC	
	-55 to $+125^{\circ} \mathrm{C}$	AM25S557LM	AM25S558LM	

# Am25S557•Am25S558 Multipliers in Expanded Arrays 

By Bernie New and David Anderson

## GENERAL DESCRIPTION

The Am25S557 and Am25S558 are high-speed, combinatorial, $8 \times 8$-bit multipliers. Both use an array of gated full adders to form and add simultaneously the partial products necessary to generate a parallel product.
Both devices have two Mode Control inputs $X_{m}$ and $Y_{m}$. These controls allow multiplying any of the four combinations of unsigned or two's complement numbers.
The availability of $\overline{\mathrm{S}}_{15}$ (inverted MSB) and the capability of operating with either signed or unsigned inputs means the Am25S557 and Am'25S558 can be easily expanded to larger array sizes which can similarly multiply signed or unsigned numbers.
In addition to the three-state output flexibility of both devices the Am25S557 adds a transparent latch between the multiplier array and the output buffers.
Both multipliers incorporate rounding provisions; both use a standard 40-pin package; and both are available in commercial or military version.

## introduction

There are various methods of implementing large number multiplication by using the Am25S557 and Am25S558 multipliers. In high-speed applications a parallel array of multipliers will generate an output product in the shortest time. However, this approach also requires a large parts count. A partial parallel expansion sacrifices some speed for a reduced parts count, while a single multiplier performing repetitive multiplications requires the smaller number of parts but is slow when multiplying large numbers.
The Am25S557 includes a transparent product output latch useful in pipelined applications (Figure 1). In such an application, the result of a current multiply may be held for use by other parts of the system while the next multiply is already in progress.
This application note explains how to implement both parallel and partial parallel expansion to form large multiplier arrays using the Am25S557 or Am25S558 as the basic building block. A brief discussion on multiplier arithmetic is first presented to clarify operation of the part. For a complete functional description see the Am25S557/558 data sheet.

## ARITHMETIC

Mode control inputs $X_{m}$ and $Y_{m}$ (Figure 1) allow the multiplier to accept either unsigned or two's complement numbers at either $X$ or $Y$ input. These controls are necessary to tell the part how to interpret the input data since the multiplier can't tell from the number alone. If either input is in two's complement form, the result will necessarily be two's complement. Only if both operands are unsigned will the product be unsigned.
For example, the binary number 11111111 may be interpreted as 255 or -1 depending on the number convention used - unsigned or two's complement. Similarly, 11111110 is 254 or -2 . The mode controls tell the multiplier which one is appropriate.

If these inputs are used, the following four interpretations are possible:

$$
\begin{array}{ll}
255 \times 254=+64770, & 1111110100000010 \text { (unsigned) } \\
(-1) \times 254=-254, & 1111111100000010 \text { (2's complement) } \\
255 \times(-2)=-510, & 1111111000000010 \text { (2's complement) } \\
(-1) \times(-2)=+2, & 0000000000000010 \text { (2's complement) }
\end{array}
$$

All four of these different answers are correct.
Two round controls ( $\mathrm{R}_{\mathrm{S}}$ and $\mathrm{R}_{\mathrm{u}}$ ) are provided on the Am25S558. $R_{S}$ indicates signed number rounding and $R_{u}$ indicates unsigned number rounding. In signed number rounding a bit is added with the same weight as $S_{6}$. This allows $S_{14-7}$ to be used as the rounded 8 -bit output (Figure 2). In unsigned multiplication, $\mathrm{R}_{\mathrm{u}}$ adds a bit with the weight of $S_{7} . S_{15-8}$ may then be used as the 8 -bit unsigned output (Figure 3). The Am25S557 internally develops the appropriate rounding control $R_{S}$ or $R_{u}$ by combining rounding input $R$ with $X_{m}$ and $Y_{m}$ as follows:

$$
\begin{aligned}
& R_{u}=\overline{X_{m}} \cdot \overline{Y_{m}} \cdot R \\
& R_{s}=\left(X_{m}+Y_{m}\right) \cdot R
\end{aligned}
$$

This frees a pin for use as the latch enable $(G)$.


Figure 1. Logic Diagram


Figure 2. Rounding 16-Bit Signed Number for 8-Bit Signed Output Data

## PARALLEL EXPANSION

The Am25S558 is specifically designed for ease of expansion. To multiply 8 n bits by 8 m bits requires $\mathrm{n} \cdot \mathrm{m}$ multiplications. These may either be performed successively in a single multiplier or $n \cdot m$ multipliers may be used in parallel. A combination of the two approaches, partial parallel expansion, is also possible. A $24 \times$ 24-bit unsigned product using parallel multipliers can be fabricated as follows:

1. Split each of the 24 -bit inputs into 8 -bit groups. $X$ would split into XA, XB, XC where

$$
\begin{aligned}
& X A_{0-7}=X_{16-23} \\
& X B_{0-7}=X_{8-15} \\
& X C_{0-7}=X_{0-7}
\end{aligned}
$$

The relationship between $X$ and the groups is

$$
X=2^{16} X A+2^{8} X B+X C
$$

2. Treating $Y$ in the same way

$$
Y=2^{16} Y A+2^{8} Y B+Y C
$$

3. The required multiplication is

$$
\begin{aligned}
X Y= & \left(2^{16} X A+2^{8} X B+X C\right) \cdot\left(2^{16} Y A+2^{8} Y B+Y C\right) \\
= & 2^{32} X A \cdot Y A+2^{24} X A \cdot Y B+2^{16} X A \cdot Y C \\
& +2^{24} X B \cdot Y A+2^{16} X B \cdot Y B+2^{8} X B \cdot Y C \\
& +2^{16} X C \cdot Y A+2^{8} X C \cdot Y B+X C \cdot Y C
\end{aligned}
$$

This requires nine multiplies.
4. Shift the partial products to weight them with the appropriate power of 2 and sum them.

Slower, low-cost systems can be implemented with a single multiplier but the fastest approach uses nine multipliers in a parallel array (Figure 4).
A signed 24 by 24 -bit multiplier is configured basically the same way, but consideration must be given to which of the 8 -bit groups are signed or unsigned. In the 24 -bit word, the sign is weighted negatively and the other bits are weighted positively. In the 8 -bit groups only XA and YA have negatively weighted most significant bits (MSBs); the other groups are all positive (unsigned). It follows, therefore, the XA and YA are signed two's complement numbers and $\mathrm{XB}, \mathrm{XC}, \mathrm{YB}$ and YC are positive unsigned numbers.

When generating the partial products, the mode controls must be connected appropriately. If either or both of the groups multiplied to form a partial product are a signed number, then the partial product is also a signed number and must be sign extended in any addition.


Figure 3. Rounding 16-Bit Unsigned Number for 8-Bit Unsigned Output Data

## Partial Parallel Expansion

Another way to perform multiplications of numbers with more than 8 bits is to use partial parallel expansion. Here the multiplier array is expanded for only one operand. The following example constructs a $32 \times 32$-bit multiplier using a four-step sequence of $8 \times 32$. multiplies. An 8 by 32 -bit multiply is performed using four Am25S558s (Figure 5).
$X$ is split into $X A, X B, X C, X D$ where

$$
\begin{aligned}
& X A=X_{24-31} \\
& X B=X_{16-23} \\
& X C=X_{8-15} \\
& X D=X_{0-7}
\end{aligned}
$$

The relationship between them is

$$
X=2^{24} X A+2^{16} X B+2^{8} X C+X D
$$

$Y$ is treated the same way

$$
Y=2^{24} Y A+2^{16} Y B+2^{8} Y C+Y D
$$

In this example the multiplier array can only accept 8 bits on the $Y$ inputs. Therefore, the partial $Y$ operands are applied to the multiplier array sequentially. The multiplication performed at each step is as follows:

## Sequence

$$
\begin{array}{ll}
\text { St1 } & \text { YD } \cdot\left(2^{24} \mathrm{XA}+2^{16} \mathrm{XB}+2^{8} \mathrm{XC}+\mathrm{XD}\right) \\
\text { St2 } & 2^{8 Y C} \cdot\left(2^{24} \mathrm{XA}+2^{16} \mathrm{XB}+2^{8} \mathrm{XC}+\mathrm{XD}\right) \\
\text { St3 } & 2^{16} \mathrm{YB} \cdot\left(2^{24} \mathrm{XA}+2^{16} \mathrm{XB}+2^{8} \mathrm{XC}+\mathrm{XD}\right) \\
\text { St4 } & 2^{24 Y A} \cdot\left(2^{24} \mathrm{XA}+2^{16} \mathrm{XB}+2^{8} \times C+X D\right)
\end{array}
$$

The partial products from each step are next shifted to weight them with the appropriate power of 2 . They are then summed to form the final 64-bit product (Figure 6).

## Multiplexing

For extremely fast $8 \times 8$ multiplication, two or more Am25S558s may be multiplexed as shown in Figure 7. Input latches hold both the $X$ and $Y$ input data for each multiplier until a combinatorial product output is generated. The product from each multiplier is multiplexed onto the output bus, using the three-state enable control, $\overline{O E}$, on the multiplier.


Figure 4. Two's Complement $\mathbf{2 4 - B i t}$ by $\mathbf{2 4 - B i t}$ Multiplier Array


The $Y 8$-bit partial operands $Y A, Y B, Y C, Y D$ are loaded and multiplied by the entire 32 -bit operand $X$ in four steps to obtain a full 64-bit product.

Figure 5. $32 \times 32$-Bit Multiplier Array Partial Parallel Expansion


Figure 6. $32 \times 32-$ Bit Serial/Parallel Expansion


Figure 7. High-Speed Multiplexed $8 \times 8$-Bit Multiplication


Figure 8. Block Diagram of a High-Performance Signal Processing System

## Application

In many signal processing algorithms such as fast Fourier transforms (FFTs), finite impulse response (FIR) and infinite impulse response (IIR) digital filters, there is a need to perform fast repetitive multiplication. For off-line or low bandwidth applications, these computations could be performed in a general-purpose computer or even microcomputer. However, in any highperformance system, a dedicated, or at least an optimized processor must be constructed. Only microprogrammed, bipolar bit-slice devices provide the speed and flexibility necessary for such a processor.

Figure 8 is a block diagram of a typical high-performance system. The diagram shows how two pairs of Am2903s can be used in conjunction with a single Am25S558 Multiplier. The real or imaginary data may be entered into the multiplier, multiplied by a real or imaginary constant from the PROM and returned to the real or imaginary ALU as appropriate. The link between the DB ports also allows for a simple transfer of data which represents a multiplication by $\sqrt{-1}$.

## Am25LS2513

## Three-State Priority Encoder

DISTINCTIVE CHARACTERISTICS   - Encodes eight lines to three-line binary   - Expandable   - Cascadable   - Three State inverted output version of Am54LS/74LS/ 25LS148   - Gated three-state output   - Advanced Low-Power Schottky processing	FUNCTIONAL DESCRIPTION   The Am25LS2513 Low-Power Schottky Priority Encoder performs priority encoding of 8 inputs to provide a binary weighted code of the priority order of the 3 tri-state active HIGH outputs $A_{0}, A_{1}, A_{2}$. Three active LOW and two active HIGH inputs in AND-OR configuration allow control of the tri-state outputs. The use of the input enable (EI) combined with the enable output ( $\overline{\mathrm{EO}}$ ) permits cascading without additional circuitry. Enable input (EI) HIGH will force all outputs LOW subject to the tri-state control. The enable output is LOW when all inputs $\bar{T}_{0}$ through $\bar{T}_{7}$ are HIGH and the enable
RELATED PRODUCTS	input is LOW.
LOGIC D	AGRAM
CONNECTION DIAGRAMS - Top Views Leadless Chip Carrier   L-20-1   Note: Pin 1 is marked for orientation.	LOGIC SYMBOL

## Am25LS2513

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ.   (Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{IOH}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			COM ${ }^{\prime}$, $1 \mathrm{OH}=-2.6 \mathrm{~mA}$		2.4	3.2		
			$\overline{\mathrm{EO}}, 1 \mathrm{OH}=-440 \mu \mathrm{~A}$	MIL	2.5	3.4		
				COM'L	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOL}=4.0 \mathrm{~mA}$				0.4	Voits
			$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.45	
			$1 \mathrm{OL}=12 \mathrm{~mA}$ ( $\mathrm{A}_{n}$ Outputs)				0.5	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=M I N ., I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{I N}=0.4 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{EI}}, \mathrm{G}_{1}, \mathrm{G}_{2}, \overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}, \mathrm{~T}_{0}$				-0.4	mA
			All others				-0.8	
$\mathrm{I}_{1 / \mathrm{H}}$	Input HIGH Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{I N}=2.7 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{EI}}, \mathrm{G}_{1}, \mathrm{G}_{2}, \overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}, \bar{T}_{0}$				20	$\mu \mathrm{A}$
			All others				40	
1	Input HIGH Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} . \\ & V_{I N}=7.0 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{E} 1}, \mathrm{G}_{1}, \mathrm{G}_{2}, \overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}, \bar{T}_{0}$				0.1	mA
			All others				0.2	
10	Off-State (High-Impedance) Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				20	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$.			-15		-85	mA
I'c	Power Supply Current (Note 4)	$V_{C C}=$ MAX				15	24	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. All inputs and outputs open.

## Am25LS

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V cc max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

## Am25LS13

SWITCHING CHARACTERISTICS
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ )
Parameters Description
Min.
Typ.
Max. Units
Test Conditions

tPLH	$\bar{T}_{i}$ to $A_{n}$ (In-phase)	17	25	ns	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL	$T_{1}$ ro $A_{n}$ (In-phase)	17	25		
tPLH	$T_{i}$ to $A_{n}$ (Out-phase)	11	17	ns	
${ }^{\text {t PHL }}$		12	18		
${ }^{\text {tPLH }}$	$\bar{T}_{i}$ to EO	7.0	11	ns	
tPHL		24	36		
tpLH	El to EO	11	17	ns	
tPHL		23	34		
${ }^{\text {tpLH }}$	$\overline{E l}$ to $A_{n}$	12	18	ns	
${ }^{\text {tPHL }}$		14	21		
${ }^{\text {t }} \mathrm{ZH}$	$\mathrm{G}_{1}$ or $\mathrm{G}_{2}$ to $\mathrm{A}_{\mathrm{n}}$	23	40	ns	
${ }^{\text {t }} \mathrm{LL}$		20	37		
${ }^{\text {t }} \mathrm{ZH}$	$\overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}$ to $A_{n}$	20	30	ns	
$\mathrm{t}_{\mathrm{zL}}$		18	27		
${ }^{\text {thz }}$	$\mathrm{G}_{1}$ or $\mathrm{G}_{2}$ to $\mathrm{A}_{\mathrm{n}}$	17	27	ns	$\begin{aligned} & C_{L}=5.0 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
$\mathrm{t}_{\text {LZ }}$		19	28		
$\mathrm{t}_{\mathrm{Hz}}$	$\bar{G}_{3}, \bar{G}_{4}, \bar{G}_{5}$ to $A_{n}$	16	24	ns	
${ }_{\text {t }}$		18	27		

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description	Min.	Max.	Min.	Max.	Units	Test Conditions
tpLH	$T_{i}$ to $A_{n}$ (In-phase)		31		37	ns	$\begin{aligned} C_{L} & =50 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {t PHL }}$			30		34		
tPLH	$T_{i}$ to $A_{n}$ (Out-phase)		22		27	ns	
tPHL			22		25		
tPLH	$T_{i}$ to $\overline{E O}$		15		18	ns	
${ }^{\text {tPHL }}$			48		60		
tPLH	$\overline{\mathrm{EI}}$ to $\overline{\mathrm{EO}}$		19		21	ns	
tPHL			-46		57		
tPLH	$\overline{E l}$ to $\mathrm{A}_{n}$		22		25	ns	
tPHL			27		32		
${ }^{\text {Z }} \mathrm{ZH}$	$\mathrm{G}_{1}$ or $\mathrm{G}_{2}$ to $\mathrm{A}_{n}$		42		49	ns	
${ }^{\text {Z }} \mathrm{L}$			43		49		
${ }^{\text {Z }} \mathrm{H}$	$\overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}$ to $\mathrm{A}_{n}$		36		43	ns	
${ }^{\text {Z }} \mathrm{LL}$			35		43		
${ }_{\mathbf{H}} \mathrm{HZ}$	$\mathrm{G}_{1}$ or $\mathrm{G}_{2}$ to $\mathrm{A}_{\mathrm{n}}$		34		40	ns	$\begin{aligned} & C_{L}=5.0 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{t} \mathrm{~L} \mathrm{Z}$			34		40		
$\mathrm{t}_{\mathrm{HZ}}$	$\overline{\mathrm{G}}_{3}, \overline{\mathrm{G}}_{4}, \overline{\mathrm{G}}_{5}$ to $\mathrm{A}_{n}$	,	30		35	ns	
${ }_{t} \mathrm{~L}$ L			31		35		

*AC performance over the operating temperature range is guaranteed by testing defined in Group $A$, Subgroup 9 .

[^18]


[^19]

## ORDERING INFORMATION

Package	Temperature   Range	Am25LS2513   Order   Number
Molded DIP	0 to $+70^{\circ} \mathrm{C}$	AM25LS2513PC
Hermetic DIP	0 to $+70^{\circ} \mathrm{C}$	AM25LS2513DC
Chip-Pak	0 to $+70^{\circ} \mathrm{C}$	AM25LS2513LC
Dice	0 to $+70^{\circ} \mathrm{C}$	AM25LS2513XC
Hermetic DIP	-55 to $+125^{\circ} \mathrm{C}$	AM25LS2513DM
Hermetic Flat-Pak	-55 to $+125^{\circ} \mathrm{C}$	AM25LS2513FM
Chip-Pak	-55 to $+125^{\circ} \mathrm{C}$	AM25LS2513LM
Dice	-55 to $+125^{\circ} \mathrm{C}$	AM25LS2513XM

PRIORITY ENCODED RST INTERRUPT INSTRUCTION FOR THE Am9080A


## Am25LS2516

Eight-Bit by Eight-Bit Serial/Parallel Multipliér with Accumulator

## DISTINCTIVE CHARACTERISTICS

- Two's complement, two-bit lookahead carry-save arithmetic
- Microprogrammable - four-bit instruction code for load, multiply, and read operations
- Cascadable, two devices perform full 16 -bit multiplication without additional hardware
- Eight-bit byte parallel, bidirectional, bussed I/O
- On-chip registers and double length accumulator
- Overflow indicator
- Three-state shared bus input/output lines
- High-speed architecture provides clock rates of 20 M Hz (Typ)

RELATED PRODUCTS		
Part No.	Description	Page
Am25S05   Am25LS14A   Am25S557/8   Am29516/7		
	LOGIC SYMBOL	MPR-336
	CONNECTION DIAGRAM	

## FUNCTIONAL DESCRIPTION

The Am25LS2516 is an eight-bit by eight-bit multiplier and accumulator employing serial/parallel, two's complement, carry-save arithmetic to deliver a 16 -bit product in eight clock cycles. The device is fully cascadable for use in high-speed, real-time, digital signal processing applications.
The device includes an eight-bit $X$ Register prior to the $X$ latch providing X hold for chain or overlapping calculations. The X and Y registers are loaded by clocking prior to the beginning of a multiply cycle, the data supplied by the bidirectional bus or the accumulator register. The double length, 16 -bit output is multiplexed onto the eight-bit bus; either the upper or lower halves of the result can be read at any one time.

The accumulator and the Y register are both organized as dualrank shift registers, allowing them to shift two bits at a time. The serial inputs and outputs of the Y register, the low and high order halves of the accumulator and the two-bit serial accumulator adder output, both serially and in parallel, are all available at external pins to provide cascadability.


ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:

COM'L	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

## DC CHARACTERISTICS OVER OPERATING RANGE

Param	Description	Test Conditions (Note 1)			Min.	Typ.   (Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOH}^{\prime}=-1.0 \mathrm{~mA}$		2.4			Volts
V OL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{loL}=4.0 \mathrm{~mA}$				0.4	Volts
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$\mathrm{V}_{1}$	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IL	Input LOW Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-0.8	mA
$\mathrm{I}_{\mathrm{IH}}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					60	$\mu \mathrm{A}$
1	input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$					0.2	mA
Isc	Output Short Circuit Current (Note 3)	$V_{C C C}=M A X$.			-30		-100	mA
loz	Off-State (HIGH Impedance) Output Current	$V_{C C}=M A X$.	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				60	$\mu \mathrm{A}$
			$V_{0}=0$.				-800	

## Non-Bus Inputs/Outputs

$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-440 \mu \mathrm{~A}$		MIL	2.5			Volts
					COM'L	2.7			
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{Y}_{\mathrm{R}}$ OUT, $\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$					0.5	Volts
			Others $\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$					0.4	
$V_{1 H}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs				2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		$Y_{0}, Y_{1}$				0.8	Volts
				Others				0.7	
				Others,	COM'L			0.8	
$V_{1}$	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN} ., \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$						-1.5	Voits
$I_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$				See Table 1			mA
$\mathrm{I}_{\mathrm{H}}$	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$				See Table 1			$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				See Table 1			mA
$\mathrm{I}_{\text {Sc }}$	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$.				-15		-85	mA
Icc	Power Supply Current (Note 4)	$V_{C C}=M A X$.					285	390	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Pins 28 and 31 HIGH, all other inputs at GND. Test after one full clock cycle of LOW-HIGH-LOW.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+\mathbf{1 5 0 ^ { \circ } \mathrm { C }}$
Temperature (Case) Under Bias	$-55^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5 ^ { \circ } \mathrm { C }}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +6.3 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V CC max.
DC Input Voltage (Pins $5,6,7,8,18,19,26)$	-0.5 V to +5.5 V
DC Input Voltage (Other pins)	-0.5 V to $+\mathbf{7 . 0 \mathrm { V }}$
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA


TABLE 1.				ORDERING INFORMATION		
Terminals	IIL	$1{ }_{1} \mathrm{H}$	1	-		
$Y$ IN	$-.3 \mathrm{~mA}$	$20 \mu \mathrm{~A}$	. 1 mA	Package	Temperature	Order
$\mathrm{I}_{0}, \mathrm{l}_{1}, \mathrm{I}_{3}$, OE	$-.45 \mathrm{~mA}$	$20 \mu \mathrm{~A}$	. 1 mA	Type	Range	Number
Bus 0-7	- 6mA			Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM25LS2516DC
Bus 0-7	$-.6 \mathrm{~mA}$	$90 \mu \mathrm{~A}$	. 3 mA	Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM25LS2516DM (Note 1)
CP	$-.8 \mathrm{~mA}$	$80 \mu \mathrm{~A}$	. 4 mA	Note 1. Military temperature range product in development.		
$\mathrm{I}_{2}, \mathrm{X}_{-1}$	$-.9 \mathrm{~mA}$	$40 \mu \mathrm{~A}$	. 1 mA		-	
SUM IN	$-1.4 \mathrm{~mA}$	$80 \mu \mathrm{~A}$	. 5 mA			
LSB	$-1.6 \mathrm{~mA}$	$80 \mu \mathrm{~A}$	. 4 mA			
ACC IN all	$-2 m A$	$50 \mu \mathrm{~A}$	1 mA	1 -		
MSB	$-3 \mathrm{~mA}$	$150 \mu \mathrm{~A}$	1.5 mA			
$Y_{0}, Y_{1}$	$-7.5 \mathrm{~mA}$	$200 \mu \mathrm{~A}$	2 mA			

## SWITCHING CHARACTERISTICS

$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}\right)$

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
$t_{\text {PLH }}$	$Y_{R}$ Register OUT		12	18	ns	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
$t_{\text {PHL }}$			15	23		
$t_{\text {PLH }}$	SUM OUT		13	20	ns	
$\mathrm{t}_{\text {PHL }}$			15	23		
$t_{\text {PLH }}$	ACC ADDER OUT		27	41	ns	
$t_{\text {PHL }}$			27	41		
$t_{\text {PLiH }}$	ACC UH OUT		11	17	ns	
${ }^{\text {tPHL }}$			13	20		
$\mathrm{t}_{\text {PLH }}$	ACC Bus		23	34	ns	
${ }_{\text {tPHL }}$			17	26		
${ }_{\text {PLLH }}$	$\overline{\text { OVFL }}$		12	18	ns	
$t_{\text {PHL }}$			15	23		
$t_{\text {PLH }}$	$\mathrm{X}_{7}$		13	20	ns	
${ }^{\text {t }}$ PHL			17	26		
$\mathrm{t}_{\mathrm{ZH}}$	$\overline{\mathrm{OE}}$ to Bus		12	18	ns	
$\mathrm{t}_{\mathrm{ZL}}$			9	14		
$\mathrm{t}_{\mathrm{Hz}}$			24	36	ns	$\begin{aligned} & C_{L}=5.0 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
$t_{L Z}$			12	18		
$t_{s}$	X Register (Bus)	20			ns	$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$
$t_{s}$	Y Register (Bus)	15			ns	
$t_{s}$	$\mathrm{X}_{-1}$	35			ns	
$t_{\text {s }}$	SUM IN	37			ns	
$t_{s}$	Y Register (Serial)	20			ns	
$t_{s}$	ACC LH or UH IN	8			ns	
$t_{s}$	Multiplier $\mathrm{Y}_{0}$ and $\mathrm{Y}_{1}$	33			ns	
$t_{s}$	Instruction	25			ns	
$t_{\text {h }}$	SUM IN, $\mathrm{X}_{-1}$, Multiplier $\mathrm{Y}_{0}$ and $\mathrm{Y}_{1}$	0			ns	
$t_{h}$	I0-3 Hold Time	10			ns	
$t_{\text {h }}$	Hold Time on All Other inputs	5			ns	
$f_{\text {max }}$ (Note 1)	Maximum Clock Frequency	17			MHz	.

Note 1. Per industry convention, $f_{\max }$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}$, $t_{f}$, pulse width or duty cycle.
TIMING DIAGRAMS


Am25LS2516
SWITCHING CHARACTERISTICS

## OVER OPERATING RANGE*

Parameters	Description	Am25LS COM'L		Am25LS MIL		Units	Test Conditions
		$\begin{gathered} \mathbf{T}_{\mathrm{A}}=\mathbf{0} \\ \mathbf{V}_{\mathrm{CC}}= \end{gathered}$	$\begin{aligned} & +70^{\circ} \mathrm{C} \\ & \pm 5 \% \end{aligned}$	$\begin{gathered} T_{A}=-5 \\ V_{C C}= \end{gathered}$	$\begin{aligned} & +125^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$		
		Min.	Max.	Min.	Max.		
tPLH	YR Register OUT		24		26		-
$t_{\text {PHL }}$			33		37	ns	
tPLH	SUM OUT		27		27	ns	
$\mathrm{t}_{\text {PHL }}$			34		34		
tpLH	ACC ADDER OUT		50		52	ns	
$\mathrm{t}_{\text {PHL }}$			57		60		
${ }_{\text {tPLH }}$	ACC UH OUT		23		23	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
$\mathrm{tpHL}^{\text {che }}$			30		30		
$t_{\text {PLH }}$	ACC Bus		42		45	ns	
${ }_{\text {tPHL }}$			38		39		
${ }_{\text {tPLH }}$	$\overline{\text { OVFL }}$		26		26	ns	
tpHL			33		33		
${ }_{\text {tpLH }}$	$x_{7}$		30		33	ns	
${ }_{\text {tPHL }}$			39		42		
$\mathrm{t}_{\mathrm{zH}}$	$\overline{O E}$ to Bus		30		33	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
$\mathrm{t}_{\mathrm{ZL}}$			21		23	ns	
$\mathrm{t}_{\mathrm{Hz}}$			45		55	ns	$\begin{aligned} & C_{L}=5.0 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
tLz			21		30	ns	
$t_{s}$	X Register (Bus)	20		22		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
$t_{s}$	Y Register (Bus)	15		17		ns	
$t_{s}$	$\mathrm{X}_{-1}$	45		51		ns	
$t_{s}$	SUM IN	52		62		ns	
$t_{s}$	Y Register (Serial)	20		20		ns	
$t_{s}$	ACC LH or UH IN	10		14		ns	
$t_{s}$	Multiplier $Y_{0}$ and $Y_{1}$	44		51		ns	
$t_{s}$	Instruction	27		30		ns	
$t_{H}$	SUM IN, $X_{-1}$, Multiplier and $Y_{1}$	0		0		ns	
$t_{H}$	10.3 Hold Time	10		10		ns	
$t_{H}$	All Other Inputs	5		5		ns	
${ }^{\text {max }}$ (Note 1)	Maximum Clock Frequency	15.5		10		MHz	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

The following table provides a guide to the improvement in performance which may be obtained by control of the $\mathrm{V}_{\mathrm{cc}}$ power supply.

	$\mathbf{V}_{\mathrm{CC}}=\mathbf{5 . 0 V}$	$\mathrm{V}_{\mathrm{CC}}=\mathbf{5 . 0 V} \pm \mathbf{5 \%}$	$\mathrm{V}_{\mathrm{CC}}=\mathbf{5 . 0 \mathrm { V }} \pm \mathbf{1 0 \%}$
$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	17 MHz	16 MHz	15 MHz
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 MHz	15.5 MHz	-
$T_{C}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 MHz	-	10 MHz



Figure 5b. Two Devices Cascaded in 16-Bit by 16-Bit Multiplier Application with 32 -Bit Accumulated Product.


PROGRAM MICRO STEPS AS IN FIGURE 3 ALLOWING 12 " $D$ " CODES AND 1 " $C$ " CODE.

Figure 6. 16 Bit Two's Complement Multiply without Accumulate Modified to $12 \times 12$ (Using Two Am25LS2516 Devices Interconnected).


Figure 4. 8-Bit Two's Complement Multiply with Accumulate, Intermediate Load and Chain Calculations.


Figure 5a. Interconnection of Two Am25LS2516 (8 x 8 Multiplier) Devices to Execute a $16 \times 16$ Multiply.

## FUNCTION TABLE

Mnemonic	$l_{3} I_{2} I_{1} l_{0}$	Function	$\underset{M}{\text { CLR }}$	$\underset{X}{\text { LOAD }}$	$\underset{Y}{\text { LOAD }}$	$\begin{gathered} \text { XFER } \\ \text { X } \end{gathered}$	$\mathrm{A}^{\mathrm{C}}$	$\underset{A}{\text { SHFT }}$	MUX	OE	Remarks
YLHC	0000	LHA $\rightarrow$ Y, XFER X, CLR A CLR M, READ OVFL	1	0	1	1	0	0	0	1	
YUHC	0001	UHA $\rightarrow$ Y, XFER X, CLR A CLR M, READ OVFL	1	0	1	1	0	0	1	1	
YLHA	0010	LHA $\rightarrow Y$, XFER X CLR M, READ OVFL	1	0	1	1	1	0	0	1	
YUHA	0011	$\text { UHA } \rightarrow Y, X F E R X$ CLR M, READ OVFL	1	0	1	1	1	0	1	1	
LYCA	0100	LOAD Y, XFER X, CLR A, CLR M	1.	0	1	1	0	0	0	0	Same Func. as 0101
LYCA	0101	CLR A LOAD Y, XFER X, CLR M	1	0	1	1	0	1	1	0	Same Func. as 0100
LYHA	0110	LOAD Y, XFER X,   HOLD A, CLR M	1	0	1	1	1	0	0	0	
LYSA	$\begin{array}{lllll}0 & 1 & 1\end{array}$	LOAD Y, XFER X, SHIFTA CLR M, MULTIPLY	1	0	1	1	1	1	1	0	OVFLEN in Next State
RLHA	1000	READ LHA READ OVFL	0	0	0	0	1	0	0	1	
RUHA	1001	READ UHA READ OVFL	0	0	0	0	1	0	1	1	
XLHA	1010	$\begin{aligned} & \text { LHA } \rightarrow X \\ & \text { READ OVFL } \\ & \hline \end{aligned}$	0	1	0	0	1	0	0	1	
XUHA	1011	$\begin{aligned} & \text { UHA } \rightarrow \mathrm{X} \\ & \text { READ OVFL } \end{aligned}$	0	1	0	0	1	0	1	1	
HLDA	1100	HOLD A OVFLEN•AFTER MULT	0	0	0	0	1	0	0	0	Must Prc'd Any Output
MULT	1101	MULTIPLY SHIFT A	0	0	0	0	1	1	1	0	
LXHA	1110	$\begin{aligned} & \text { LOAD X, } \\ & \text { HOLD A } \end{aligned}$	0	1	0	0	1	0	0	0	
LXSA	1111	LOAD X, SHIFT A MULTIPLY	0	1	0	0	1	1	1	0	

*Active LOW

## Am25LS

LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Other Outputs


Bus Outputs


## DEFINITION OF FUNCTIONAL TERMS

Bus 0-Bus 7 - Bi-directional 8-bit data bus.
$\mathrm{X}_{7} \quad-$ Interconnection link to more significant byte if cascading (output).
$\mathbf{X}_{-1} \quad$ - Interconnecting link between devices to least significant byte if cascading (input) link X7 to X1 to cascade - must be ground if not used.

Accum Upper - Accumulator output upper byte, even bit. Half out, even

Accum Upper - Accumulator output upper byte, odd bit. Half out, odd
Accum Upper - Accumulator input, upper byte, even bit. Half input even
Accum Upper - Accumulator input, upper byte, odd bit. Half input odd

Accum Lower - Accumulator input, lower byte, even bit. Half input even
Accum Lower - Accumulator input, lower byte, odd bit. Half input odd
YR out even - " $Y$ " register output, even (link to " $Y 0$ ").
YR out odd . - " $Y$ " register output, odd (link to " $Y 1$ ").
YR in even - " $Y$ " register input, even (link for cascading) ground when not used.
YR in odd - " $Y$ " register input, odd (link for cascading) ground when not used.
$\mathbf{Y}_{1} \quad$ - Multiplier odd input (link to Y register odd).
$Y_{0}$

- Multiplier even input (link to $Y$ register even).

Sum in even - Multiplier input even for cascading link to more significant byte, for standalone, ground.
Sum in odd - Multiplier input odd for cascading link to more significant byte, for standalone, ground.
Sum out even - Multiplier output even (link to sum in even for cascading) can be used directly.
Sum out odd - Multiplier output odd (link to sum output odd for cascading) can be used directly.
Acc Add out, - Adder output even, for LSB (Hi) output even

Acc Add out, - Same as above except odd bit instead of
$\mathbf{I}_{0}-\mathbf{I}_{3} \quad-4$-bit instruction field - provide cycle for cycle control of device function.
OVFL

MSB

CP
$\overline{O E}$ equal sum of Accum and multiplier, for LSB (low) output equal sum of accumulator and zero. even.

- Control for summing adder - See Accumulator Add outputs for definition.
- Stored overflow indicator used only on least significant byte. Requires proper execution of instruction to operate.
- Control for " $Y$ " reg. and multiplier to indicate Most Significant Byte - Activates sign extension and negative waiting for 2's compliment - Low for lesser significant bytes and High for Most Significant Byte only.
- Clock Pulse.
- 3 state enable for Bus 0 -Bus 7 outputs.


# The Am25LS2516 LSI Multiplier/Accumulator <br> By Roy Levy 

The Am25LS2516 is an 8-bit Multiplier/Accumulator designed for medium performance, minimum power, real time signal processing applications such as digital filtering, Fast Fourier Transforms, and statistical correlation. Using two's complement carrysave arithmetic, this 40-pin LSI device delivers a 16-bit product in eight clock cycles. This will permit two devices to be cascaded to achieve a 16 -bit by 16 -bit multiplication in 940 ns when used over the full military operating range.
A functional block diagram of the Am25LS2516 is shown in Figure 1. The key elements are an 8 -bit $X$ input register followed by an 8 -bit $X$ latch, an 8 -bit $Y$ register, four 2-bit multipliers, a 2 -bit adder, two 8-bit accumulators (high order and low order), a byte selecting multiplexer and instruction decode logic. These components, equivalent to approximately 625 gate elements, are integrated onto a single chip fabricated using Advanced Micro Devices' high-performance, Low-Power Schottky technology. The on-chip accumulator is provided to minimize component count and power dissipation in a high density system. It also allows completion of a multiply and accumulate operation in the same time normally required for a multiply only. Other LSI multipliers currently available require the accumulator function to be provided externally.


Figure 1. 8-Bit by 8-Bit Multiplier Block Diagram with External Connections Required to Accumulate A 16-Bit Product.

## MULTIPLIER OPERATION

The Am25LS2516 is configured around an eight-line common input/output bidirectional bus. X and Y input and accumulator output data are routed via these bus lines. A two-rank register/ latch combination is used for the $X$ input to allow chaining of successive multiplies without losing a clock pulse; i.e., multiply and load vs. multiply. The latch holds the " $X$ " data for the multiplier, allowing the $X$ register to be loaded during any remaining multiply cycles. The " $Y$ " Register can be parallel loaded, by command, from the 8 -bit, on-chip bus from either the incoming 8 bits, or the Accumulator High or Accumulator Low Register (separate commands). The " Y " Register provides the 2-bit-at-a-time shift and the sign extend which allows the four 2-bit cells to operate in a serial by parallel mode. The multiplier produces a 2-bit product for each clock, LSB's first. Its output is accepted by the 2-bit adder as well as presented to external pins for expansion. A control gating array is provided to test for overflow during the last add cycle of the operation; i.e., cycle 8 for 8 -bit multiply and cycle 16 for 16 -bit multiply. The timing and control of this specific cycle is accomplished by the microcode chosen. The "HLDA" and "LYSA" instructions are provided for this purpose. The first cycle of a HOLD A following a multiply will cause the results of the overflow test to be stored. Two 8-bit accumulators are provided which must be externally connected in either an 8-bit, 16-bit, or greater configuration.
These accumulators as well as the $Y$ Register, are both organized as dual-rank shift registers, which allow them to shift two bits at a time. The serial inputs and outputs of the Y Register and the low and high order halves of the accumulator are all brought out to external pins for cascading the device.
The accumulator output is available both serially and in parallel. The accumulator results are available one bit later than the multiply cycle and the accumulator stops shifting during read cycles. If the device is used to compute $X \cdot Y$ products without accumulation, a minimum of two overhead cycles must accompany each multiply - one for reading the upper (lower) half of the accumulator and one for clearing of the accumulator during the loading of the X or Y Registers. An output multiplexer selects the high or low order accumulator contents for presentation to the bus in parallel 8 bits at a time.
The heart of this device is an 8-bit multiplier (Figure 2) made up of four 2-bit cells. Each cell has three inputs ( 2 bits wide), two dual carry-save full adders, with four flip-flops for temporary storage (two for carry-save and two for partial product). The multiplier is actually subdivided into two separate adders with appropriate carry-save. The first adder forms a partial sum representing $0,1 X$, $2 X$, or $3 X$ by using combinations of $X$ and $2 X$. The control of this combination of $Y_{0}$ and $Y_{1}$, respectively, to form $Y_{0} X_{n}+Y_{1} X_{n}+1$. This sum $(n X)$ is the input for the second adder. The second adder combines the first adder ( $n X$ ) sum with the stored partial product shifted two places plus carry to form a new partial product.

$$
\begin{aligned}
& P_{O M S B}+n X_{0}+C=P_{0 L S B} \\
& P_{1 M S B}+n X_{1}+C=P_{1 L S B}
\end{aligned}
$$

The two partial product bits of the least significant cell are made available to the SUMmer and the SUM out terminals. The LSB input controls the SUM out providing a pass through or add dependent on polarity.

## PROGRAMMING THE MULTIPLIER

The Am25LS2516 is an externally programmed device controlled by four instruction lines. This programmability provides a key to its flexibility. Sixteen microinstructions (see Table 1) are provided, which can be grouped into three major functions: Data Move, Read, and Multiply.
Instruction 0-3: The first instructions ("0", " 1 ", " 2 ", " 3 ") load the " $Y$ " Register from the Accumulator (high or low) and load the " X " Register while either clearing or not clearing, respectively, the Accumulator.
The next four instructions (" 4 ", " 5 ", " 6 ", " 7 ") load the " $Y$ " Register from external "bus" and Holds on the accumulators and multiplier.
Instruction " 7 " is unique and is used to execute a chain multiply. It provides the last multiply operation while loading the " $Y$ " Register, transferring the " X ", and clearing the multiplier.
Instrucitons " 8 " and " 9 " provide the read-out (upper and lower halves) of the Accumulator.
Instructions " $A$ " and " $B$ " internally transfer the respective halves of the Accumulator to the " $X$ " Register - another method of chain calculating.
Instruction " $C$ " is used as an idling instruction after multiplication in order to hold the product in the accumulator until a read instruction can be performed. NOTE: The operations of the instruction are in some cases stored by clocking the instructions into an instruction register, accounting for a clocked delay in operations. Specifically, the shifting of the Accumulator is an internally stored command and as such is started and stopped one clock cycle late, allowing the Accumulator to complete its data shifting during the first HOLD A cycle following a multiply and starting it one clock cycle after the multiplying cycle is started.

Instruction " $D$ " is a single iteration of the multiply and must be used for each bit in the multiplier minus one. The last bit of the multiplier will be handled by a HOLD A ("C") or a load $Y$ and multiply (7).
Instruction " $E$ " provides a load " $X$ " Register and Hold.
Instruction " $F$ " provides an intermediate instruction which can be executed during a multiply. It allows the " X " Register to load without disturbing the " $X$ " Latch, while continuing the iteration of the multiply.
Instructions " $C$ " and " 7 " also provide sampling and storage of the overflow condition.

TABLE I

MNEMONIC	INSTRUCTION $1_{3} 1^{1^{\prime} 1_{0}^{\prime}}$ IN HEX	FUNCTION	REMARKS
YLHC	0	LHA $\rightarrow$ Y, XFER X, CLR A CLR M, REACD OVFL	
YUHC	1	UHA $\rightarrow$ Y, XFER X, CLR A CLR M, READ OVFL.	
YLHA	2	LHA $\rightarrow Y$, XFER $X$ CLR M, READ OVFL	
YUHA	3	UHA $\rightarrow Y$, XFER X CLR M, READ OVFL	
LYCA	4	LOAD Y, XFER X, CLR A CLR M	Same function as 5
LYCA	5	$\begin{aligned} & \text { CLR A } \\ & \text { LOAD Y, XFER X, CLR M } \end{aligned}$	Same function as 4
LYHA	6	LOAD Y, XFER X, HOLD A CLR M	
LYSA	7	LOAD Y, XFER X, SHIFT A CLR M, MULTIPLY	Enables overfiow store in next state
RLHA	8	READ LHA READ OVFL	
RUHA	9	READ UHA READ OVFL	
XLHA	A	$\begin{aligned} & \text { LHA } \rightarrow \mathrm{X} \\ & \text { READ OVFL } \end{aligned}$	
XUHA	B	$\begin{aligned} & U H A \rightarrow Y \\ & \text { READ OVFL } \end{aligned}$	
HLDA	C	HOLD A	Enable overflow store
MULT	D	$\begin{aligned} & \text { MULTIPLY } \\ & \text { SHIFT A } \end{aligned}$	
LXHA	E	LOAD X, HOLD A	
LXSA	F	LOAD X, SHIFT A MULTIPLY	

*Continue multiplying instructions.


Figure 2. Am25LS2516 Multiplier Cell.

## APPLICATION OF THE MULTIPLIER

The flow diagram for an 8-bit two's complement multiply is shown in Figure 3, together with the required program micro-steps. Figure 4 extends this to include accumulate, intermediate load of $X$ and chain calculations. Figures $5 a$ and $b$ show the external connection of two Am25LS2516 devices to execute a 16-bit by 16-bit multiplication. A 32-bit product is completed in 16 clock cycles. This same technique may be extended in a similar fashion to longer word lengths. The flowchart of Figure 6 demonstrates a 16-bit two's complement multiply without accumulate, modified to a 12 -bit by 12 -bit function.

The Am25LS2516 Multiplier/Accumulator is the most complex LSI product manufactured to date with Low-Power Schottky technology. It will be extremely useful in high-density applications where minimum package count is a primary consideration. The device itself performs an $8 \times 8$ or $16 \times 16$ multiplication in approximately twice the time of parallel multipliers currently available, but using only one quarter the power in the multiplier portion of the function. In a fully configured system using both techniques, the Am25LS2516 performance begins to approach that of the parallel multiplier plus supporting devices.


## PROGRAM MICRO STEPS

$\#$	INST IN HEX
1	E
2	4
3	$D$
4	$D$
5	$D$
6	$D$
7	$D$
8	$D$
9	$D$
10	$D$
11	$C$
	IDLE

Figure 3. 8-Bit Two's Complement Multiply without Accumulate or Chain.

# Am25LS381 • Am54LS/74LS381 Am25LS2517 <br> Arithmetic Logic Unit/Function Generator Low-Power Schottky Integrated Circuits 

## DISTINCTIVE CHARACTERISTICS

- Three arithmetic functions
- Three logic functions
- Preset and clear functions
- Carry output ( $\mathrm{C}_{\mathrm{n}+4}$ ) and overflow (OVR) outputs on Am25LS2517
- Generate and propagate outputs for full lookahead carry on Am25LS381
- 8 mA sink current over the military temperature range on Am25LS
- 50 mV improved $\mathrm{V}_{\mathrm{OL}}$ on Am25LS compared to Am54LS/74LS
- $440 \mu \mathrm{~A}$ source current at HIGH output

RELATED PRODUCTS	
Part No.	Description
Am2901	Bit Slice
Am2903	Bit Slice
Am29203	Super Slice
Am29501	Multiport Pipeline Processor



## FUNCTIONAL DESCRIPTION

The Am25LS381 and Am54LS/74LS381 are arithmetic logic units (ALU)/function generators that perform three arithmetic operations and three logic operations on two 4 -bit words. The device can also output forced 0000 (clear) or 1111 (preset). These eight operations are selected using three function select inputs $\mathrm{S}_{0}, \mathrm{~S}_{1}$ and $\mathrm{S}_{2}$ as shown in the function table. Full carry look ahead is used over the four-bit field within the device. When devices are cascaded, multi-level full carry lookahead is implemented using a ' 182 carry look ahead generator and the $\overline{\mathrm{G}}$ and $\overline{\mathrm{P}}$ outputs on the Am25LS381 or Am54LS/ 74LS381. The device is packaged in a space-saving (0.3-inch row spacing) 20 -pin package. If the $\mathrm{C}_{\mathrm{n}}+4$ carry output function is required, the Am25LS2517 should be used.
The Am25LS381 is a high-performance version of the Am54LS/74LS381. Improvements include faster a. c. specifications, higher noise margin and twice the fan-out over the military temperature range.
The Am25LS2517 is an arithmetic logic unit (ALU)/function generator that performs three arithmetic operations and three logic operations on two 4 -bit words. The device can also force output 0000 (clear) or 1111 (preset). These eight operations are selected using three function select inputs $\mathrm{S}_{0}$, $S_{1}$ and $S_{2}$ as shown in the function table. Full carry lookahead is used over the four-bit field within the device. When devices are cascaded, the carry output $\left(\mathrm{C}_{\mathrm{n}+4}\right)$ is connected to the carry input ( $\mathrm{C}_{\mathrm{n}}$ ) of the next device. The Am25LS2517 can also detect two's complement overflow. The overflow output (OVR) is defined logically as $C_{n+3} \oplus C_{n+4}$.

CONNECTION DIAGRAMS Top Views


## Am25LS381•Am25LS2517

ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad \mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \% \quad$ MIN. $=4.75 \mathrm{~V} \quad \mathrm{MAX} .=5.25 \mathrm{~V}$

MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \% \quad \mathrm{MIN}=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.50 \mathrm{~V}$

## DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I O H=-440 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		MIL	2.5	3.4		Volts
				COM'L	2.7	3.4		
				$=4.0 \mathrm{~mA}$			0.4	
$v_{\text {OL }}$	Output LOW Voltage	$V_{I N}=V_{I H} \text { or } V_{I L}$		$=8.0 \mathrm{~mA}$			0.45	Volts
				$\mathrm{L}=16 \mathrm{~mA}$			0.55	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	Guaranteed input lo voltage for all input	cal HIGH		2.0			Volts
	Input L	Guaranteed input	cal LOW	MIL			0.7	Volts
$V_{\text {IL }}$	Input	voltage for all inpu		COM'L			0.8	Oits
$v_{1}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., IIN $=$	18 mA				-1.5	Volts
				Any S			-0.36	
11	Input LOW Current			Any A or B			-1.44	
	Input LOW Current	$V_{C C}=$ MAX., $V_{1 N}$		${ }^{\prime} \mathrm{LS} 381, \mathrm{C}_{\mathrm{n}}$			-1.08	
				${ }^{\prime} \mathrm{LS} 2517, \mathrm{C}_{\mathrm{n}}$			-1.44	
				Any S			20	
	Input HIGH Curren			Any A or B			80	
1 H	Tnput HIGH Current	$V_{C C}=$ MAX., $V_{\text {IN }}$		${ }^{\prime} \mathrm{LS} 381, \mathrm{C}_{\mathrm{n}}$			60	$\mu \mathrm{A}$
				${ }^{\prime}$ LS2517, $\mathrm{C}_{\mathrm{n}}$			80	
				Any S			0.1	
				Any A or B			0.4	
1	Input HIGH Curreni	$V_{C C}=$ MAX., $V_{\text {IN }}$	,	'LS381, $\mathrm{C}_{\mathrm{n}}$			0.3	mA
		$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}$	5.5 V	${ }^{\prime}$ LS2517, $\mathrm{C}_{\mathrm{n}}$			0.4	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX .			-15		-85	mA
			MIL	Am25LS381			40	
ICC	Power Supply Current	$V_{C C}=\mathrm{MAX}$.		Am25LS2517			43	mA
cc	(Note 4)			Am25LS381		25	43	
			COML	Am25LS2517		27	47	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Test conditions: LS381: $\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{GND}$, all other inputs open.

LS2517: $\mathrm{S}_{\mathrm{O}}=\mathrm{C}_{\mathrm{n}}=$ open, all other inputs $=$ GND.

## Am25LS • Am54LS/74LS

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage (Except Am25LS2517, C $\mathrm{C}_{\mathrm{n}}$ input $=5.5 \mathrm{~V}$ )	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

Am25LS/54LS/74LS381•Am25LS2517
Am54LS/74LS381
ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \% \quad$ MIN. $=4.75 \mathrm{~V} \quad \mathrm{MAX}=5.25 \mathrm{~V}$

MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \% \quad \mathrm{MIN} .=4.50 \mathrm{~V} \quad \mathrm{MAX} .=5.50 \mathrm{~V}$

## DC CHARACTERISTICS OVER OPERATING RANGE

Parameters Description Test Conditions (Note 1)

$\mathrm{VOH}_{\text {OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		MIL	2.5	3.4		Volts
				COM'L	2.7	3.4		
$\mathbf{V O L}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOL}=4 \mathrm{~mA}$74 LS only, $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.4	Volts
							0.5	
			$\overline{\mathrm{P}}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.5	
			$\overline{\mathrm{G}, I_{\mathrm{OL}}=16 \mathrm{~mA}}$				0.65	
$\mathbf{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM ${ }^{\prime}$			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					$-1.5$	Volts
IIL	Input LOW Current (Note 5)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		Any S			-0.4	mA
				Others			-1.6	
$\mathrm{I}_{\mathrm{IH}}$	Input HIGH Current (Note 5)	$V_{C C}=$ MAX., $V_{\text {IN }}=2.7 \mathrm{~V}$		Any S			20	$\mu \mathrm{A}$
				Others			$80^{\circ}$	
11	Input HIGH Current (Note 5)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		Any S			0.1	mA
				Others			0.4	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX .			-15		-100	mA
Icc	Power Supply Current (Note 4)	$V_{C C}=$ MAX.				25	43	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Test conditions: LS381: $S_{0}=S_{1} \doteq S_{2}=G N D$, all other inputs open.

LS2517: $S_{0}=C_{n}=$ open, all other inputs $=G N D$.
5. Limits chosen by AMD based on SN54S/74S381, T.I. LS data unavailable.

## DEFINITION OF FUNCTIONAL TERMS

$A_{0}, A_{1}, A_{2}, A_{3}$
The A data inputs
$B_{0}, B_{1}, B_{2}, B_{3}$
The B data inputs.
$\mathrm{S}_{\mathbf{0}}, \mathrm{S}_{\mathbf{1}}, \mathrm{S}_{\mathbf{2}}, \mathrm{S}_{\mathbf{3}}$
The control inputs used to determine the arithmetic or logic function performed.
$F_{0}, F_{1}, F_{2}, F_{3}$
The data outputs of the ALU.
$\mathrm{C}_{n}$
$\mathrm{C}_{\mathrm{n}+4} \quad$ The carry-look-ahead output of the four-bit The carry-l.
input field.
$\overline{\mathbf{G}} \quad$ The carry-generate output for use in multilevel look-ahead schemes.
$\overline{\mathbf{P}} \quad$ The carry-propagate output for use in multilevel look-ahead schemes.
OVR Overflow. This pin is logically the ExclusiveOR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the word, this pin indicates that the result of an arithmetic two's complement operation has overflowed into the sign-bit.

FUNCTION TABLE

Selection			Arithmetic/Logic
Operation			
S $_{\mathbf{2}}$	S $_{\mathbf{1}}$	S $_{\mathbf{0}}$	Clear
L	L	L	
L	L	H	A Minus B
L	H	L	A Plus B
L	H	H	A B B
H	L	L	A + B
H	L	H	AB
H	H	L	Preset
H	H	H	

$H=$ High Level, $L=$ Low Level
See Truth Table for full description.

SWITCHING CHARACTERISTICS

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )			Am25LS			Am54LS/74LS			Units
Param	Description	Test Conditions	Min	Typ	Max	Min	Typ	Max	
tpli	$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{F}_{\mathrm{i}}$	$\begin{gathered} C_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{gathered}$		14	21			26	ns
tPHL				16	24			30	
tple	$A_{i}$ or $B_{i}$ to $F_{i}$			16	24			30	ns
$\mathrm{t}_{\text {PHL }}$				23	35			40	
tple	$S_{i}$ to $\mathrm{F}_{\mathrm{i}}$			20	30			35	ns
$\mathrm{t}_{\text {PHL }}$				25	37			40	
tple	$\mathrm{A}_{\mathrm{i}}$ or $\mathrm{B}_{\mathrm{i}}$ to $\overline{\mathrm{G}}$ ('LS381 Only)			20	30			35	ns
tpHL				15	23			30	
tplh	$\mathrm{A}_{\mathrm{i}}$ or $\mathrm{B}_{\mathrm{i}}$ to $\overline{\mathrm{P}}$ ('LS381 Only)			17	26			34	ns
${ }^{\text {tPHL }}$				15	23			30	
${ }_{\text {tPLH }}$	$S_{i}$ to $\overline{\mathrm{G}}$ or $\overline{\mathrm{P}}$ ('LS381 Only)			32	48			55	ns
${ }_{\text {tPHL }}$				23	35			42	
${ }_{\text {tPLH }}$	$A_{i}$ or $B_{i}$ to OVR ('LS2517 Only)			23	34			-	ns
$\mathrm{t}_{\text {PHL }}$				24	36			-	
$t_{\text {PLL }}$	$A_{i}$ or $B_{i}$ to $\mathrm{C}_{\mathrm{n}+4}$ ('LS2517 Only)			21	32			-	ns
$\mathrm{t}_{\text {PHL }}$				24	36			-	
${ }_{\text {tPLH }}$	$\mathrm{S}_{\mathrm{i}}$ to OVR or $\mathrm{C}_{\mathrm{n}+4}$ ('LS2517 Only)			27	41			-	ns
$t_{\text {PHL }}$				37	55			-	
${ }_{\text {tPLH }}$	$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}+4}$ ('LS2517 Only)			14	21			-	ns
$t_{\text {PHL }}$				15	22			-	
$t_{\text {PLH }}$	$\mathrm{C}_{\mathrm{n}}$ to OVR ('LS2517 Only)			15	22			-	ns
$\mathrm{t}_{\text {PHL }}$				15	22			-	

## Am25LS ONLY <br> SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description	Test Conditions	$V_{\text {CC }}=5.0 \mathrm{~V} \pm 5 \%$		CC $=5.0 \mathrm{~V} \pm 10 \%$		Units
			Min	Max	Min	Max	
${ }_{\text {tPLH }}$	$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{F}_{\mathrm{i}}$	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$		27		30	
$\mathrm{t}_{\text {PHL }}$				35		42	ns
tpLH	$A_{i}$ or $B_{i}$ to $F_{i}$			32		36	s
${ }_{\text {tPHL }}$				44		50	
${ }_{\text {tPLH }}$	$S_{i}$ to $\mathrm{F}_{\mathrm{i}}$			38		42	ns
$\mathrm{t}_{\text {PHL }}$				48		55	ns
tPLH	$A_{i}$ or $\mathrm{B}_{\mathrm{i}}$ to $\overline{\mathrm{G}}$ ('LS 381 Only)			37		40	
$\mathrm{t}_{\text {PHL }}$				31		36	ns
tpLH	$A_{i}$ or $\mathrm{B}_{\mathrm{i}}$ to $\overline{\mathrm{P}}$ ('LS 381 Only)			34		39	ns
$\mathrm{t}_{\text {PHL }}$				34		42	ns
${ }_{\text {tPLH }}$	$\mathrm{S}_{\mathrm{i}}$ to $\overline{\mathrm{G}}$ or $\overline{\mathrm{P}}$ ('LS381 Only)			57		63	
tpHL				47		55	
$\mathrm{tpLH}^{\text {P }}$	$\mathrm{A}_{\mathrm{i}}$ or $\mathrm{B}_{\mathrm{i}}$ to OVR ('LS2517 Only)			41		45	
tpHL				47		55	
tpli	$A_{i}$ or $B_{i}$ to $\mathrm{C}_{\mathrm{n}+4}$ ('LS2517 Only)			38		40	ns
$\mathrm{t}_{\text {PHL }}$				46		52	
${ }_{\text {tPLH }}$	$\mathrm{S}_{\mathrm{i}}$ to OVR or $\mathrm{C}_{\mathrm{n}+4}$ ('LS2517 Only)			52		60	
$\mathrm{t}_{\text {PHL }}$				66		75	
tPLH	$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}+4}$ ('LS2517 Only)			28		32	ns
$\mathrm{t}_{\text {PHL }}$				28		30	ns
tpLH	$\mathrm{C}_{\mathrm{n}}$ to OVR ('LS2517 Only)			30		35	ns
tPHL				28		30	ns

[^20]

## TEST TABLE

Path		$\mathrm{S}_{0}$	S1	$\mathrm{S}_{2}$	$C_{n}$	Same Bit		Other Data Bits		Output Waveform
In	Out					4.5 V	GND	4.5 V	GND	
$\mathrm{C}_{\mathrm{n}}$	Any F	1	0	0	-	-	-	A's \& B's	None	out-of-phase
$\mathrm{C}_{n}$	$\mathrm{F}_{\mathrm{i}}$	1	0	0	-	$\mathrm{Bi}_{i}$	$\mathrm{A}_{i}$	A's \& B's	None	in-phase
$\mathrm{A}_{\mathrm{i}}$	$\mathrm{F}_{\mathrm{i}}$	0	1	0	0	-	$\mathrm{B}_{\mathrm{j}}$	None	A's \& B's	out-of-phase
$A_{i}$	$\mathrm{F}_{\mathrm{i}}$	0	1	0	1	-	$\mathrm{B}_{\mathrm{i}}$	None	A's \& B's	in-phase
$A_{i}$	OVRF	0	1	1	1	$\mathrm{B}_{\mathrm{i}}$	-	A's \& B's	None	in-phase
$A_{i}$	$C_{n+4}$	0	1	1	1	$\mathrm{B}_{\mathrm{i}}$	-	A's \& B's	None	in-phase
$\mathrm{B}_{i}$	$\mathrm{F}_{\mathrm{i}}$	0	1	0	0	-	$\mathrm{A}_{i}$	None	A's \& B's	out-of-phase
$\mathrm{B}_{\mathrm{i}}$	$\mathrm{F}_{\mathrm{i}}$	0	1	0	1	-	$\mathrm{A}_{i}$	-	A's \& B's	in-phase
$B_{i}$	OVRF	0	1	1	0	$\mathrm{A}_{\mathrm{i}}$	-	A's \& B's	None	out-of-phase
$B_{i}$	$C_{n+4}$	0	1	1	0	$\mathrm{A}_{\mathrm{i}}$	-	A's \& B's	None	out-of-phase
$\mathrm{A}_{\mathrm{i}}$	$F_{i+1}$	0	1	0	1	$\mathrm{B}_{\mathrm{i}}$	-	A's \& B's	None	out-of-phase
$\mathrm{B}_{\mathrm{i}}$	$F_{i+1}$	1	0	0	1	$\mathrm{A}_{\mathrm{i}}$	-	A's \& B's	None	out-of-phase
$\mathrm{S}_{0}$	$\mathrm{F}_{\mathrm{i}}$	-	0	0	1	$\mathrm{B}_{\mathrm{i}}$	$\mathrm{A}_{i}$	All B's	All A's	in-phase
$\mathrm{S}_{0}$	OVRF	-	1	1	0	-	-	None	A's \& B's	out-of-phase
$\mathrm{S}_{0}$	$C_{n+4}$	-	1	1	0	-	-	None	A's \& B's	out-of-phase
$\mathrm{S}_{1}$	$\mathrm{F}_{\mathrm{i}}$	0	-	0	1	$\mathrm{A}_{\boldsymbol{i}}$	$\mathrm{Bi}_{i}$	All A's	All B's	in-phase
$\mathrm{S}_{1}$	OVRF	0	-	1	X	-	-	None	A's \& B's	in-phase
$\mathrm{S}_{1}$	$C_{n+4}$	0	-	1	x	-	-	None	A's \& B's	in-phase
$\mathrm{S}_{2}$	$\mathrm{F}_{\mathrm{i}}$	0	1	-	1	$\mathrm{A}_{\mathrm{i}}$	$\mathrm{B}_{\mathrm{i}}$	All A's	All B's	in-phase
$\mathrm{S}_{2}$	OVRF	0	1	-	0	-	-	None	A's \& B's	out-of-phase
$\mathrm{S}_{2}$	$\mathrm{C}_{n+4}$	0	1	-	0	-	-	None	A's \& B's	in-phase

$X=$ Don't care

TRUTH TABLE

	inputs						OUTPUTS					
FUNCTION	$s_{0}$	$\mathrm{S}_{1}$	$\mathrm{S}_{2}$	$c_{n}$	$A_{n}$	$B_{n}$	$F_{0}$	F1	$F_{2}$	$F_{3}$	OVR	$c_{n+4}$
CLEAR	0	0	0	0 1	x $\times$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	0	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
B MINUS A	1	0	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
A MINUS B	0	1	0	1 0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
A PLUS 8	1	1	0	1 0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
$A \oplus B$	0	0	1	0 0 0 0 1 1 1 1	1 0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	1 1 0 0 1 0 0 1 1
$A+B$	1	0	1	1 0 0 0 0 1 1 1 1	1 0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
$A B$	0	1	1	1 0 0 0 0 1 1 1 1	0 0 1 1 0 0 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
PRESET	1	1	1	1 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$



TYPICAL SPEED CALCULATIONS

	Output	
Path	F	$C_{n}+4$, OVR
$A_{i}$ or $B_{i}$ to $C_{n+4}$	24 ns	24 ns
$C_{n}$ to $C_{n+4}$	15 ns	15 ns
$C_{n}$ to $C_{n+4}$	15 ns	15 ns
$C_{n}$ to $F_{i}$	16 ns	-
$C_{n}$ to $C_{n+4}$, OVR	-	15 ns
16 -Bit Speed	70 ns	

The Am25LS2517 in a 16 -Bit Ripple Carry ALU Connection.


TYPICAL SPEED CALCULATIONS

	Output	
Path	$F$	$C_{n}+4$, OVR
$A_{i}$ or $B_{i}$ to $\bar{G}$ or $\bar{P}$	$20 \mathrm{~ns} *$	$20 \mathrm{ns*}$
$\bar{G}_{i}$ or $\bar{P}_{i}$ to $C_{i+j}$	8 ns	8 ns
(Am 2902 )		
$C_{n}$ to $F$	16 ns	-
$C_{n}$ to $C_{n+4,}$ OVR	-	15 ns
16 -Bit Speed	44 ns	

* Note that $\mathrm{S}_{\mathrm{i}}$ to G or P may be longer path.

The Am25L.S2517 and Am25LS381 in a 16-Bit Carry Lookahead ALU Connection.

## GUARANTEED LOADING RULES OVER OPERATING RANGE (In Unit Loads)

A Low-Power Schottky TTL Unit Load is defined as $20 \mu \mathrm{~A}$ measured at 2.7 V HIGH and -0.36 mA measured at 0.4 V LOW.

Pin No.'s	Input/Output	Am25LS				Am54LS/74LS			
		Input Load	$\begin{gathered} \text { Output } \\ \text { HIGH } \\ -440 \mu \mathrm{~A} \\ \hline \end{gathered}$	MIL	utput OW COM'L	Input Load	$\begin{gathered} \text { Output } \\ \text { HIGH } \\ -400 \mu \mathrm{~A} \\ \hline \end{gathered}$		Output   LOW COM'L
1	$\mathrm{A}_{1}$	4.0	-	-	-	4.4	-	-	-
2	$\mathrm{B}_{1}$	4.0	-	-	-	4.4	-	-	-
3	$\mathrm{A}_{0}$	4.0	-	-	--	4.4	-	--	-
4	$\mathrm{B}_{0}$	4.0	-	-	--	4.4	-	-	-
5	$\mathrm{S}_{0}$	1.0	-	-	-	1.1	-	-	-
6	$\mathrm{S}_{1}$	1.0	-	-	-	1.1	-	-	-
7	$\mathrm{S}_{2}$	1.0	-	-	-	1.1	-	-	-
8	$\mathrm{F}_{0}$	-	22	22	22	-	20	11	22
9	$\mathrm{F}_{1}$	-	22	22	22	-	20	11	22
10	GND	-	-	-	-	-	-	-	-
11	$\mathrm{F}_{2}$	-	22	22	22	-	20	11	22
12	$\mathrm{F}_{3}$	-	22	22	22	-	20	11	22
13	$\overline{\mathrm{G}}$ or OVR*	-	22	44	44	-	20	44	44
14	$\overline{\mathrm{P}}$ or $\mathrm{C}_{\mathrm{n}+4}$	-	22	22	22	-	20	11	22
15	$\mathrm{C}_{\mathrm{n}}$	3.0**	-	-	-	4.4	-	-	-
16	$\mathrm{B}_{3}$	4.0	-	-	-	4.4	-	-	-
17	$\mathrm{A}_{3}$	4.0	-	-	-	4.4	-	-	-
18	$\mathrm{B}_{2}$	4.0	-	--	-	4.4	-	-	-
19	$\mathrm{A}_{2}$	4.0	-	-	-	4.4	-	-	-
20	$\mathrm{V}_{\mathrm{CC}}$	-	-	-	-	-	-	-	-

- OVR Drive is 22 Unit Loads.
**4.0 for Am25LS2517.



## USER NOTES

1. Throughout this data sheet, the active HIGH input and output terminology has been used.
2. Arithmetic operations are performed on a word basis.
3. Logic operations are performed on a bit basis.
4. Arithmetic in 1 's complement notation requires an end around carry.
5. Subtraction in 2's complement notation requires a carry in ( $\mathrm{C}_{\mathrm{n}}=\mathrm{HIGH}$ ) for the active HIGH case.

# Understanding the Am25LS2517 and the Am25LS381 <br> By John R. Mick 

## INTRODUCTION

The heart of most digital arighmetic processors is the arithmetic logic unit (ALU). The ALU can be thought of as a digital subsystem that performs various arithmetic and logic operations on two digital input variables. The Am25LS2517 and the Am25LS381 are Schottky TTL arithmetic logic units/ function generators that perform eight arithmetic/logic operations on two four-bit input variables. In most ALU's, speed is generally a key ingredient. Therefore, as much parallelism in the operation of the arithmetic logic unit as possible is desired.
The Am25LS381 ALU is designed to operate with a ' 182 carry lookahead generator to perform multi-level full carry lookahead over any number of bits. Therefore, the Am25LS381 has both the carry generate and carry propagate outputs required by the '182 carry lookahead generator. The Am25LS2517, on the other hand, does not have the carry generate and carry propagate functions, but rather has the carry output ( $\mathrm{C}_{\mathrm{n}}+4$ ) and a two's complement overflow detection signal (OVR) available at the output. The net result is that a very high-speed 16 -bit arithmetic logic unit/function generator can be designed and assembled using three Am25LS381's, one Am25LS2517, and one Am2902 (the Am2902 is a high-speed version of the '182 carry lookahead generator).

## UNDERSTANDING THE FULL ADDER

The results of an arithmetic operation in any position in a word depends not only on the two-input operand bits at that position, but also on all the lesser significant operand bits of the two input variables. The final result for any bit, therefore, is not available until the carries of all the previous bits have rippled through the logic array starting from the least significant bit and propagating through to the most significant bit. A full adder is a device that accepts two individual operand bits at the same binary weight, and also accepts a carry input bit from the next lesser significant weight full adder. The full adder then produces the sum bit for this bit position and also produces a carry bit to be used in the next more significant weight full adder carry input. The truth table for a full adder is
shown in Figure 1. From this truth table, the equations for the full adder:

$$
\begin{aligned}
& S=A \oplus B \oplus C \\
& C_{0}=A B+B C+A C,
\end{aligned}
$$

where $A$ and $B$ are the input operands to the full adder and $C$ is the carry input into the adder.
The sum output, S , represents the sum of the A and B operand inputs and the carry input. The carry output, $\mathrm{C}_{0}$, represents the, carry out of this cell and can be used in the next more significant cell of the adder. Full adder cells can be cascaded as depicted in Figure 2 to form a four-bit ripple carry parallel adder.

Inputs			Outputs	
A	B	C	S	$\mathbf{C}_{0}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figure 1. Full Adder Truth Table.
Note that once we have cascaded devices as shown in Figure 2, we may wish to discuss the equations for the i-th bit of the adder. In so doing, we might describe the equations of the full adder as follows:

$$
\begin{aligned}
& S_{i}=A_{i} \oplus B_{i} \oplus C_{i} \\
& C_{i+1}=A_{i} B_{i}+B_{i} C_{i}+A_{i} C_{i}
\end{aligned}
$$

where the $A_{i}$ and $B_{i}$ are the input operands at the $i$-th bit, and the $\mathrm{C}_{\mathrm{i}}$ is the carry input to the i -th bit. (Note that the equations for this adder are iterative in nature and each depends on the result of the previous lesser significant bits of the adder array.)


Figure 2. Cascaded Full Adder Cells Connected as a Four-Bit Ripple-Carry Full Adder.

The connection scheme shown in Figure 2 requires a ripple propagation time through each full adder cell. If a 16 -bit adder is to be assembled, the carry will have to propagate through all 16 full adder cells. What is desired is some technique for anticipating the carry such that we will not have to wait for a ripple carry to progagate through the entire network. By using some additional logic, such an adder array can be constructed. This type of adder is usually called a carry lookahead adder.

## A FOUR-BIT CARRY LOOKAHEAD ADDER

Looking back to the equations developed for i-th bit of an adder, let us now rewrite the carry equation in a slightly different form. When we factor the $\mathrm{C}_{\mathrm{i}}$ in this equation, the new equation becomes:

$$
C_{i+1}=A_{i} B_{i}+C_{i}\left(A_{i}+B_{i}\right)
$$

From the above equation, let us now define two additional equations. These are:

$$
\begin{aligned}
& G_{i}=A_{i} B_{i} \\
& P_{i}=A_{i}+B_{i}
\end{aligned}
$$

With these two new auxiliary equations, we can now rewrite the carry equation for the $i$-th bit as follows:

$$
\mathrm{C}_{i+1}=\mathrm{G}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}
$$

Note that we have now developed two terms: the $P_{i}$ term is known as carry propagate and the $\mathrm{G}_{\mathrm{j}}$ term is known as carry generate. An anticipated carry can be generated at any stage of the adder by implementing the above equations and using the auxiliary functions $P_{i}$ and $G_{i}$ as required.
It is interesting to note that the sum equation can also be written in terms of these two auxiliary equations, $\mathrm{P}_{\mathrm{i}}$ and $\mathrm{G}_{\mathrm{i}}$. For this case, the equation is:

$$
S_{i}=\left(A_{i}+B_{i}\right)\left(A_{i} B_{i}\right) \oplus C_{i}
$$

The auxiliary function $\mathrm{G}_{\mathrm{i}}$ is called carry generate, because if it is true, then a carry is immediately produced for the next adder stage. The function $P_{i}$ is called carry propagate because it implies there will be a carry into the next stage of the adder if there is a carry into this stage of the adder. That is, $\mathrm{G}_{\mathrm{j}}$ causes a carry signal at the $i$-th stage of the adder to be generated and presented to the next stage of the adder while $\mathrm{P}_{\mathrm{i}}$ causes an existing carry at the input to the i-th stage of the adder to propagate to the next stage of the adder.
Let us now write all of the sum and carry equations required for a full four-bit lookahead carry adder.

$$
\begin{aligned}
& S_{0}=A_{0} \oplus B_{0} \oplus C_{0} \\
& S_{1}=A_{1} \oplus B_{1} \oplus\left[G_{0}+P_{0} C_{0}\right] \\
& S_{2}=A_{2} \oplus B_{2} \oplus\left[G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}\right] \\
& S_{3}=A_{3} \oplus B_{2} \oplus\left[G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}\right] \\
& C_{i+4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}
\end{aligned}
$$

An important point to note is that all of the sum equations and the final carry output equation, $\mathrm{C}_{\mathrm{i}+4}$, can be written in terms of the $A_{i}, B_{i}$, and $C_{0}$ inputs to the four-bit adder. The configuration as described above is shown in Figure 3. This figure is divided into two parts - the upper blocks show the auxiliary function generator circuitry required to implement the $P_{i}$ and $\mathrm{G}_{\mathrm{i}}$ equations while the lower block implements the logic required to generate the sum output at each bit position.
A serious drawback to the lookahead carry adder is that as the word length is increased, the carry functions become more and more complex, eventually becoming impractical due to the large number of interconnections and heavy loading of the $\mathrm{G}_{\mathrm{i}}$ and $\mathrm{P}_{\mathrm{i}}$ functions. The auxiliary function concept can be extended, however, by dividing the word length into fairly small increments and defining blocks of auxiliary functions $G$ and $P$.


Figure 3. Full Four-Bit Carry-Lookahead Adder.
It is possible for a given block, to define a function $G$ as the carry out generated with the block; and $P$ can be defined as the carry propagate over the block. If the block size is set at four bits, then the functions for $G$ and $P$ for this block can be defined as follows:

$$
\begin{aligned}
& G=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0} \\
& P=P_{3} P_{2} P_{1} P_{0}
\end{aligned}
$$

It is important to note that neither of these terms involves a carry-in ( $\mathrm{C}_{0}$ ) to the block, so no matter how many blocks are tied in an adder, all the blocks have stable $G$ and $P$ functions available in a minimum number of gate delays.

The $G$ and $P$ functions can be gated to produce a carry-in to each four-bit block, as a function of the lesser significant blocks. The carry-in to a block in is therefore:

$$
\begin{aligned}
C_{n}= & G_{n-1}+P_{n-1} G_{n-2}+P_{n-1} P_{n-2} G_{n-3}+\ldots \\
& +P_{n-1} P_{n-2} P_{n-3} \ldots P_{2} P_{1} P_{0} C_{0}
\end{aligned}
$$

Finally, the carry-in to each of the bits in a four-bit block must include a term for the actual least significant carry-in; note, therefore, that the equations for the four-bit full adder presented above include a term for carry-in at each bit position. Figure 4 shows the logic diagram for the Am25LS381 arithmetic logic unit/function generator while Figure 5 shows the logic diagram for the Am25LS2517 arithmetic logic unit/ function generator. Note the generate and propagate outputs


Figure 4. Logic Diagram of The Am25LS381.
on the Am25L.S381, and the carry output and overflow output on the Am25LS2517. Figure 6 gives the function table for both the Am25LS2517 and Am25LS381. Figure 7 shows the technique for cascading three Am25LS381's, one Am25LS2517, and one Am2902 in a full 16-bit high-speed carry lookahead connection. Figure 8 shows a connection scheme using only four Am25LS2517's in a 16-bit arithmetic logic unit connection where the carries are rippled between the devices. Each Am25LS2517 does use internal carry lookahead over the four-bit block.

In summary, the ripple carry method can be used in conjunction with the lookahead technique in several ways.

1. Lookahead carry over sections of the adder and ripple carry between these sections of the adder can be used. This method is often the most efficient in terms of hardware for


Figure 5. Logic Diagram of the Am25LS2517.

Selection			Arithmetic/Logic
Operation			
S $_{\mathbf{2}}$	S $_{\mathbf{1}}$	S $_{\mathbf{0}}$	Clear
L	L	L	B Minus A
L	L	H	A Minus B
L	H	L	A Plus B
L	H	H	A B
H	L	L	A + B
H	L	H	AB
H	H	L	Preset
H	H	H	

H = High Level, L = Low Level
Figure 6. Function Table for the Am25LS2517 and Am25LS381.


Figure 7. Full Lookahead Carry 16-Bit Adder.


Figure 8. Connection of 16 -Bit ALU Using Ripple Carry.
a given speed requirement. It does not require the use of a lookahead carry generator such as the Am2902.
2. Lookahead carry across 16 -bit blocks with a ripple carry between 16 -bit blocks can be used. This technique is usually called two-level carry lookahead addition. This technique results in very high-speed arithmetic function generation and makes a reasonable tradeoff between the speed and hardware for word lengths greater than 16 bits.
3. Full lookahead carry across all levels and all block sizes can be used. This is the highest speed arithmetic logic unit connection scheme. For word sizes up to 64 bits, it is referred to as three-level lookahead carry addition. Such a 64-bit ALU requires the use of five Am2902 carry lookahead generator units in addition to the 15 Am25LS381 devices and one Am25LS2517 as shown in Figure 9.

## OVERFLOW

When two's complement numbers are added or subtracted, the result must lie within the range of the numbers that can be handled by the operand word length. Numbers are normally represented either as fractions with a binary point between the sign bit and the rest of the word, or as integers where the binary
point is after the least significant bit. The actual choice for the location of the binary point is really up to the design engineer, as the hardware configuration required for either technique is identical. It is also possible to use number notations that include both integer and fractional representations in the same numbering scheme. Overflow is defined as the situation where the result of an arithmetic operation lies outside of the number range that can be represented by the number of bits in the word. For example, if two eight-bit numbers are added and the result does not lie within the number range that can be represented by an eight-bit word, we say that an overflow has occured. This can happen at either the positive end of the number range or at the negative end of the number range. The logic function that indicates that the result of an operation is outside of the representable number range is:

$$
\mathrm{OVR}=\mathrm{C}_{\mathrm{s}} \oplus \mathrm{C}_{\mathrm{s}+1}
$$

where $C_{S}$ is the carry-in to the sign bit and $C_{S+1}$ is the carry-out of the sign bit.

Thus, for a four-bit ALU with the sign bit in the most significant bit position, the overflow can be defined as the $C_{n+4}$ term exclusive OR'ed with the $\mathrm{C}_{\mathrm{n}}+3$ term.


Figure 9. 64-Bit ALU with Full Carry Lookahead Using 5 Am2902's, 15 Am25LS381's and 1 Am25LS2517.

## SPEED OR DELAY

Usually, the most important parameter in the design of any arithmetic logic unit is speed. How fast can two numbers be added? Is ripple carry sufficient or should carry lookahead over the entire adder array be used? In order to answer these questions, the design engineer must first evaluate the speed of the ALU required in his system. Then he can evaluate the various alternatives based on the number of bits in the word being used in the design.
The calculation of the speed (add or subtract time) of a 16 -bit adder is straightforward and will be discussed in detail. It should be mentioned that the speed of the adder while in the logic mode is simply the propagation delay from the $A_{i}$ or $\mathrm{B}_{\mathrm{i}}$ inputs to the $\mathrm{F}_{\mathrm{i}}$ outputs ( 35 ns maximum at $25^{\circ} \mathrm{C}$ and 5 V for the Am25LS2517).

## LOOKAHEAD CARRY

The typical method for building 16 -bit ALU's is to employ a carry lookahead generator such as the Am2902. Such a 16 -bit design would incorporate three Am25LS381's, one Am25LS 2517, and one Am2902. For the 16 -bit full carry lookahead adder in the add or subtract mode as shown in Figure 7, the maximum propagation delay for data-in to data-out is calculated as follows:

## DATA PATH DELAY

16-BIT LOOKAHEAD ADDER/SUBTRACTOR
( +5 V and $25^{\circ} \mathrm{C}$ Maximum Delays)

Path	Output			Units
	$\mathbf{F}_{\mathbf{i}}$	$\mathbf{C}_{\boldsymbol{n}+4}$	OVR	
$A_{i}$ or $B_{i}$ to $\bar{G}$ or $\bar{P}$	27	27	27	ns
$\mathrm{G}_{\mathrm{i}}$ or $P_{i}$ to $C_{i+j}$ (Am2902)	10	10	10	ns
$C_{n}$ to $F_{i}$	23	-	-	ns
$C_{n}$ to $C_{n+4}$ or OVR	-	22	22	ns
TOTAL				
16 -bit delay	60	59	59	ns

The data path for this computation begins at the least significant 4-bit device, propagates through the Am2902, and then ends at the most significant 4 -bit device. Actually, the delay to the outputs of the most significant device (MSD), then second MSD, or third MSD is identical.
Thus, the above speed is identical if a 12 -bit ALU is fabricated. This results because the same types of combinatorial propagation delays are involved.
We should also investigate the delay of this adder with regard to the select inputs as shown in Figure 7. Again, we may calculate the 16 -bit full carry lookahead add/subtract delay as follows:

## 16-BIT LOOKAHEAD ADDER DELAY FOR SELECT INPUTS <br> ( +5 V and $25^{\circ} \mathrm{C}$ Maximum Delays)

Path	Output			Units
	$\mathrm{F}_{\mathrm{i}}$	$\mathrm{C}_{\mathrm{n}+4}$	OVR	
$\mathrm{S}_{\mathrm{i}}$ to $\overline{\mathrm{G}}$ or $\overline{\mathrm{P}}$	48	48	48	ns
$\mathrm{G}_{\mathrm{i}}$ or $\mathrm{P}_{\mathrm{i}}$ to $\mathrm{C}_{\mathrm{i}+\mathrm{j}}$ (Am2902)	10	10	10	ns
$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{F}_{\mathrm{i}}$	23	-	-	ns
$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}+4}$ or OVR	-	22	22	ns
TOTAL				
16-bit delay	81	80	80	ns

Let us examine the speed of a 64 -bit arithmetic logic unit fabricated as shown in Figure 9. The worst case path for this design is as follows:

DATA PATH DELAY 64-BIT LOOKAHEAD ADDER/SUBTRACTOR ( +5 V and $25^{\circ} \mathrm{C}$ Maximum Delays)

Path	Output			Units
	$F_{i}$	$C_{n+4}$	OVR	
$A_{i}$ or $B_{i}$ to $\bar{G}$ or $\bar{P}$	27	27	27	ns
$\mathrm{G}_{\mathrm{i}}$ or $P_{i}$ to $G_{i}$ or $P_{i}$ (Am2902)	14	14	14	ns
$\mathrm{G}_{\mathrm{i}}$ or $P_{i}$ to $C_{i+j}\left(A_{m} 2902\right)$	10	10	10	ns
$C_{n}$ to $C_{i+j}(A m 2902)$	14	14	14	ns
$C_{n}$ to $F_{i}$	23	-	-	ns
$C_{n}$ to $C_{n+4}$ or OVR	-	22	22	ns
TOTAL				
$\quad 16$-bit delay	88	87	87	ns

The above example demonstrates the speed improvement when using carry lookahead over the entire array. When this 64 -bit example is compared with the previous 16 -bit example, it will be found that the only difference is the addition of two Am 2902 delays.

## RIPPLE CARRY

The slowest speed ALU design employs the ripple carry technique. When four-bit devices such as the Am25LS2517 are employed in such an ALU, the speed is usually computed using the combinatorial delay terms in the following manner.

1. Select the longest combinatorial delay in the least significant device from any input to the carry output, $\mathrm{C}_{\mathrm{n}}+4$. This is usually from the A or B inputs to the carry output.
2. Add the carry input to carry output propagation delay as many times as required to represent each of the intermediate four-bit ALU's.
3. Finally, take the propagation delay from the carry input to the ALU adder outputs.
When the above rules are followed, the total worst case propagation delay over the entire ALU bit width is derived.
If we consider the ripple carry adder/subtractor configuration as shown in Figure 8, the propagation delay for the data input to data output path is computed as follows:

DATA PATH DELAY
16-BIT RIPPLE CARRY ADDER/SUBTRACTOR ( +5 V and $+25^{\circ} \mathrm{C}$ Maximum Delays)

- Path	Output			Units
	$\mathrm{F}_{\mathrm{i}}$	$\mathrm{C}_{\mathrm{n}+4}$	OVR	
$A_{i}$ or $B_{i}$ to $C_{n+4}$	36	36	36	ns
$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}+4}$	22	22	22	ns
$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}+4}$	22	22	22	ns
$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{F}_{\mathrm{i}}$	23	-	-	ns
$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}+4}$ or OVR	-	22	22	ns
TOTAL				
16-bit delay	103	102	102	ns

In this connection, the maximum delay begins at the least significant device and propagates through the most significant device via the ripple carry path.
The select to output delay is computed in a similar manner using $S_{i}$ to $C_{n+4}$ as the first term and is found to be:
$S_{i}$ to $F_{i}=122 \mathrm{~ns} ; S_{i}$ to $C_{n+4}=12 n s ; S_{i}$ to $O V R=121 \mathrm{~ns}$

The ripple carry computational examples show the speed of a 16 -bit ALU function/generator built using four Am25LS 2517's.

## COMPARING THE '2517/'381 WITH THE '181

To compare the performance of the Am25LS2517 and LS381, we should evaluate the various '181 ALU's connected in a 16 -bit configuration with the Am 2902 carry lookahead generator used in all configurations as shown in Figure 7. The comparison for the $A_{i}$ or $B_{i}$ to $F_{i}$ add/subtract time is as follows:

COMPARISON OF 16-BIT ADDER/SUBTRACTOR DATA DELAY USING 4 ALU's AND 1 Am 2902

ALU Device	Maximum Add/Subtract Delay +5 V and $25^{\circ} \mathrm{C}$	$\begin{gathered} \text { Maximum } \\ \text { Power* }^{*} \\ V_{C C}=+5.25 \mathrm{~V} \end{gathered}$
Am74S181	37 ns	914 mA
Am 74181	64ns	694 mA
Am74LS181	69 ns	242 mA
Am25LS181	55 ns	$242 \mathrm{~mA}{ }^{\circ}$
Am25LS381/Am25LS2517	60ns	266 mA

*Note: Of this power, 94 mA is the Am2902

Even more important is the comparison of "System Speed" normally associated with the ALU function. If we assume the system configuration as shown in Figure 10, then a reasonable comparison of speed for $A_{i}$ or $B_{i}$ to OVERFLOW can be made as follows:

SPEED AND POWER
FOR ALU SYSTEMS OF FIGURE 10

Path	$\begin{gathered} \text { All } \\ \text { "S" } \end{gathered}$	$\begin{gathered} \text { All } \\ 25 \mathrm{LS} \end{gathered}$	$\begin{gathered} \text { All } \\ 74 \mathrm{LS} \end{gathered}$	All Gold Doped	$\begin{aligned} & \text { 'LS381 } \\ & \text { 'LS2517 } \end{aligned}$	Units
$A_{i}$ or $B_{i}$ to $G$ or $P$	15	26	33	25	27	ns
$\begin{aligned} & \text { G or } P \text { to } C_{i+j} \\ & \text { (Am2902) } \end{aligned}$	10	10	10	10	10	ns
$\mathrm{C}_{\mathrm{n}}$ to OVR	-	-	-	-	22	ns
$\mathrm{C}_{\mathrm{n}}$ to $\mathrm{F}_{3}$	12	19	26	19	-	ns
$\mathrm{C}_{\text {out }}$ to OVR	21	-	60	60	-	ns
TOTAL	58	55	129	114	59	ns
POWER	998		253	748	266	mA

*no 25LS

a) The '181 Connection

b) The ' $381 /$ '2517 Connection

Figure 10. The Normal ALU System.

## SUMMARY

The Am25LS381 and Am25LS2517 offer superior performance utilizing the space saving 20 -pin package. The data add/ subtract time compares very favorably with the 74181 and 74 S 181 with a considerable reduction ( $1 / 3$ to $1 / 4$ ) in dissi-
pated power. The Am25LS381 and Am25LS2517 combination provide the OVR function not currently available or easily to implement on any '181 configuration. The 20 -pin package configuration offers at least a 2:1 saving in PC board area compared to the '181 24 -pin package approach.

## Am25LS2518 Quad D Register with Standard and Three-State Outputs

## distinctive characteristics

- Low-power Schottky version of the popular Am2918 and Am25S18
- Four standard totem-pole outputs
- Four three-state outputs
- Four D-type flip-flops
- Second sourced by T. I. as the SN54/74LS388

RELATED PRODUCTS	
Part No.	Description
Am25S18	Quad D'Register
Am2918	Quad D Register
Am29LS18	Quad D LLw Power Register
Am29LS2519	Quad D Low Power Register



## FUNCTIONAL DESCRIPTION

The Am25LS2518 consists of four D-type flip-flops with a buffered common clock. Information meeting the set-up and hold requirements on the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock.
The same data as on the $Q$ outputs is enabled at the threestate $Y$ outputs when the "output control" ( $\overline{O E}$ ) input is LOW. When the $\overline{O E}$ input is HIGH, the $Y$ outputs are in the high-impedance state.
The Am25LS2518 is a 4-bit, high-speed register intended for use in real-time signal processing systems where the standard outputs are used in a recursive algorithm and the three-state outputs provide access to a data bus to dump the results after a number of iterations.
The device can also be used as an address register or status register in computers or computer peripherals.
Likewise, the Am25LS2518 is also useful in certain display applications where the standard outputs can be decoded to drive LED's (or equivalent) and the three-state outputs are bus organized for occasional interrogation of the data as displayed.


## Am25LS2518

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \% \quad \mathrm{MIN} .=4.75 \mathrm{~V} \quad M A X .=5.25 \mathrm{~V}$
MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \% \quad \mathrm{MIN} .=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.50 \mathrm{~V}$
DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ.   (Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	Q, $I_{O H}=-660 \mu \mathrm{~A}$	MIL	2.5	3.4		Volts
				COM'L	2.7	3.4		
				$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4	3.4		
				$C O M ' L,{ }^{\prime} \mathrm{OH}=-2.6 \mathrm{~mA}$	2.4	3.4		
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4.0 \mathrm{~mA}$				0.4	Volts
			$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.45	
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$				0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
$1_{1 H}$	Input HIGH Current *	$V_{C C}=M A X ., V_{I N}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA
${ }^{\prime} \mathrm{OZ}$	Off-State (High-Impedance) Output Current	$V_{C C}=M A X$.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2$				20	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX.			-15		-85	mA
${ }^{1} \mathrm{CC}$	Power Supply Current (Note 4)	$V_{C C}=$ MAX.				17	28	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. ICC is measured with all inputs at 4.5 V and all outputs open.

## Am25LS

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	$-30 \mathrm{~mA} \mathrm{to}+5.0 \mathrm{~mA}$

## Am25LS2518

SWITCHING CHARACTERISTICS
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}\right)$

Parameters	Description		Min.	Typ.	Max.	Units	Test Conditions
tPLH	Clock to $\mathrm{Q}_{\mathrm{i}}$		:	18	27	ns	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL				18	27		
tpLH	Clock to $\mathrm{Y}_{\mathrm{i}}(\overline{O E}$ LOW)			18	27	ns	
tPHL				18	27		
tpw	Clock Pulse Width	LOW	18			ns	
		HIGH	15				
$\mathrm{t}_{5}$	Data		15			ns	
th	Data		5.0			ns	
${ }^{\text {I }} \mathrm{ZH}$	$\overline{O E}$ to $Y_{i}$		-	7.0	11	ns	
${ }^{\text {t }} \mathrm{L}$ L				8	12		
${ }_{\text {t }} \mathrm{HZ}$	$\overline{\mathrm{OE}}$ to $\mathrm{Y}_{\mathrm{i}}$			14	21	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }_{t}{ }_{L}$				12	18		$R_{L}=2.0 \mathrm{kS}$
$f_{\text {max }}$	Maximum Clock Frequency (Note 1)		35	50		MHz	

Note 1. Per industry convention, $f_{m a x}$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}, t_{f}$, pulse width or duty cycle.

## SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description		$\begin{array}{r} T_{A}=0 \\ V_{C C} \\ \text { Min. } \end{array}$	$\begin{aligned} & +70^{\circ} \mathrm{C} \\ & \mathrm{~V} \pm 5 \% \\ & \text { Max. } \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=-5 \\ V_{C C}= \\ M i n . \end{gathered}$	$\begin{gathered} 0+125 \\ V \pm 10^{\circ} \\ \text { Max. } \end{gathered}$	Units	Test Conditions
tPLH	Clock to $\mathrm{O}_{\mathbf{i}}$			38		45		$\begin{aligned} C_{L} & =50 \mathrm{pF} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL				38		45	ns	
tpLH	Clock to $\mathrm{Y}_{\mathrm{i}}(\overline{O E}$ LOW)			35		40	ns	
tPHL				35		40		
${ }^{t} \mathrm{pw}$	Clock Pulse Width	LOW	20		20		ns	
		HIGH	20		20			
$\mathrm{t}_{\text {s }}$	Data		15		15		ns	
th	Data		5.0		5.0		ns	
${ }^{\text {Z }} \mathrm{ZH}$	$\overline{O E}$ to $\mathrm{Y}_{i}$			15		17	ns	
${ }^{\text {t }} \mathrm{L}$				16		17		
${ }^{\text {thz }}$	$\overline{O E}$ to $Y_{i}$			27		30	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }_{t} \mathrm{~L}$ L				24		30		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$
$f_{\text {max }}$	Maximum Clock Frequency (Note 1)		30		25		MHz	

${ }^{*}$ AC performance over the operating temperature range is guaranteed by testing defined in Group $A$, Subgroup 9 .

## DEFINITION OF FUNCTIONAL TERMS

$D_{i}$ The four data inputs to the register.
$\mathbf{a}_{\mathbf{i}}$ The four data outputs of the register with standard totem-pole active pull-up outputs. Data is passed noninverted.
$\mathbf{Y}_{\mathbf{i}}$ The four three-state data outputs of the register. When the three-state outputs are enabled, data is passed noninverted. A HIGH on the "output control" input forces the $Y_{i}$ outputs to the high-impedance state.
CP Clock. The buffered common clock for the register. Enters data on the LOW-to-HIGH transition.
$\overline{\mathrm{OE}}$ Output Control. When the $\overline{\mathrm{OE}}$ input is HIGH, the Yi outputs are in the high-impedance state. When the $\overline{\mathrm{OE}}$ input is LOW, the TRUE register data is present at the $Y_{i}$ outputs.

## TRUTH TABLE

INPUTS			OUTPUTS		NOTES
$\overline{O E}$	cLock	D	0	$Y$	
H	L	$\times$	NC	z	-
H	H	x	NC	z	-
H	$\dagger$	L	L	z	-
H	$\uparrow$	H	H	z	-
L	$\uparrow$	L	L	L	-
L.	$\uparrow$	H	H	H	-
L	-	-	L	L	1
L	-	-	H	H	1


$L=$ LOW	NC = No change
$H=$ HIGH	$\uparrow=$ LOW to HIGH transition
$X=$ Don't care	$Z=$ High impedance

Note: 1. When $\overline{O E}$ is LOW, the $Y$ output will be in the same logic state as the $Q$ output.

## Metallization and Pad Layout



DIE SIZE $0.083^{\prime \prime} \times 0.099^{\prime \prime}$

## Am25LS <br> LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS



Note: Actual current flow direction shown.


The Am25LS2518 used as display register with bus interrogate capability.


The Am25LS2518 as a variable length (1, 2, 3 or 4 word) shift register.

## Am25LS2519

## Quad Register with Two Independently Controlled Three-State Outputs



## Am25LS2519

## Am25LS2519

## ELECTRICAL CHARACTERISTICS

The Following Conditions.Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$T_{A}=-55^{\circ} \mathrm{C}+0+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V}+10 \%$	MIN $=4.50 \mathrm{~V}$	MAX $=5.50 \mathrm{~V}$

MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \% \quad$ MIN. $=4.50 \mathrm{~V} \quad \mathrm{MAX} .=5.50 \mathrm{~V}$

## DC CHARACTERISTICS OVER OPERATING RANGE

Typ.

Parameters	Description	Test Co	tions (N		Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{IOH}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{IOH}^{=}=-2.6 \mathrm{~mA}$		2.4	3.4		
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$1 \mathrm{OL}=4.0 \mathrm{~mA}$1 OL				0.4	Volts
							0.45	
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$				0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
${ }^{\prime} \mathrm{VIL}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ MAX., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					$-0.36$	mA
$\mathrm{I}_{1 \mathrm{H}}$	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
$1 /$	Input HIGH Current	$V_{C C}=M A X ., V_{I N}=7.0 \mathrm{~V}$					0.1	mA
${ }^{1} \mathrm{OZ}$	Off-State (High-Impedance) Output Current	$V_{C C}=$ MAX.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				20	
ISC	Output Short Circuit Current (Note 3)	$\mathrm{V}_{C C}=$ MAX.			-15		-85	mA
${ }^{1} \mathrm{CC}$	Power Supply Current (Note 4)	$V_{C C}=$ MAX		MIL		24	36	mA
				COM'L		24	39	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Inputs grounded; outputs open.

Am25LS
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
${ }_{\text {t }}^{\text {PHL }}$	Clock to $\mathrm{Y}_{\mathbf{i}}$		22	33	ns	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {PHLL }}$			20	30		
${ }_{\text {PLH }}$	Clock to $\mathrm{W}_{\mathrm{i}}$ (Either Polarity)		24	36	ns	
${ }_{\text {¢ }}$			24	36		
${ }_{\text {¢ }}^{4} \mathrm{HL}$	Clear to $\mathrm{Y}_{\mathrm{i}}$		29	43	ns	
${ }_{\text {PLH }}$	Clear to W		25	37	ns	
${ }_{\text {tPHL }}$	Clear to Wi		30	45	ns	
${ }_{\text {PLLH }}$	Polarity to $\mathrm{W}_{1}$		23	34	ns	
${ }_{\text {PHHL }}$	Polarity to $\mathrm{W}^{\text {i }}$		25	37	ns	
$t_{\text {pw }}$	Clear	18			ns	
	ClockPulseWidth LOW	15			ns	
$t_{\text {pw }}$	Clock Pulse Width ${ }^{\text {HIGH }}$	18			ns	
$t_{s}$	Data	15			ns	
$t_{\text {h }}$	Data	5			ns	
$t_{s}$	Data Enable	20			ns	
$t_{\text {h }}$	Data Enable	0			ns	
$t_{s}$	Set-up Time, Clear Recovery (Inactive) to Clock	20	15		ns	
${ }_{\text {ZH }}$	Output Enable to W or Y		11	17	ns	
t Z L			13	20		
${ }_{4} \mathrm{HZ}$	Output Enable to $\mathbf{W}$ or $\mathbf{Y}$		13	20	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
$t \mathrm{~L}$			11	17		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$
$f_{\text {max }}$	Maximum Clock Frequency (Note 1)	35	45		MHz	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \hline \end{aligned}$

Note 1. Per industry convention, $f_{\text {max }}$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}$, $t_{f}$, pulse width or duty cycle.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*


[^21]
## FUNCTION TABLE

FUNCTION	INPUTS							$\frac{\text { INTERNAL }}{\mathbf{Q}}$	OUTPUTS	
	CP	$\mathrm{D}_{\mathbf{i}}$	$\bar{E}$	$\overline{\text { CLR }}$	POL	$\overline{\text { OE-W }}$	$\overline{\text { OE-Y }}$		$W_{i}$	$\mathbf{Y}_{\mathbf{i}}$
Output Three-State Control	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & H \\ & L \\ & H \\ & \text { L } \end{aligned}$	$\begin{aligned} & L \\ & H \\ & H \\ & L \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \\ & \text { NC } \\ & \text { NC } \end{aligned}$	$\mathbf{Z}$ Enabled $\mathbf{Z}$ Enabled	Enabled Z Z
Wi Polarity	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	Non-Inverting Inverting	Non-Inverting Non-Inverting			
Asynchronous Clear	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$
Clock Enabled	$\begin{aligned} & \hline \uparrow \\ & \hline \end{aligned}$	$\begin{aligned} & X \\ & L \\ & L \\ & H \\ & H \end{aligned}$	H $L$ $L$ $L$ $L$ $L$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & X \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & X \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{gathered} N C \\ L \\ L \\ H \\ H \\ H \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{~L} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ \mathrm{~L} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{H} \\ \hline \end{gathered}$


$L=$ LOW	$X=$ Don't Care
$H=$ HIGH	NC = No Change
$Z=$ High Impedance	$\uparrow=$ LOW to HIGH Transition

## DEFINITION OF FUNCTIONAL TERMS

$\mathrm{D}_{\mathbf{i}} \quad$ Any of the four D flip-flop data lines.
$\overline{\mathbf{E}} \quad$ Clock Enable. When LOW, the data is entered into the register on the next clock LOW-toHIGH transition. When HIGH, the data in the register remains unchanged, regardless of the data in.
CP Clock Pulse. Data is entered into the register on the LOW-to-HIGH transition.
$\overline{\mathrm{OE}-\mathrm{W}}, \overline{\mathrm{OE}-\mathrm{Y}}$ Output Enable. When $\overline{\mathrm{OE}}$ is LOW, the register is enable to the output. When HIGH, the output is in the high-impedance state. The $\overline{\mathrm{OE}-\mathrm{W}}$ controls the W set of outputs, and $\overline{\mathrm{OE}-\mathrm{Y}}$ controls the Y set.
$\mathbf{Y}_{\mathbf{i}} \quad$ Any of the four non-inverting three-state output lines.
$W_{i} \quad$ Any of the four three-state outputs with polarity control.
POL
Polarity Control. The Wi outputs will be noninverting when POL is LOW, and when it is HIGH; the outputs are inverting.
$\overline{C L R}$ Asynchronous Clear. When $\overline{C L R}$ is LOW, the internal Q flip-flops are reset to LOW.

## Am25LS

LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS



Convenient Register Content Monitor or Test Point

Metallization and Pad Layout


# Am25LS2520 <br> Octal D-Type Flip-Flop with Clear, Clock Enable and Three-State Control 



## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ.   (Note 2)	Max.	Units
	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
V			$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{IOH}=-2.6 \mathrm{~mA}$		2.4	3.4		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOL}=$				0.4	Volts
			$1 \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
$\mathrm{V}_{1} \mathrm{H}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$V_{C C}=M A X ., V_{I N}=0.4 \mathrm{~V}$					$-0.36$	mA
$1 \mathrm{IH}^{\prime}$	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current	$V_{C C}=M A X ., V_{1 N}=7.0 \mathrm{~V}$				,	0.1	mA
${ }^{1} \mathrm{O}$	Off-State (High-Impedance)   Output Current	$V_{C C}=$ MAX	$\mathrm{V}_{\mathrm{O}}=0$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2$				20	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX .			-15		-85	mA
$I_{C C}$	Power Supply Current (Note 4)	$V_{C C}=$ MAX.				24	37	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should beshorted at a time. Duration of the short circuit test should not exceed one second.
4. All outputs open $; \bar{E}=G N D, D i$ inputs $=C L R=\overline{O E}=4.5 \mathrm{~V}$. Apply momentary ground, then 4.5 V to clock input.

## Am25LS

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

Am25LS2520
SWITCHING CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )


Note 1. Per industry convention, $f_{\max }$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}, t_{f}$, pulse width or duty cycle.


[^22]


## Am25LS2521

## Eight-Bit Equal-to Comparator



## Am25LS2521

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL $\quad \mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$	

## DC CHARACTERISTICS OVER OPERATING RANGE

Typ.

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN} . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned} \quad \mathrm{I}_{\mathrm{OH}}=-440 \mu \mathrm{~A}$		MIL	2.5			Volts
				COM'L	2.7			
$\mathrm{VOL}_{\text {O }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4.0 \mathrm{~mA}$				0.4	Volts
			$1 \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$				0.5	
$\mathbf{V I H}_{\text {I }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{I N}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		$\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$			-0.36	mA
				$\overline{\mathrm{E}}$			-0.72	
$\mathrm{I}_{\mathrm{IH}}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$A_{i}, B_{i}$			20	$\mu \mathrm{A}$
				$\overline{\mathrm{E}}$			40	
11	Input HIGH Current	$V_{C C}=M A X ., V_{I N}=7.0 \mathrm{~V}$		$\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$			0.1	mA
				$\bar{E}$			0.2	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX			-15		-85	mA
${ }^{\prime} \mathrm{CC}$	Power Supply Current (Note 4)	$V_{C C}=M A X$.				27	40	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. $\bar{E}=G N D$, all other inputs and outputs open

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C} \mathrm{to}+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +VCC max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
$\mathrm{t}_{\mathrm{PLH}}$	$A_{i}$ or $B_{i}$ to E-qual		9	15	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
$t_{\text {PHL }}$			9	15	ns	
$t_{\text {PLH }}$	$\bar{E}$ to Equal		5	7	ns	
${ }_{\text {tPHL }}$			6	8		


SWITCHING CHARACTERISTICS OVER OPERATING RANGE *		Am25LS COM'L		Am25LS MIL		Units	Test Conditions
		$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$			
Parameters	Description	Min.	Max.	Min.	Max.		
$t_{\text {PLH }}$	$\frac{A_{i} \text { or } B_{i} \text { to }}{\text { Equal }}$ Output		20		22	ns	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {t }}{ }_{\text {PHL }}$			19		21		
${ }_{\text {PPLH }}$	$\bar{E}$ to Equal Output		10.5		12	ns	
${ }_{\text {tPHL }}$			12.5		15		

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.


## APPLICATION



MAX. $\overline{\text { ENABLE }}$ (HIGH-to-LOW) DELAY OVER 16-BITS
(Commercial Range)

$t_{\text {PHL }}$	$\begin{aligned} & A_{i} \text { or } B_{i} \\ & \text { to } \bar{E}_{\text {OUT }} \end{aligned}$	19ns
$t_{\text {PHL }}$	$\begin{aligned} & \bar{E}_{\text {IN }} \text { to } \\ & \bar{E}_{\text {OUT }} \\ & \hline \end{aligned}$	12.5ns
Total		31.5ns

## MICROPROCESSOR ENABLE CONTROLLED,

 SELECTABLE, ADDRESS DECODER
## ORDERING INFORMATION

Package   Type	Temperature   Range	Order   Number
Molded DIP	0 to $+70^{\circ} \mathrm{C}$	AM25LS2521PC
Hermetic DIP	0 to $+70^{\circ} \mathrm{C}$	AM25LS2521DC
Dice	0 to $+70^{\circ} \mathrm{C}$	AM25LS2521XC
Chip-Pak	0 to $+70^{\circ} \mathrm{C}$	AM25LS2521LC
Hermetic DIP	-55 to $+125^{\circ} \mathrm{C}$	AM25LS2521DM
Hermetic Flat-Pak	-55 to $+125^{\circ} \mathrm{C}$	AM25LS2521FM
Dice	-55 to $+125^{\circ} \mathrm{C}$	AM25LS2521XM
Chip-Pak	-55 to $+125^{\circ} \mathrm{C}$	AM25LS2521LM

# Am25LS2535 <br> Eight Input Multiplexer with Control Register 

## DISTINCTIVE CHARACTERISTICS

- High speed eight-input multiplexer
- On-chip Multiplexer Select and Polarity Control Register
- Output polarity control for inverting or non-inverting output
- Common register enable
- Asynchronous register clear
- Three-state output for expansion
- Am25LS features improved noise margin, higher drive, and faster operation


## FUNCTIONAL DESCRIPTION

The Am25LS2535 is an eight-input Multiplexer with Control Register. The device features high speed from clock to output and is intended for use in high speed computer control units or structured state machine designs.

The Am25LS2535 contains an internal register which holds the A, B and C multiplexer select lines as well as the POL (polarity) control bit. When the Register Enable input ( $\overline{\mathrm{RE}}$ ) is LOW, new data is entered into the register on the LOW-toHIGH, transition of the clock. When $\overline{\mathrm{RE}}$ is HIGH, the register retains its current data. An asynchronous clear input ( $\overline{\mathrm{CLR}}$ ) is used to reset the register to a logic LOW level.
The $A, B$ and $C$ register outputs select one of eight multiplexer data inputs. A HIGH on the Polarity Control flip-flop output causes a true (non-inverting) multiplexer output, and a LOW causes the output to be inverted. In a computer control unit, this allows testing of either true or complemented flag data at the microprogram sequencer test input.
An active LOW Multiplexer Enable input ( $\overline{\mathrm{ME}}$ ) allows the selected multiplexer input to be passed to the output. When $\overline{\mathrm{ME}}$ is HIGH, the output is determined only by the Polarity Control bit.
The Am25LS2535 also features a three-state Output Enable control ( $\overline{\mathrm{OE}})$ for expansion. When $\overline{\mathrm{OE}}$ is LOW, the output is enabled. When $\overline{O E}$ is HIGH, the output is in the high impedance state.


9


## Am25LS2535

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test C	itions ( N		Min.	Typ. (Note 2)	Max.	Units
	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{IOH}^{=}=-2.0 \mathrm{~mA}$		2.4	3.4		Volts
OH			$\mathrm{COM}^{\prime} \mathrm{L}, 1 \mathrm{OH}=-6.5 \mathrm{~mA}$		2.4	3.2		
$v_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$				0.4	Volts
			$1 \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
			$\mathrm{IOL}=20 \mathrm{~mA}$				0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\begin{aligned} & V_{C C}=\text { MAX. } \\ & V_{I N}=0.4 V \end{aligned}$	$\overline{\mathrm{ME}}, \overline{\mathrm{OE}}, \overline{\mathrm{RE}}$				-0.72	mA
			$\mathrm{D}_{\mathrm{N}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{POL}, \mathrm{CP}, \overline{\mathrm{CLR}}$				-2.0	
$\mathbf{I I H}^{\text {H }}$	Input HIGH Current	$\begin{aligned} & V_{C C}=M A X ., \\ & V_{I N}=2.7 V \end{aligned}$	$\overline{M E}, \overline{O E}, \overline{R E}$				40	$\mu \mathrm{A}$
			$\mathrm{D}_{\mathrm{N}}, \mathrm{A}$,	CP, CLR			50	
11	Input HIGH Current	$\begin{aligned} & V_{C C}=\text { MAX., } \\ & V_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{ME}}, \overline{\mathrm{OE}}$				0.1	mA
			$\mathrm{D}_{\mathrm{N}}, \mathrm{A}$,	CP, $\overline{C L R}$			1.0	
${ }^{\prime} \mathrm{Oz}$	Off-State (High-Impedance) Output Current	$V_{C C}=$ MAX	$\mathrm{V}_{\mathrm{O}}=0.4$				-50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2$.				50	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX			-40		-100	mA
${ }^{\prime} \mathrm{CC}$	Power Supply Current (Note 4)	$V_{C C}=$ MAX.				97	148	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. $D_{1}-D_{7}, A, B, C, P O L, \overline{M E}, C L R$ at GND. All other inputs and outputs open.

Measured after a momentary ground then 4.5 V applied to clock input.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}{ }^{\circ}=5.0 \mathrm{~V}$ )

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
$t_{\text {PLH }}$	Clock to Y POL - LOW		21	32		$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
$t_{\text {PHL }}$	Clock to Y POL - LOW		19	29	ns	
${ }^{\text {tPLH }}$	Clock to Y POL - HIGH		16	24	ns	
${ }^{\text {tPHL }}$			19	29		
${ }_{\text {tPLH }}$	$D_{n}$ to $Y$		10	16	ns	
${ }_{\text {t }}{ }_{\text {PHL }}$			13	19		
${ }_{\text {t }}$	$\overline{\mathrm{CLR}}$ to Y		22	33	ns	
${ }_{\text {t }}$			22	33		
${ }_{\text {tPLH }}$	$\overline{\mathrm{ME}}$ to Y		12	18	ns	
${ }_{\text {tPHL }}$			12	18		
$\mathrm{t}_{\mathrm{ZL}}$	$\overline{O E}$ to Y		8	14	ns	
${ }^{\text {t }}$			8	14		
${ }_{\text {t }}$			10	17	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
$t_{\text {Hz }}$			10	17		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$
	A, B, C, POL	10			ns	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
$t_{5}$	$\overline{\mathrm{RE}}$	15				
$t_{s}$	CLR Recovery	5			ns	
$t_{\text {pw }}$	Clock	10			ns	
	Clear (LOW)	10				
$t_{n}$	$A, B, C, P O L, \overline{R E}$	0			ns	



* AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.


## FUNCTION TABLE

MODE	INPUTS							INTERNAL				INPUTS		OUTPUT
	C	B	A	POL	$\overline{\mathrm{RE}}$	$\overline{\text { CLR }}$	CP	$\mathrm{O}_{C}$	$\mathrm{O}_{\mathrm{B}}$	$\mathbf{Q}_{\mathbf{A}}$	OPOL	$\overline{\mathrm{ME}}$	$\overline{O E}$	$Y$
Clear	$\begin{aligned} & x \\ & f \end{aligned}$	$\begin{aligned} & x \\ & f \end{aligned}$	$\begin{aligned} & x \\ & 1 \end{aligned}$	$\begin{aligned} & x \\ & 1 \end{aligned}$	$\begin{aligned} & x \\ & j \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & 1 \end{aligned}$	$\begin{aligned} & x \\ & f \end{aligned}$	$\stackrel{L}{L}$	$\begin{aligned} & \mathrm{L} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & 1 \end{aligned}$	$\begin{aligned} & H \\ & L \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \overline{\mathrm{D}}_{0} \\ \mathrm{Z} \end{gathered}$
Reg. Disable	X	X	X	X	H	H	X	NC	NC	NC	NC	L	L	$D_{i} / D_{i}$   (Note 1)
Select   (Multiplex)	L L L L H H H H	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{gathered} \mathrm{L} / \mathrm{H} \\ 1 \end{gathered}$	L 1	H  	$\begin{aligned} & \uparrow \\ & \end{aligned}$	L L L L $H$ $H$ $H$ $H$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \end{aligned}$	L $H$ $L$ $H$ $L$ $H$ $L$ $H$	$\begin{gathered} \mathrm{L} / \mathrm{H} \\ \\ \mid \end{gathered}$	L 1	$1$	$\begin{aligned} & \overline{\mathrm{D}}_{0} / \mathrm{D}_{0} \\ & \overline{\mathrm{D}}_{1} / \mathrm{D}_{1} \\ & \overline{\mathrm{D}}_{2} / \mathrm{D}_{2} \\ & \overline{\mathrm{D}}_{3} / \mathrm{D}_{3} \\ & \overline{\mathrm{D}}_{4} / \mathrm{D}_{4} \\ & \overline{\mathrm{D}}_{5} / \mathrm{D}_{5} \\ & \overline{\mathrm{D}}_{6} / \mathrm{D}_{6} \\ & \overline{\mathrm{D}}_{7} / \mathrm{D}_{7} \end{aligned}$
Multiplexer   Disable	X	X	X	$x$	X	H	X	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{array}{\|} \mathrm{X} \\ \mathrm{X} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Tri-state Output Disable	$\dagger$	$\dagger$	$\dagger$	$\dagger$	$\dagger$	$\downarrow$	$\downarrow$	X	X	X	X		H	Z

$N C=$ No Change
$X=$ Don't Care

Note 1: The output will follow the selected input, $D_{i}$, or its complement depending on the state of the POL flip-flop.

## DEFINITION OF FUNCTIONAL TERMS

A, B, C Multiplexer Select Lines. One of eight multiplexer data inputs is selected by the A, B and C register outputs.
POL Polarity Control Bit. A HIGH register output causes a true (non-inverted) output and a LOW causes the output to be inverted.
$\overline{\text { ME }}$ Multiplexer Enable. When LOW, it enabled the 8 -input multiplexer. When HIGH, the $Y$ output is determined by only the Polarity Control bit.
$\overline{R E}$

Register Enable. When LOW, the Multiplexer Select and Polarity Control Register is enabled for loading. When HIGH, the register holds its current data.

Clear. A LOW asynchronously resets the Multiplexer Select and Polarity Control Register.
$\mathrm{D}_{1}-\mathrm{D}_{8} \quad$ Data $\operatorname{Inputs}$ to the 8 -input multiplexer.
CP Clock Pulse. When $\overline{R E}$ is LOW, the Multiplexer Select and Polarity Control Register changes state on the LOW-to-HIGH transition of CP.
$\overline{\mathbf{O E}} \quad$ Output Enable. When LOW, the output is enabled. When HIGH, the output is in the high impedance state.

Y The chip output.

## LOGIC SYMBOL




# Am25LS2536 <br> Eight-Bit Decoder with Control Storage 



ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

## DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
$\mathrm{v}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	${ }^{1} \mathrm{OH}=-2.6 \mathrm{~mA}, \mathrm{COM}^{\prime} \mathrm{L}$		2.4	3.2		Volts
			$1 \mathrm{OH}=-1.0 \mathrm{~mA}, \mathrm{MIL}$		2.4	3.4		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=2$	M'L		0.4	0.5	Volts
			${ }^{\prime} \mathrm{OL}=12 \mathrm{~mA}, \mathrm{MIL}$			0.35	0.4	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}^{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$V_{C C}=$ MAX. $V_{\text {IN }}=0.4 \mathrm{~V}$					$-0.4$	mA
${ }^{17 H}$	Input HIGH Current	$V_{C C}=$ MAX., $V_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX. $\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA
10	Off-State (High-Impedance) Output Current	$V_{C C}=$ MAX.	$\mathrm{V}_{\mathrm{O}}=0$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2$				20	
${ }^{\text {I }} \mathrm{SC}$	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX .			-15		-85	mA
ICC	Power Supply Current (Note 4)	$V_{C C}=$ MAX .				37	56	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate vaiue specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and ma»imum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Test Conditions: $\mathrm{A}=\mathrm{B}=\mathrm{C}=\overline{\mathrm{G}}_{1}=\mathrm{G}_{2}=\overline{\mathrm{OE}}=\overline{\mathrm{CE}}=\mathrm{GND} ; \mathrm{CLK}=\overline{\mathrm{CLR}}=\mathrm{POL}=4.5 \mathrm{~V}$.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

Am25LS2536
SWITCHING CHARACTERISTICS
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ )

Parameters		Description	Min.	Typ.	Max.	Units	Test Conditions
$t_{\text {PLH }}$	$G_{1}$ to $Y_{0}-Y_{7}$			17	25	ns	1
${ }^{\text {P PLH }}$				23	34		
$t_{\text {PLH }}$	$\mathrm{G}_{2}$ to $Y_{0}-Y_{7}$			20	30	ns	$\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & R_{\mathrm{L}}=667 \Omega \end{aligned}$
${ }_{\text {PrHL }}$				26	39		
$t_{\text {PLH }}$	$C P$ to $Y_{0}-Y_{7}$			24	36	ns	
${ }^{\text {tPHL }}$				30	45		
$t_{\text {PLH }}$	CLR to $Y_{0}-Y_{7}$			24	36	ns	
${ }^{\text {P PHL }}$				31	46		
$t_{5}$	Clock Enable to CP		25			ns	
$t_{\text {h }}$			0				
$t_{\text {s }}$	A, B, C, POL to CP		15			ns	
$t_{h}$			0				
$\mathrm{t}_{\mathrm{Hz}}$	$O E$ to $Y_{0}-Y_{7}$			9	14	ns	$\begin{gathered} C_{L}=5 p F \\ R_{L}=667 \Omega \end{gathered}$
${ }_{\text {L }}$				11	17		
$\mathrm{t}_{\mathrm{ZH}}$	$O E$ to $Y_{0}-Y_{7}$			15	22	ns	$\begin{aligned} & C_{L}=45 p F \\ & R_{L}=667 \Omega \end{aligned}$
$\mathrm{t}_{\mathrm{ZL}}$				16	24		
$t_{\text {s }}$	Set-up Time, Clear Recovery to CP		20			ns	
$t_{\text {bw }}$	Pulse Width	Clock	15			ns	
		Clear	15				

## SWITCHING CHARACTERISTICS

 OVER OPERATING RANGE*|  |  |  | Am2 | OM'L | Am | MIL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0 \\ & \mathbf{v}_{\mathrm{CC}} \end{aligned}=$ | $\begin{aligned} & +70^{\circ} \mathrm{C} \\ & \pm 5 \% \end{aligned}$ | $\begin{array}{r} \mathrm{T}_{\mathrm{A}}=- \\ \mathrm{V}_{\mathrm{CC}} \end{array}$ | $\begin{aligned} & +125^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$ |  |  |
| Parameters |  | cription | Min. | Max. | Min. | Max. | Units | Test Conditions |
| $t_{\text {PLH }}$ |  |  |  | 29 |  | 31 |  |  |
| ${ }^{\text {tPHL }}$ |  |  |  | 39 |  | 42 |  |  |
| $\mathrm{t}_{\text {PLH }}$ | $\mathrm{G}_{2}$ to $\mathrm{Y}_{0}-\mathrm{Y}_{7}$ |  |  | 34 |  | 37 | ns |  |
| ${ }_{\text {tPHL }}$ | $\mathrm{G}_{2} \mathrm{OV}_{0}-\gamma_{7}$ |  |  | 44 |  | 48 |  |  |
| ${ }_{\text {tPLH }}$ |  |  |  | 40 |  | 42 |  |  |
| $t_{\text {t }}{ }_{\text {PLL }}$ | CP to $\mathrm{Y}_{0}-\mathrm{Y}$ |  |  | 51 |  | 55 | ns | $\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$ |
| $t_{\text {PLI }}$ | CLR to $Y_{0}$ |  |  | 47 |  | 54 |  | $\mathrm{R}_{\mathrm{L}}=\mathbf{6 6 7 \Omega}$ |
| ${ }^{\text {tPHL }}$ | CLR o $\mathrm{Y}_{0}$ |  |  | 58 |  | 66 | ns |  |
| $t_{s}$ | Clock Enable |  | 27 |  | 30 |  | ns |  |
| $t_{n}$ | Clock Enable |  | 0 |  | 0 |  |  |  |
| $t_{s}$ |  |  | 17 |  | 20 |  | ns |  |
| $t_{\text {h }}$ | A, B, C, POL |  | 0 |  | 0 |  | ns |  |
| $t_{\text {Hz }}$ | OE to $Y_{0}-Y_{7}$ |  |  | 17 |  | 18 | ns | $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ |
| $t_{\text {LZ }}$ | OE $10 \mathrm{~V}_{0}$ |  |  | 27 |  | 34 |  | $R_{L}=667 \Omega$ |
| $\mathrm{t}_{\mathrm{zH}}$ | OE to $Y_{0}-Y_{7}$ |  |  | 25 |  | 27 | ns |  |
| $\mathrm{t}_{\mathrm{ZL}}$ | OLIo $\mathrm{Y}_{0}$ |  |  | 28 |  | 30 |  |  |
| $t_{s}$ | Set-up Time, | ar Recovery to CP | 23 |  | 25 |  | ns | $\begin{aligned} & C_{L}=5.0 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ |
|  | Pulse Width | Clock | 17 |  | 20 |  |  |  |
| $t_{\text {pw }}$ | Pulse Wian | Clear | 15 |  | 15 |  | ns |  |

[^23]FUNCTION TABLE


* | $\overline{\mathbf{G}}_{\mathbf{1}}$ | $\mathbf{G}_{\mathbf{2}}$ | $\mathbf{G}$ |
| :---: | :---: | :---: |
| $L$ | $L$ | $L$ |
| $L$ | $H$ | $H$ |
| $H$ | $L$ | $L$ |
| $H$ | $H$ | $L$ |

$N C=$ No Change $\quad X=$ Don't Care $\quad Z=$ High-Impedance $\quad \uparrow=$ Low-to-High Transition

## DEFINITION OF TERMS

CLR CLEAR - When the CLEAR input is LOW, the control register outputs ( $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\text {POL }}$ ) are set LOW regardless of any other inputs.
CP CLOCK - Enters data into the control register on the LOW-to-HIGH transition.
$\overline{\mathbf{C E}} \quad$ CLOCK ENABLE - Allows data to enter the control register when $\overline{C E}$ is LOW. When $\overline{\text { CE }}$ is HIGH, the $\mathrm{Q}_{i}$ outputs do not change state, regardless of data or clock input transitions.
A,B,C Inputs to the control register which are entered on the LOW-to-HIGH clock transition if $\overline{\mathrm{CE}}$ is LOW.
POL Input to the control register bit used for determining the polarity of the selected output.
$\overline{\mathbf{G}}_{1} \quad$ Active LOW part of the expression $\mathrm{G}=\mathrm{G}_{1} \mathrm{G}_{2}[$ or $\mathrm{G}=$ $\left(\overline{\mathrm{G}}_{1}\right) \mathrm{G}_{2}$ ] where G is either data input for the selected $Y_{n}$ or is used as an input enable.
$\mathbf{G}_{2} \quad$ Active HIGH part of the expression $\mathrm{G}=\mathrm{G}_{1} \mathrm{G}_{2}$.
$\mathbf{Y}_{\mathrm{n}}$ The three-state outputs. When active ( $\overline{\mathrm{OE}}=$ LOW), one of eight outputs is selected by the code stored in the control register, with the polarity of all eight determined by the bit stored in the POL flip-flop of the control register. The selected output can further be controlled by $G$ according to the expression $\mathrm{Y}_{\text {SELECTED }}=\mathrm{G} \oplus \mathrm{Q}_{\text {Pol }}$.
$\overline{\mathbf{O E}} \quad$ OUTPUT ENABLE. When $\overline{\mathrm{OE}}$ is HIGH the $Y_{n}$ outputs are in the high impedance state; when $\overline{\mathrm{OE}}$ is LOW the $Y_{n}$ 's are in their active state as determined by the other control logic. The $\overline{\mathrm{OE}}$ input affects the $\mathrm{Y}_{n}$ output buffers only and has no effect on the control register or any other logic.


# Am25LS2537 <br> One-of-Ten Decoder with Three-State Outputs and Polarity Control 



ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:

COM	$=T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$=T_{A}=-55^{\circ} \mathrm{C}$ to $+.125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Co	ions ( N		Min.	$\begin{aligned} & \text { Typ. } \\ & \text { (Note 2) } \end{aligned}$	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
OH			$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{I} \mathrm{OH}=-2.6 \mathrm{~mA}$		2.4	3.4		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage (Note 5)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$1 \mathrm{OL}=4.0 \mathrm{~mA}$				0.4	Volts
			$1 \mathrm{OL}=8.0 \mathrm{~mA}$				0.45	
			${ }^{\prime} \mathrm{OL}=12 \mathrm{~mA}$				0.5	
$\mathbf{V I H}^{\text {H }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$V_{C C}=$ MAX., $V_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
${ }^{1 / H}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA
$\mathrm{I}_{\mathrm{O}}$	Off-State (High-Impedance) Output Current	$V_{C C}=$ MAX	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			.	20	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX.			-15		-85	mA
${ }^{1} \mathrm{CC}$	Power Supply Current (Note 4)	$V_{C C}=M A X$.				25	40	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical. Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Test conditions: $A=B=C=D=E 1=G N D ; E 2=P O L=\overline{O E}=4.5 \mathrm{~V}$.
5. $V_{O L}$ is specified with total device $I_{O L}=60 \mathrm{~mA}$ (max.).

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

Am25LS2537
SWITCHING CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
tPLH	$A, B, C, D$ to $Y_{i}$		22	33	ns	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
tpHL			17	25		
${ }_{\text {tPLH }}$	$E_{1}$ to $\gamma_{i}$		19	28	ns	
tPHL			21	31		
tPL.H	$\overline{E_{2}}$ to Y		21	31	ns	
tphL			23	34		
tplH	POL to $\mathrm{Y}_{\mathrm{i}}$		18	27	ns	
tPHL			21	31		
${ }^{\text {Z }} \mathrm{ZH}$	$\overline{O E}$ Control to $\mathrm{Y}_{i}$		22	33	ns	
t ZL			14	21		
${ }_{\text {t }} \mathrm{Hz}$	$\overline{\mathrm{OE}}$ Control to $\mathrm{Y}_{\mathrm{i}}$		19	28	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
tı			23	34		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*


[^24]
## FUNCTION TABLE

FUNCTION	INPUTS								OUTPUTS									
	$\overline{\mathrm{OE}}$	$\overline{E_{1}}$	$E_{2}$	POL	D	C	B	A	$\mathrm{Y}_{0}$	$\mathrm{Y}_{1}$	$Y_{2}$	$Y_{3}$	$\mathrm{Y}_{4}$	$Y_{5}$	$\mathrm{Y}_{6}$	$Y_{7}$	$\mathrm{Y}_{8}$	$\mathrm{Y}_{9}$
3-State	H.	$\times$	x	$\times$	x	x	X	x	z	z	z	Z	z	Z	2	Z	Z	Z
Disable	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} H \\ H \\ \cdot X \\ X \end{gathered}$	$\begin{aligned} & X \\ & X \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{gathered} L \\ H \\ L \\ H \end{gathered}$	L H L H
Active-HIGH Output	$L$	L L L L L L L L L L L L L L L L L	H   H		$\begin{aligned} & L \\ & H \end{aligned}$	L L L L $H$ $H$ $H$ $H$ L L L L $H$ $H$ $H$ $H$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \end{aligned}$	L   H   L   H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathbf{L} \\ & \mathbf{L} \\ & \mathbf{L} \\ & \mathbf{L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & H \\ & L \end{aligned}$	L L L L L H L L L L L L L L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$L$ $L$ $L$ $L$ $L$ $L$ $L$ $H$ $L$ $L$ $L$ $L$ $L$ $L$ $L$	L L L $L$	$\begin{aligned} & L \\ & H \\ & L \\ & L \\ & L \\ & L \end{aligned}$
Active-LOW Output	$L$		H   H	H   H	$\begin{aligned} & L \\ & H \end{aligned}$	L L L L $H$ $H$ $H$ $H$ $L$ $L$ $L$ $L$ $H$ $H$ $H$ $H$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \end{aligned}$	L $H$ $L$ $H$ $H$ $L$ $H$ $L$ $H$ $L$ $H$ $L$ $H$ $L$ $H$ $L$ $H$	L $H$	$\begin{aligned} & H \\ & L \\ & H \end{aligned}$	H H L H H H H H H H H H H H H H	$H$ $H$ $H$ $L$ $H$	$\begin{aligned} & H \\ & H \\ & H \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & H \\ & L \\ & H \end{aligned}$	H   H   H   H   H   H   L   H	H $H$ $H$ $H$ $H$ $H$ $H$ $L$ $H$ $H$ $H$ $H$ $H$ $H$ $H$	H $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $L$ $H$ $H$ $H$ $H$	H $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $L$ $H$ $H$ $H$ $H$ $H$

$\mathrm{H}=\mathrm{HIGH}$
L
$x=$ Don't Care
$z=$ High Impedance

## DEFINITION OF FUNCTIONAL TERMS

A, B, C, D To select inputs to the decoder.
E1 The active-LOW enable input. A HIGH on the E1 input inhibits the decoder function regardless of any other inputs. $\overline{\mathbf{O E}}$
$\overline{\text { E2 }}$ The active-HIGH enable input. A LOW on the $\overline{E 2}$ input forces all the decoder functions to the inactive state regardless of any other inputs.

POL

Output Enable. An active-LOW three-state control used to enable the outputs. A HIGH level input forces the output to the high impedance (off) state.
$Y_{i} \quad$ Decoder outputs. The ten outputs of the decoder.

## APPLICATIONS



One-of-Twenty Decoder with Active-High or Active-Low Output Polarity. Could be used for 1/O Decoding in an Am9080A system.

$B C D$ to Decimal (One-of-Ten) Decoder.

# Am25LS2538 <br> One - of $\times$ Eight Decoder with Three-State Outputs and Polarity Control 

\section*{DISTINCTIVE CHARACTERISTICS <br> - Three-state decoder outputs <br> - Buffered common output polarity control <br> - Inverting and non-inverting enable inputs <br> - A. C. parameters specified over operating temperature and power supply ranges <br> RELATED PRODUCTS <br> | Part No. | Description |
| :--- | :--- |
| Am25LS2536 | 8-Bit Decoder |
| Am25L.S2537 | 1 of 10 Decoder |
| Am25I.S2539 | Dual 1 of 4 Decoder |
| Am25L.S2548 | Chip Select Address Decoder |
| Am2921 | 1 of 8 Decoder |
| Am2924 | 3 to 8 line Decoder/Demultiplexer | <br> Part No. <br> Description <br> Am251 25337 <br> Am <br> Am292.4 <br> 8-Bit Decoder <br> 1 of 10 Decoder <br> Chip Select Address Decoder <br> 3 to 8 line Decoder/Demultiplexer}

## FUNCTIONAL DESCRIPTION

The Am25LS2538 is a three-line to eight-line decoder/ demultiplexer fabricated using advanced Low-Power Schottky technology. The decoder has three buffered select inputs$\mathrm{A}, \mathrm{B}$, and C -that are decoded to one-of-eight Y outputs. Two active-HIGH and two active-LOW enables can be used for gating the decoder or can be used with incoming data for demultiplexing applications.

A separate polarity (POL) input can be used to force the function active-HIGH or active-LOW at the output. Two separate active-LOW output enables ( $\overline{\mathrm{OE}})$ inputs are provided. If either $\overline{\mathrm{OE}}$ input is HIGH , the output is in the high impedance (off) state. When the POL input is LOW, the $Y$ outputs are active- HIGH and when the POL input is HIGH , the Y outputs are active-LOW.

The device is packaged in a space saving ( 0.3 -inch row spacing) 20-pin package. It also features Am25LS family improved switching specifications, higher noise margin, and twice the fan-out over the military temperature range when compared with Am54LS/74LS devices.


## Am25LS2538

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
MIL	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$	MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$1 \mathrm{OH}=-1.0 \mathrm{~mA}(\mathrm{MIL})$		2.4	3.4		Volts
			${ }^{1} \mathrm{OH}=-2.6 \mathrm{~mA}\left(\mathrm{COM}^{\prime} \mathrm{L}\right)$		2.4	3.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 5)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$1 \mathrm{OL}=4.0 \mathrm{~mA}$$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.4	Volts
							0.45	
			$1 \mathrm{OL}=12 \mathrm{~mA}$				0.5	
$\mathrm{V}_{1} \mathrm{H}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0	.		Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					$-1.5$	Volts
IIL	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
${ }_{1 / \mathrm{H}}$	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA
IOZ	Off-State (High-Impedance) Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4$				20	
Isc	Output Short Circuit Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.			-15		-85	mA
ICC	Power Supply Current (Note 4)	$V_{C C}=M A X$.				21	34	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Test conditions: $A=B=C=\bar{E}_{1}=\bar{E}_{2}=G N D: E_{3}=E_{4}=P O L=\overline{O E} 1=\overline{O E}_{2}=4.5 \mathrm{~V}$.
5. $V_{O L}$ is specified with total device $I_{O L}=60 \mathrm{~mA}$ (max.).

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V CC max
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

## SWITCHING CHARACTERISTICS

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
tPLH	A, B, C to $\mathrm{Y}_{\mathrm{i}}$		20	30	ns	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL			15	22		
tplH	$\overline{E_{1}}, \bar{E}_{2}$ to $Y_{i}$		19	28	ns	
tpHL			20	30		
tple	$E_{3}, E_{4}$ to $Y_{i}$		21	31	ns	
${ }^{\text {tPHL }}$			23	34		
tple	POL to $\mathrm{Y}_{\mathrm{i}}$		16	24	ns	
${ }^{\text {tPHL }}$			20	30		
${ }^{\text {t }} \mathrm{ZH}$	$\overline{O E_{1}}, \overline{O E_{2}}$ to $Y_{i}$		17	25	ns	
${ }^{\mathrm{Z}} \mathrm{L}$			14	21		
${ }^{\text {t }} \mathrm{HZ}$	$\overline{O E_{1}}, \overline{O E_{2}}$ to $Y_{i}$		17	25	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }_{t}{ }_{L}$			20	30		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Parameters	Description	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V} \pm 5 \%$		$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$		Units	Test Conditions
		Min.	Max.	Min.	Max.		
tplH	A, B, C to $\mathrm{Y}_{\mathrm{i}}$		36		42	ns	$\begin{aligned} C_{L} & =50 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
${ }^{\text {tPHL }}$			29		37		
tPLH	$\overline{E_{1}}, \overline{E_{2}}$ to $Y_{i}$		34		39	ns	
tPHL	$\mathrm{E}_{1}, \mathrm{E}_{2}$ to $\mathrm{Y}_{1}$		38		45	ns	
tPLH	$E_{3}, E_{4}$ to $Y_{i}$		38		45	ns	
tPHL	$E_{3}, E_{4}$ to $Y_{1}$		43		52	ns	
tPLH	POL to $\mathrm{Y}_{i}$		29		34	ns	
${ }^{\text {tPHL }}$	Polo		39		49		
${ }^{\text {t }} \mathrm{ZH}$	Yi		38		45	ns	
${ }^{\text {t }} \mathrm{L} \mathrm{L}$			23		25	ns	
${ }^{\text {t }} \mathrm{HZ}$	Yi		29		33		$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {t }} \mathrm{L} \mathrm{Z}$			33		36	ns	$R_{L}=2.0 \mathrm{k} \Omega$

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.


## DEFINITION OF FUNCTIONAL TERMS

A, B, C, D The three select inputs to the decoder/demultiplexer.
$\bar{E}_{1}, \bar{E}_{2}$ The active LOW enable inputs. A HIGH on either the $\bar{E}_{1}$ or $\bar{E}_{2}$ input forces all decoded functions to be disabled.
$E_{3}, E_{4}$ The active HIGH enable inputs. A LOW on either $E_{3}$ or $E_{4}$ inputs forces all the decoded functions to be inhibited.
POL Polarity Control. A LOW on the polarity con- $\quad Y$
trol input forces the output to the active-HIGH state while a HIGH on the polarity control input forces the $Y$ outputs to the active-LOW state.
Output Enable. When both the $\overline{\mathrm{OE}}_{1}$ and $\overline{\mathrm{OE}}_{2}$ inputs are LOW, the Y outputs are enabled. If either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ input is HIGH, the $Y$ outputs are in the high impedance state.
The eight outputs for the decoder/demultiplexer.

FUNCTION TABLE

FUNCTION	INPUTS										OUTPUTS							
	$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	$\bar{E}_{1}$	$\bar{E}_{2}$	$E_{3}$	$E_{4}$	POL	C	B	A	$\mathrm{V}_{0}$	$Y_{1}$	$\mathrm{Y}_{2}$	$\mathrm{Y}_{3}$	$\mathrm{Y}_{4}$	$Y_{5}$	$Y_{6}$	$Y_{7}$
High Impedance	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & z \\ & z \end{aligned}$	Z												
Disable	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline X \\ & L \\ & L \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{X} \end{aligned}$	$L$ $H$ $L$ $H$ $L$ $H$ $L$ $H$	L $H$ $L$ $H$ $L$ $H$ $L$ $H$	L $H$ L $H$ L $H$ L $H$	$L$ $H$ $L$ $H$ $L$ $H$ $L$ $H$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{gathered} L \\ H \\ L \\ H \\ L \\ H \\ L \\ H \end{gathered}$
Active-HIGH Output	$L$ $L$ $L$ $L$ $L$ $L$ $L$ $L$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$L$ $L$ $L$ $L$ $L$ $L$ $L$ $L$	$L$ $L$ $L$ $L$ $L$ $L$ $L$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$L$ $L$ $L$ $L$ $L$ $L$ $L$ $L$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & H \\ & L \\ & L \\ & L \end{aligned}$	L L L L L H L L	L L L L L L H L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$
Active-LOW Output	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	L L L L $L$ $L$ $L$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H H H H H H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & H \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	H L H H H H H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{E} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \end{gathered}$	H H H H L H H H	H H H H H L H H	H H H H H H L H	$H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $L$

$H=$ HIGH $L=L O W \quad X=$ Don't Care $\quad Z=$ High Impedance

## APPLICATIONS



One-of-thirty two decoder without additional decoding devices. Can be used for I/O decoding in an Am9080A system.


Two Am25LS2538s can be used to perform a one-of-sixteen-bit mask function or a one-of-sixteen-bit select function to perform bit manipulation in a microprocessor system.

Examples:

| D | C | B | A | POL | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit Select |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | Bit Select |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Bit Mask |
| 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Bit Mask |  |

# Am25LS2539 <br> Dual One-of-Four Decoder with Three-State Outputs and Polarity Control 

DISTINCTIVE CHARACTERISTICS   - Two independent decoders/demultiplexers   - Three-state outputs   - Buffered common polarity control   - A. C. parameters specified over operating temperature and power supply ranges			FUNCTIONAL DESCRIPTION   The Am25LS2539 is (a) dual two-line to four-line decoder/ demultiplexer fabricated using advanced Low-Power Schottky technology. Each decoder has two buffered select inputs$A$ and $B$ which are decoded to one-of-four $Y$ outputs. An enable input ( $\bar{E}$ ) is used for gating or can be used as a data input for demultiplexing applications. When the enable input goes HIGH , all four decoder functions are inhibited.
RELATED PRODUCTS			An output enable (OE) input is used to control the threestate outputs of the device. When the $\overline{\mathrm{OE}}$ input is LOW, the outputs are enabled. When the $\overline{\mathrm{OE}}$ input is HIGH , the outputs are in the high impedance (off) state. The device also has
			separate buffered polarity (POL) inputs to force the outputs to either an active-HIGH state or an active-LOW state. When the POL input is LOW, the outputs are active-HIGH and when the POL input is HIGH, the outputs are active-LOW. The device is packaged in a space saving ( 0.3 inch row spacing) 20 -pin package. The device features Am25LS family improved switching specification, higher noise margin, and twice the fan-out over the military temperature range when compared with Am54LS/74LS devices.
LOGIC DIAGRAM   LOGIC SYMBOLS			
			CONNECTION DIAGRAMS - Top Views   DIP   Leadless Chip Carrier L-20-1   Note: Pin 1 is marked for orientation.

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIN. $=4.75 \mathrm{~V}$
MAX. $=5.25 \mathrm{~V}$
MIL - $\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
MIN. $=4.50 \mathrm{~V}$
MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE
Typ.

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
$\mathrm{VOH}^{\text {O }}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{IOH}=-2.6 \mathrm{~mA}$		2.4	3.4		
$\mathrm{VOL}^{\text {O }}$	Output LOW Voltage (Note 5)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOL}^{\mathrm{OL}}=4.0 \mathrm{~mA}$				0.4	Volts
							0.45	
			$1 \mathrm{OL}=12 \mathrm{~mA}$				0.5	
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Leve!	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ MAX., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
- $\mathrm{IHH}^{\text {H }}$	Input HIGH Current	$V_{C C}=M A X ., V_{I N}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current	$V_{\text {CC }}=$ MAX., $V_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA
Ioz	Off-State (High-Impedance) Output Current	$V_{C C}=M A X$.	$\mathrm{V}_{\mathrm{O}}=0$				-20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2$				20	
ISC	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX			-15		-85	mA
ICC	Power Supply Current (Note 4)	$V_{C C}=$ MAX				22	37	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Test conditions: $A=B=\bar{E}=G N D ; P O L=\overline{O E}=4.5 \mathrm{~V}$.
5. $V_{O L}$ is specified with total device ${ }^{\prime} O L=60 \mathrm{~mA}$ (max.).

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

Am25LS2539
SWITCHING CHARACTERISTICS
( $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description	Min. Typ.	Max.	Units	Test Conditions
tPLH	$A, B$ to $Y_{i}$	22	33	ns	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL		17	25		
tple	$\bar{E}$ to $Y_{i}$	19	28	ns	
tPHL		21	31		
${ }^{\text {tPLH }}$	POL to $\mathrm{Y}_{i}$	16	24	ns	
tPHL		19	28		
${ }^{\text {t }} \mathrm{ZH}$	$\overline{O E}$ to $Y_{i}$	15	23	ns	
t ZL		15	22		
${ }_{\mathrm{t}}^{\mathrm{Hz}}$	$\overline{O E}$ to $\mathrm{Y}_{\mathrm{i}}$	19	28	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
t L Z		23	34		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$


SWITCHING CHARACTERISTICS OVER OPERATING RANGE*		Am25LS COM'L$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=5.0 \mathrm{~V} \pm 5 \% \end{gathered}$		Am25LS MIL$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$		Units	Test Conditions
Parameters	Description	Min.	Max.	Min.	Max.		
tPLH	A, B, to $\mathrm{Y}_{\mathrm{i}}$		41		48	ns	$\begin{aligned} C_{\mathrm{L}} & =50 \mathrm{pF} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$
tPHL			34		42		
PLH	$E$ to $\mathrm{Y}_{\mathrm{i}}$		34		40	ns	
tpHL			38		45	ns	
tPLH	POL to $\mathrm{Y}_{\mathrm{i}}$.		29		34	ns	
tric			39		49		
${ }^{\mathrm{Z}} \mathrm{ZH}$	$\overline{Q E}$ to $\mathrm{Y}_{\mathrm{i}}$		38		45	ns	
${ }^{\mathrm{Z}} \mathrm{Z}$			24		25		
${ }^{\text {t }} \mathrm{HZ}$	$\overline{\mathrm{OE}}$ to $\mathrm{Y}_{\mathrm{i}}$		33		37	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }_{t} \mathrm{~L} \mathrm{Z}$			36		37		$R_{L}=2.0 \mathrm{k} \Omega$

*AC performance over the operating temperature range is guaranteed bv testing defined in Group $A$, Subgroup 9 .

## Am25LS • Am54LS/74LS <br> LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS



Note: Actual current flow direction shown.

DEFINITION OF FUNCTIONAL TERMS   A, B   Select the two select inputs to the decoder/ demultiplexer.	FUNCTION TAPLE									
	Function	Inputs					Outputs			
		$\overline{O E}$	E	POL	B	A	$\mathrm{Y}_{0}$	$\mathrm{Y}_{1}$	$\mathrm{Y}_{2}$	$\mathrm{Y}_{3}$
input forces the decoding functions to be	High Impedance	H	$\times$	X	$\times$	X	Z	Z	z	Z
inhibited regardless of the $A$ and $B$-inputs.	Disable	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	X	X $\times$ $\times$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	L $H$
outputs either an active-HIGH state or an active-LOW state. A LOW on the polarity input forces the output active-HIGH. A HIGH on the polarity input forces the	Active-High Output	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & H \end{aligned}$
outputs active-LOW.   $\overline{\mathbf{O E}} \quad$ Output Enable. A LOW on the $\overline{\mathrm{OE}}$ input enables the outputs. A HIGH on the $\overline{\mathrm{OE}}$ inputs forces the outputs to the high impedance (off) state.	Active-Low Output	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \text { L } \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & ! \\ & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & L \end{aligned}$
$\mathbf{Y}_{0}, \mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}$ The four decoder/demultiplexer outputs.	$\begin{array}{ll} H=H I G H & X= \\ L=L O W & Z= \end{array}$	gh im		nce						

## Metallization and Pad Layout



## Am25LS2548

## Chip Select Address Decoder with Acknowledge

## DISTINCTIVE CHARACTERISTICS

- One-of-Eight Decoder provides eight chip select outputs
- Acknowledge output responds to enables and read or write command
- Open-collector Acknowledge output for wired-OR application
- Inverting and non-inverting enable inputs for upper address decoding

REL_ATED PRODUCTS	
Part No.	Description
Am25LS2536	8 -Bit Decoder
Am25LLS2537	1 of 10 Decoder
Am25LL2538	1 of 8 Decoder
Am25LS2539	Dual 1 of 4 Decoder
Am2921	1 of 8 Decoder
Am2924	3 to 8 Line Decoder/Demultiplexer

## FUNCTIONAL DESCRIPTION

The Am25LS2548 Address Decoder combines a three-line to eight-line decoder with four qualifying enable inputs (two active HIGH and two active LOW) and the acknowledge output required for "ready" or "wait state" control of all popular MOS microprocessors.
The acknowledge output, $\overline{\text { ACK, }}$, is active LOW and responds to the combination of all enables active and a read ( $\overline{\mathrm{RD}}$ ) or write (WR) input command.
The eight chip select outputs are individually active LOW in response to the combination of all enables active and the corresponding 3 -bit input code at inputs $\mathrm{A}, \mathrm{B}$, and C .
The Am25LS2548 is intended for chip select decoding in small, medium or large systems where multiple chip selects must be generated and address space must be allocated conservatively.


## Am25LS2548

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM' $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
$(\mathrm{MIN} .=4.75 \mathrm{~V} \quad \mathrm{MAX} .=5.25 \mathrm{~V})$
MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
$(\mathrm{MIN} .=4.50 \mathrm{~V} \quad \mathrm{MAX} .=5.50 \mathrm{~V})$

## DC CHARACTERISTICS OVER OPERATING RANGE

Typ.

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OH}}=$	$\mu \mathrm{A}$	2.4	3.4		Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$1 \mathrm{OL}=4.0 \mathrm{~mA}$				0.4	Volts
			$\mathrm{IOL}^{\text {a }}$				0.45	
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		MIL			0.7	Volts
				COM'L			0.8	
$V_{1}$	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.5	Volts
ILL	Input LOW Current	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
IH	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
1	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=7.0 \mathrm{~V}$					0.1	mA
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=M A X$.			-15		-85	mA
Icc	Power Supply Current (Note 4)	$\mathrm{V}_{C C}=\mathrm{MAX}$.				15	20	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. TEST CONDITIONS: $\mathrm{A}=\mathrm{B}=\mathrm{C}=\overline{\mathrm{E}}_{1}=\bar{E}_{2}=\mathrm{GND}: \mathrm{RD}=\mathrm{WR}=\mathrm{E}_{3}=\mathrm{E}_{4}=4.5 \mathrm{~V}$.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to $+\mathbf{7 . 0 \mathrm { V }}$
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to $+\mathbf{7 . 0 \mathrm { V }}$
DC Output Current Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

( $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description	Min.	Typ.	Max.	Units	Test Conditions
${ }_{\text {tplH }}$	A, B or C to $\bar{Y}_{i}$ (Three Level Delay)		14	20	ns	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
$\mathrm{t}_{\text {PHL }}$			19	27	ns	
${ }_{\text {PPLH }}$	A, B, or C to $\bar{Y}_{i}$ (Two Level Delay)		13	18	ns	
$\mathrm{t}_{\text {PHL }}$			15	21	ns	
$\mathrm{tpLH}^{\text {che }}$	$\bar{E}_{1}, \bar{E}_{2}$ to $\bar{Y}_{i}$		13	18	ns	
$\mathrm{t}_{\text {PHL }}$			16	23	ns	
tplh	$E_{3}, E_{4}$ to $\bar{Y}_{i}$		15	21	ns	
$\mathrm{t}_{\text {PHL }}$			19	27	ns	
tPLH	$\overline{\mathrm{WR}}, \overline{\mathrm{RD}}$ to $\overline{\mathrm{ACK}}$		25	35	ns	
${ }_{\text {tPHL }}$			16	22	ns	
tPLH	$\bar{E}_{1}, \bar{E}_{2}$ to $\overline{A C K}$		29	40	ns	
${ }_{\text {tPHL }}$			25	35	ns	
tPLH	$E_{3}, E_{4}$ to $\overline{A C K}$		29	40	ns	
${ }^{\text {t }}$ PHL			25	35	ns	

## SWITCHING CHARACTERISTICS

 OVER OPERATING RANGE


## APPLICATION DIAGRAM


BLI-049
FUNCTION TABLES
CHIP SELECT OUTPUTS $\mathbf{Y}_{i}$

C	B	A	$\bar{E}_{1}$	$\bar{E}_{2}$	$E_{3}$	$\mathrm{E}_{4}$	$\bar{Y}_{0}$	$\bar{Y}_{1}$	$\overline{Y_{2}}$	$\bar{Y}_{3}$	$\bar{Y}_{4}$	$\bar{Y}_{5}$	$\overline{\mathrm{Y}}_{6}$	$\bar{Y}_{7}$
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	L	H	H	H	H	H	H
L	H	L	L	L	H	H	H	H	L	H	H	H	H	H
L	H	H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	L	L	L	H	H	H	H	H	H	L	H	H	H
H	L	${ }^{2} \mathrm{H}$	L	L	H	H	H	H	H	H	H	L	H	H
H	H	L	L	L	H	H	H	H	H	H	H	H	L	H
H	H	H	L	L	H	H	H	H.	H	H	H	H	H	L
X	X	X	H	X	X	X	H	H	H	H	H	H	H	H
X	X	$x$	X	H	X	X	H	H	H	H	H	H	H	H
X	X	X	X	X	L	X	H	H	H	H	H	H	H	H
X	X	X	X	X	X	L	H	H	H	H	H	H	H	H

ACKNOWLEDGE OUTPUT $\overline{A C K}$

$\overline{E_{1}}$	$\bar{E}_{2}$	$E_{3}$	$\mathrm{E}_{4}$	$\overline{R D}$	$\overline{W R}$	$\overline{\text { ACK }}$
H	X	X	X	X	X	H
X	H	X	X	X	X	H
X	X	L	X	$x$	$x$	H
X	X	X	L	X	X	H
L	L	H	H	L	X	L
L	L	H	H	X	L	L



## Am25LS2568•Am25LS2569 Four-Bit Up/Down Counters with Three-State Outputs

## DISTINCTIVE CHARACTERISTICS

- 4-bit synchronous counter, synchronously programmable
- Both symchronous and asynchronous clear inputs
- Three-state counter outputs interface directly with bus organized systems
- Internal look-ahead carry logic and two count enable lines for high speed cascaded operation
- Ripple carry output for cascading
- Clock carry output for convenient moduio configuration
- Fully buffered outputs
- Second sourced as the 54LS/74LS568 and LS569
- Advanced lov-power Schotiky technoiogy



## FUNCTIONAL DESCRIPTION

The Am25LS2568 and Ami25LS2569 are programmable up/ down BCD and Binary counters respectively with threestate outputs for bus organized systems. All functions except output enable ( $\overline{\mathrm{OE}}$ ) and asynchronous clear ( $\overline{\mathrm{ACLR}}$ ) occur on the positive edge of the clock input (CP).
With the $\overline{\text { LOAD }}$ input LOW, the outputs will be programmed by the parallel data inputs ( $A, B, C, D$ ) on the next clock edge. Counting is enabled only when $\overline{\text { CEP }}$ and $\overline{\text { CET }}$ are LOW and LOAD is HIGH. The up-down input (U/D) controls the direction of count, HIGH counts up and LOW counts down. internal look-ahead carry logic and an active LOW ripple carry output (RCO) allows for high-speed counting and cascading. During up-count, the $\overline{\mathrm{RCO}}$ is LOW at binary 9 for the LS2568 (binary 15 for the LS2569) and upon down-count, it is LOW at binary 0 . Normal cascaded operations requires only the $\overline{\mathrm{RCO}}$ to be connected to the succeeding block at $\overline{\mathrm{CET}}$. When counting, the clocked carry output (CCO) provides a HIGH-LOW-HIGH pulse for a duration equai to the LOW time of the clock pulse and only when RCO is LOW. Two active LOW reset lines are available, synchronous clear ( $\overline{\mathrm{SCLR}}$ ) and a master reset asynchronous clear ( $\overline{\mathrm{ACLR}}$ ). The output control $(\overline{\mathrm{OE}})$ input forces the counter output into the high impedance state when HIGH and when LOW, the counter outputs are enabled.

## Am25LS2568-Am25LS2569

## ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{C C}=5.0 V \pm 5 \%$
$\mathrm{MIN}=4.75 \mathrm{~V} \quad \mathrm{MAX}=5.25 \mathrm{~V}$
MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 V \pm 10 \%$
MIN. $=4.50 \mathrm{~V}$
MAX $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions (Note 1)					Min.	(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{gathered} V_{C C}=M I N . \\ V_{I N}=V_{I H} \\ \text { or } V_{I L} \end{gathered}$	$Y_{i}$	MIL, $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$			2.4	3.4		
				$\mathrm{COM}^{\prime} \mathrm{L}, 1 \mathrm{OH}=-2.6 \mathrm{~mA}$			2.4	3.2		
			$\begin{aligned} & \overline{\mathrm{RCO}}, \\ & \mathrm{CCO} \end{aligned}$	$\mathrm{I}^{\prime} \mathrm{OH}=-440 \mu \mathrm{~A}$		MIL	2.5	3.4		olts
						COM'L	2.7	3.4		
$\mathrm{v}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\mathrm{OL}=4.0 \mathrm{~mA}$					0.4	
				$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$					0.45	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs					2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				IL			0.7	Volts
						OM'L			0.8	
$v_{1}$	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{1 N}=-18 \mathrm{~mA}$							$-1.5$	Volts
IIL	Input LOW Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} . \\ & V_{I N}=0.4 V \end{aligned}$		$\overline{A C L R}, \overline{O E}, ~ U / \bar{D}, \overline{\text { Load }}$					-0.3	mA
				A, B, C, D, CP, CEP					-0.4	
				$\overline{\text { CET, }} \overline{\text { SCLR }}$					-0.65	
${ }^{1 / H}$	Input HIGH Current	$\mathrm{V}_{C C}=$ MAX., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$							20	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$							0.1	mA
Ioz	Off-State (High-Impedance) Output Current	$V_{C C}=$ MAX		O $=0.4 \mathrm{~V}$					-20	$\mu \mathrm{A}$
				$\mathrm{O}_{\mathrm{O}}=2.4 \mathrm{~V}$					20	
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX.					-15		-85	mA
ICC	Power Supply Current (Note 4)	$V_{C C}=M A X$.						28	43	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. $\overline{O E}=$ HIGH, all other inputs $=$ GND, all outputs open.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V cC max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

SWITCHING CHARACTERISTICS
( $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )
Parameters Description Min. Typ. Max. Units Test Conditions


Note 1. Per industry convention, $f_{\text {max }}$ is the worst case value of the maximum device operating frequency with no constraints on $t_{r}, t_{f}$, pulse width or duty cycle.

Am25LS2568/2569
FUNCTION TABLE

	INPUTS												OUTPUTS					
MODE	LOAD	CEP	CET	U/ $\overline{\mathbf{D}}$	ASYNC CLEAR	SYNC   CLEAR	$\overline{O E}(1)$	$\mathrm{D}_{0}$	$\mathrm{D}_{1}$	$\mathrm{D}_{2}$	$\mathrm{D}_{3}$	CP	$Q_{0}$	$Q_{1}$	$Q_{2}$	$Q_{3}$	RC	CLOCK CARRY
Clear (ASYNC)	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & X \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	0	X   X	X X	X X	X X	X   X	0	0 0	0	0	1 0	$\Psi^{1}(2)$
Clear (SYNC)	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	X   X	X   X	X X X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\uparrow$	0 0	0	0 0	0	1	$\stackrel{1}{\Psi^{(2)}}$
Load	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & X \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$X$ 0 0 1	$\begin{aligned} & x \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & X \\ & 0 \\ & 1 \end{aligned}$	$\begin{gathered} x \\ 0 \\ 1(3) \end{gathered}$	$\begin{aligned} & \uparrow \\ & \uparrow \\ & \uparrow \end{aligned}$	0 1	$\begin{gathered} Q_{n} \\ 0 \\ 1 \end{gathered}$	$\begin{gathered} D_{n} \\ 0 \\ 1 \end{gathered}$	$\begin{gathered} 0 \\ 1(3) \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \Psi^{\prime}(2) \\ & \Psi^{(2)} \end{aligned}$
Count Up	1	0	0	1	1	1	0	X	X	x	$x$	$\uparrow$					(4)	(5)
Count Down	1	0	0	0	1	1	0	$x$	$x$	X	$x$	$\uparrow$					(6)	(5)
Inhibit	1 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	1 0 1	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	1 1 1	1 1 1	0 0 0	X         X	X   X   X	X   X   X	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\uparrow$ $\uparrow$ $\uparrow$					$\begin{aligned} & \text { N.C. } \\ & \text { N.C. } \\ & \text { N.C. } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
Output   Disable	X	X	X	X	X	X	1	X	X	X	X	X	Z	Z	Z	Z	N.C.	N.C.

$$
\begin{array}{lll}
\uparrow=\text { CLOCK LOW-to-HIGH transition } & Q_{n+1}=\text { Next higher count in binary sequence } \\
X & =\text { Don't Care } & Q_{n-1}=\text { Next lower count in binary sequence } \\
D_{n} & =D_{0} \text { thru } D_{3} \text { input level prior to clock transition } & \text { N.C. }=\text { No change }
\end{array}
$$

Notes: 1. Register performs all correct logic for any state of $\overline{\mathrm{OE}}$, but $\overline{\mathrm{OE}}=0$ to view outputs.
2. Follows CLOCK if $\mathrm{CET}=\mathrm{CEP}=0$, otherwise remains HIGH .
3. 1001 for LS68.
4. LOW for one full CLOCK cycle when maximum count is reached, otherwise remains HIGH.
5. Follows CLOCK when $\mathrm{RC}=0$.
6. LOW for one full CLOCK cycle when minimum count is reached, otherwise remains HIGH .

Am25LS2568 • Am25LS2569

## SWITCHING CHARACTERISTICS

 OVER OPERATING RANGE*| Parameters | Description : | VCC <br> Min. | $\begin{aligned} & \pm 5 \% \\ & \text { Max. } \end{aligned}$ | VCC <br> Min. | $\begin{aligned} & \pm 10 \% \\ & \text { Max. } \end{aligned}$ | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tPLH | Clock to Any Q; $\overline{\text { Load }}=$ LOW |  | 22 |  | 24 | ns |  |
| ${ }^{\text {tPHL }}$ |  |  | 29 |  | 35 |  |  |
| tPLH | Clock to Any Q; $\overline{\text { Load }}=\mathrm{HIGH}$ |  | 22 |  | 24 | ns |  |
| ${ }^{\text {tPHL }}$ |  |  | 29 |  | 35 |  |  |
| ${ }^{\text {tPLH}}$ | $\overline{\mathrm{CET}}$ to $\overline{\mathrm{RCO}}$ |  | 18 |  | 19 | ns |  |
| tPHL |  |  | 17 |  | 21 |  |  |
| ${ }_{\text {tPLH }}$ | $U / \bar{D}$ to $\overline{R C O}$ |  | 26 |  | 28 | ns |  |
| tPHL |  |  | 26 |  | 30 |  |  |
| tPLH | Clock to $\overline{\mathrm{RCO}}$ |  | 39 |  | 40 | ns |  |
| tPHL |  |  | 34 |  | 39 |  |  |
| tpLH | Clock to CCO |  | 17 |  | 18 | ns | $\begin{aligned} C_{L} & =50 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$ |
| tPHL |  |  | 22 |  | 27 |  |  |
| tPLH | $\overline{\mathrm{CET}}$ or $\overline{\mathrm{CEP}}$ to CCO |  | 16 |  | 17 | ns |  |
| tPHL |  |  | 36 |  | 45 |  |  |
| ${ }_{\text {tPLH }}$ | $\overline{\mathrm{ACLR}}$ to Any O |  | N.A. |  | N.A. | ns |  |
| tPHL |  |  | 37 | . | 45 |  |  |
| $\mathrm{t}_{5}$ | Set-up | 29 |  | 35 |  | ns | - |
|  |  | 25 |  | 30 |  |  |  |
|  |  | 38 |  | 45 |  |  |  |
|  |  | 38 |  | 45 |  |  |  |
|  |  | 33 |  | 40 |  |  |  |
| $\mathrm{t}_{\text {s }}$ | SCLR Recovery (inactive) to Clock | 39 |  | 50 |  | ns |  |
| $t_{\text {h }}$ | Data Hold | 0 |  | 5 |  | ns |  |
| $f_{\text {max }}$ | Maximum Clock Frequency (Note 1) | 20 |  | 18 |  | MHz |  |
| ${ }_{\text {t }}{ }_{\text {w }}$ | Clock Pulse Width | 31 |  | 37 |  | ns |  |
| ${ }^{\text {t }} \mathrm{ZH}$ | $\overline{O E}$ to Any Q; Enable |  | 16 |  | 20 | ns |  |
| ${ }^{\text {t }} \mathrm{ZL}$ |  |  | 26 |  | 34 |  |  |
| ${ }_{\mathrm{t}}^{\mathrm{H} \mathrm{L}}$ | $\overline{\mathrm{OE}}$ to Any Q; Disable |  | 20 |  | 22 | ns | $\begin{aligned} C_{L} & =5.0 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$ |
| ${ }^{\text {t }} \mathrm{L}$ Z |  |  | 30 |  | 36 |  |  |

*AC performance over the operating temperature range is guaranteed by testing defined in Group $A$, Subgroup 9 .
N.A. not applicable.


## DEFINITION OF FUNCTIONAL TERMS

$\frac{A, B, C, D}{\overline{C E P}}$	Count Enable Parallel. Can be used to enable and inhibit counting in high speed cascaded operation. $\overline{\text { CEP }}$ must be LOW to count.	$\overline{\text { ACLR }}$	Asynchronous Clear. Master reset of counters to zero when $\overline{\mathrm{ACLR}}$ is LOW, independent of the clock.
		$\overline{\text { SCLR }}$	Synchronous clear of counters to zero on the next clock edge when $\overline{\mathrm{SCLR}}$ is LOW.
$\overline{\text { CET }}$	Count Enable Trickle. Enables the ripple carry output for cascaded operation. Must be LOW to count.	$\overline{\mathbf{O E}}$	A HIGH on the output control sets the four counter outputs in the high impedance, and a LOW, enables the output.
CP	Clock Pulse. All synchronous functions occur on the LOW-to-HIGH transition of the clock.	$\frac{Y_{A}, Y_{B}, Y_{C}, Y_{D}}{R C O}$	The four counter outputs.   Ripple Carry Output. Output will be LOW on the maximum count on up-count. Upon
$\overline{\text { LOAD }}$	Enables parallel load of counter outputs from data inputs on the next clock edge. Must be HIGH to count.	CCO	down-count, $\overline{\mathrm{RCO}}$ is LOW at 0000.   Clock Carry Output. While counting and $\overline{\mathrm{RCO}}$ is LOW, CCO will follow the clock
U/D	Up/Down Count Control. HIGH counts up and LOW counts down.		HIGH-LOW-HIGH transition.

Am25LS
LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS


Note: Actual current flow direction shown.

$16 \times 16$ PAPMLLEX WULTPLERS
DUUTIPOFT PIPELNEDPROCESSOHS
FFTADORESS SEOUENCERS:


## 

8,9, MP 10-BIIMOX BUSIUTERFACE
DAGOSTCREGSTERS
IMOX COMPARNTORS.





10


5300
8200
nos MICROPROCEsSOR Suppont prosucts
Fons-BIT ANO 16 emm Mofornccescons:



PICRACING, ORDERINGMFORMAION
TESTING, OUNLTYASSURANCE/CUARANTEES GATE COUUTS, DESRES, RELAEULTY


## Am26S and Am26LS Interface Family Index

Am26S02 Schottky Dual Retriggerable, Resettable, Resettable Monostable Multivibrator ..... 10-1
Am26S10 Quad Bus Transceiver ..... 10-5
Am26S11 Quad Bus Transceiver ..... 10-5
Am26S12 Quad Bus Transceiver ..... 10-10
Am26S12A Quad Bus Transceiver ..... 10-10
Am26LS27 Dual Party-Line Transceivers (Serial) ..... 10-13
Am26LS28 Dual Party-Line Transceivers (Parallel) ..... 10-13
Am26LS29 Quad Driver RS-423, 3-State ..... 10-14
Am26LS30 Quad Driver RS-422/423 ..... 10-18
Am26LS31 Quad Driver RS-422, High-Speed ..... 10-24
Am26LS32 Quad Differential Line Receiver ..... 10-28
Arn26LS32B Quad Differential Line Receiver RS-422/423 ..... 10-30
Am26LS33 Quad Differential Line Receiver, High Common Mode ..... 10-28
Use of the Am26LS29, 30, 31 and 32 Quad Driver/Receiver Family in RS-422/423 Applications ..... 10-33
Am26LS34 Quad Differential Line Receiver, High Hysteresis ..... 10-45

## Am26S02

Schottky Dual Retriggerable, Resettable Monostable Multivibrator

## Distinctive Characteristics

- Advanced Schottky technology with PNP inputs
- Retriggerable 0\% to $100 \%$ duty cycle
- 28 ns to $\infty$ output pulse width range
- $100 \mathrm{k} \Omega$ maximum timing resistor value
- Am26S02XM typical pulse width change of only $1.0 \%$ over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with $\mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$.
- Am26S02XC typical pulse width change of only $0.4 \%$ over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ with $\mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$


## FUNCTIONAL DESCRIPTION

The Am26S02 is a dual DC level sensitive, retriggerable, resettable monostable multivibrator built using advanced Schottky technology. The output pulse duration and accuracy depend on the external timing components of each multivibrator. The Am26S02 features PNP inputs to reduce the input loading.
Provision is made on each multivibrator circuit for triggering the PNP inputs on either the rising or falling edge of an input signal by including an inverting and non-inverting trigger input. These PNP inputs are DC coupled making triggering independent of the input rise or fall time. Each time the monostable trigger input is activated from the OR
trigger gate, full pulse length triggering occurs independent of the present state of the monostable.

The direct clear PNP input allows a timing cycle to be terminated at any time during the cycle. A LOW on the clear input forces the Q output LOW regardless of the $T_{0}$ or $I_{1}$ inputs.

The Am26S02XM has a typical pulse width change of only $1.0 \%$ over the full military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and the Am26S02XC has a typical pulse width change of only $0.4 \%$ over the commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range with a $R_{X}=100 \mathrm{k} \Omega$.


MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs'	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am26S02×C   Am26S02XM	$\begin{aligned} & { }^{\top} A^{-1}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & { }^{\top} A=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{ll} V_{C C}=5.0 \vee \pm 5 \%(C O M ' L) & M I N .=4.75 V \\ V_{C C}=5.0 \vee \pm 10 \%(\text { MIL }) & \text { MIN. }=4.5 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { MAX. }=5.25 \mathrm{~V} \\ & \text { MAX. }=5.5 \mathrm{~V} \end{aligned}$			
Parameters	Description	Test Conditions (Note 1)	Min.	Typ.(Note 2)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I O H=-2 m A \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	2.5	2.8		Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I O L=20 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		0.38	0.5	Volts
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs	2.0			Volts
$\mathrm{V}_{\mathrm{IL}}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs			0.8	Volts
$V_{1}$	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN} ., \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-0.8	-1.2	Volts
$\begin{aligned} & \text { IIL } \\ & \text { (Note 3) } \end{aligned}$	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		-0.15	-0.4	mA
$I_{I H}$ (Note 3)	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$		0.1	20	$\mu \mathrm{A}$
$1 /$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			1.0	mA
ISC	Output Short Circuit Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MAX., } \mathrm{V}_{\text {OUT }}=1.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \text { Only } \end{aligned}$	-8	-15	-35	mA
$I_{\text {CC }}$	Power Supply Current	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{I}_{1} \mathrm{X}=0.33 \mathrm{~mA}($ Notes 5.\& 6)		48	69	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading
3. Actual input currents $=$ Unit Load $x$ Input Load Factor (See Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
5. ICC is measured with pin 5 and 11 grounded and $I_{1 \times}$ applied to pins 2 and 14.
6. $I_{1 X}$ is the current into the $R_{x} C_{x}$ node to simulate $R_{X}$

Switching Characteristics ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ )

Parameter	Description		Test Conditions	Min.	Typ.	Max.	Units
tPLH	$T_{0}$ to Q		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=280 \Omega \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{X}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{X}}=0 \mathrm{pF} \end{gathered}$		13	20	ns
tPHL	$\mathrm{T}_{0}$ to $\overline{\mathrm{Q}}$				15	23	ns
tplH	11 to Q				12	20	ns
tPHL	$\mathrm{I}_{1}$ to $\overline{\mathrm{Q}}$				12	20	ns
tPLH	Clear, to $\overline{\mathrm{Q}}$				21		ns
tPHL	Clear to Q				9	13	ns
${ }^{\text {tpw }}$	Pulse Width	$\bar{T}_{0} \mathrm{HIGH}$ or $\mathrm{I}_{1}$ LOW		20	10		ns
		T0 LOW or $1_{1} \mathrm{HIGH}$		16	7		ns
		Clear LOW		24	16		ns
$\mathrm{t}_{5}$	Clear Recovery (inactive) to Trigger			-10	-22		ns
$\begin{aligned} & \mathbf{t}_{\mathrm{pw}} \mathbf{Q} \\ & \text { (Min.) } \end{aligned}$	Minimum Pulse Width Q Output		$\begin{aligned} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, R_{\mathrm{X}} & =5.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{X}}=0 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =1.0 \mathrm{k} \Omega \end{aligned}$	27	33	39	ns
${ }^{t} \mathrm{pw}^{0}$	Pulse Width Q Output		$\begin{gathered} V_{C C}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ R_{X}=10 \mathrm{k} \Omega, C_{X}=1000 \mathrm{pF}(C K 05 \mathrm{Type}) \end{gathered}$	3.23	3.42	3.61	$\mu \mathrm{S}$
$\mathrm{R}_{\mathrm{X}}$	Timing Resistor		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	5		100	k $\Omega$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5		50	

Am26S02

## DEFINITION OF FUNCTIONAL TERMS:

$\bar{C}_{D}$ Asynchronous direct CLEAR. A LOW on the clear input resets the monostable regardless of the other inputs.
$T_{0}$ Active-LOW input. With $I_{1}$ LOW, a HIGH-to-LOW transition will trigger the monostable.
$I_{1}$ Active-HIGH input. With $T_{0}$ HIGH, a LOW-to-HIGH transition will trigger the monostable.
Q The TRUE monostable output.
$\overline{\mathbf{0}}$ The Complement monostable output.

FUNCTION TABLE

INPUTS			OUTPUTS	
$\bar{C}_{D}$	$\mathrm{I}_{\mathbf{1}}$	$\overline{\mathrm{T}}_{\mathbf{0}}$	Q	$\overline{\mathbf{Q}}$
L	$\times$	$\times$	L	$H$
$H$	$H$	$X$	L	$H$
$H$	L	$\downarrow$	$\Omega$	$U$
$H$	$\times$	$L$	$L$	$H$
$H$	$\uparrow$	$H$	$\Omega$	$U$

$H=H I G H$
L = LOW
$\uparrow=$ LOW-to-HIGH Transition
$\downarrow=$ HIGH-to-LOW Transition
$\Omega=$ LOW-HIGH-LOW Pulse
工 = HIGH-LOW-HIGH Pulse
$X=$ Don't Care

## LOADING RULES (In Unit Loads)

Fan-out

Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output LOW
$\mathrm{C}_{\mathrm{X}}$	Mono 11	-	-	-
$\mathrm{RX}_{\mathbf{X}} / \mathrm{C}_{\mathrm{X}}$	2	-	-	-
$\overline{C_{D}}$	3	0.4	-	-
$I_{1}$	4	0.4	-	-
$T_{0}$	5	0.4	-	-
0	6	-	40	10
$\overline{\mathbf{0}}$	7	-	40	10
GND	8	-	-	-
$\overline{\mathbf{Q}}$	Mono 29	-	40	10
0	10	-	40	10
$\mathrm{T}_{0}$	11	0.4	-	-
11	12	0.4	-	-
$\overline{\bar{C}_{D}}$	13	0.4	-	-
$\mathrm{R}_{\mathrm{X}} / \mathrm{C}_{\mathrm{X}}$	14	-	-	-
$\mathrm{C}_{\mathrm{X}}$	15	-	-	-
$\mathrm{V}_{\mathrm{CC}}$	16	-	-	-



Typical Normalized
Output Pulse Width Versus Case Temperature

Normalized Output Pulse Width Versus Operating Duty Cycle

Typical Normalized Output Pulse Width Versus Supply Voltage


Output Pulse Width Versus External Timing Capacitance


Metallization and Pad Layout


DIE SIZE 0.062" $\times 0.071^{\prime \prime}$

Am26S02

## OPERATION RULES

## TIMING

1. Timing components $C_{x}$ and $R_{x}$ values.

Operating Temperature Range		
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$   $\mathrm{R}_{x}$ MIN. $5 \mathrm{k} \Omega$ $5 \mathrm{k} \Omega$   $R_{x}$ MAX. $100 \mathrm{k} \Omega$ $50 \mathrm{k} \Omega$   $\mathrm{C}_{x}$ any value any value		

## 2. Remote adjustment of timing.



$$
\begin{aligned}
& R_{1}+R_{2}=R_{x} \\
& R_{1} \geqslant R_{x} \text { MIN. } \\
& R_{2}<R_{x} \text { MAX. }-R_{1} .
\end{aligned}
$$

In the above arrangement, $\mathrm{R}_{1}$ and $\mathrm{C}_{\mathbf{x}}$ should be as close as possible to the device pins to minimize stray capacitance and external noise pickup. The variable resistor $\mathrm{R}_{2}$ can be located remotely from the device if reasonable care is used.
3. Pulse width change measurements.

The pulse width $t_{p w} \mathrm{O}$ is specified and measured with components of better than $0.1 \%$ accuracy. If measurements are made with reduced component tolerances, the expected accuracy should be adjusted accordingly. Note that pulse width temperature stability improves as $\mathrm{R}_{\mathrm{X}}$ increases.
4. Timing for $C_{x} \leqslant 1000 \mathrm{pF}$.

When using capacitor of less than or equal to 1000 pF in value, the output pulse width should be determined from the output pulse width versus external timing capacitance graph.
5. Timing for $\mathrm{C}_{x}>1000 \mathrm{pF}$.

For capacitors of greater than 1000 pF in value, the output pulse width, $\mathrm{t}_{\mathrm{pw}} \mathrm{Q}$, is determined by

$$
\mathrm{t}_{\mathrm{pw}} \mathrm{Q}=0.30 \mathrm{C}_{\mathrm{x}} \mathrm{R}_{\mathrm{x}}\left(1+\frac{0.11}{\mathrm{R}_{\mathrm{x}}}\right)
$$

where
$R_{X}$ is in kilohms
$C_{x}$ is in picofarads
${ }^{t_{\mathrm{pw}}} \mathrm{Q}$ is in nanoseconds

$R_{1} \leqslant 0.6 \times R_{X}$ MAX.

$$
\mathrm{R}_{2}<0.7 \times \mathrm{h}_{\text {FEO } 1} \times \mathrm{R}_{\mathrm{x}}
$$

## 6. Protection of electrolytic timing capacitors.

If the electrolytic capacitor to be used as $\mathrm{C}_{\mathrm{x}}$ cannot withstand 1.0 volt reverse bias, one of the two circuit techniques shown below should be used to protect the electrolytic capacitor from the reverse voltage. The accuracy of the pulse width may be dependent on the diode (transistor) characteristics.
The output pulse width, $\mathrm{t}_{\mathrm{pw}} \mathbb{Q}$ for the diode circuit modifies the previous timing equation as follows:

$$
\mathrm{t}_{\mathrm{pw}} \mathrm{Q}=0.26 \mathrm{C}_{\mathrm{x}} \mathrm{R}_{\mathrm{x}}\left(1+\frac{0.13}{\mathrm{R}_{\mathrm{x}}}\right)
$$

The output pulse width for the transistor circuit is

$$
\mathrm{t}_{\mathrm{pw}} \mathrm{Q}=0.21 \mathrm{C}_{\mathrm{x}} \mathrm{R}_{\mathrm{x}}\left(1+\frac{0.16}{\mathrm{R}_{\mathrm{x}}}\right)
$$

Notice that the transistor circuit allows values of timing resistor $R_{2}$ larger than the $R_{x}$ MIN. $<R_{x}<R_{x}$ MAX. to obtain longer output pulse widths for a given $C_{x}$.

## TRIGGER AND RETRIGGER

## 1. Triggering.

The minimum pulse width signal into input $T_{0}$ or input $l_{1}$ to cause the device to trigger is 20 ns . Refer to the truth table for the appropriate input conditions.

## 2. Retriggering.

The retriggered pulse width, $\mathrm{t}_{\mathrm{pwr}} \mathrm{Q}$, is the time during which the output is active after the device is retriggered during a timing cycle. It differs from the initial pulse width $t_{p_{w}} Q$ timing equation as follows.

$$
t_{\mathrm{pwr}} \mathrm{Q}=\mathrm{t}_{\mathrm{pw}} \mathrm{Q}+\mathrm{t}_{\mathrm{pLH}}
$$

where tPLH is the propagation delay time from the $T_{0}$ or $I_{1}$ input to the output. Note that tPLH is typically 14 ns and therefore becomes relatively unimportant as $\mathrm{t}_{\mathrm{pw}} \mathrm{O}$ increases.

## 3. Rapid retriggering.

A minimum retriggering time does exist. That is, the device cannot be retriggered until a minimum recovery time has elapsed. The minimum retrigger time is approximately.
$t_{\text {retrig }}$ MIN. $=0.2 C_{x}$
C is in picofarads
$t$ is in nanoseconds


CLEAR
A LOW on the clear inputs terminates the timing cycle. A new trigger cycle cannot be initiated while the clear is LOW. With the clear HIGH, the device is under the command of the $I_{1}$ and $\bar{T}_{0}$ inputs.

# Am26S10 • Am26S11 <br> Quad Bus Transceivers 

## Distinctive Characteristics

- Input to bus is inverting on Am26S10
- Input to bus is non-inverting on Am26S11
- Quad high-speed open collector bus transceivers
- Driver outputs can sink 100 mA at 0.8 V maximum
- Bus compatible with Am2905, Am2906, Am2907
- Advanced Schottky processing
- PNP inputs to reduce input loading


## FUNCTIONAL DESCRIPTION

The Am26S10 and Am26S11 are quad Bus Transceivers consisting of four high-speed bus drivers with open-collector outputs capable of sinking 100 mA at 0.8 volts and four high-speed bus receivers. Each driver output is connected internally to the high-speed bus receiver in addition to being connected to the package pin. The receiver has a Schottky TTL output capable of driving ten Schottky TTL unit loads.
An active LOW enable gate controls the four drivers so that outputs of different device drivers can be connected together for party-line operation. The enable input can be conveniently driven by active LOW decoders such as the Am25LS139.
The bus output high-drive capability in the LOW state allows party-line operation with a line impedance as low as $100 \Omega$. The line can be terminated at both ends, and still give considerable noise margin at the receiver. The receiver typical switching point is 2.0 volts.
The Am26S10 and Am26S11 feature advanced Schottky processing to minimize propagation delay. The device package also has two ground pins to improve ground current handling and allow close decoupling between $\mathrm{V}_{C C}$ and ground at the package. Both $\mathrm{GND}_{1}$ and $\mathrm{GND}_{2}$ should be tied to the ground bus external to the device package.
ORDERING INFORMATION
Package

Type $\quad$\begin{tabular}{ccc}
Temperature <br>
Range

$\quad$

Am26S10 <br>
Order <br>
Number

$\quad$

Am26S11 <br>
Order <br>
Number
\end{tabular}

## CONNECTION DIAGRAMS

 Top Views


10

Am26S10•Am26S11
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Bus	200 mA
Output Current, Into Outputs (Except Bus)	30 mA
DC Input Current	$-30 \mathrm{~mA} \mathrm{to}+5.0 \mathrm{~mA}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Am26S10XC, Am26S $11 \times \mathrm{C}$	$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%\left(C O M^{\prime} \mathrm{L}\right)$	MIN. $=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
Am26S10×M, Am26S $11 \times \mathrm{M}$	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIL})$	MIN. $=4.5 \mathrm{~V}$	MAX. $=5.5 \mathrm{~V}$


Parameters	Description	Test Conditions (Note		Min.	Typ.   (Note 2)	Max.	Units
$\mathrm{v}_{\mathrm{OH}}$	Output HIGH Voltage (Receiver Outputs)	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	MIL	2.5	3.4		Volts
		$V_{\text {IN }}=V_{\text {IL }}$ or $V_{\text {IH }}$	COM'L	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Receiver Outputs)	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=20 \mathrm{~mA} \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$				0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs				0.8	Volts
$V_{1}$	Input Clamp Voltage (Except Bus)	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
IIL	Input LOW Current (Except Bus)	$\mathrm{V}_{\text {CC }}=. \mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	Enable			-0.36	mA
			Data			-0.54	
${ }^{1} / \mathrm{H}$	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$	Enable			20	$\mu \mathrm{A}$
			Data			30	
11	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$		,		100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=$ MAX. ( Note 3)	MIL	-20		-55	mA
			COM'L	-18		-60	
${ }^{\prime} \mathrm{CCL}$	Power Supply Current (All Bus Outputs LOW)	$\begin{aligned} & V_{C C}=M A X . \\ & \text { Enable }=G N D \end{aligned}$	Am26S10		45	70	mA
			Am26S11			80	

## Bus Input/Output Characteristics

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$V_{C C}=\mathrm{MIN}$.	MIL	$1 \mathrm{OL}=40 \mathrm{~mA}$		0.33	0.5	Volts
				$1 \mathrm{OL}=70 \mathrm{~mA}$		0.42	0.7	
				${ }^{\prime} \mathrm{OL}=100 \mathrm{~mA}$		0.51	0.8	
			COM'L	$1 \mathrm{OL}=40 \mathrm{~mA}$		0.33	0.5	
				$1 \mathrm{OL}=70 \mathrm{~mA}$		0.42	0.7	
				$!\mathrm{OL}=100 \mathrm{~mA}$		0.51	0.8	
${ }^{1} \mathrm{O}$	Bus Leakage Current	$V_{C C}=$ MAX.		$\mathrm{V}_{\mathrm{O}}=0.8 \mathrm{~V}$			-50	$\mu \mathrm{A}$
			MIL	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			200	
			COM ${ }^{\prime}$	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
IOFF	Bus Leakage Current (Power Off)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathbf{V}_{\text {TH }}$	Receiver Input HIGH Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$		MIL	2.4	2.0		Volts
				COM'L	2.25	2.0		
$V_{\text {TL }}$	Receiver Input LOW Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN} \end{aligned}$		MIL		2.0	1.6	Volts
				$\mathrm{COM}^{\prime} \mathrm{L}$		2.0	1.75	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Switching Characteristics ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )

Parameters	Description		Test Conditions	Min.	Tvp.	Max.	Units
${ }^{\text {tPLH }}$	Data Input to Bus	Am26S10	$\begin{gathered} \mathrm{R}_{\mathrm{B}}=50 \Omega \\ \mathrm{C}_{\mathrm{B}}=50 \mathrm{pF} \text { (Note 1) } \end{gathered}$		10	15	ns
${ }^{\text {tPHL }}$					10	15	
tPLH		Am26S11			12	19	
tPHL					12	19	
tPLH	Enable Input to Bus	Am26S10			14	18	ns
tPHL					13	18	
tPLH		Am26S11			15	20	
tPHL					14	20	
tPLH	Bus to Receiver Out		$R_{B}=50 \Omega, R_{L}=280 \Omega$		10	15	ns
${ }_{\text {tPHL }}$			$C_{B}=50 \mathrm{pF}\left(\right.$ Note 1) , $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		10	15	
$\mathrm{t}_{\mathrm{r}}$	Bus		$\begin{gathered} R_{B}=50 \Omega \\ C_{B}=50 \mathrm{pF} \text { (Note 1) } \end{gathered}$	4.0	10		ns
$\mathrm{t}_{\mathrm{f}}$	Bus			2.0	4.0		ns

Note 1. Includes probe and jig capacitance.


## TYPICAL PERFORMANCE CURVES



## SWITCHING CHARACTERISTICS

## TEST CIRCUIT



LIC-378

Note 1. Includes Probe and Jig Capacitance.


## Am26S12 • Am26S12A

## Distinctive Characteristics

- Quad high-speed bus transceivers
- Choice of receiver hysteresis characteristics
- Driver outputs can sink 100 mA at 0.7 V typically


## FUNCTIONAL DESCRIPTION

The Am26S12 - Am26S12A are high-speed quad Bus Transceivers consisting of four high-speed bus drivers with open-collector outputs capable of sinking 100 mA at 0.7 volts and four high-speed bus receivers. Each driver output is brought out and also connected internally to the high-speed bus receiver. The receiver has an input hysteresis characteristic and a TTL output capable of driving ten TTL Loads.
An active LOW, two-input AND gate controls the four drivers so that outputs of different device drivers can be connected together for partyline operation. The enable inputs can be conveniently driven by active LOW decoders such as the Am54S/74S139.
The high-drive capability in the LOW state allows party-line operation with a line impedance as low as $100 \Omega$. The line can be terminated at both ends, and still give conuiderable noise margin at the receiver. The
hysteresis characteristic of the Am 26 S 12 receiver is chosen so that the receiver output switches to a HIGH logic level when the receiver input is at a HIGH logic level and moves to 1.4 volts typically, and switches to a LOW logic level when the receiver input is at a LOW logic level and moves to 2.0 volts typically. This hysteresis characteristic makes the receiver very insensitive to noise on the bus.
The Am26S12A is functionally identical to the Am26S12 but has a different hysteresis characteristic so that the output switches with the input being typically at 1.2 volts or 2.25 volts. In both devices the threshold margin, the difference between the switching points, is greater than 0.4 volts.


MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs (BUS)	200 mA
Output Current, Into Outputs (Receiver)	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)
Am26S12×C-Am26S12AXC $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Am26S12XM-Am26S12AXM $\quad T_{A}^{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$ (COM Range)
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$ (MIL Range) Note 1

Parameters	Description	Test Conditions	Min.	Typ.(Note 2)	Max.	Units
${ }^{1} \mathrm{CC}$	Power Supply Current	$V_{C C}=$ MAX .		46	70	mA
IbuS	Bus Leakage Current	$V_{C C}=M A X . \text { or } O V$   $V_{B U S}=4.0 \mathrm{~V}$; Driver in OFF State			100	$\mu \mathrm{A}$

## Driver Characteristics

$\mathrm{V}_{\mathrm{OL}}$   (Note 1)	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	COM'L	$1 \mathrm{OL}=100 \mathrm{~mA}$		0.7	0.8	Volts
				$\mathrm{IOL}=60 \mathrm{~mA}$		0.55	0.7	Volts
				$1 \mathrm{OL}=100 \mathrm{~mA}$		0.7	0.85	
$V_{\text {IH }}$	Input HIGH Voltage				2.0			Volts
$V_{\text {IL }}$	Input LOW Voltage						0.8	Volts
$V_{1}$	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}_{\text {IN }}=$	$-18 \mathrm{~mA}$				-1.2	Volts
11	Input Current at Maximum Input Voltage	$V_{C C}=$ MAX., $V_{1}=5$	5.5 V				1.0	mA
${ }^{1} \mathrm{H}$	Unit Load Input HIGH Current	$V_{C C}=$ MAX., $V_{1}=$	2.4 V			1.0	40	$\mu \mathrm{A}$
IIL	Unit Load Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{1}=0$	0.4 V			-0.4	-1.6	mA

## Receiver Characteristics

$\mathbf{v}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\text { MIN., } \mathrm{IOH}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { (Receiver) } \end{aligned}$		2.4			Volts
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=20 \mathrm{~mA} \\ & V_{I N}=V_{I L} \text { (Receiver) } \end{aligned}$			0.4	0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level Threshold	$\bar{E}=H$	Am26S12	1.8	2.0	2.2	Volts
			Am26S12A	2.05	2.25	2.45	
$V_{\text {IL }}$	Input LOW Level Threshold	$\bar{E}=H$	Am26S12	1.2	1.4	1.6	Volts
			Am26S12A	1.0	1.2	1.4	
$\mathrm{V}_{\text {TM }}$	Input Threshold Margin	$\overline{\mathrm{E}}=\mathrm{H}$		0.4			Volts
${ }^{\text {IOS }}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$		-20		-55	mA

Notes: 1. For the Am26S12FM, Am26S12AFM the output current must be limited at 60 mA or the maximum case temperature limited to $125^{\circ} \mathrm{C}$ for correct operation.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ )

Parameters	Description	Conditions	Min.	Typ.	Max.	Units
${ }^{\text {t PLH }}$	Turn Off Delay Input to Bus	$C_{L B}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{LB}}=100 \Omega$		7	11	ns
${ }^{\text {t }}$ PHL	Turn On Delay Input to Bus	$C_{\text {LB }}=300 \mathrm{pF}, \mathrm{R}_{\mathrm{LB}}=50 \Omega$		14	21	ns
${ }^{\text {t PLH }}$	Turn Off Delay Enable to Bus	$C_{\text {LB }}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{LB}}=50 \Omega$		10	15	ns
${ }^{\text {t P PHL }}$	Turn On Delay Enable to Bus	$C_{L B}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{LB}}=50 \Omega$		10	15	ns
$t_{\text {PLH }}$	Turn Off Delay Bus to Output	$C_{L}=15 \mathrm{pF}$		18	26	ns
${ }^{\text {t }}$ PHL	Turn On Delay Bus to Output	$C_{L}=15 \mathrm{pF}$		18	26	ns



Figure 6


## Am26LS27•Am26LS28 <br> Dual EIA RS-aaa Party Line Transceivers



## Am26LS29 <br> Quad Three-State Single Ended RS-423 Line Driver

## DISTINCTIVE CHARACTERISTICS

- Four single ended line drivers in one package for maximum package density
- Output short-circuit protection
- Individual rise time control for each output
- High capacitive load drive capability
- Low $I_{C C}$ and $I_{E E}$ power consumption (26mW/driver typ.)
- Meets all requirements of RS-423
- Three-state outputs for bus oriented systems
- Outputs do not clamp line with power off or in hi-impedance state over entire transmission line voltage range of RS-423
- Low current PNP inputs compatible with TTL, MOS and CMOS
- Available in military and commercial temperature range
- Advanced low power Schottky processing


## FUNCTIONAL DESCRIPTION

The Am26LS29 is a quad single ended line driver, designed for digital data transmission. The Am26LS29 meets all the requirements of EIA Standard RS-423 and Federal STD 1030. It features four buffered outputs with high source and sink current, and output short circuit protection.

A slew rate control pin allows the use of an external capacitor to control slew rate for suppression of near end cross talk to receivers in the cable.

The Am26LS29 has three-state outputs for bus oriented systems. The outputs in the hi-impedance state will not clamp the line over the transmission line voltage of RS-423. A typical full duplex system would use the Am26LS29 line driver and up to twelve Am26LS32 line receivers or an Am26LS32 line receiver and up to thirty-two Am26LS29 line drivers with only one enabled at a time and all others in the three-state mode.
The Am26LS29 is constructed using advanced low-power Schottky processing.


Supply Voltage

$\mathrm{V}+$	7.0 V
$\mathrm{~V}-$	-7.0 V
Power Dissipation	600 mW
Input Voltage	-0.5 to +15.0 V
Output Voltage (Power Off)	$\pm 15 \mathrm{~V}$
Lead Soldering Temperature (10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating temperature range
The following conditions apply unless otherwise specified:
$\begin{array}{lll}\text { Am26LS29XM (MIL) } & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V}+10,-5 \%, V_{E E}=-5.0 \mathrm{~V}-10,+5 \% \\ \text { Am26LS29XC (COM'L) } & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, V_{E E}=-5.0 \mathrm{~V} \pm 5 \%\end{array}$
DC CHARACTERISTICS over the operating temperature range (Notes 1 and 2)

Parameters	Description	Test Conditions		Min.	(Note 1)	Max.	Units
$\mathrm{V}_{\mathrm{O}}$	Output Voltage	$R_{L}=\infty($ Note 3)	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	4.0	4.4	6.0	Volts
$\overline{V_{0}}$			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-4.0	-4.4	-6.0	Volts
$\mathrm{V}_{\mathrm{T}}$	Output Voltage	$R_{L}=450 \Omega$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	3.6	4.1		Volts
$\overline{V_{T}}$			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-3.6	-4.1		Volts
$\left\|V_{T}\right\|-\left\|\overline{V_{T}}\right\|$	Output Unbalance	$\left\|\mathrm{V}_{\mathrm{CC}}\right\|=\left\|\mathrm{V}_{\mathrm{EE}}\right\|, \mathrm{R}_{\mathrm{L}}=450 \Omega$			0.02	0.4	Volts
${ }^{1} \mathrm{X}^{+}$	Output Leakage Power Off	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$		2.0	100	$\mu \mathrm{A}$
$1{ }^{1}$			$\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}$		-2.0	-100	$\mu \mathrm{A}$
${ }^{1} \mathrm{~S}^{+}$	Output Short Circuit Current	$V_{O}=0 \mathrm{~V}$	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$		-70	-150	mA
IS-			$V_{\text {IN }}=0.4 \mathrm{~V}$		60	150	mA
${ }^{\text {I Slew }}$	Slew Control Current	$\mathrm{V}_{\text {SLEW }}=\mathrm{V}_{\text {EE }}+0.9 \mathrm{~V}$			$\pm 110$		$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Positive Supply Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			18	30	mA
'EE	Negative Supply Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			-10	-22	mA
10	Off State (High Impedance) Output Current	$V_{C C}=$ MAX .	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$		2.0	100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}$		-2.0	-100	$\mu \mathrm{A}$
$V_{\text {IH }}$	High Level Input Voltage			2.0	i		Volts
$V_{\text {IL }}$	Low Level Input Voltage					0.8	Volts
'IH	High Level Input Current	$V_{1 N}=2.4 \mathrm{~V}$			1.0	40	$\mu \mathrm{A}$
		$V_{\text {IN }} \leqslant 15 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
$1 / \mathrm{L}$	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-30	-200	$\mu \mathrm{A}$
$V_{1}$	Input Clamp Voltage	$1 \mathrm{~N}=-12 \mathrm{~mA}$				-1.5	Volts

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading
2. Symbols and definitions correspond to EIA RS-423 where applicable.
3. Output voltage is +3.9 V minimum and -3.9 V minimum at $-55^{\circ} \mathrm{C}$.

## AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Parameters
 Min Typ. Min. (Note 1) Max. Units

	3.0		$\mu \mathrm{~s}$
	120	300	ns
	3.0		$\mu \mathrm{~s}$
	120	300	ns
	.06		$\mu \mathrm{~s} / \mathrm{pF}$
	180	300	
	250	350	ns
	250	350	
	180	300	



Figure 1. Rise Time Control.


Figure 2. Three State Delays.

Am26LS29 EQUIVALENT CIRCUIT


## TYPICAL APPLICATION



## DISTINCTIVE CHARACTERISTICS

- Dual RS-422 line driver or quad RS-423 line driver
- Driver outputs do not clamp line with power off or in hi-impedance state
- Individually three-state drivers when used in differential mode
- Low $\mathrm{I}_{\mathrm{CC}}$ and $\mathrm{I}_{\mathrm{EE}}$ power consumption RS-422 differential mode $\quad 35 \mathrm{~mW} /$ driver typ. RS-423 single-ended mode $26 \mathrm{~mW} /$ driver typ.
- Individual slew rate control for each output
- $50 \Omega$ transmission line drive capability (RS-422 into virtual ground)
- Low current PNP inputs compatible with TTL, MOS and CMOS
- High capacitive load drive capability
- Exact replacement for DS16/3691
- Advanced low power Schottky processing


## FUNCTIONAL DESCRIPTION

The Am26LS30 is a line driver designed for digital data transmission. A mode control input provides a choice of operation either as two differential line drivers which meet all of the requirements of EIA Standard RS-422 or four independent single-ended RS-423 line drivers.

In the differential mode the outputs have individual three-state controls. In the hi-impedance state these outputs will not clamp the line over a common mode transmission line voltage of $\pm 10 \mathrm{~V}$. A typical full duplex system would be the Am26LS30 differential line driver and up to twelve Am26LS32 line receivers or an Am26LS32 line receiver and up to thirty-two Am26LS30 differential drivers.
A slew rate control pin allows the use of an external capacitor to control slew rate for suppression of near end cross talk to receivers in the cable.

The Am26LS30 is constructed using Advanced Low Power Schottky processing.


ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage   $\mathrm{V}+$	7.0 V
$\mathrm{~V}-$	-7.0 V
Power Dissipation	600 mW
Input Voltage	-0.5 to +15.0 V
Output Voltage (Power Off)	$\pm 15 \mathrm{~V}$
Lead Soldering Temperature $(10$ seconds $)$	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating temperature range
The Following Conditions Apply Unless Otherwise Specified:
Am26LS30XM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$
Am26LS30XC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{E E}=G N D$
EIA RS-422 Connection, Mode Voltage $=0.8 \mathrm{~V}$
DC CHARACTERISTICS over the operating temperature range
Typ.

Parameters	Description	Test Conditio	ons (Note 3)	Min.	(Note 1)	Max.	Units
$\mathrm{V}_{0}$	Differential Output Voltage, $\mathrm{V}_{\text {A }}$, B	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		3.6	6.0	Volts
$\overline{V_{0}}$			$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$		-3.6	-6.0	Volts
$\mathrm{V}_{\mathrm{T}}$	Differential Output Voltage, $\mathrm{V}_{\text {A, B }}$	$R_{L}=100 \Omega$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$	2.0	2.4		Volts
$\overline{V_{T}}$			$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	-2.0	-2.4		Volts
$\mathrm{V}_{\text {OS }}, \overline{V_{\text {OS }}}$	Common Mode Offset Voltage	$R_{L}=100 \Omega$			2.5	3.0	Volts
$\left\|V_{T}\right\|-\left\|\bar{V}_{T}\right\|$	Difference in Differential Output Voltage	$R_{L}=100 \Omega$			0.005	0.4	Voits
$\left\|V_{O S}\right\|-\left\|\overline{v_{O S}}\right\|$	Difference in Common Mode Offset Voltage	$R_{L}=100 \Omega$			0.005	0.4	Volts
$\mathrm{V}_{\text {SS }}$	$\left\|V_{T}-\overline{V_{T}}\right\|$	$R_{L}=100 \Omega$		4.0	4.8		Volts
$V_{\text {CMR }}$	Output Voltage Common Mode Range	$\mathrm{V}_{\text {ENABLE }}=2.4 \mathrm{~V}$		$\pm 10$			Volts
${ }^{1} \times \mathrm{A}$	Output Leakage Current	$V_{C C}=0 \mathrm{~V}$	$\mathrm{V}_{\text {CMR }}=10 \mathrm{~V}$			100	$\mu \mathrm{A}$
$1 \times B$			$\mathrm{V}_{\text {CMR }}=-10 \mathrm{~V}$			-100	$\mu \mathrm{A}$
'0x	Off State (High Impedance) Output Current	$V_{C C}=$ MAX .	$\mathrm{V}_{\mathrm{CMR}} \leqslant 10 \mathrm{~V}$			100	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {CMR }} \geqslant-10 \mathrm{~V}$			-100	$\mu \mathrm{A}$
$I_{S A}, I_{S B}$	Output Short Circuit Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OA}}=6.0 \mathrm{~V}$		80	150	mA
			$\mathrm{V}_{\mathrm{OB}}=0 \mathrm{~V}$		-80	-150	mA
		$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OA}}=0 \mathrm{~V}$		-80	-150	mA
			$\mathrm{V}_{\mathrm{OB}}=6.0 \mathrm{~V}$		80	150	mA
ICC	Supply Current				18	30	mA
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage			2.0			Volts
$V_{\text {IL }}$	Low Level Input Voltage					0.8	Volts
$1 / \mathrm{H}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			1.0	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }} \leqslant 15 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-30	-200	$\mu \mathrm{A}$
$V_{1}$	Input Clamp Voltage	$1_{1 N}=-12 \mathrm{~mA}$				-1.5	Volts

## AC CHARACTERISTICS

EIA RS-422 Connection, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{Mode}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameters	Description	Test Conditions	Min.	$\begin{aligned} & \text { Typ. } \\ & \text { (Note 1) } \end{aligned}$	Max.	Units
$\mathrm{t}_{\mathrm{r}}$	Differential Output Rise Time	Fig. 2, $R_{L}=100 \Omega, C_{L}=500 \mathrm{pF}$		1.20	200	ns
$\mathrm{t}_{\mathrm{f}}$	Differential Output Fall Time	Fig. 2, $R_{L}=100 \Omega, C_{L}=500 \mathrm{pF}$		120	200	ns
$\mathrm{t}_{\text {PDH }}$	Output Propagation Delay	Fig. 2, $R_{L}=100 \Omega, C_{L}=500 \mathrm{pF}$		120	200	ns
${ }^{\text {tPDL }}$	Output Propagation Delay	Fig. 2, $R_{L}=100 \Omega, C_{L}=500 \mathrm{pF}$		120	200	ns
$t_{L Z}$	Output Enable to Output	$R_{L}=450 \Omega, C_{L}=500 p F, C_{C}=0 p F$, Fig. 3		180	300	ns
$t_{H Z}$				250	350	
$\mathrm{t}_{\mathrm{ZL}}$		$\mathrm{R}_{\mathrm{L}}=450 \Omega, C_{L}=500 \mathrm{pF}, \mathrm{C}_{C}=0 \mathrm{pF}$, Fig. 3		250	350	
$\mathrm{t}_{\mathrm{ZH}}$				180	300	

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5: 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. Symbols and definitions correspond to EIA RS-422 where applicable.
3. $R_{L}$ connected between each output and its complement.

## Am26LS30

ELECTRICAL CHARACTERISTICS over the operating temperature range
The following conditions apply unless otherwise specified:
Am26LS30XM (MIL)
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%, V_{E E}=-5.0 \mathrm{~V} \pm 10 \%$
Am26LS30XC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{E E}=-5.0 \mathrm{~V} \pm 5 \%$

RS-423 Connection, Mode Voltage $\geqslant 2.0 \mathrm{~V}$
DC CHARACTERISTICS over the operating temperature range (Notes 1 and 2)

Parameters	Description	Test Conditions		Min.	Typ.   (Note 1)	Max.	Units
$\mathrm{V}_{\mathrm{O}}$	Output Voltage	$\begin{aligned} & R_{L}=\infty,(\text { Note } 3) \\ & \left\|V_{C C}\right\|=\left\|V_{E E}\right\|=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	4.0	4.4 ,	6.0	Volts
$\overline{V_{O}}$			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-4.0	-4.4	-6.0	Volts
$\mathrm{V}_{\mathrm{T}}$	Output Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=450 \Omega, \\ & \left\|\mathrm{~V}_{\mathrm{CC}}\right\|=\left\|\mathrm{V}_{\mathrm{EE}}\right\|=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	3.6	4.1		Volts
$\overline{V_{T}}$			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-3.6	-4.1		Volts
$\left\|V_{T}\right\|-\left\|\overline{V_{T}}\right\|$	Output Unbalance	$\left\|\mathrm{V}_{\mathrm{CC}}\right\|=\left\|\mathrm{V}_{\mathrm{EE}}\right\|, \mathrm{R}_{\mathrm{L}}=450 \Omega$			0.02	0.4	Volts
${ }^{1} \mathrm{X}^{+}$	Output Leakage Power Off	$V_{C C}=V_{E E}=0 V$	$\mathrm{V}_{\mathrm{O}}=6.0 \mathrm{~V}$		2.0	100	$\mu \mathrm{A}$
1 x			$\mathrm{V}_{\mathrm{O}}=-6.0 \mathrm{~V}$		-2.0	-100	$\mu \mathrm{A}$
$\mathrm{IS}^{+}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-80	-150	mA
$I_{\text {S }}$ -			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		80	150	mA
ISlew	Slew Control Current	$\mathrm{V}_{\text {SLEW }}=\mathrm{V}_{\text {EE }}+0.9 \mathrm{~V}$			$\pm 140$		$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Positive Supply Current	$V_{\text {IN }}=0.4 V, R_{L}=\infty$			18	30	mA
IEE	Negative Supply Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			-10	-22	mA
$V_{\text {IH }}$	High Level Input Voltage			2.0			Volts
$V_{\text {IL }}$	Low Level Input Voltage					0.8	Volts
IIH	High Level Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			1.0	40	$\mu \mathrm{A}$
		$V_{\text {IN }} \leqslant 15 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-30	-200	$\mu \mathrm{A}$
$\mathrm{V}_{1}$	Input Clamp Voltage	$1 \mathrm{IN}=-12 \mathrm{~mA}$				-1.5	Volts

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. Symbols and definitions correspond to EIA RS-423 where applicable.
3. Output voltage is +3.9 V minimum and -3.9 V minimum at $-55^{\circ} \mathrm{C}$.

## AC CHARACTERISTIĆS

RS-423 Connection, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{Mode}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
$\mathrm{tr}_{\text {r }}$	Rise Time	Fig. 1, $\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	$\mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$		3.0		$\mu \mathrm{s}$
			$\mathrm{C}_{\mathrm{C}}=0$		120	300	ns
$t_{f}$	Fall Time	Fig. 1, $\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	$\mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$		3.0		$\mu \mathrm{s}$
			$\mathrm{C}_{\mathrm{C}}=0$		120	300	ns
Src	Slew Rate Coefficient	Fig. 1, $\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$			. 06		$\mu \mathrm{s} / \mathrm{pF}$
$t_{\text {tp }}$	Output Propagation Delay	Fig. 1, $\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$			180	300	ns
tpDL	Output Propagation Delay	Fig. 1, $\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$			180	300	ns



Figure 1. Rise Time Control for RS-423.

## SWITCHING TIME WAVEFORMS AND AC TEST CIRCUIT FOR RS-422 CONNECTION


*Current probe is the easiest way to display a differential waveform.

Figure 2.


Figure 3. Three-State Delays.


Am26LS30 EQUIVALENT CIRCUIT



Metallization and Pad Layout


DIE SIZE 0.070" X 0.094"

# Am26LS31 <br> Quad High Speed Differential Line Driver 

## DISTINCTIVE CHARACTERISTICS

- Output skew - 2.Ons typical
- Input to output delay $-12 n s$
- Operation from single +5 V supply
- 16-pin hermetic and molded DIP package
- Outputs won't load line when $\mathrm{V}_{\mathrm{CC}}=0$
- Four line drivers in one package for maximum package density
- Output short-circuit protection
- Complementary outputs
- Meets the requirements of EIA standard RS-422
- High output drive capability for $100 \Omega$ terminated transmission lines
- Available in military and commercial temperature range
- Advanced low-power Schottky processing


## FUNCTIONAL DESCRIPTION

The Am26LS31 is a quad differential line driver, designed for digital data transmission over balanced lines. The Am26LS31 meets all the requirements of EIA standard RS-422 and federal standard 1020. Is is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.
-The circuit provides an enable and disable function common to all four drivers. The Am26LS31 features 3-state outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load.
The Am26LS31 is constructed using advanced low-power Schottky processing.

## LOGIC DIAGRAM




ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Supply Voltage	7.0 V
Input Voltage	7.0 V
Output Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating temperature range
The following conditions apply unless otherwise specified:


Notes: 1. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. $C_{L}=30 p F, V_{I N}=1.3 \mathrm{~V}$ to $V_{O U T}=1.3 \mathrm{~V}, V_{P U L S E}=0 \mathrm{~V}$ to +3.0 V , See Below.

## AC LOAD TEST CIRCUIT

 FOR THREE-STATE OUTPUTS

PROPAGATION DELAY
(Notes 1 and 3)


ENABLE AND DISABLE TIMES
(Notes 2 and 3)


Notes: 1. Diagram shown for Enable LoW.
2. $S_{1}$ and $S_{2}$ of Load Circuit are closed except where shown.
3. Pulse Generator for All Pulses: Rate $\leqslant 1.0 \mathrm{MHz} ; \mathrm{Z}_{\mathrm{o}}=50 \Omega ; \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leqslant 6.0 \mathrm{~ns}$.

Metallization and Pad Layout

DIE SIZE 0.067" $\times 0.084^{\prime \prime}$

## Am26LS32•Am26LS33 Quad Differential Line Receivers

## DISTINCTIVE CHARACTERISTICS

- Input voltage range of 15 V (differential or common mode) on Am26LS33; 7V (differential or common mode) on Am26LS32
- $\pm 0.2 \mathrm{~V}$ sensitivity over the input voltage range on Am26LS32; $\pm 0.5 \mathrm{~V}$ sensitivity on "Am26LS33
- The Am26LS32 meets all the requirements of RS-422 and RS-423
- 6k minimum input impedance
- 30 mV input hysteresis
- Operation from single +5 V supply
- 16-pin hermetic and molded DIP package
- Fail safe input-output relationship. Output always high when inputs are open.
- Three-state drive, with choice of complementary output enables, for receiving directly onto a data bus.
- Propagation delay 17 ns typical
- Available in military and commercial temperature range
- Advanced low-power Schottky processing


## FUNCTIONAL DESCRIPTION

The Am26LS32 is a quad line receiver designed to meet the requirements of RS-422 and RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.
The Am26LS32 features an input sensitivity of 200 mV over the input voltage range of $\pm 7 \mathrm{~V}$.

The Am26LS33 features an input sensitivity of 500 mV over the input voltage range of $\pm 15 \mathrm{~V}$.
The Am26LS32 and Am26LS33 provide an enable and disable function common to all four receivers. Both parts feature 3state outputs with 8 mA sink capability and incorporate a fail safe input-output relationship which keeps the outputs high when the inputs are open.

The Am26LS32 and Am26LS33 are constructed using Advanced Low-Power Schottky processing.

## LOGIC DIAGRAM




ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Supply Voltage	7.0 V
Common Mode Range	$\pm 25 \mathrm{~V}$
Differential Input Voltage	$\pm 25 \mathrm{~V}$
Enable Voltage	7.0 V
Output Sink Current	50 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS Over the operating temperature range
The following conditions apply unless otherwise specified:
Am26LS32XM, Am26LS33XM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$
Am26LS32XC, Am26LS33xC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%$
$V_{c c}=5.0 \mathrm{~V} \pm 5 \% \quad$ Typ.


Note: 1. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

LOAD TEST CIRCUIT FOR THREE-STATE OUTPUTS

## PROPAGATION DELAY

(Notes 1 and 3)

LIC-362

ENABLE AND DISABLE TIMES
(Notes 2 and 3)


LIC-361


Notes:

1. Diagram shown for Enable LOW
2. $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ of Load Circuit are closed except where shown.
3. Pulse Generator for All Pulses: Rate $\leqslant 1.0 \mathrm{MHz}$ $Z_{0}=50 \Omega ; \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leqslant 6.0 \mathrm{~ns}$.

# Am26LS32B <br> Quad Differential Line Receiver 

## DISTINCTIVE CHARACTERISTICS

- $\pm 100 \mathrm{mV}$ sensitivity over $\mathrm{V}_{\mathrm{IN}}$ range of OV to 5 V
- $\pm 200 \mathrm{mV}$ sensitivity over $\mathrm{V}_{\mathrm{CM}}$ range
- -7 V to +12 V input voltage range - differential or common mode
- Guaranteed input voltage hysteresis limits -80 mV minimum
-200 mV maximum
- 3V maximum open circuit input voltage
- Three-state outputs disabled during power-up and power down
- Maximum guarantees for tpd skew
- All AC and DC parameters guaranteed over COM'L and MIL operating temperature ranges
- Single +5 V supply
- Advanced low-power Schottky processing


## FUNCTIONAL DESCRIPTION

The Am26LS32B is a quad line receiver designed to meet the requirements of RS-422 and RS-423, CCITT V. 10 and V.11, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission:
The Am26LS32B features an input sensitivity of 200 mV over the common mode input voltage range of -7 V to +12 V .
The Am26LS32B is the first device in the Am26LS32 configuration to guarantee minimum hysteresis and propagation delay skew while maintaining better propagation delay guarantees than the Am26LS32. This allows a more critical analysis of performance in high noise environments and better performance in terms of signal quality, resulting in better system performance.

The Am26LS32B provides an enable and disable function common to all four receivers. It features three-state outputs with 24 mA sink capability and incorporates a fail safe input-output relationship which keeps the outputs high when the inputs are open.
The Am26LS32B is constructed using Advanced Low-Power Schottky processing.


ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Supply Voltage	7.0 V
Common Mode Range	$\pm 25 \mathrm{~V}$
Differential Input Voltage	$\pm 25 \mathrm{~V}$
Enable Voltage	7.0 V
Output Sink Current	50 mA
Storage Temperature Range	-65 to $+165^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating temperature range
The following conditions apply unless otherwise specified:
Am26LS32XM (MIL)
Am26LS32XC (COM'L)

$$
T_{A}=-55 \text { to }+125^{\circ} \mathrm{C}
$$

$$
V_{C C}=5.0 V \pm 10 \%
$$



Note: 1. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

LOAD TEST CIRCUIT FOR THREE-STATE OUTPUTS

PROPAGATION DELAY
(Notes 1 and 3)

ENABLE AND DISABLE TIMES (Notes 2 and 3)


Notes: 1. Diagram shown for Enable LOW
2. $S_{1}$ and $S_{2}$ of Load Cricuit are closed except where shown.
3. Pulse Generator for All Pulses: Rate $\leqslant 1.0 \mathrm{MHz} ; \mathrm{Z}_{\mathrm{o}}=50 \Omega ; \mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$.

Am26LS32B
SWITCHING CHARACTERISTICS
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ )

Parameters	Description	Min	Typ	Max	Units	Test Conditions
${ }_{\text {tPLH }}$			16	21	ns	$C_{L}=50 \mathrm{pF}$   See test circuit
$t_{\text {PHL }}$	Propagaion Delay, Input to Output		17	21	ns	
${ }^{\text {tSKEW }}$	Propagation Delay Skew, ${ }_{\text {t }}$		1.5	3.0	ns	
$\mathrm{t}_{\mathrm{ZL}}$	Output Enable Time, ENABLE to Output		16	22	ns	
$\mathrm{t}_{\mathrm{Z}} \mathrm{H}$			10	16	ns	
- 12	Output Disable Time, ENABLE to Output		11	18	ns	$C_{L}=5 p F$   See test circuit
$\mathrm{t}_{\mathrm{HZ}}$			13	18	ns	

## SWITCHING CHARACTERISTICS OVER OPERATING RANGE

		$\begin{array}{r} T_{A}= \\ V_{C C}= \end{array}$	$\begin{aligned} & 70^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & \mathbf{T}_{\mathbf{A}}= \\ & \mathbf{V}_{\mathbf{C C}} \end{aligned}$	$\begin{aligned} & +125 \\ & \pm 10 \end{aligned}$		
Parameters	Description	Min	Max	Min	Max	Units	Test Conditions
$t_{P L H}$	Propagation Delay, Input to Output		26		26	ns	$C_{\mathrm{L}}=50 \mathrm{pF}$   See test circuit
$\mathrm{tPHL}^{\text {P }}$			26		26	ns	
${ }^{\text {t SKEW }}$	Propagation Delay Skew, ${ }_{\text {tpLH }}-$ tphL		4.0		4.0	ns	
${ }^{\text {Z }}$ L	Output Enable Time, ENABLE to Output		33		33	ns	
${ }_{7} \mathrm{ZH}$			22		22	ns	
${ }_{t}{ }_{L Z}$	Output Disable Time, ENABLE to Output		27		27	ns	$\begin{gathered} C_{L}=5 \mathrm{pF} \\ \text { See test circuit } \end{gathered}$
${ }_{4}{ }_{\mathrm{Hz}}$			27		27	ns	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.


# Use of the Am26LS29, 30, 31 and 32 Quad Driver/Receiver Family in EIA RS-422 and 423 Applications <br> By David A. Laws and Roy J. Levy 

## INTRODUCTION

Today's high-performance data processing systems demand significantly faster data communications rates than are possible with the EIA RS-232 specifications in use for the past ten years.

Two new standards prepared by the Electronic Industries Association address this need. EIA RS-423 is an unbalanced, bipolar voltage specification designed to interface with RS232C, while greatly enhancing its operation. It permits the communication of digital information over distances of up to 2000 feet and at data rates of up to 300 Kilobaud. EIA RS-422 is a balanced voltage digital interface for communicaton of digital data over distances of 4000 feet or data rates of up to 10 megabaud.

Advanced Micro Devices has developed a family of monolithic Low-power Schottky quad line drivers and receivers to meet the requirements of these specifications.

The Am26LS29 and 30 line drivers and the Am26LS32 receiver meet all requirements of RS-423 while the Am26LS31 differential line driver and the Am26LS32 receiver meet the requirements of RS-422.

A second receiver element, the Am26LS33 is available for use in high common mode noise environments, exceeding the common mode voltage requirements of RS-422 and RS423.

This application note reviews the use of these devices in implementing the new standards. Emphasis is given to the EIA RS-422 balanced interface.

## EIA STANDARD SPECIFICATIONS

Two basic forms of operation are available for transmission of digital data over interconnecting lines. These are the single ended and differential techniques.
The single-ended form uses a single conductor to carry the signal with the voltage referenced to a single return conductor. This may also be the common return for other signal conductors. Figure 1 a.

The single-ended form is the simplest way to send data as it requires only one signal line per circuit. This simplicity, however, is often offset by the inability of this form to allow discrimination between a valid signal produced by the driver, and the sum of the driver signal plus externally induced noise signals.
A solution to some of the problems inherent in the singleended form of operation is offered by the differential form of operation. Figure 1b. This consists of a differential driver (essentially two single-ended drivers with one driver always producing the complementary output signal level to the other driver), a twisted pair transmission line and a differential line receiver. The driver signal appears as a differential voltage to the line receiver, while the noise signals appear as a common mode signal. The two signals, therefore, can be discriminated by a line receiver with a sufficient common mode voltage operating range.
The Electronic Industries Association, EIA, has defined a number of specifications standardizing the interface between data terminal equipment and data circuit terminating equipment based on both single-ended and differential operation.
a) Single Wire With Common Ground.

b) Two Wire Balanced System.


## Quad Driver/Receiver Family

The most widely used standard for interfacing between data terminal equipment and data communications equipment today, is EIA RS-232C, issued in August 1969. The RS-232C electrical interface is a single-ended, bipolar-voltage, unterminated circuit. This specification is for serial binary data interchange over short distances (up to 50 feet) at low rates (up to 20 Kilobaud). It is a protocol standard as well as an electrical standard, specifying hand shaking signals and functions between terminal and the communications equipment. As already noted, single-ended circuits are susceptible to all forms of electromagnetic interference. Noise and cross talk susceptibility are proportional to length and bandwidth. RS-232C places restrictions on both. It limits slew rate of the drivers $(30 \mathrm{~V} / \mu \mathrm{s})$ to control radiated emission on neighboring circuits and allows bandwidth limiting on the receivers to reduce susceptibility to cross talk. The length and slew rate limits can adequately control reflections on unterminated lines, and the length and bandwidth limits are more than adequate to reduce susceptibility to noise.

Like EIA RS-232C, the new EIA RS-423 is also a single-ended, bipolar-voltage unterminated circuit. It extends the distance and data rate capabilities of this technique to distances of up to 4000 feet at data rates of 3000 baud, or at higher rates of up to 300 Kilobaud over a maximum distance of 40 feet.

EIA RS-422 is a differential, balanced voltage interface capable of significantly higher data rates over longer distances. It can accommodate rates of 100 Kilobaud over a distance of 4000 feet or rates of up to 10 megabaud. These performance improvements stem from the advantages of a balanced configuration which is isolated from ground noise currents. It is also immune to fluctuating voltage potentials between system ground references and to common mode electromagnetic interference. Figure 2 compares the driver output waveforms for the three EIA standard configurations, while Table I compares the key characteristics required by drivers and receivers intended for these applications. Since RS-232C has been in use for many years, RS-422 and 423 parameter values have been selected to facilitate an orderly transition from existing designs to new equipment.
a) EIA RS-232C Generator Output.


BLI-015
b) EIA RS-422 Generator Output.

$t_{D}=$ Time duration of the unit interval at the applicable modulation rate
$\mathrm{t}_{\mathrm{r}} \leqslant 0.1 \mathrm{t}_{\mathrm{D}}$ when $\mathrm{t}_{\mathrm{D}} \geqslant 200 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{r}} \leqslant 20 \mathrm{~ns}$ when $\mathrm{t}_{\mathrm{D}}<200 \mathrm{~ns}$

$V_{S S}=$ Difference in steady state voltages
$V_{S S}=\left|V_{t}-\bar{V}_{t}\right|$
$V_{S S} \min .=2 V ; V_{S S}$ max. $=6 V$
c) EIA RS-423 Generator Output.

$V_{S S}=\left|V_{t}-\bar{V}_{t}\right|$
$V_{S S}=$ Difference in steady
state voltages
$\mathrm{V}_{\mathrm{SS}} \min .= \pm 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}} \max .= \pm 6 \mathrm{~V}$
Figure 2. Driver Output Waveforms.

TABLE I
KEY PARAMETERS OF EIA SPECIFICATIONS

Characteristics	EIA RS-232C	EIA RS-423	EIA RS-422	Units
Form of Operation	Single Ended	Single Ended	Differential	
Max. cable length	50	2000	4000	Feet
Max. data rate	20K	300K	10M	Baud
Driver output voltage, open circuit*	$\pm 25$	$\pm 6$	6 volts between outputs	Volts (Max.)
Driver output voltage, Loaded output*	$\pm 5$ to $\pm 15$	$\pm 3.6$	2 volts between outputs	Volts (Min.)
Driver output resistance power off	$\mathrm{Ro}=300 \Omega$	$100 \mu \mathrm{~A}$ between $-6 \text { to }+6 \mathrm{~V}$	$100 \mu \mathrm{~A}$ between +6 and -. 25 V	Min.
Driver output short circuit current ISC	$\pm 500$	$\pm 150$	$\pm 150$	mA (Max.)
Driver output slew rate	$30 \mathrm{~V} / \mu \mathrm{sec}$ Max.	Slew rate must be controlled based upon cable length and modulation rate	No control necessary	
Receiver input resistance $\mathrm{R}_{\text {in }}$	3 K to 7K	$\geqslant 4 \mathrm{~K}$	$\geqslant 4 \mathrm{~K}$	$\Omega$
Receiver input thresholds	-3 to +3	-0.2 to +0.2	-0.2 to +0.2	Volts (Max.)
Receiver input voltage	-25 to +25	-12 to +12	-12 to +12	Volts (Max.)

* $\pm$ indicates polarity switched output.


## INTEGRATED CIRCUIT CHARACTERISTICS

Most semiconductor manufacturers offer integrated circuits designed to satisfy the old RS-232C standard. A number of them have designs in progress to meet the new EIA specifications. Products available from Advanced Micro Devices to meet these needs are shown in Table II.

The Am26LS29, 30, 31 and 32 are a family of quad drivers and receivers designed specifically to meet the new EIA standards. These products utilize Low-Power Schottky technology to incorporate four drivers or four receivers, together with control logic, in the standard 16 -pin package outlines.

The Am26LS29/30 and the Am26LS32 are driver and receiver pairs designed to implement the single-ended EIA RS-423 standard. The Am26LS31 is a differential line driver designed for use with the Am26LS32 receiver in a differential mode to meet EIA RS-422.

## Am26LS29 AND Am26LS30 QUAD RS-423 LINE DRIVERS

The Am26LS29 and 30 consist of four single-ended line drivers designed to meet or exceed the requirements of RS-423. The buffered driver outputs are provided with sufficient source and sink current capability to drive 50 ohm to a virtual ground transmission line and high capacitive loads. The Am26LS29 has a three-state output control while the Am26LS30 has a Mode Control input that allows it to operate as a dual RS-422 driver (with suitable power supply changes), Figure 3.

Each of the four driver inputs, as well as the Enable/Mode Control input is a PNP Low-Power Schottky input for reduced
input loading, one-half the normal fan-in. Since there are two inverters from each input to output, the driver is noninverting. When operating in the RS-423 mode, the Am26LS29 and 30 require both +5 V and -5 V nominal value power supplies. This allows the outputs to swing symmetrically about ground - producing a true bipolar output. The Mode Control (Pin 4) of the Am26LS30 should be HI or tied to

TABLE II
ADVANCED MICRO DEVICES' EIA COMPATIBLE DEVICES

EIA Standard	Drivers	Receivers
	Am1488   Quad Driver	Am1489, 1489A   Quad Receivers with   response control pin
RS-232C	Am9616   Triple Driver with   logic control   Am9617   Quan16   Qriple Receiver with   optional hysteresis   Am2617   specified for CCITT   V.24 and MIL-188C	Quad Receiver specified   over MIL range
RS-422	Am26LS31   Quad Differential   with three-state   control gating	Am26LS32   Quad Differential Driver   single-ended Receiver
RS-423	Am26LS29   Quad Driver with   three-state output   Am26LS30   Quad Driver with   slew rate control	Am26LS32   Quad single-ended/   Differential Receiver

## Quad Driver/Receiver Family



Figure 3. Am26LS29 and Am26LS30 Drivers.
$\mathrm{V}_{\text {Cc }}$. Each output is designed to drive the RS-423 load of 50 ohms with an outpuit voltage equal or greater than +3.6 volts in the HI state and -3.6 volts in the LO state. Each output is current limited to 150 mA max. in either logic state. A Slew Rate control pin is brought out separately for each output to allow output ramp rate (rise and fall time) control. This provides suppression of near end cross talk to other receivers in the cable. Connecting a capacitor from this node to that
driver's respective output will produce a ramp ( $10 \%$ to $90 \%$ ) of 50 ns typical for each picofarad of capacitance in that capacitor. RS-423 establishes recommended ramp rates versus length of line driven and modulation rate, Figure 4.

The Am26LS30 can be used at low data rates as a dual EIA RS-422 driver with three-state outputs by connecting the $\mathrm{V}_{\mathrm{EE}}$ supply and the mode control input to ground.

## Am26LS31 QUAD RS-422 DRIVER

The Am26LS31 is a quad differential line driver designed to meet the RS-422 specification while operating with a single +5 volt supply. A common enable and disable function controls all four drivers, Figure 5. The driver features high speed, de-skewed differential outputs with typical propagation delays of 12 ns and residual skew of 2 ns . Both differential line outputs are designed for three-state operation to allow two-way half duplex and multiplex, data bus applications.
Table III is a summary of the essential requirements of the RS-422 standard. Section A describes the key characteristics satisfied by the Am26LS31 driver.
The balanced differential line driver consists of two halves, each of which is similar to a Low-power Schottky TTL gate with equal source and sink current capability. The two halves are emitter coupled in a differential input configuration. One side of the input circuit is tied to a fixed TTL bias threshold and the other side is tied to a sink diode in normal DTL/TTL fashion. This configuration offers complementary outputs with very low skew, dependent only upon component matching, a necessity to meet RS-422.


Figure 4. Data Modulation Rate or Cable Length Versus Risetime for EIA RS-423.

The circuit diagram of the driver is shown in Figure 6. The emitter-coupled input circuit is formed by Q2 and Q3, which are biased by a current source. This source is a current mirror, formed by Q1 which supplies the current, and D6 which is diode connected transistor matched to $\mathrm{Q1}$. The fixed bias for Q3, formed by D5 and D6, is $2 \mathrm{~V}_{\mathrm{BE}}$. A $2 \mathrm{~V}_{\mathrm{BE}}$ bias, less the D2 Schottky diode drop, provides the normal Low-power Schottky TTL threshold, $V_{1 L}=0.7 \mathrm{~V}$. R19 provides a boost to 0.8 V for a full 400 mV TTL noise margin. The differential outputs of the emitter coupled stage, $A$ and $\bar{A}$, drive emitter followers Q14 and Q15, which provide the required speed and matching characteristics. The emitter followers, drive phase splitters 04 and Q5, which in turn drive totem-pole outputs. The outputs at the line interface are of standard Low-power Schottky TTL configuration, except that circuit values are modified to provide high sourcing capability. The outputs are designed to source or sink 20 mA each, so that they can generate a voltage of at least 2.0 V across a 100 ohm load, as required by RS-422. Additional circuitry has been included to make the line outputs three-state for two-way bus applications. The Am26LS31 meets the RS-422 requirement that the driver not load the line in the powered down condition $\left(I_{X} \leqslant 100 \mu A\right)$ or if the power supply to that device should fail.

## Am26LS32 QUAD RS-422 AND 423 RECEIVER

The Am26LS32 is a quad line receiver which, operating from a single 5 volt supply, can be used in either differential or single-ended modes to satisfy RS-422 and 423 applications respectively. A complementary enable and disable feature, similar to that on the driver, controls all four receivers, Figure 7. The device's three-state outputs, which can sink 8 mA , incorporate a fail-safe input-output relationship which keeps the outputs high when the inputs are open.
The Am26LS32 meets the receiver input specification of Table III, a 200 mV threshold sensitivity with common mode rejection exceeding the supply line potentials, (greater than 7 volts). The same design feature of the input circuit which provides the common mode rejection also insures excellent power supply ripple rejection, which is important when switching the high currents involved in a system's interfaces. Furthermore, unlike operational amplifiers, where the DC common mode and power supply rejection ratios roll off with open loop gain, the full rejection capability of this line receiver is maintained at high frequencies. The receiver hysteresis of typically 30 mV , provides differential noise immunity. Signals received on long lines can have slow transition times, and without hysteresis, a small amount of noise around the switching threshold can cause errors in the receiver output.


Figure 5. Am26LS31 Logic Diagram.

## TABLE III

## SUMMARY OF EIA RS-422 STANDARD FOR A BALANCED DIFFERENTIAL INTERFACE




Figure 6. Am26LS31 Circuit Diagram (Only one driver shown).

The balanced differential line receiver is a three-stage circuit. The input stage consists of a low-impedance differential current amplifier with series resistor inputs to convert line signal voltage to current and provide a moderate input impedance. The input resistors provide an impedance greater than 6 K on each input, power on or power off, which exceeds the requirements of RS-422 and RS-423. This is one advantage of the current amplifier input circuit. Another advantage is that is can operate with immunity to common mode voltages above $\mathrm{V}_{\mathrm{CC}}$ and below ground. The differential threshold sensitivity of this circuit is 200 mV , as required by RS-422. The second stage is a differential voltage amplifier, which interfaces to the single-ended output stage through an emitter follower. The output stage is a standard Low-power Schottky TTL totem-pole output with three-state capability.
The full circuit is shown in Figure 8. Resistors $\mathrm{R}_{20}$ and $\mathrm{R}_{21}$, which connect the non-inverting input to $\mathrm{V}_{\mathrm{CC}}$ and the inverting input to ground, provide the fail-safe feature, which guarantees a HIGH logic state for the receiver output when there is no signal on the line. The differential voltage amplifier in the second stage is formed by $\mathrm{Q6}$ and Q 3 which are biased by current source 09 . The hysteresis in the re-
ceiver switching characteristic is provided by $\mathrm{O4}$ and $\mathrm{O5}$, a differential pair biased by current source $Q 6$, whose collectors are connected in positive feedback to the input pull-up circuits. A small amount of current is switched by $\mathrm{Q4}$ and Q 5 , which must be overcome by the different voltage signal, resulting in the hysteresis. The output stage is driven from one side of the differential second stage by emitter follower Q17, which is a multiple emitter transistor. the second emitter is the control point for the three-state output. Q17 drives the phase splitter Q12, which in turn drives the three-state totempole output. The remainder of the circuit is the output enable control logic. This three-state capability on the receiver TTL side of the interface is a useful feature for modularizing two-way bus design.
A mask option of the input resistors ( $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{20}$ and $\mathrm{R}_{21}$ ) modifies the receiver characteristics to improve operation in. high common mode noise environments. This device, known as the Am26LS33, has these resistors at twice the value of the Am26LS32. An input differential or common mode voltage range of $\pm 15$ volts is achieved at the expense of a minor decrease of input threshold sensitivity, to $\pm 500 \mathrm{mV}$ from $\pm 200 \mathrm{mV}$.

## Quad Driver/Receiver Family



Figure 7. Am26LS32 Logic Diagram.


Figure 8. Am26LS32 and Am26LS33 Circuit Diagram (Only one receiver shown).

## Quad Driver/Receiver Family

## APPLICATIONS IN MIXED RS-232 AND 422/3 SYSTEMS

A system implemented with the RS-422 differential output cannot be used to drive an RS-232C system directly. An RS-423 single-ended.driver, such as the Am26LS29 or Am26LS30, may be used provided certain precautions are observed.

1. Although the RS-423 driver output specification of between 4 to 5 V does not meet the RS-232C specification of 6 V , operation is usually satisfactory with RS-232C receivers. This is achieved because the short cable lengths permitted by RS-232C cause very little signal degredation and because of the low source impedance of the RS-423 driver.
2. RS-232C specifies that the rise time for the signal to pass through the $\pm 3.0 \mathrm{~V}$ transition region shall not exceed $4 \%$ of the signal element duration. RS-423 requires much slower rise times, specified from $10 \%$ to $90 \%$ of the total signal amplitude, to reduce cross talk for operation over longer distances. Therefore, the RS-423 driver in the equipment must be waveshaped. This is achieved by selection of a capacitor value for the Am26LS30 to simultaneously meet the requirements of both RS-423 and RS232C for data rates covered by RS-232C.
3. RS-423 specifies one common return ground for each direction of transmission, RS-232C requires only one for both directions of transmission. Care must be taken to insure that a return ground path has been created when interfacing between the two systems.
4. RS-232C does not require termination, while it may be necessary for RS-422 and 423. Detailed consideration of termination is covered in the next section.
Note that RS-422 and RS-423 specifies that receivers should not be damaged by voltages up to 12 V , while RS-232C allows drivers to produce output voltages up to 25 V . The Am26LS32 receiver has been designed to avoid this hazard and can withstand input voltages of $\pm 25$ volts.

## RS-422 TRANSMISSION LINE FEATURES

Any time a receiver and transmitter are connected with more than a few inches of a wire, problems due to reflections can arise if care is not exercised to terminate the line correctly. RS-422 describes the cable as a twisted pair of approximately $120 \Omega$ impedance terminated in a resistor $R_{T}$. $R_{T}$ is not specified because there are two extreme values which may be chosen for the two following general classes of usage: (1) single direction transmission; and (2) multi-direction and multiple source transmission (party line). Considering the cable impedance only, the termination should equal the cable impedance of $120 \Omega$. However this reduces the terminated cable resistance as seen by the driver to only $60 \Omega$, with resulting loading of the output signal. This loading causes a reduction of $\mathrm{S} / \mathrm{N}$ ratio at the received terminal due to the decrease in signal voltage swing. The solution lies in a compromise between an $R_{T}$ of $120 \Omega$ which provides maximum power transfer at a reduced $S / N$ ratio or $R_{T}$ of $240 \Omega$ which causes a mis-match of 2-to-1 but no $\mathrm{S} / \mathrm{N}$ reduction. The choice is left to the user as it is system dependent. Both schemes will work for an average line length and should only approach the margins at maximum line length and maximum bit rates.
Electronic Industries Association, when preparing EIA Stan-
dard RS-422 conducted their tests with 24 gauge twisted pair wire. The resulting length vs. data rate, is published as a guideline in RS-422 (Figure 9): This shows two important results: (1) Unmodulated baseband (NRZ) signalling is not recommended at distances greater than 4000 feet; (2) At data


Figure 9. Data Rate Versus Cable Length for Balanced, Twisted Pair Cable (From EIA RS-422).
rates above about 100 KHz , the maximum cable length for acceptable signal quality is inversely proportional to data rate.
Result (1) above is due to the DC resistance of the cable. For a 4000 foot cable with a DC resistance of 30 ohms/ 1000 feet, the DC series loop resistance is $240 \Omega$. The minimum allowable terminated differential load impedance is $90 \Omega$. The DC voltage attentuation is $90 /(90-240)=1 / 4(6 \mathrm{db})$, which is arbitrarily chosen as the maximum allowable limit.
Result (2) is due to line losses. Laboratory tests using the 26LS31 Line Driver connected to the 26LS32 Line Receiver by 800 feet of ordinary 20 AWG twisted pair (Beldon \#8205 plastic-jacketed wire), terminated in its characteristic impedance of $100 \Omega$ were evaluated. The input waveform was a 500 KHz square wave with ( $10 \%$ to $90 \%$ ) rise and fall times of less than 10 ns . The output waveform produced rise and fall times which together accounted for approximately one-half the period ( $t_{r}+t_{f}=500 \mathrm{~ns}$ ). This was due to line loss and constant capacity. The energy per cycle of the output waveform is approximately $25 \%$ lower than that of the input. The input rise and fall times are not a function of line length, assuming matching termination. The output rise and fall times are dependent upon length in a complex manner. Furthermore, it can be shown by observation that they build up along the line.
Many good reference sources are available on the subject of transmission lines (References 1, 2, 3 and 4). These will provide background information to the following discussion.
Seshadri in Reference (1) has analyzed a line with series resistance losses and has shown that rise time varies with the square of the length. This shows series resistance to be a function of the square root of frequency. However when one tries to use this result in combination with the previous result, it becomes apparent just how difficult the problem is. In Reference (2), the authors point out that skin depth implies a frequency dependent series inductance as well as resistance, and that one cannot be considered without the other.

## Quad Driver/Receiver Family

They go on to show how this leads to the same result; namely that rise and fall times vary with the square of distance.
No attempt will be made to explain here why Figure 5 shows maximum length varying inversely with frequency rather than with the square of frequency. Certainly many complex factors are involved. Our laboratory observations showed a dependence somewhere in between linear and square law.
The Am26LS31 Quad Line Driver and the Am26LS32 Quad Line Receiver are capable of good, clean operation to the distance limits and data rate limits of RS-422.

## SYSTEM APPLICATIONS

The Am26LS30, 31, 32 and 33 can be combined in various
signaling networks. Using Am26LS29, Am26LS30 and Am26LS32, Figure 10, a unidirectional RS-423 communication can be constructed. Allowing for the voltage variation described earlier, RS-232C requirements can be satisfied. It should be noted that the Am26LS29 or Am26LS30 is used above to meet the bipolar requirements. If a single-ended line, Figure 11, is required without a bipolar requirement, the Am26LS31 can be used by biasing the reference terminal of the receiver to approximately 1.5 volts. Note that additional resistors will enhance fail safe operation.

Figure 12 shows the use of the Am26LS31 and Am26LS32 to meet a balanced line, single direction RS-422 application. If bidirectionality is required, an additional termination should be added as shown in Figure 13.


Figure 10. Unidirectional RS-423 (partial RS-232C).


Figure 11. Single-Ended Line Without Bipolar Requirement.


Figure 12.


Figure 13. Bidirectional RS-422.


Figure 14. Party Line Configuration.
a) Full Duplex Four-Wire Data Communication RS-422 Interface (with Data Modem).



Am26LS30/32


LEASED

Figure 15.
b) Full Duplex Four-Wire Data Communication RS-422 Interface (without Data Modem).


BLI-034
Figure 15. (Cont.)

The high speed capability of RS-422 has attracted the interest of many computer designers for use in the party line mode (Figure 14). The most common usage is that of a four wire full duplex exchange system (Figure 15). This mode of operation involves two pairs of wires each handling a single direction of traffic. The outgoing direction consists of one driver (Am26LS30 or Am26LS31) and $n$ receivers (Am26LS32 or Am26LS33). The incoming direction consists of one receiver (Am26LS32 or Am26LS33) and $n$ drivers (Am26LS30 or Am26LS31). This seems extremely simple to organize. However, problems arise when system ground is considered. If the network of receiver and driver span a moderate to long physical distance, ground loop noise or differences are developed changing the voltage that appears at the terminals of all receivers and drivers except for the one driver that is ac-
tive. It remains the system reference as long as it is active. This induced or system developed voltage is referred to as Common Mode voltage (CMV) and as such must be considered as a device parameter. All manufacturers specify CMV capability of their receiver in compliance with RS-422 (approx. 7 volts plus signal) but there is no specification for drivers. If the dimensions of the system are short compared to $1 / 4$ wave length of the maximum date rise and fall times, the CMV can be assumed to be minimal and drivers with single voltage supply and limited negative CMV can be used, i.e., Am26LS31. If the system dimensions are large, the CMV will cause problems in that the driver will clamp to the ground the moment the collective or apparent voltage swings below minus 0.5 volts relative to the driver ground, causing a short in the line and increasing level shift and noise. The clamping is caused in part by conduction of the I/C substrate diode. The problem can be avoided by using a driver with an output common mode range (Am26LS30). The Am26LS30 guarantees an output CMV range of $\pm 10$ volts about the driver ground reference. New international standards are under consideration to specify this mode of operation. In conclusion, a good system of 4 wire full duplex for data communication would use as an outgoing pair an Am26LS30 line driver and up to 12 - Am26LS32 line receivers, with a termination at the near and far ends of the cable. The same system would use as an incoming pair an Am26LS32 line receiver and up to 32 - Am26LS30 line drivers with only one enabled at a time and all others in three-state mode with cable termination at both near and far ends of the cable.

Many other applications are possible using this family of devices. Although the designs are based on the requirements of the EIA data communications specifications, they are not limited to these situations. Aircraft buses and internal equipment interconnections will benefit from the features offered by these products.

## REFERENCES

1. Seshadri, S. R., Fundamental of Transmission Lines and Electromagnetic Fields, (U. of Wisconsin), Addison-Wesley, Reading, Mass., 1971.
2. Adler, R. B., L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation, (MIT), John Wiley \& Sons, New York, 1963.
3. Matick, R. E., Transmission Lines for Digital and Communication Networks, (IBM), McGraw-Hill, New York, 1969.
4. Reference Data for Radio Engineers, (ITT), Fifth Edition, Howard W. Sams \& Company, Indianapolis, 1974.
5. Electronic Industries Association, 2001 Eye Street, N.W. Washington, D.C., RS Standard Proposal, RS-232C, August, 1969.
6. Electronic Industries Association, 2001 Eye Street, N.W. Washington, D.C., RS Standard Proposal 1220, Rev. RS-422, September 21, 1976.
7. Electronic Industries Association, 2001 Eye Street, N.W. Washington, D.C., RS Standard Proposal 1221, Rev. RS-423, September 21, 1976.

# Am26LS34 <br> Quad Differential Line Receiver 

## DISTINCTIVE CHARACTERISTICS

- Meets all requirements of EIA Standards RS-422, RS-423, CCITT V. 10 and V.11, and the new party line standard in development under EIA Project Number 1360
- $\pm 200 \mathrm{mV}$ sensitivity over input voltage range
- $\pm 150 \mathrm{mV}$ sensitivity for $\mathrm{V}_{\mathrm{CM}}=0$
- -7 V to +12 V common mode input voltage range
- $12 \mathrm{k} \Omega$ minimum input impedance
- Maximum guarantees for tpD skew
- All AC and DC parameters guaranteed over MIL and COM'L temperature ranges
- Guaranteed input voltages hysteresis limits
- 120 mV minimum
-300 mV maximum
- No internal failsafe
- Pin compatible with Am26LS32/32B/33


## FUNCTIONAL DESCRIPTION

The Am26LS34 is a high performance, quad, differential line receiver. It has higher impedance and higher input voltage hysteresis than the similar Am26LS32B. The Am26LS34 also does not have internal fail-safe to allow greater user flexibility.
Input threshold sensitivity is specified for three different $\mathrm{V}_{\mathrm{CM}}$ ranges. The improved sensitivity, guaranteed hysteresis and skew limits allow a more critical analysis of system performance in high noise environments and better system performance capability.
All performance parameters are guaranteed over $\pm 10 \%$ supplies and over the operating temperature range. In addition, lOL is specified to 24 mA for easy system bus interfacing.


Am26LS34
ABSOLUTE MAXIMUM RATINGS
(Above which the useful life may be impaired)

Supply Voltage	7.0 V
Common Mode Voltage	$\pm 25 \mathrm{~V}$
Differential Input Voltage	30 V
Enable Voltage	7.0 V
Output Sink Current	50 mA
Storage Temperature Range	$-65+10+165^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating temperature range
The following conditions apply unless otherwise specified:

(MIL)	$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$
(COML)	$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

Parameters
Description
Test Conditions

(Note 1)	Max	Units
$\pm 90$	+150	mV
	+200	
180	300	mV
20 k	40 k	$\Omega$
0.7	1.0	mA
-0.5	-0.8	mA
		Volts
3.4		
	0.4	Volts
	0.5	Volts
	0.8	Volts
	-1.5	Volts
0.03	-0.2	mA
1	100	$\mu \mathrm{ma}$
-65	-120	mA
52	70	mA

Note: 1. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.


## SWITCHING CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}\right)$

Parameters	Description	Min	Typ	Max	Units	Test Conditions
$t_{\text {PLH }}$			18	24	ns	$C_{L}=50 \mathrm{pF}$   See test circuit
tPHL			20	24	ns	
tSKEW	Propagation Delay Skew, $\mathrm{t}_{\text {PLH }}$ - $\mathrm{t}_{\text {PHL }}$		2	4	ns	
t ZL	Output Enable Time, ENABLE to Output		16	22	ns	
${ }^{\text {t }} \mathrm{H}$			10	16	ns	
tz	Output Disable Time, ENABLE to Output		11	18	ns	$\begin{gathered} C_{L}=5 \mathrm{pF} \\ \text { See test circuit } \end{gathered}$
H HZ			13	18	ns	

## SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parame	Description	$V_{C C}=$   Min	$10 \%$   Max	$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}= \\ \text { Min } \end{gathered}$		Units	Test Conditions
$t_{\text {PLH }}$	Propagation Delay, Input to Output		30		30	ns	$\begin{gathered} C_{\mathrm{L}}=50 \mathrm{pF} \\ \text { See test circuit } \end{gathered}$
$\mathrm{t}_{\text {PHL }}$			30		30	ns	
${ }^{\text {t SKEW }}$	Propagation Delay Skew, tpLH - tphL		$\pm 5$		$\pm 5$	ns	
$\mathrm{t}_{\mathrm{Z}} \mathrm{L}$	Output Enable Time, ENABLE to Output		33		33	ns	
$\mathrm{t}_{\mathrm{ZH}}$			22		22	ns	
thz	Output Disable Time, ENABLE to Output		27		27	ns	$\begin{gathered} C_{L}=5 p F \\ \text { See test circuit } \end{gathered}$
${ }_{\text {thz }}$			27		27	ns	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

## METALLIZATION AND PAD LAYOUT



```
INDEX
SECTION

Systels
DESIGN
CONSIDERATIONS
BIPOLARLLSVVLSITECHNOLOCIES Am2900 SYSTEMS SOLUTIONS

\section*{desicn \\ AIDS}
Am2960/70
MEMORY SUPPORT

Am2900 PROCESSORS AND PERIPHERALS

\section*{EIT-SLICE PROCESSORS}

MICROCODE SEQUENCERS
LSI PERIPHERALS

\section*{An29100 \\ COITROLLER \\ FAMILY \\ 16-SIT MICROPROCESSOR INTERRUPTIELE SEQUENCERS LSIPERIPHERALS}
\[
\begin{aligned}
& \text { Am29500 } \\
& \text { ARPAY AM DIGITAL } \\
& \text { SIGNAL PROCESSING }
\end{aligned}
\]

\section*{\(16 \times 16\) PARALLEL MULTIPLIERS}
MUR 1O FARYPLPELMED PROCESSORS

\section*{Am29800 \\ HIGH PERFORMANCE BUS INTERFAOE}

Am25LS
Am26S
Am26LS

HICH PERFORMANCE SCHOTTKY BUS INTERFACE DATA COVMUNICATIONS INTERFACE

\section*{8100 \\ 8200}

\section*{MOS MICROPROCESSOR SUPPORT PRODUCTS} FOR 8-BIT AND 16-BIT MICROPROCESSORS

\section*{MEMORIES, \\ PALS, \\ MOS PERIPHERALS, \\ ANALOC}

PHOMS, BIPOLAR RAMS, MOS STATIC RAMS 20-PIN AND 24-PINPALS,
MOS LSI PERIPHERALS
VERY HICH SPEED DATA ACCUISITION

\section*{GENERAL INFORMATION}

8,9, AND 10 -BITIMOX BUS INTERFACE DIACNOSTIC RECISTERS TMOX COMPARATORS
FFTADDRESS SEOUENCERS

\section*{MOS Microprocessor Support Products (for 8080/8086/8088/Z8000) Index}
Am8120 Eight-Bit Register with Clear, Clock Enable, and 3-State Control 11-1
Am8127 AmZ8000 Clock Generator 11-5
Am8163
Memory Timing/Refresh/EDC Controller See Section 4
Am8167 Memory Timing/Refresh/EDC Controller See Section 4
Am8212 Eight-Bit I/O Port for 8080 11-17
Am8216 Four-Bit Parallel Bidirectional Bus Driver for 8080 11-24
Am8224 Clock Generator and Driver for 8080A Compatible Microprocessors 11-29
Am8226 Inverting Four-Bit Parallel Bidirectional Bus Driver for 8080 11-24
Am8228 System Controller and Bus Driver for 8080A Compatible Microprocessors 11-35
Am8238 System Controller and Bus Driver for 8080A Compatible Microprocessors 11-35
8284A Clock Driver for 8086/8088 11-40
8288
Bus Controller for 8086/8088 11-47

\section*{Am8120}

Octal D-Type Flip-Flop with Clear, Clock Enable and Three-State Control
\begin{tabular}{|l|l|}
\hline DISTINCTIVE CHARACTERISTICS \\
- Buffered common clock enable input \\
- Buffered common asynchronous clear input \\
- Three-state outputs \\
- 8-bit, high-speed parallel register with positive edge-triggered, \\
D-type flip-flops \\
\\
RELATED PRODUCTS \\
Part No. & Description \\
\hline Am25S18 & Quad D Register \\
Am2920 & Octal D Type Flip-Flop \\
Am2954/5 & Octal D Registers \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

The Am8120 is an 8-bit register built using advanced LowPower Schottky technology. The register consists of eight D-type flip-flops with a buffered common clock, a buffered common clock enable, a buffered asynchronous clear input, and three-state outputs.
When the clear input is LOW, the internal flip-flops of the register are reset to logic 0 (LOW), independent of all other inputs. When the clear input is HIGH, the register operates in the normal fashion.
When the three-state output enable (\(\overline{O E}\)) input is LOW, the Y outputs are enabled and appear as normal TTL outputs. When the output enable (\(\overline{O E}\)) input is HIGH, the \(Y\) outputs are in the high impedance (three-state) condition. This does not affect the internal state of the flip-flop Q output.
The clock enable input (\(\bar{E}\)) is used to selectively load data into the register. When the \(\overline{\mathrm{E}}\) input is HIGH, the register will retain its current data. When the E is LOW, new data is entered into the register on the LOW-to-HIGH transition of the clock input.
This device is packaged in a slim 24-pin package (0.3 inch row spacing).

\section*{Am8120}

\section*{ELECTRICAL CHARACTERISTICS}

The Following Conditions Apply Unless Otherwise Specified:
COM'L \(\quad T_{A}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(V_{C C}=5.0 V \pm 5 \%\)
MIN. \(=4.75 \mathrm{~V}\)
MAX. \(=5.25 \mathrm{~V}\)
MIL \(\quad T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \% \quad \mathrm{MIN}=4.50 \mathrm{~V} \quad \mathrm{MAX}=5.50 \mathrm{~V}\)

\section*{DC CHARACTERISTICS OVER OPERATING RANGE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameters & Description & \multicolumn{3}{|c|}{Test Conditions (Note 1)} & Min. & (Note 2) & Max. & Units \\
\hline \multirow[b]{2}{*}{\(\mathrm{VOH}_{\mathrm{OH}}\)} & \multirow[b]{2}{*}{Output HIGH Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M_{I N} . \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\mathrm{MIL}, \mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}\)} & 2.4 & 3.4 & & \multirow{2}{*}{Volts} \\
\hline & & & COM'L & -2.6mA & 2.4 & 3.4 & & \\
\hline \multirow{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow{2}{*}{Output LOW Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M I N . \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(1 \mathrm{OL}=4.0 \mathrm{~mA}\)} & & & 0.4 & \multirow{2}{*}{Volts} \\
\hline & & & \(\mathrm{I}^{\mathrm{OL}}=\) & & & & 0.45 & \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & Input HIGH Level & \multicolumn{3}{|l|}{Guaranteed input logical HIGH voltage for all inputs} & 2.0 & & & Volts \\
\hline \multirow[b]{2}{*}{\(V_{\text {IL }}\)} & \multirow[b]{2}{*}{Input LOW Levei} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Guaranteed input logical LOW voltage for all inputs}} & MIL & & & 0.7 & \multirow[t]{2}{*}{Volts} \\
\hline & & & & COM \({ }^{\text {L }}\) & & & 0.8 & \\
\hline \(v_{1}\) & Input Clamp Voltage & \multicolumn{3}{|l|}{\(\mathrm{V}_{C C}=\mathrm{MIN} ., \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}\)} & & & -1.5 & Volts \\
\hline IIL & Input LOW Current & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}\)} & & & -0.36 & mA \\
\hline \(1_{1 / H}\) & Input HIGH Current & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\)} & & & 20 & \(\mu \mathrm{A}\) \\
\hline 11 & Input HIGH Current & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}\)} & & & 0.1 & mA \\
\hline \multirow{2}{*}{\({ }^{1} 0\)} & \multirow[t]{2}{*}{Off-State (High-Impedance) Output Current} & \multirow[t]{2}{*}{\(V_{C C}=\) MAX} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\)} & & & -20 & \multirow{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & \(\mathrm{V}_{\mathrm{O}}=2\) & & & & 20 & \\
\hline ISC & Output Short Circuit Current (Note 3) & \multicolumn{3}{|l|}{\(V_{C C}=\) MAX.} & -15 & & -85 & mA \\
\hline \({ }^{\prime} \mathrm{CC}\) & Power Supply Current (Note 4) & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}\).} & & 24 & 37 & mA \\
\hline
\end{tabular}

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at \(V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. All outputs open, \(\bar{E}=G N D, D i\) inputs \(=C L R=\overline{O E}=4.5 \mathrm{~V}\). Apply momentary ground, then 4.5 V to clock input.

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential Continuous & -0.5 V to +7.0 V \\
\hline DC Voltage Applied to Outputs for High Output State & -0.5 V to +V CC max. \\
\hline DC Input Voltage & -0.5 V to +7.0 V \\
\hline DC Output Current, Into Outputs & 30 mA \\
\hline DC Input Current & -30 mA to +5.0 mA \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS
(\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\))

Note 1. Per industry convention, \(f_{\max }\) is the worst case value of the maximum device operating frequency with no constraints on \(t_{r}\), \(t_{f}\), pulse width or duty cycle.

\section*{SWITCHING CHARACTERISTICS OVER OPERATING RANGE*}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{COM'L} & \multicolumn{2}{|c|}{MIL} & \multirow[b]{2}{*}{Units} & \multirow[b]{2}{*}{Test Conditions} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
V_{C C}=5.0 \mathrm{~V} \pm 10 \%
\end{gathered}
\]} & & \\
\hline & 33 & & 39 & & \\
\hline & 45 & & 54 & ns & \\
\hline & 43 & . & 51 & ns & \\
\hline 12 & & 15 & & ns & \\
\hline 12 & & 15 & & ns & \\
\hline 17 & & 20 & & ns & \\
\hline 20 & & 23 & & & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) \\
\hline 0 & & 0 & & ns & \(\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) \\
\hline 13 & & 15 & & ns & \\
\hline 25 & & 30 & & ns & \\
\hline 30 & & 35 & & ns & \\
\hline 22 & & 25 & & ns & \\
\hline & 19 & \(\cdots\) & 25 & ns & \\
\hline & 30 & & 39 & ns & \\
\hline & 35 & & 40 & ns & \(\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}\) \\
\hline & 39 & & 42 & ns & \(R_{L}=2.0 \mathrm{kS}\) \\
\hline 25 & & 20 & & MHz & \\
\hline
\end{tabular}

\footnotetext{
*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.
}

\section*{DEFINITION OF FUNCTIONAL TERMS}
\(D_{i} \quad\) The \(D\) flip-flop data inputs.
\(\overline{C L R} \quad\) When the clear input is LOW, the \(Q_{i}\) outputs are LOW, regardless of the other inputs. When the clear input is HIGH, data can be entered into the register.
CP Clock Pulse for the Register; enters data into the register on the LOW-to-HIGH transition.
\(Y_{i}\)
\(\bar{E}\)
The register three-state outputs.
Clock Enable, When the clock enable is LOW, data on the \(D_{i}\) input is transferred to the \(\mathrm{Q}_{\mathrm{i}}\) output on the LOW-to-HIGH clock transition. When the clock enable is HIGH, the \(Q_{i}\) outputs do not change state, regardless of the data or clock input transitions.
\(\overline{O E}\)
Output Control. When the \(\overline{O E}\) input is HIGH, the \(Y_{i}\) outputs are in the high impedance state. When the \(\overline{O E}\) input is LOW, the TRUE register data is present at the \(Y_{i}\) outputs.

FUNCTION TABLE
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ Inputs } & Internal & Outputs \\
\hline Function & \(\overline{\mathbf{O E}}\) & \(\overline{\text { CLR }}\) & \(\overline{\mathbf{E}}\) & \(\mathbf{D}_{\mathbf{i}}\) & \(\mathbf{C P}\) & \(\mathbf{Q}_{\mathbf{i}}\) & \(\mathbf{Y}_{\mathbf{i}}\) \\
\hline Hi-Z & H & X & X & X & X & X & Z \\
\hline Clear & H & L & X & X & X & L & Z \\
& L & L & X & X & X & L & L \\
\hline Hold & H & H & H & X & X & NC & Z \\
& L & H & H & X & X & NC & NC \\
\hline Load & H & H & L & L & \(\uparrow\) & L & Z \\
& H & H & L & H & \(\uparrow\) & H & Z \\
& L & H & L & L & \(\uparrow\) & L & L \\
& L & H & L & H & \(\uparrow\) & H & H \\
\hline
\end{tabular}
\(\mathrm{H}=\mathrm{HIGH}\)
\(L=\) LOW
\(X=\) Don't Care

NC = No Change
\(\uparrow=\) LOW - to-HIGH Transition \(Z=H i g h ~ I m p e d a n c e\)

LOGIC SYMBOL

\(V_{C C}=\operatorname{Pin} 24\)
GND \(=\operatorname{Pin} 12\)

\section*{Am8127 \\ Amz8000 Clock Generator}

\section*{DISTINCTIVE CHARACTERISTICS}
- High-drive high-level clock output Special output provides clock signal matched to requirements of AmZ8000* CPU (4 MHz and some 6 MHz applications), MMU and DMA devices.
- Four TTL-level clocks

Generates synchronized TTL compatible clocks at \(16 \mathrm{MHz}, 2 \mathrm{MHz}\) and 1 MHz to drive memory circuits and LSI peripheral devices. An additional TTL clock is synchronized with the CPU high-level clock for registers, latches and other peripherals.
- Synchronized WAIT state and time-out controls
On-chip logic generates \(\overline{\text { WAIT }}\) signal under control of Halt, Single-step, Status and Ready signals. Automatic time-out of peripheral wait requests.

\section*{FUNCTIONAL DESCRIPTION}

The Am8127 Clock Generator and Controller provides the clock oscillator, frequency dividers and clock drivers for the complete array of AmZ8000 CPUs, peripherals and memory system configurations. In addition to the special 4 MHz output driver for the AmZ8001* and AmZ8002* CPUs, a standard buffered TTL 16 MHz oscillator output is provided for a dynamic memory timing and control. In addition to 4 MHz applications, the Am8127 will also function in some 6 MHz Z8000 applications. The Am8127 forms an integral part of the dynamic memory support chip set including the Am8163 EDC and Refresh Controller, Am2964 Dynamic Memory Controller, Am2960 Error Detection and Correction Unit and Am2961/Am2962 EDC Bus Buffers. The oscillator is designed to operate with a 16 MHz crystal or with external 16 MHz drive. The Am8127 uses an internal divide-by- 4 to provide 4 MHz clock drive to the AmZ8001/ AmZ8002 CPU. Additional dividers generate synchronous buffered 4,2 and 1 MHz clock outputs for use by peripheral devices. The clock divider counters are clearable to allow synchronizing the multiple clock outputs.
The controller functions include \(\overline{\operatorname{RESET}}\), RUN/ \(\overline{\mathrm{HALT}}\), SINGLE-STEP, READY and a READY TIMEOUT counter which limits a peripheral's wait request to 16 clock cycles. The CPU's WAIT input is controlled by RUN/HALT, Single-Step, Status and READY. When RUN/HALT is LOW the Am8127 drives the WAIT output LOW causing the CPU to add wait states (TW). The READY input is used by peripherals to request wait states. The active LOW input timeout enable, \(\overline{\text { TOEN }}\), is used to force TIMEOUT LOW and WAIT HIGH 16 clock cycles after a peripheral has requested a wait but fails to release the request. The CPU status lines \(\mathrm{ST}_{1}, \mathrm{ST}_{2}\) and \(\mathrm{ST}_{3}\) are decoded in the Am8127 to disable the TIMEOUT counter during CPU "Internal Operations" and during refresh.
The \(4 / 3\) input controls the clock duty cycle. An internal pull-up resistor pulls this input high for AmZ8000 CPUs. A LOW input causes the cycle counter to output a \(33 \%\) duty cycle.

Am8127

\section*{DEFINITION OF FUNCTIONAL TERMS}

ZCK Buffered clock output for CPU and peripherals. This output has under/overshoot control and provides the high level output voltage required (\(\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}\)). This output is capable of driving multiple CPU clock inputs (or DMA, MMU, etc).

C Bootstrap input. The capacitor \(C_{B}\) is connected from the ZCK clock output to \(C\) to provide faster ZCK risetime.

TCK TTL level buffered clock output. TCK is the same frequency as ZCK and is synchronized with ZCK. TCK is in phase with ZCK when the \(4 / \overline{3}\) duty cycle control input is HIGH (\(50 \%\) duty cycle) and out of phase with ZCK when \(4 / \sqrt{3}\) is LOW (33\% ZCK duty cycle).

TCK/2, TCK/4 TTL buffered clocks for peripherals. TCK/2 and TCK/4 are \(1 / 2\) and \(1 / 4\) the TCK frequency and are synchronized with the rising edge of TCK.

OSC The clock oscillator TTL buffered output. This output provides a high speed clock for dynamic memory timing (e.g. AmZ8000 uses this output to generate \(\overline{\mathrm{RAS}} / \mathrm{MUX}\)-Select/ \(\overline{\mathrm{CAS}}\) timing for dynamic RAMs) or other system application. The ZCK and TCK outputs are synchronized to the OSC rising edge.

4/ \(\overline{3} \quad\) Clock duty cycle control for ZCK and TCK. A HIGH input (no connection - input has internal pull-up) will result in a \(50 \%\) duty cycle for AmZ8000 application. A LOW input will cause a \(33 \%\) duty cycle ZCK output.
\(\overline{C L R} \quad\) The clear active LOW input for internal counters. A LOW input meeting set-up and hold time requirements will clear the internal clock counters on the rising edge of OSC.
\(\overline{\text { WAIT }} \quad\) The WAIT output for connection to the CPU \(\overline{\text { WAIT }}\) input. This latched output controls when the CPU enters wait states in response to the READY, \(S T_{1}, S T_{2}, S T_{3}\), RUN/ \(\overline{H A L T}\) and Single Step inputs.

READY The active HIGH READY input is used by peripherals to request wait states. Ready inputs must meet the wait latch set-up and hold time requirements.
\begin{tabular}{|c|c|}
\hline TIMEOUT & The Timeout Counter active LOW output. The Timeout Counter counts ZCK/TCK clock cycles and is used to force WAIT HIGH 15 clock cycles after a peripheral has requested a wait but has failed to release the request. This output is normally used to interrupt the CPU. \\
\hline TOEN & The Timeout Enable active LOW input. A LOW input allows the Timeout Counter to count, causes the TIMEOUT output to go LOW for one ZCK/TCK clock period after 15 cycles and forces WAIT HIGH at the rising edge of the 16th cycle. A HIGH input disables the counter and allows WAIT to be controlled by the READY, RUN/TALT and Single Step inputs. \\
\hline RESETOUT (RESETOUT) & The Reset Output to the CPU. It is active LOW when the \(4 \sqrt{3}\) input is HIGH and active HIGH when the \(4 / \sqrt{3}\) input is LOW. \\
\hline \(\overline{\text { RESETIN }}\) & The active LOW Reset Input. A LOW input will cause RESETOUT to go LOW synchronous with ZCK 5 . Pushbutton reset is implemented by momentarily grounding \(\overline{\text { RESETIN. }}\) Power-up reset is implemented by connecting a capacitor from RESETIN to ground. Capacitor values from \(10 \mu \mathrm{~F}\) to \(22 \mu \mathrm{~F}\) will provide a power-up of less than one second. \\
\hline RUN/ \(\overline{\text { HALT }}\) & A debounced input to allow halt and Single Step control modes. A HIGH input allows the CPU to run. A LOW input forces the WAIT output LOW causing the CPU to enter continuous wait states until the ZCK period after RUN/HALT is returned to HIGH. \\
\hline SSNO, SSNC & Single Step control inputs. These debounced input allow the CPU to Single Step from one wait state to the next by momentarily disconnecting SSNC from ground and grounding SSNO. RUN/HALT must be LOW for Single Step operation. \\
\hline \(\mathbf{S T} \mathbf{1}_{1}, \mathbf{S T}_{2}, \mathbf{S T}_{3}\) & Status inputs from AmZ8000 CPU's and peripherals. Continuous LOW inputs indicate that the CPU-is executing "internal operation" or "refresh." During this time the time out is disabled to avoid signaling an inappropriate interrupt. The status inputs are subject to the set-up and hold time requirements of the WAIT latch. \\
\hline \(\mathrm{x}_{1}, \mathrm{x}_{2}\) & External crystal connections (see application section). \(\mathrm{X}_{1}\) may be driven directly by a TTL input. \\
\hline
\end{tabular}
* \(\overline{\text { RESETOUT }}\) is active LOW when \(4 / \overline{3}=\mathrm{HIGH}\).

\section*{Am8127}

\section*{ELECTRICAL CHARACTERISTICS}

The Following Conditions Apply Unless Otherwise Specified:
\begin{tabular}{lllll}
COM'L & \(T_{A}=0\) to \(70^{\circ} \mathrm{C}\) & \(V_{C C}=5.0 \mathrm{~V} \pm 5 \%\) & \((\mathrm{MIN} .=4.75 \mathrm{~V}\) & \(M A X=5.25 \mathrm{~V})\) \\
MIL. & \(\mathrm{T}_{\mathrm{A}}=-55\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%\) & \((\mathrm{MIN} .=4.50 \mathrm{~V}\) & MAX. \(=5.50 \mathrm{~V})\)
\end{tabular}

\section*{DC CHARACTERISTICS OVER OPERATING RANGE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Description & \multicolumn{4}{|c|}{Test Conditions (Note 1)} & Min & Typ
(Note 2) & Max & Units \\
\hline \multirow{3}{*}{V OH} & \multirow{3}{*}{Output HIGH Voltage} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}\)} & ZCK & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}\)} & \(\mathrm{V}_{\text {cc }}-0.4\) & \(\mathrm{V}_{\mathrm{CC}}-0.1\) & & Volts \\
\hline & & & \multirow[t]{2}{*}{TTL Outputs} & \(1 \mathrm{OH}=-1 \mathrm{~mA}\) & MIL & \multirow[t]{2}{*}{2.4} & \multirow[t]{2}{*}{3.4} & & \multirow[t]{2}{*}{Volts} \\
\hline & & & & \(\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}\) & COM'L & & & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Output LOW Voltage} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}\)}} & \multicolumn{2}{|l|}{\(\mathrm{l}_{\mathrm{OL}}=0.1 \mathrm{~mA}, \mathrm{ZCK}\) Output} & , & & 0.4 & Volts \\
\hline & & & & \multicolumn{2}{|l|}{\(\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}\), TTL Output} & & & 0.5 & Volts \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} & \multirow[b]{2}{*}{Input HIGH Level} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Guaranteed input HIGH Voltage}} & \multicolumn{2}{|l|}{RESETIN} & 2.8 & 2.25 & & Volts \\
\hline & & & & \multicolumn{2}{|l|}{\(\mathrm{ST}_{1}, \mathrm{ST}_{2}, \mathrm{ST}_{3}, \overline{\mathrm{CLR}}\), TOEN, \(X_{1}\), READY} & 2.0 & & & Volts \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Input LOW Level & \multicolumn{2}{|l|}{Guaranteed input LOW voltage} & \multicolumn{2}{|l|}{\(\mathrm{ST}_{1}, \mathrm{ST}_{2}, \mathrm{ST}_{3}, \overline{\mathrm{CLR}}\), TOEN, \(X_{1}\), READY} & & & 0.8 & Volts \\
\hline \(\mathrm{v}_{1}\) & Input Clamp Voltage & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}\) (Note 3)} & & & -1.5 & Volts \\
\hline \(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {IL }}\) & RESETIN Hysteresis & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}\)} & 400 & 650 & & mV \\
\hline \multirow{4}{*}{ILL} & \multirow{4}{*}{Input LOW Current} & \multirow{4}{*}{\[
\begin{aligned}
& V_{C C}=M A X, \\
& V_{I N}=0.4 V
\end{aligned}
\]} & & \multicolumn{2}{|l|}{SSNO} & & & -1.6 & mA \\
\hline & & & & \multicolumn{2}{|l|}{SSNC, 4/3, RUN/ \(/ \overline{\text { HALT }}\), READY} & & & -1.2 & mA \\
\hline & & & & \multicolumn{2}{|l|}{\(\overline{\text { TOEN, }}\), \(\overline{\mathrm{CLR}}, \mathrm{X}_{1}\)} & & & -0.72 & mA \\
\hline & & & & \multicolumn{2}{|l|}{\(\overline{\text { RESETIN, }}\), \(\mathrm{ST}_{1}, \mathrm{ST}_{2}, \mathrm{ST}_{3}\)} & & & -0.36 & mA \\
\hline \multirow{4}{*}{\({ }_{1} \mathrm{H}\)} & \multirow{4}{*}{Input HIGH Current} & \multirow{4}{*}{\[
\begin{aligned}
& V_{C C}=M A X, \\
& V_{I N}=2.7 \mathrm{~V}
\end{aligned}
\]} & & \multicolumn{2}{|l|}{\(4 \sqrt{3}\), SSNC, SSNO RUN/HALT} & & (Note 4) & -300 & \(\mu \mathrm{A}\) \\
\hline & & & & \multicolumn{2}{|l|}{\(\overline{\text { RESETIN }}\)} & & (Note 4) & -200 & \(\mu \mathrm{A}\) \\
\hline & & & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline \overline{\mathrm{CLR}}, \mathrm{READY}, \overline{\text { TOEN }} \\
& \mathrm{ST}_{1}, \mathrm{ST}_{2}, \mathrm{ST}_{3} \\
& \hline
\end{aligned}
\]} & & & +50 & \(\mu \mathrm{A}\) \\
\hline & & & & \multicolumn{2}{|l|}{\(\mathrm{X}_{1}\)} & & & +600 & \(\mu \mathrm{A}\) \\
\hline \(!\) & Input HIGH Current & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\mathrm{MAX}, \\
& \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \overline{\mathrm{CLR}}, \text { READY, } \overline{\mathrm{TOEN}} \\
& \mathrm{ST}_{1}, \mathrm{ST}_{2}, \mathrm{ST}_{3}
\end{aligned}
\]} & & & +1.0 & mA \\
\hline \multirow[b]{2}{*}{Isc} & \multirow[t]{2}{*}{Output Short Circuit Current (Note 5)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(V_{C C}=\operatorname{MAX}\)}} & \multicolumn{2}{|l|}{ZCK Output} & -50 & & -240 & mA \\
\hline & & & & Others & & -40 & & -130 & mA \\
\hline \multirow[t]{2}{*}{Icc} & \multirow[t]{2}{*}{Power Supply Current} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(V_{C C}=M A X\)}} & \multicolumn{2}{|l|}{\(\mathrm{X}_{1}=2.4 \mathrm{~V}, \mathrm{ZCK}=\) TCK's \(=\) LOW} & & 95 & 140 & \multirow[t]{2}{*}{mA} \\
\hline & & & & \multicolumn{2}{|l|}{Operating, fosc \(\leqslant 24 \mathrm{MHz}\) (Note 6)} & & 120 & 180 & \\
\hline
\end{tabular}

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Not applicable to \(X_{1}\).
4. Specification is negative because of internal input pull-up resistors.
5. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

6 . For oscillator frequencies up to 24 MHz , outputs open.

\section*{STATIC INPUT ELECTRICAL CHARACTERISTICS}

The static control inputs, SSNO, SSNC (Single Step), RUN/HALT and \(4 \sqrt{3}\) (clock duty cycle control), are Low-Power Schottky TTL compatible inputs with internal pull-up resistors to the +5 V supply. They may be left open for a HIGH input (e.g., \(4 / \overline{3}\) is left open for operation with AmZ8001/8002), or grounded for a LOW input.

SSNO, SSNC and RUN/ \(\overline{\text { HALT }}\) are intended to be grounded or opened by switches. \(4 / \overline{3}\) is normally left open for AmZ8001/8002. These inputs are specified at \(0.4 \mathrm{~V} / 2.4 \mathrm{~V}\) for test convenience.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & Description & \multicolumn{2}{|l|}{Test Conditions} & Min & Typ & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & Input HIGH Voltage & Guaranteed HIGH input voltage & RUN/[ALT, SSNO & 2.4 & & & Volts \\
\hline \(\mathrm{V}_{\mathrm{LL}}\) & Input LOW Voltage & Guaranteed LOW input voltage & SSNC, 4/3 & & & 0.4 & Volts \\
\hline
\end{tabular}

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lrr}
\hline Storage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous & -0.5 to +7 V \\
\hline DC Voltage Applied to Outputs for HIGH Output State & -0.5 V to \(+\mathrm{V}_{\text {CC }} \mathrm{max}\) \\
\hline DC Input Voltage & \(\mathrm{X}_{1}, 4 / \overline{3}\), SSNO, SSNC, RUN/HALT & -0.5 V to \(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\) \\
\cline { 2 - 3 } & Other Inputs & -0.5 to +5.5 V \\
\hline DC Voltage Applied to C & -0.5 to +8 V \\
\hline DC Output Current, Into Outputs & 30 mA \\
\hline DC Input Current & -30 to +5.0 mA \\
\hline
\end{tabular}

\section*{SWITCHING CHARACTERISTICS -}

OSCILLATOR, \(\overline{\text { WAIT AND ZCK OUTPUT }}\)
\(\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parame & \multicolumn{2}{|c|}{Description} & Min & Typ & Max & Units & Tests Conditions \\
\hline \({ }^{\text {f MAX }}\) & \multicolumn{2}{|l|}{Oscillator Frequency} & 24 & & & MHz & See Test Circuits (Note 7) \\
\hline \(\mathrm{t}_{\mathrm{r}} \mathrm{C}\) & ZCK Rise Time & \multirow[t]{2}{*}{\(C_{L}=80 \mathrm{pF}\)} & & 9 & 12 & ns & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{ZCK} \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \\
\text { (Note 8) }
\end{gathered}
\]} \\
\hline \(\mathrm{t}_{\mathrm{fC}}\) & ZCK Fall Time & & & 7.6 & 11 & ns & \\
\hline \(\mathrm{tr}_{\mathrm{C}}\) & ZCK Rise Time & \multirow[t]{2}{*}{\(C_{L}=200 \mathrm{pF}\)} & & 15.4 & 20 & ns & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { ZCK } C_{L}=200 \mathrm{pF} \\
\text { (Note 8) }
\end{gathered}
\]} \\
\hline \(\mathrm{t}_{\mathrm{f}} \mathrm{C}\) & ZCK Fall Time & & & 14.0 & 20 & ns & \\
\hline \({ }_{\text {tPLH }}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{READY to \(\overline{\text { WAIT }}\)}} & & 8 & 14 & ns & \multirow{6}{*}{See Test Circuits} \\
\hline \(\mathrm{t}_{\text {PHL }}\) & & & & 11.5 & 16 & ns & \\
\hline \({ }_{\text {tPLH }}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Status \(S_{i}\) to \(\overline{\text { WAIT }}\)}} & & 13 & 17 & ns & \\
\hline \({ }^{\text {tPHL }}\) & & & & 17.2 & 21 & ns & \\
\hline \({ }^{\text {ts }}\) & \multicolumn{2}{|l|}{\(\overline{C L R}\) to OSC (ז) Set-up Time} & & 15 & 18 & ns & \\
\hline \(t_{H}\) & \multicolumn{2}{|l|}{\(\overline{\mathrm{CLR}}\) to OSC (\(\Gamma\)) Hold Time} & & -11 & -6 & ns & \\
\hline
\end{tabular}

Notes: 7. Specification is based on fundamental mode crystal. See application section.
8. ZCK rise and fall times are based on a bootstrap capacitor value of 27 pF .

SWITCHING CHARACTERISTICS \(-4 / \overline{3}=\) HIGH (AmZ8000 Mode)
\(\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & Min & Typ & Max & Units & Test Conditions \\
\hline \(t_{s}\) & READY to ZCK Set-up Time & T/4 + 10 & T/4 + 4.5 & & ns & \multirow{10}{*}{See Test Circuits
\[
\mathrm{ZCK} \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}
\]} \\
\hline \(t_{H}\) & READY to ZCK Hold Time (Note 9) & T/4 + 2 & T/4 & & ns & \\
\hline \(t_{s}\) & Status \(\mathrm{ST}_{i}\) to ZCK Set-up Time & T/4 + 12 & T/4 + 9.5 & & ns & \\
\hline \(t_{H}\) & Status \(\mathrm{ST}_{i}\) to ZCK Hold Time & T/4-3 & T/4-7.5 & & ns & \\
\hline \({ }^{\text {ts }}\) & \(\overline{\text { TOEN }}\) to ZCK Set-up Time & 30 & 22 & & ns & \\
\hline \(t_{H}\) & \(\overline{\text { TOEN }}\) to ZCK Hold Time & -10 & -16 & & ns & \\
\hline \({ }^{\text {t }}\) SKEW & ZCK to OSC & 3 & 6 & 10 & ns & \\
\hline \({ }^{\text {t SKEW }}\) & ZCK to TCK & 0 & 4.0 & 7 & ns & \\
\hline \({ }_{\text {tPLH }}\) & \multirow[t]{2}{*}{ZCK to \(\overline{\text { RESETOUT }}\) Propagation Delay} & & 9.0 & 13 & ns & \\
\hline \({ }_{\text {tPHL }}\) & & & 4 & 8 & ns & \\
\hline
\end{tabular}

\footnotetext{
Note: 9. T = ZCK period.
}

Am8127
SWITCHING CHARACTERISTICS
OVER OPERATING RANGE -
OSCILLATOR, \(\overline{\text { WAIT AND ZCK OUTPUTS* }}\)

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

\section*{SWITCHING CHARACTERISTICS}

OVER OPERATING RANGE -
\(4 / \overline{3}=\) HIGH (AmZ8000 Mode)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Parameters} & \multirow[b]{3}{*}{Description} & \multirow[b]{3}{*}{Test Conditions} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { Am8127 COM'L } \\
T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\
V_{C C}=5.0 \mathrm{~V} \pm 5 \%
\end{gathered}
\]}} & \multicolumn{2}{|l|}{Am8127 MIL} & \multirow[b]{3}{*}{Units} \\
\hline & & & & & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}=-55 \text { to }+125^{\circ} \mathrm{C} \\
V_{C C}=5.0 V \pm 10 \%
\end{gathered}
\]} & \\
\hline & & & Min & Max & Min & Max & \\
\hline \({ }_{\text {ts }}\) & READY to ZCK Setup Time & \multirow{10}{*}{See Test Circuits ZCK C \(\mathrm{L}_{\mathrm{L}}=80 \mathrm{pF}\)} & T/4 + 14 & & T/4+17 & & ns \\
\hline \({ }_{\text {t }}^{\text {H }}\) & READY to ZCK Hold Time & & \(\mathrm{T} / 4+5\) & & T/4 + 5 & & ns \\
\hline \(\mathrm{t}_{5}\) & Status \(\mathrm{ST}_{\mathrm{i}}\) to ZCK Setup Time & & \(\mathrm{T} / 4+15\) & & \(\mathrm{T} / 4+20\) & & ns \\
\hline \(t_{H}\) & Status \(\mathrm{ST}_{\mathrm{i}}\) to ZCK Hold Time & & T/4 & & \(\mathrm{T} / 4+5\) & & ns \\
\hline \(\mathrm{t}_{5}\) & TOEN to ZCK Setup Time & & 35 & & 40 & & ns \\
\hline \(t_{H}\) & TOEN to ZCK Hold Time & & -5 & & 0 & & ns \\
\hline tSKEW & ZCK to OSC Skew & & 2 & 14 & 2 & 17 & ns \\
\hline \({ }^{\text {t SKEW }}\) & ZCK to TCK Skew & & -2 & 10 & -2 & 14 & ns \\
\hline \(t_{\text {PLH }}\) & \multirow[t]{2}{*}{ZCK to \(\overline{\text { RESETOUT }}\) Propagation Delay} & & & 16 & & 20 & ns \\
\hline \(t_{\text {PHL }}\) & & & & 16 & & 20 & ns \\
\hline
\end{tabular}

\section*{SWITCHING TEST CIRCUITS}

AMZ-018

\section*{SWITCHING TEST WAVEFORMS}

ZCK RISE AND FALL TIMES

AMZ-020

SET-UP AND HOLD TIMES

PROPAGATION DELAY TIMES

Am8127
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|c|}{ TYPICAL CRYSTAL SPEC } \\
\(\qquad\)\begin{tabular}{|l|c|}
\hline Mode & Fundamental AT cut \\
\hline Resonance & Parallel or Series \\
\hline Load & 32 pF \\
\hline Stability & (Net of 56 pF C's shown + stray C) \\
\hline
\end{tabular} & \begin{tabular}{c}
\(\pm 0.01 \%\) \\
(or to user requirement)
\end{tabular} \\
\hline
\end{tabular}

WAIT, TIMEOUT FUNCTION TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RUN/ \(\overline{\text { HALT }}\) & SSNC & \(\mathrm{ST}_{3}\) & \(\mathrm{ST}_{2}\) & \(\mathrm{ST}_{1}\) & READY & \(\overline{\text { TOEN }}\) & TIMEOUT COUNTER & TIMEOUT & \(\overline{\text { WAIT }}\) \\
\hline \multirow{5}{*}{H} & \multirow{5}{*}{X} & L & L & L & H & X & Cleared & H & H \\
\hline & & L & L & L & L & X & Cleared & H & H \\
\hline & & \multicolumn{3}{|c|}{\multirow[b]{3}{*}{Any \(\mathrm{T}_{\mathrm{i}}=\mathrm{H}\)}} & H & L & Cleared & H & H \\
\hline & & & & & L & H & Hold & H & L \\
\hline & & & & & L & H & Count +1 on ZCK 5 & H until 16 clocks after ready \(Z\), then LOW one ZCK period & L until 16 clocks after ready \(Z\), then LOW one ZCK period \\
\hline \multirow[b]{2}{*}{L} & L & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{X}} & \multirow[b]{2}{*}{X} & \multirow[b]{2}{*}{X} & \multirow[b]{2}{*}{Hold} & \multirow[b]{2}{*}{H} & L \\
\hline & H & & & & & & & & HIGH one ZCK period \\
\hline
\end{tabular}

\section*{TIMEOUT COUNTER TIMING}

\section*{Am8127 CLOCK OUTPUTS} DIVIDE BY 4 MODE (AmZ8000)

Am8127 READY, WAIT, RESET, AND SINGLE STEP

\section*{AmZ8000 APPLICATION}
(50\% Duty Cycle ZCK)

The typical operating configuration for Am8127 is shown above. The component values shown provide a 4 MHz clock output for the AmZ8002 CPU. The 27pF capacitor from C to ZCK is a bootstrap to ensure clock rise to \(\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}\) within the specified
rise time. The \(22 \mu \mathrm{~F}\) reset capacitor is chosen to guarantee reset, plus adequate delay for reset during power-up with a slowly rising \(\mathrm{V}_{\mathrm{CC}}\) supply voltage. Ground SSNO if RUN/HALT or S-S isn't used.

\section*{CONNECTION DIAGRAM}

Top View

\section*{24 Pin \(0.3^{\prime \prime}\) wide}

Note: Pin 1 is marked for orientation.

\section*{METALLIZATION AND PAD LAYOUT}

\section*{ORDERING INFORMATION}

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.
\begin{tabular}{lccc}
Order Number & \begin{tabular}{c}
Package Type \\
(Note 1)
\end{tabular} & \begin{tabular}{c}
Operating Range \\
(Note 2)
\end{tabular} & \begin{tabular}{c}
Screening Level \\
(Note 3)
\end{tabular} \\
\hline Am8127DC & D-24-SLIM & C & \(\mathrm{C}-1\) \\
Am8127DCB & \(\mathrm{D}-24-\) SLIM & C & \(\mathrm{B}-2\) (Note 4) \\
Am8127DM & D-24-SLIM & M & \(\mathrm{C}-3\) \\
Am8127DMB & \(\mathrm{D}-24-\) SLIM & M & \(\mathrm{B}-3\) \\
Am8127LC & L-28-1 & C & \(\mathrm{C}-1\) \\
Am8127LCB & \(\mathrm{L}-28-1\) & C & B \\
Am8127LM (Note 4) \\
Am8127LBM & L-28-1 & M & \(\mathrm{C}-3\) \\
Am8127XC & L-28-1 & M & B-3 \\
Am8127XM & Dice & C & Visual inspection \\
& Dice & M & to MIL-STD-883 \\
& & & Method 2010B. \\
\hline
\end{tabular}

Notes: 1. \(\mathrm{D}=\) Hermetic DIP, \(\mathrm{L}=\) Chip Pak. Number following letter is number of leads.
2. \(\mathrm{C}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=4.5\) to \(5.5 \mathrm{~V}, \mathrm{M}=-55\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.50\) to 5.50 V .
3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
4. 160 hour burn-in.

\section*{Am8212}

\section*{Eight-Bit Input/Output Port}

\section*{Distinctive Characteristics}
- Fully parallel, 8-bit data register and buffer replacing latches, multiplexers and buffers needed in microprocessor systems.
- 4.0 V output high voltage for direct interface to MOS microprocessors, such as the Am9080A family.
- Input load current \(250 \mu \mathrm{~A}\) max.
- Reduces system package count

\section*{FUNCTIONAL DESCRIPTION}

All of the principal peripheral and input/output functions of a Microcomputer System can be implemented with the Am8212. The Am8212 input/output port consists of an 8 -latch with 3 -state output buffers along with control and device selection logic, which can be used to implement latches, gated buffers or multiplexers.

CONNECTION DIAGRAM
Top View

Note: Pin 1 is marked for orientation.

PIN DEFINITION
\begin{tabular}{|l|l|}
\hline\(D I_{1}-\mathrm{DI}_{8}\) & DATA IN \\
\hline \(\mathrm{DO}_{1}-\mathrm{DO}_{8}\) & DATA OUT \\
\hline\(\overline{\mathrm{DS}} 1_{1}-\mathrm{DS}_{2}\) & DEVICE SELECT \\
\hline\(M D\) & MODE \\
\hline STB & STROBE \\
\hline\(\overline{\mathrm{NT}}\) & INTERRUPT (ACTIVE LOW) \\
\hline\(\overline{\mathrm{CLR}}\) & CLEAR (ACTIVE LOW) \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{ccc}
\begin{tabular}{c}
Package \\
Type
\end{tabular} & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & \begin{tabular}{c}
Order \\
Number
\end{tabular} \\
\hline Hermetic DIP & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & AM8212DM \\
Hermetic DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & D8212 \\
Molded DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & P8212 \\
Dice & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & AM8212XC
\end{tabular}
- Available for operation over both commercial and military temperature ranges.
- Service request flip-flop for interrupt generation
- Three-state outputs sink 15 mA
- Asynchronous register clear with clock over-ride

\section*{FUNCTIONAL DESCRIPTION (Cont'd)}

\section*{Data Latch}

The 8 flip-flops that make up the data latch are of a "D" type design. The output (Q) of the flip-flop will follow the data input (D) while the clock input (C) is high. Latching will occur when the clock (C) returns low.
The data latch is cleared by an asynchronous reset input (\(\overline{\mathrm{CLR}}\)). (Note: Clock (C) Overrides Reset (\(\overline{\mathrm{CLR}}\))).

\section*{Output Buffer}

The outputs of the data latch (Q) are connected to 3 -state, non-inverting output buffers. These buffers have a common control line (EN); this control line either enables the buffer to transmit the data from the outputs of the data latch (Q) or disables the buffer, forcing the output into a high impedance state. (3-state). This high-impedance state allows the Am8212 to be connected directly onto the microprocessor bidirectional data bus.

\section*{Control Logic}

The Am8212 has control inputs \(\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}, M D\) and STB. These inputs are used to control device selection, data latching, output buffer state and service request flip-flop.

\section*{\(\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}\) (Device Select)}

These 2 inputs are used for device selection. When \(\overline{\mathrm{DS}}_{1}\) is low and \(\mathrm{DS}_{2}\) is high (\(\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}\)) the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

\section*{MD (Mode)}

This input is used to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.

When MD is high (output mode) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic (\(\overline{\mathrm{DS}}{ }_{1} \cdot \mathrm{DS}_{2}\)).
When MD is low (input mode) the output buffer state is determined by the device selection logic (\(\left.\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}\right)\) and the source of clock (C) to the data latch is the STB (Strobe) input.

\section*{STB (Strobe)}

This input is used as the clock (C) to the data latch for the input mode \(M D=0\)) and to synchronously reset the service request flip-flop (SR).
Note that the SR flip-flop is negative edge triggered.

\section*{Service Request Flip-Flop}

The SR flip-flop is used to generate and control interrupts in microcomputer systems. It is asynchronously set by the \(\overline{C L R}\) input (active low). When the (SR) flip-flop is set it is in the non-interrupting state.
The output of the (SR) flip-flop (Q) is connected to an inverting input of a "NOR" gate. The other input to the "NOR" gate is non-inverting and is connected to the device selection logic (\(\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}\)). The output of the "NOR" gate (INT) is active low (interrupting state) for connection to active low input priority generating circuits.

\section*{TRUTH TABLE}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{S T B}\) & \(\mathbf{M D}\) & \(\overline{\mathbf{D S}_{1}}-\mathbf{D S}_{\mathbf{2}}\) & Data Out Equals \\
\hline 0 & 0 & 0 & Three-State \\
\hline 1 & 0 & 0 & Three-State \\
\hline 0 & 1 & 0 & Data Latch \\
\hline 1 & 1 & 0 & Data Latch \\
\hline 0 & 0 & 1 & Data Latch \\
\hline 1 & 0 & 1 & Data In \\
\hline 0 & 1 & 1 & Data In \\
\hline 1 & 1 & 1 & Data In \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CLR & \(\overline{D_{1}}-\) DS \(_{2}\) & STB & SR \(^{*}\) & \(\overline{\text { INT }}\) \\
\hline 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 7 & 0 & 0 \\
\hline 1 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 \\
\hline 1 & 1 & - & 1 & 0 \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

\footnotetext{
\(\overline{C L R}\) - Resets Data Latch
- Sets SR Flip-Flop (no effect on Output Buffer)
* Internal SR Flip-FIop
}

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage & -0.5 V to +7.0 V \\
\hline Output Voltage & -0.5 V to +7.0 V \\
Input Voltages & -1.0 V to +5.5 V \\
\hline Output Current (Each Output) & 125 mA
\end{tabular}

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)
P8212, D8212 (COM'L) \(\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(V_{C C}=5.0 \mathrm{~V} \pm 5 \%\)
Am8212DM (MIL)
\(T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(V_{C C}=5.0 \mathrm{~V} \pm 10 \%\)
DC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameters & Description & \multicolumn{2}{|l|}{Test Conditions} & Min. & \begin{tabular}{l}
Typ. \\
(Note 1)
\end{tabular} & Max. & Units \\
\hline \(I_{F}\) & \begin{tabular}{l}
Input Load Current \\
ACK, \(\mathrm{DS}_{2}, C R, \mathrm{DI}_{1}\) - DI \(\mathrm{I}_{8}\) Inputs
\end{tabular} & \multicolumn{2}{|l|}{\(V_{F}=0.45 \mathrm{~V}\)} & & & -0.25 & mA \\
\hline \(I_{F}\) & Input Load Current MD Input & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}\)} & & & -0.75 & mA \\
\hline \(\mathrm{I}_{\mathrm{F}}\) & Input Load Current DS 1 Input & \multicolumn{2}{|l|}{\(V_{F}=0.45 \mathrm{~V}\)} & & & -1.0 & mA \\
\hline \(I_{R}\) & Input Leakage Current ACK, DS, CR, DI \({ }_{1}\) - DI \({ }_{8}\) Inputs & \multicolumn{2}{|l|}{\(V_{R}=5.25 \mathrm{~V}\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{R}}\) & Input Leakage Current MO Input & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}\)} & & & 30 & \(\mu \mathrm{A}\) \\
\hline \(I_{R}\) & Input Leakage Current DS 1 Input & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}\)} & & & 40 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{C}}\)} & \multirow[t]{2}{*}{Input Forward Voltage Clamp} & \multirow[t]{2}{*}{\({ }^{\prime} \mathrm{C}=-5.0 \mathrm{~mA}\)} & \(\mathrm{COM}^{\prime} \mathrm{L}\) & & & -1.0 & \multirow[t]{2}{*}{Volts} \\
\hline & & & MIL & & & -1.2 & \\
\hline \multirow[b]{2}{*}{\(V_{\text {IL }}\)} & \multirow[b]{2}{*}{Input LOW Voltage} & & \(\mathrm{COM}^{\prime} \mathrm{L}\) & & & 0.85 & \multirow[b]{2}{*}{Volts} \\
\hline & & & MIL & & & 0.80 & \\
\hline \(\mathrm{V}_{\text {IH }}\) & Input HIGH Voltage & & & 2.0 & & & Volts \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \multicolumn{2}{|l|}{\(\mathrm{IOL}^{\prime}=15 \mathrm{~mA}\)} & & & 0.45 & Volts \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow{3}{*}{Output HIGH Voltage} & \multirow[b]{2}{*}{\(1 \mathrm{OH}=-1.0 \mathrm{~mA}\)} & COM \({ }^{\prime}\) L & 3.65 & 4.0 & & \multirow{3}{*}{Volts} \\
\hline & & & MIL & 3.3 & 4.0 & & \\
\hline & & \(\mathrm{I}^{\mathrm{OH}}=-0.5 \mathrm{~mA}\) & MIL & 3.4 & 4.0 & & \\
\hline ISC & Short Circuit Output Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\)} & -15 & & -75 & mA \\
\hline \(\left|1_{0}\right|\) & Output Leakage Current High Impedance & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.25 \mathrm{~V}\)} & & & 20 & \(\mu \mathrm{A}\) \\
\hline ICC & Power Supply Current & \multicolumn{2}{|l|}{Note 2} & & 90 & 130 & mA \\
\hline
\end{tabular}

AC CHARACTERISTICS (Note 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters & Description & Min. & (Note 1) & Max. & Units \\
\hline \({ }_{\text {t }}\) w & Pulse Width & 30 & 8 & & ns \\
\hline \({ }^{\text {tpd }}\) & Data to Output Delay & & 12 & 30 & ns \\
\hline \(t_{\text {we }}\) & Write Enable to Output Delay & & 18 & 40 & ns \\
\hline \(\mathrm{t}_{\text {set }}\) & Data Set-up Time & 15 & & & ns \\
\hline \(t_{h}\) & Data Hold Time & 20 & & & ns \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & Reset to Output Delay & & 18 & 40 & ns \\
\hline \(t_{s}\) & Set to Output Delay & & 15 & 30 & ns \\
\hline \(\mathrm{t}_{\mathrm{e}}\) & Output Enable/Disable Time & & 14 & 45 & ns \\
\hline \(\mathrm{t}_{\mathrm{c}}\) & Clear to Output Delay & & 25 & 55 & ns \\
\hline
\end{tabular}

\section*{CAPACITANCE (Note 4)}

TEST LOAD (15 mA and 30 pF)
\(F=1.0 \mathrm{MHz}, V_{B I A S}=2.5 \mathrm{~V}, V_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|l|c|c|c|}
\hline \multicolumn{1}{c}{ Parameters } & \multicolumn{1}{c}{ Description } & Typ. & Max. & Units \\
\hline \(\mathrm{C}_{1 \mathrm{~N}}\) & \(\mathrm{DS}_{1} \mathrm{MD}\) Input Capacitance & 9.0 & 12 & pF \\
\hline \(\mathrm{C}_{1 \mathrm{~N}}\) & \begin{tabular}{l}
\(\mathrm{DS}_{2}, \mathrm{CK}, \mathrm{ACK}, \mathrm{DI}_{1}-\mathrm{DI}_{8}\) \\
Input Capacitance
\end{tabular} & 5.0 & 9.0 & pF \\
\hline \(\mathrm{C}_{\mathrm{OUT}}\) & \(\mathrm{DO}_{1}-\mathrm{DO}_{8}\) Output Capacitance & 8.0 & 12 & pF \\
\hline
\end{tabular}

Notes:1. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
2. \(C L R=S T B=H I G H ; D S_{1}=D S_{2}=M D=\) LOW; all data inputs are gound, all data outputs are open.
3. Conditions of Test: a) Input pulse amplitude \(=2.5 \mathrm{~V}\)
b) Input rise and fall times 5.0 ns
c) Between 1.0 V and 2.0 V measurements made at 1.5 V with 15 mA and 30 pF Test Load.

* Including Jig and Probe Capacitance.

Am8212

\section*{TYPְICAL APPLICATIONS OF THE Am8212}

\section*{GATED BUFFER (3-STATE)}

By tying the mode signal low and the strobe input high, the data latch is acting as a straight through gate. The output buffers are then enabled from the device selection logic \(\overline{\mathrm{DS}}_{1}\) and \(\mathrm{DS}_{2}\).

When the device selection logic is false, the outputs are 3-state.
When the device selection logic is true, the input data from the system is directly transferred to the output.

\section*{Bi-Directional Bus Driver}

Two Am8212s wired back to back can be used as a symmetrical drive, bi-directional bus driver. The devices are controlled by the data bus input control which is connected to \(\overline{\mathrm{DS}_{1}}\) on the first Am8212 and to \(\mathrm{DS}_{2}\) on the second. While one device is active, and acting as a straight through buffer the other is in its 3 -state mode.

\section*{Interrupting Input Port}

The Am8212 accepts a strobe from the system input source, which in turn clears the service request flip-flop and interrupts the processor. The processor then goes through a service routine, identifies the port, and causes the device selection logic to go true - enabling the system input data onto the data bus.

\section*{TYPICAL APPLICATIONS OF THE Am8212 (Cont'd)}

\section*{Interrupt Instruction Port}

The Am8212 can be used to gate the interrupt instruction, normally RESTART instructions, onto the data bus. The device is enabled from the interrupt acknowledge signal from the microprocessor and from a port selection signal. This signal is normally tied to ground. (\(\overline{\mathrm{DS}} \mathrm{S}_{1}\) could be used to multiplex a variety of interrupt instruction ports onto a common bus.)

\section*{Output Port (With Hand-Shaking)}

The Am8212 is used to transmit data from the data bus to a system output. The output strobe could be a hand-shaking signal such as "reception of data" from the device that the system is outputting to. It in turn, can interrupt the system signifying the reception of data. The selection of the port comes from the device selection logic. (\(\overline{\mathrm{DS}_{1}}-\mathrm{DS}_{2}\).)

\section*{Am9080A Status Latch}

The input to the Am8212 latch comes directly from the Am9080A data bus. Timing shows that when the SYNC signal is true \(\left(\overline{D S}_{1}\right.\) input), and \(\phi 1\) is true, (\(\overline{\mathrm{DS}}_{1}\) input) then the
status data will be latched into the Am8212. The mode signal is tied high so that the output on the latch is active and enabled all the time.

\section*{Am8216•Am8226 \\ Four-Bit Parallel Bidirectional Bus Driver}

\section*{Distinctive Characteristics}
- Data bus buffer driver for 8080 type CPU's
- Low input load current -0.25 mA maximum
- High output drive capability for driving system data bus -50 mA at 0.5 V
- Am8216 has non-inverting outputs
- Output high voltage compatible with direct interface to MOS
- Three-state outputs
- Advanced Schottky processing
- Available in military and commercial temperature range
- Am8226 has inverting outputs

\section*{FUNCTIONAL DESCRIPTION}

The Am8216 and Am8226 are four-bit, bi-directional bus drivers for use in bus oriented applications. The non-inverting Am8216, and inverting Am8226 drivers are provided for flexibility in system design.
Each buffered line of the four bit driver consists of two separate buffers that are three-state to achieve direct bus interface and bi-directional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB), this side is used to interface to the system side components such as memories, \(1 / 0\), etc., because its interface is TTL compatible and it has high drive \((50 \mathrm{~mA})\). On the other side of the driver the inputs and outputs are separated to provide maximum flexibility. Of course, they can be tied together so that the driver can be used to buffer a true bi-direc-
tional bus. The DO outputs on this side of the driver have a special high voltage output drive capability so that direct interface to the 8080 type CPUs is achieved with an adequate amount of noise immunity.

The \(\overline{\mathrm{CS}}\) input is a device enable. When it is "high" the output drivers are all forced to their high-impedance state. When it is a "LOW" the device is enabled and the direction of the data flow is determined by the DIEN input.

The \(\overline{\text { DIEN }}\) input controls the direction of data flow which is accomplished by forcing one of the pair of buffers into its high impedance state and allowing the other to transmit its data. A simple two gate circuit is used for this function.

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline All Output and Supply Voltages & -0.5 V to +7.0 V \\
\hline All Input Voltages & -1.0 V to +5.5 V \\
\hline Output Currents & 125 mA \\
\hline
\end{tabular}

\section*{Am8216 AND Am8226 MILITARY}

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\))
The following conditions apply unless otherwise specified:
MD8216, MD8226 (MIL) \(\quad T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \ddagger 10 \%\)
DC CHARACTERISTICS
Typ.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Descrip & & Test Conditio & & Min. & (Note 1) & Max. & Units \\
\hline \(\mathrm{I}_{\mathrm{F} 1}\) & \multicolumn{2}{|l|}{Input Load Current \(\overline{\text { DIEN, }} \overline{\mathrm{CS}}\)} & \(V_{F}=0.45\) & & & -0.15 & -0.5 & mA \\
\hline \(I_{\text {F } 2}\) & \multicolumn{2}{|l|}{Input Load Current All Other Inputs} & \(V_{F}=0.45\) & & & -0.08 & -0.25 & mA \\
\hline \(\mathrm{I}_{\mathrm{R} 1}\) & \multicolumn{2}{|l|}{Input Leakage Current \(\overline{\text { DIEN }}, \overline{\mathrm{CS}}\)} & \(V_{R}=5.5 \mathrm{~V}\) & & & & 80 & \(\mu \mathrm{A}\) \\
\hline \({ }^{\prime} \mathrm{R} 2\) & \multicolumn{2}{|l|}{Input Leakage Current DI Inputs} & \(\mathrm{V}_{\mathrm{R}}=5.5 \mathrm{~V}\) & & & & 40 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{v}_{\mathrm{C}}\) & \multicolumn{2}{|l|}{Input Forward Voltage Clamp} & \(\mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}\) & & & & -1.2 & Volts \\
\hline \multirow{2}{*}{\(V_{\text {IL }}\)} & \multirow{2}{*}{Input LOW Voltage} & Am8216 & & & & & 0.95 & \multirow{2}{*}{Volts} \\
\hline & & Am8226 & & & & & 0.9 & \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & & & 2.0 & & & Volts \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{0}\)} & \multirow[t]{2}{*}{Output Leakage Current (Three-State)} & DO & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}\)}} & & & 20 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & DB & & & & & 100 & \\
\hline \multirow{2}{*}{\({ }^{1} \mathrm{CC}\)} & \multirow{2}{*}{Power Supply Current} & Am8216 & & & & 95 & 130 & \multirow{2}{*}{mA} \\
\hline & & Am8226 & & & & 85 & 120 & \\
\hline \(\mathrm{v}_{\text {OL1 }}\) & \multicolumn{2}{|l|}{Output LOW Voltage} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { DO Outputs } \mathrm{IOL}=15 \mathrm{~mA} \\
& \text { DB Outputs IOL }=25 \mathrm{~mA}
\end{aligned}
\]} & & 0.3 & 0.45 & Volts \\
\hline \(\mathrm{V}_{\mathrm{OL} 2}\) & \multicolumn{2}{|l|}{Output LOW Voltage} & \multicolumn{2}{|l|}{DB Outputs \(1 \mathrm{OL}=45 \mathrm{~mA}\)} & & 0.5 & 0.6 & Volts \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH} 1}\)} & \multirow[t]{2}{*}{Output HIGH Voltage} & & \multirow[t]{2}{*}{DO Outputs} & \(1 \mathrm{OH}=-0.5 \mathrm{~mA}\) & 3.4 & 4.0 & & \multirow[t]{2}{*}{Volts} \\
\hline & & & & \({ }^{\prime} \mathrm{OH}=-2.0 \mathrm{~mA}\) & 2.4 & & & \\
\hline \(\mathrm{V}_{\mathrm{OH} 2}\) & \multicolumn{2}{|l|}{Output HIGH Voltage} & \multicolumn{2}{|l|}{DB Outputs \(1 \mathrm{OH}=-5.0 \mathrm{~mA}\)} & 2.4 & 3.0 & & Volts \\
\hline \multirow[b]{2}{*}{\({ }^{\prime} \mathrm{OS}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Output Short Circuit Current}} & \multicolumn{2}{|l|}{DO Outputs \(\cong 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)} & -15 & -35 & -65 & \multirow{2}{*}{mA} \\
\hline & & & \multicolumn{2}{|l|}{\(D B\) Outputs \(=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)} & -30 & -75 & -120 & \\
\hline
\end{tabular}

\section*{AC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\))}

Typ.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{Description} & Test Conditions & Min. & (Note 1) & Max. & Units \\
\hline tPD1 & \multicolumn{2}{|l|}{Input to Output Delay DO Outputs} & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \mathrm{R}_{2}=600 \Omega\) & & 15 & 25 & ns \\
\hline \multirow[b]{2}{*}{tPD2} & \multirow[b]{2}{*}{Input to Output Delay DB Outputs} & Am8216 & \multirow[b]{2}{*}{\(C_{L}=300 p \mathrm{~F}, \mathrm{R}_{1}=90 \Omega, \mathrm{R}_{2}=180 \Omega\)} & & 20 & 33 & \multirow[b]{2}{*}{ns} \\
\hline & & Am8226 & & & 16 & 25 & \\
\hline \multirow{2}{*}{\({ }^{\text {t }} \mathrm{E}\)} & \multirow[t]{2}{*}{Output Enable Time} & Am8216 & Note 2 & & 45 & 75 & \multirow{2}{*}{ns} \\
\hline & & Am8226 & Note 3 & & 35 & 62 & \\
\hline \multirow[b]{2}{*}{\({ }^{t} \mathrm{D}\)} & \multirow[b]{2}{*}{Output Disable Time} & Am8216 & \multirow[b]{2}{*}{Note 4} & & 20 & 40 & \multirow[b]{2}{*}{ns} \\
\hline & & Am8226 & & & 16 & 38 & \\
\hline
\end{tabular}

\section*{Am8216•Am8226}

Am8216 AND Am8226 COMMERCIAL
ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
The following conditions apply unless otherwise specified:
D8216, D8226, P8216, P8226 (COM'L) \(\quad T_{A}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%\)
DC CHARACTERISTICS
Typ.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameters & \multicolumn{2}{|c|}{Description} & Test Conditions & Min. & Typ.
(Note 1) & Max. & Units \\
\hline \(I_{\text {F1 }}\) & \multicolumn{2}{|l|}{Input Load Current \(\overline{\text { DIEN, }} \overline{\text { CS }}\)} & \(\mathrm{V}_{\mathrm{F}}=0.45\) & & -0.15 & -0.5 & mA \\
\hline \(\mathrm{I}_{\mathrm{F} 2}\) & \multicolumn{2}{|l|}{Input Load Current All Other Inputs} & \(V_{F}=0.45\) & & -0.08 & -0.25 & mA \\
\hline \(\mathrm{I}_{\mathrm{R} 1}\) & \multicolumn{2}{|l|}{Input Leakage Current \(\overline{\text { DIEN }}, \overline{\text { CS }}\)} & \(\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}\) & & & 20 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{R} 2}\) & \multicolumn{2}{|l|}{Input Leakage Current DI Inputs} & \(\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}\) & & & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{C}}\) & \multicolumn{2}{|l|}{Input Forward Voltage Clamp} & \(\mathrm{I}^{\prime} \mathrm{C}=-5.0 \mathrm{~mA}\) & & & -1.0 & Volts \\
\hline \(V_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & & 0.95 & Volts \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & & 2.0 & & & Volts \\
\hline \multirow[b]{2}{*}{1 Ol} & \multirow[t]{2}{*}{Output Leakge Current (Three-State)} & DO & \(\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}\) & & & 20 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & DB & & & & 100 & \\
\hline \multirow[b]{2}{*}{\({ }^{1} \mathrm{Cc}\)} & \multirow[b]{2}{*}{Power Supply Current} & Am8216 & & & 95 & 130 & \multirow[b]{2}{*}{mA} \\
\hline & & Am8226 & & & 85 & 120 & \\
\hline \(\mathrm{v}_{\text {OL1 }}\) & \multicolumn{2}{|l|}{Output LOW Voltage} & DB Outputs \(\mathrm{IOL}=15 \mathrm{~mA}\) DB Outputs \(1 O L=25 \mathrm{~mA}\) & & 0.3 & 0.45 & Volts \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OL} 2}\)} & \multirow{2}{*}{Output LOW Voltage} & Am8216 & DB Outputs \(1 \mathrm{OL}=55 \mathrm{~mA}\) & & 0.5 & 0.6 & \multirow[t]{2}{*}{Volts} \\
\hline & & Am8226 & DB Outputs \(1 \mathrm{OL}=50 \mathrm{~mA}\) & & 0.5 & 0.6 & \\
\hline \(\mathrm{V}_{\mathrm{OH} 1}\) & \multicolumn{2}{|l|}{Output HIGH Voltage} & DO Outputs \(\mathrm{I}^{\mathrm{OH}}=--1.0 \mathrm{~mA} \mathrm{COM'L}\) & 3.65 & 4.0 & & Volts \\
\hline \(\mathrm{V}_{\mathrm{OH} 2}\) & \multicolumn{2}{|l|}{Output HIGH Voltage} & DB Outputs \(\mathrm{IOH}^{\text {O }}=-10 \mathrm{~mA}\) & 2.4 & 3.0 & & Volts \\
\hline \multirow[b]{2}{*}{Ios} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Output Short Circuit Current}} & DO Outputs \(\cong 0 \mathrm{~V}\) & -15 & -35 & -65 & \multirow[t]{2}{*}{mA} \\
\hline & & & DB Outputs \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) & -30 & -75 & -120 & \\
\hline
\end{tabular}

AC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{Description} & Test Conditions & Min. & \[
\begin{aligned}
& \text { Typ. } \\
& \text { (Note 1) } \\
& \hline
\end{aligned}
\] & Max. & Units \\
\hline tPD1 & \multicolumn{2}{|l|}{Input to Output Delay DO Outputs} & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \mathrm{R}_{2}=600 \Omega\). & & 15 & 25 & ns \\
\hline \multirow[b]{2}{*}{tPD2} & \multirow[b]{2}{*}{Input to Output Delay DB Outputs} & Am8216 & \multirow[b]{2}{*}{\(C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \mathrm{R}_{2}=180 \Omega\)} & & 20 & 30 & \multirow[b]{2}{*}{ns} \\
\hline & & Am8226 & & & 16 & 25 & \\
\hline \multirow{2}{*}{\({ }^{\text {t }}\) E} & \multirow[t]{2}{*}{Output Enable Time} & Am8216 & Note 2 & & 45 & 65 & \multirow{2}{*}{ns} \\
\hline & & Am8226 & Note 3 & & 35 & 54 & \\
\hline \({ }^{\text {D }}\) & \multicolumn{2}{|l|}{Output Disable Time} & Note 4 & & 20 & 35 & ns \\
\hline
\end{tabular}

\section*{TEST CONDITIONS}
nput pulse amplitude of 2.5 V .
Input rise and fall times of 5.0 ns between 1.0 and 2.0 volts.
Output loading is 5.0 mA and 10 pF .
Speed measurements are made at 1.5 V levels.

TEST LOAD CIRCUIT

CAPACITANCE (Note 5)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & Test Conditions & Min. & (Note 1) & Max. & Units \\
\hline \(\mathrm{CiN}_{\text {I }}\) & Input Capacitance & \multirow[b]{3}{*}{\[
\begin{gathered}
V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\
T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}
\end{gathered}
\]} & & 4.0 & 8.0 & pF \\
\hline Cout1 & Output Capacitance & & & 6.0 & 10 & pF \\
\hline COUT2 & Output Capacitance & & & 13 & 18 & pF \\
\hline
\end{tabular}

Notes: 1. Typical values are for \(T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}\).
2. DO outputs, \(C_{L}=30 \mathrm{pF}, R_{1}=300 / 10 \mathrm{k} \Omega, R_{2}=180 / 1.0 \mathrm{k} \Omega ; D B\) outputs, \(C_{L}=300 \mathrm{pF}, R_{1}=90 / 10 \mathrm{k} \Omega, R_{2}=180 / 1.0 \mathrm{k} \Omega\).
3. DO outputs, \(C_{L}=30 \mathrm{pF}, R_{1}=300 / 10 \mathrm{k} \Omega, R_{2}=600 / 1.0 \mathrm{k} \Omega ; D B\) outputs, \(C_{L}=300 \mathrm{pF}, R_{1}=90 / 10 \mathrm{k} \Omega, R_{2}=180 / 1.0 \mathrm{k} \Omega\)
4. DO outputs, \(C_{L}=5.0 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{k} \Omega, R_{2}=600 / 1.0 \mathrm{k} \Omega ; \mathrm{DB}\) outputs, \(C_{L}=5.0 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{k} \Omega, R_{2}=180 / 1.0 \mathrm{k} \Omega\).
5. This parameter is periodically sampled and not \(100 \%\) tested.

\section*{SWITCHING WAVEFORMS}

LIC-443

FUNCTION TABLE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multirow{2}{|c|}{} & \multicolumn{2}{|c|}{8216} & \multicolumn{2}{c|}{8226} \\
\cline { 4 - 7 } & & & DIEN & CS & & DO \\
DB & DO \\
\hline\(L\) & \(L\) & \(D I \Rightarrow D B\) & \(D I\) & \(Z\) & \(\overline{D I}\) & \(Z\) \\
\hline\(H\) & \(L\) & \(D B \Rightarrow D O\) & \(Z\) & \(D B\) & \(Z\) & \(\overline{D B}\) \\
\hline\(L\) & \(H\) & & \(Z\) & \(Z\) & \(Z\) & \(Z\) \\
\hline\(H\) & \(H\) & & \(Z\) & \(Z\) & \(Z\) & \(Z\) \\
\hline
\end{tabular}
\(H=H I G H\)
L. \(=\) LOW

TYPICAL APPLICATION

\section*{Metallization and Pad Layout}

\section*{Am8224 \\ Clock Generator and Driver for 8080A Compatible Microprocessors}

\section*{Distinctive Characteristics}
- Single chip clock generator/driver for 8080A compatible CPU
- Power-up reset for CPU
- Ready synchronizing flip-flop
- Status strobe signal
- Oscillator output for external system timing
- Am8224-4 version available for use with \(1 \mu \mathrm{sec}\) instruction cycle of Am9080A-4
- Available for operation over both commercial and military temperature ranges
- Crystal controlled for stable system operation
- Reduces system package count
- Advanced Schottky processing

\section*{FUNCTIONAL DESCRIPTION}

The Am8224 is a single chip Clock Generator/Driver for the Am9080A and 8080A CPU. It contains a crystal-controlled oscillator, a "divide by nine" counter, two high-level drivers and several auxiliary logic functions, including a power-up reset, status strobe and synchronization of ready. Also provided are TTL compatible oscillator and \(\phi_{2}\) outputs for external system timing. The Am8224 provides the designer with a significant reduction of packages used to generate clocks and timing for the Am9080A or 8080A for both commercial and military temperature range applications. A high speed version, the Am8224-4, is available for use with the high speed Am9080A-4.

ORDERING INFORMATION
\begin{tabular}{lll}
\begin{tabular}{c}
Package \\
Type
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c}
Temperature \\
Range
\end{tabular}} & \multicolumn{1}{c}{\begin{tabular}{c}
Order \\
Number
\end{tabular}} \\
\hline Hermetic DIP & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & AM8224DM \\
Hermetic DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & D8224 \\
Molded DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & AM8224PC \\
Dice & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & AM8224XC \\
Hermetic DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & AM8224-4DC*
\end{tabular}

PIN DEFINITION
\begin{tabular}{|l|l|}
\hline XTAL 1 & \multirow{2}{*}{ CONNECTIONS FOR CRYSTAL } \\
\hline XTAL 2 & \\
\hline TANK & USED WITH OVERTONE XTAL \\
\hline OSC & OSCILLATOR OUTPUT \\
\hline\(\phi_{2}\) (TTL) & \(\phi_{2}\) CLK (TTL LEVEL) \\
\hline\(V_{\text {CC }}\) & +5.0 V \\
\hline \(\mathrm{~V}_{\text {DD }}\) & +12 V \\
\hline GND & OV \\
\hline\(\overline{\text { RESIN }}\) & RESET INPUT \\
\hline RESET & RESET OUTPUT \\
\hline RDYIN & READY INPUT \\
\hline READY & READY OUTPUT \\
\hline SYNC & SYNC INPUT \\
\hline\(\overline{\text { STSTB }}\) & STATUS STB (ACTIVE LOW) \\
\hline\(\phi_{1}\) & \multirow{2}{*}{\begin{tabular}{l}
Am908OA/8O8OA CLOCKS \\
\hline\(\phi_{2}\)
\end{tabular}} \\
\hline
\end{tabular}

CONNECTION DIAGRAM
Top View

Am8224
MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\prime \prime} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential & 7.5 V \\
\(V_{C C}\) & 15 V \\
\hline\(V_{\text {DD }}\) & 100 m A \\
\hline Maximum Output Current \(\phi_{1}\) and \(\phi_{2}(\) Note 1\()\) &
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE}

The Following Conditions Apply Unless Otherwise Noted:
Am8224XC, Am8224-4XC (COML)
Am8224XC (MIL)
Parameters Description
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline arameters & Description & \multicolumn{2}{|l|}{\(V_{\mathrm{F}}\)} & Min. & No & Max. & \multirow[t]{2}{*}{\[
\mathrm{mA}
\]} \\
\hline \(I_{F}\) & Input Current Loading & \(V_{F}=0.45 \mathrm{~V}\) & & & & -0.25 & \\
\hline \(\mathrm{I}_{\mathrm{R}}\) & Input Leakage Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(v_{C}\)} & \multirow[b]{2}{*}{Input Forward Clamp Voltage} & \multirow[b]{2}{*}{\({ }^{\prime} \mathrm{C}=-5.0 \mathrm{~mA}\)} & COM'L & & & \(-1.0\) & \multirow[b]{2}{*}{Volts} \\
\hline & & & MIL & & & -1.2 & \\
\hline \(V_{\text {IL }}\) & Input LOW Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=5.0 \mathrm{~V}\)} & & & 0.8 & Volts \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {IH }}\)} & \multirow{3}{*}{Input HIGH Voltage} & \multirow[b]{2}{*}{Reset input} & COM'L & 2.6 & 2.2 & & \multirow{3}{*}{Volts} \\
\hline & & & MIL & 2.8 & 2.2 & & \\
\hline & & \multicolumn{2}{|l|}{All other inputs} & 2.0 & & & \\
\hline \(\mathrm{V}_{\text {IH }}-\mathrm{V}_{\text {IL }}\) & \(\overline{\text { RESIN }}\) Input Hysteresis & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)} & 0.25 & 0.5 & & Volts \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {OL }}\)} & \multirow[b]{2}{*}{Output LOW Voltage} & \multicolumn{2}{|l|}{(\(\phi_{1}, \phi_{2}\)), Ready, Reset, \(\overline{\text { STSTB }}\)
\[
{ }^{1} \mathrm{OL}=2.5 \mathrm{~mA}
\]} & & & 0.45 & \multirow{2}{*}{Volts} \\
\hline & & \multicolumn{2}{|l|}{All other inputs
\[
\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}
\]} & & & 0.45 & \\
\hline \multirow{5}{*}{\[
\mathbf{v}_{\mathrm{OH}}
\]} & \multirow{5}{*}{Output HIGH Voltage} & \multirow[b]{2}{*}{\(\phi_{1}, \phi_{2} ;{ }^{\prime} \mathrm{OH}=-100 \mu \mathrm{~A}\)} & COM'L & 9.4 & 11 & & \multirow{5}{*}{Volts} \\
\hline & & & MIL & \(V_{D D}-1.6 \mathrm{~V}\) & \(\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}\) & & \\
\hline & & \multirow[t]{2}{*}{READY, RESET; \(\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}\)} & COM'L & 3.6 & 4.0 & & \\
\hline & & & MIL & 3.35 & 4.0 & & \\
\hline & & \multicolumn{2}{|l|}{All other outputs; \(1 \mathrm{OH}=-1.0 \mathrm{~mA}\)} & 2.4 & 3.0 & & \\
\hline ISC & Output Short Circuit Current (All Low Voltage Outputs Only) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}
\end{aligned}
\]} & \(-10\) & & \(-60\) & mA \\
\hline \({ }^{\text {I CC }}\) & Power Supply Current & \multicolumn{2}{|l|}{\(V_{C C}=\) MAX. (Note 3)} & & 70 & 115 & mA \\
\hline IDD & Power Supply Current & \multicolumn{2}{|l|}{\(V_{D D}=M A X\).} & & 5.0 & 12 & mA \\
\hline
\end{tabular}

Notes: 1. Caution: \(\phi_{1}\) and \(\phi_{2}\) outputs do not have short circuit protection.
2. Typical limits are at \(\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, 25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

\section*{CRYSTAL REQUIREMENTS}

Tolerance: \(.005 \%\) at \(0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\)
Resonance: Series (Fundamental)*
Load Capacitance: 20-35pF
Equivalent Resistance: \(75-20\) ohms
Power Dissipation (Min): 4 mW
*With frequency in excess of 18 MHz use 3rd overtone XTALs and tank circuit.

TEST CIRCUIT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{3}{|c|}{Am8224XM} & \multicolumn{3}{|c|}{Am8224XC} & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { Am8224-4XC } \\
\text { (Note 2) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Units} \\
\hline Parameters & Description & Test Conditions & Min. & Typ. & Max. & Min. & Typ. & Max. & Min. & Typ. & Max. & \\
\hline \({ }^{t_{\phi 1}}\) & \(\phi_{1}\) Pulse Width & \multirow{7}{*}{\[
\begin{aligned}
& C_{L}=20 \mathrm{pF} \\
& \text { to } 50 \mathrm{pF}
\end{aligned}
\]} & \(\frac{2 \mathrm{t} \mathrm{CY}}{9}-23 \mathrm{~ns}\) & & & \(\frac{2 \mathrm{t} \mathrm{CY}}{9}-20 \mathrm{~ns}\) & & & 45 & & & \multirow{7}{*}{ns} \\
\hline \({ }^{\text {t }}{ }_{\text {2 }}\) & \(\phi_{2}\) Pulse Width & & \(\frac{5 t}{} \frac{1}{9}-35 \mathrm{~ns}\) & & & \(\frac{5 \mathrm{tcy}}{9}-35 \mathrm{~ns}\) & & & 110 & & & \\
\hline \({ }^{\text {t }} 1\) & \(\phi_{1}\) to \(\phi_{2}\) Delay & & 0 & & & 0 & & & 0 & & & \\
\hline \({ }^{\text {t }}\) 2 & \(\phi_{2}\) to \(\phi_{1}\) Delay & & \(\frac{2 \mathrm{t} \mathrm{CY}}{9}-17 \mathrm{~ns}\) & & & \(\frac{2 \mathrm{t} C Y}{9}-14 \mathrm{~ns}\) & & & 35 & & & \\
\hline \({ }^{\text {t }}\) 3 & \(\phi_{1}\) to \(\phi_{2}\) Delay & & \(\frac{2 \mathrm{t}}{\mathrm{CY}} \mathrm{g}\) & & \(\frac{2 \mathrm{t} C \mathrm{CY}}{9}+22 \mathrm{~ns}\) & \(\frac{2 \mathrm{t} \mathrm{C} Y}{9}\) & & \(\frac{2 \mathrm{t} \mathrm{CY}}{9}+20 \mathrm{~ns}\) & 55 & & 76 & \\
\hline \(\mathrm{tr}_{\mathrm{r}}\) & \(\phi_{1}\) and \(\phi_{2}\) Rise Time & & & & 20 & & & 20 & & & 20 & \\
\hline \({ }_{\text {t }}\) & \(\phi_{1}\) and \(\phi_{2}\) Fall Time & & & & 20 & & & 20 & & & 20 & \\
\hline \({ }^{t}{ }_{\phi}{ }^{2} 2\) & \(\phi_{2}\) to \(\phi_{2}(T T L)\) Delay & \[
\begin{aligned}
& \phi_{2}(\text { TTL }), \\
& C_{L}=30 \mathrm{pF} \\
& R_{1}=300 \Omega \\
& R_{2}=600 \Omega
\end{aligned}
\] & -20 & - & 15 & -20 & & 15 & -20 & & 15 & ns \\
\hline \({ }^{\text {t }}\) DSS & \(\phi_{2}\) to STSTB Delay & \multirow{4}{*}{\[
\begin{gathered}
\overline{\text { STSTB },} \\
C_{L}=15 \mathrm{pF}, \\
R_{1}=2.0 \mathrm{k} \Omega \\
R_{2}=4.0 \mathrm{k} \Omega
\end{gathered}
\]} & \(\frac{6 \mathrm{t} C \mathrm{Y}}{9}-33 \mathrm{~ns}\) & & \(\frac{6 \mathrm{t} \mathrm{C} Y}{9}\) & \(\frac{6 \mathrm{tc} Y}{9}-30 \mathrm{~ns}\) & & \(\frac{6 \mathrm{t}}{\mathrm{C} Y} \mathrm{y}\) & 137 & & 167 & \multirow{4}{*}{ns} \\
\hline tPW & \(\overline{\text { STSTB Puise Width }}\) & & \(\frac{{ }^{\text {t }} \mathrm{C} Y}{9}-18 \mathrm{~ns}\) & & & \({ }^{\text {t }} \mathrm{CY} \mathrm{Y}-15 \mathrm{~ns}\) & & & 18 & & & \\
\hline \({ }^{t}\) DRS & RDYIN Set-up Time to Status Strobe & & \(50 \mathrm{~ns}-\frac{4 \mathrm{t}^{\text {c }} \text { ¢ }}{9}\) & & & \(50 \mathrm{~ns}-\frac{4 \mathrm{t} \mathrm{CY}}{9}\) & & , & -61 & & & \\
\hline \({ }^{\text {t DRH }}\) & ROYIN Hold Time After STSTB & & \(\frac{4{ }^{4} \mathrm{CY}}{9}\) & & & \(\frac{4 \mathrm{tc} Y}{9}\) & & & 111 & & & \\
\hline \({ }^{\text {tor }}\) & RDYIN or RESIN to \(\phi_{2}\) Delay & \[
\begin{gathered}
\text { Ready and Reset } \\
C_{L}=10 \mathrm{pF} \\
R_{1}=2.0 \mathrm{k} \Omega \\
R_{2}=4.0 \mathrm{k} \Omega
\end{gathered}
\] & \(\frac{4 t \mathrm{CY}}{9}-25 n s\) & & & \(\frac{4{ }^{4} \mathrm{CY}}{9}-25 \mathrm{~ns}\) & & & 86 & & & ns \\
\hline \({ }^{\text {t CLL.K }}\) & CLK Period & & & \({ }^{\text {t }} \mathrm{C} \mathrm{Y}\) 9 & & & \({ }^{\text {t }} \mathrm{C} \mathrm{Y} \mathrm{Y}\) & & & 28 & & \\
\hline \({ }_{\text {f Max }}\). & Maximum Oscillating Frequency & & 27 & & & 28.12 & & & 36 & & & MHz \\
\hline \(c_{\text {in }}\) & Input Capacitance & \[
\begin{gathered}
V_{C C}=5.0 \mathrm{~V} \\
V_{D D}=12 \mathrm{~V} \\
V_{\text {BIAS }}=2.5 \mathrm{~V} \\
f=1.0 \mathrm{MHz}
\end{gathered}
\] & & & 8.0 & & & 8.0 & & & 8.0 & pF \\
\hline
\end{tabular}

AC CHARACTERISTICS (For \(\mathrm{t}_{\mathrm{CY}}=488.28 \mathrm{~ns}\))
\(T_{A}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C} \quad V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \quad V_{D D}=+12 \mathrm{~V} \pm 5 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \(\mathrm{t}_{\phi} 1\) & \(\phi_{1}\) Pulse Width & \multirow{7}{*}{\(\phi_{1}\) and \(\phi_{2}\) Loaded \(C_{L}=20\) to 50 pF} & 89 & & & ns \\
\hline \(\mathrm{t}_{\phi}{ }^{\text {2 }}\) & \(\phi_{2}\) Pulse Width & & 236 & & & ns \\
\hline \({ }^{\text {t } 11}\) & Delay \(\phi_{1}\) to \(\phi_{2}\) & & 0 & & & ns \\
\hline \({ }^{1} 02\) & Delay \(\phi_{2}\) to \(\phi_{1}\) & & 95 & & & ns \\
\hline \({ }_{\text {t }}{ }^{\text {P }}\) & Delay \(\phi_{1}\) to \(\phi_{2}\) Leading Edges & & 109 & & 129 & ns \\
\hline \(\mathrm{tr}_{r}\) & Output Rise Time & & & & 20 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & Output Fall Time & & & & 20 & ns \\
\hline \({ }^{\text {t }}\) DSS & \(\phi_{2}\) to STSTB Delay & & 296 & & 326 & ns \\
\hline \({ }^{\text {t }}\) D \(\phi 2\) & \(\phi_{2}\) to \(\phi_{2}\) (TTL) Delay & & -20 & & 15 & ns \\
\hline tpw & Status Strobe Pulse Width & & 40 & & & ns \\
\hline \({ }^{\text {t DRS }}\) & RDYIN Set-up Time to \(\overline{\text { STSTB }}\) & \multirow[t]{3}{*}{Ready and Reset Loaded
\[
\begin{gathered}
C_{L}=20 \text { to } 50 \mathrm{pF} \\
R_{1}=2.0 \mathrm{k} \Omega, R_{2}=4.0 \mathrm{k} \Omega
\end{gathered}
\]} & -167 & & & ns \\
\hline \({ }^{\text {t DRH }}\) & RDYIN Hold Time After STSTB & & 217 & & & ns \\
\hline \({ }_{\text {t }}\) DR & Ready or Reset to \(\phi_{2}\) Delay & & 192 & & & ns \\
\hline FREQ & Oscillator Frequency & & & & 18.432 & MHz \\
\hline
\end{tabular}

Notes: 1. All measurements referenced to 1.5 V unless specified otherwise.
2. Am8224-4 parameter limits are given for \(\mathrm{t} C \mathrm{Y}=250 \mathrm{~ns}\) or an oscillating frequency of 36 MHz . Between 28.12 MHz and 36 MHz min. and max. limits should be ratioed between the calculated Am8224XC limits at 28.12 MHz and the given 36 MHz parameter limits.

Am8224

\section*{Oscillator}

The oscillator circuit derives its basic operating frequency from an external, series resonant, fundamental mode crystal. Two inputs are provided for the crystal connections (XTAL1, XTAL2).

The selection of the external crystal frequency depends mainly on the speed at which the CPU is to be run. Basically, the oscillator operates at 9 times the desired processor speed.

The formula to determine the crystal frequency is:
\[
f(X T A L)=\frac{1}{t_{C} Y} \text { times } 9
\]

When using crystals above 10 MHz a small amount of frequency "trimming" is necessary to produce the desired frequency. The addition of a selected capacitance (\(20 \mathrm{pF}-30 \mathrm{pF}\)) in series with the crystal will accomplish this function.

Another input to the oscillator is TANK. This input allows the use overtone mode crystals. This type of crystal generally has a much lower output at its rated frequency and has a tendency to oscillate at its fundamental.

To avoid the unwanted oscillation and increase the desired frequency output it is necessary to provide a parallel tuned resonant circuit of low impedance. The external LC network is connected to the TANK input and is AC coupled. See typical application with Am8228 and Am9080A in Figure 2.

The formula for the LC network is:
\[
F=\frac{1}{2 \pi \sqrt{L C}}
\]

The output of the oscillator is buffered and brought out on OSC (pin 12) so that other system timing signals can be derived from this stable, crystal-controlled source.

\section*{Clock Generator}

The Clock Generator consists of a synchronous "divide by nine" counter and the associated decode gating to create the waveforms of the two clocks and auxiliary timing signals.
The waveforms generated by the decode gating follow a simple 2-5-2 digital pattern. See Figure 2. The clocks generated; \(\phi_{1}\) and \(\phi_{2}\), can best be thought of as consisting of "units" based on the oscillator frequency. Assume that one "unit" equals the period of the oscillator frequency. By multiplying the number of "units" that are contained in a pulse width or delay, times the period of the oscillator frequency, the approximate time in nanoseconds can be derived.

The outputs of the clock generator are connected to two high level drivers for direct interface to the CPU. A TTL level phase 2 is also brought out \(\phi_{2}\) (TTL) for external timing purposes. It is especially useful in DMA dependent activities. This signal is used to gate the requesting device onto the bus once the CPU issues the Hold Acknowledgement (HLDA).

Several other signals are also generated internally so that optimum timing of the auxiliary flip-flops and status strobe (STSTB) is achieved.

Figure 1. Clock Generator Waveforms.

\section*{\(\overline{\text { STSTB }}\) (Status Strobe)}

At the beginning of each machine cycle the CPU issues status information on its data bus. This information tells what type of action will take place during that machine cycle. By bringing in the SYNC signal from the CPU, and gating it with an internal timing signal (\(\phi_{1 A}\)), an active low strobe can be derived that occurs at the start of each machine cycle at the earliest possible moment that status data is stable-on the bus. The \(\overline{\text { STSTB }}\) signal connects directly to the Am8228 System Controller.
The power-on Reset also generates \(\overline{\text { STSTB }}\), but of course, for a longer period of time. This feature allows the Am8228 to be automatically reset without additional pins devoted for this function.

\section*{Power-On Reset and Ready Flip-Flops}

A common function in microcomputer systems is the generation of an automatic system reset and start-up upon initial power-on. The Am8224 has a built-in feature to accomplish this feature.
An external RC network is connected to the \(\overline{R E S I N}\) input. The slow transition of the power supply rise is sensed by an internal Schmitt Trigger. This circuit converts the slow transition into a clean, fast edge when its input level reaches a predetermined value. The output of the Schmitt Trigger is connected to a "D" type flip-flop that is clocked with \(\phi_{2 D}\) (an internal timing signal). The flip-flop is synchronously reset and an active high level that complies with the microprocessor input spec is generated. For manual switch type system Reset circuits, an active low switch closing can be connected to the RESIN input in addition to the power-on RC network.
The READY input to the CPU has certain timing specifications such as "set-up and hold" thus, an external synchronizing flip-
flop is required. The Am8224 has this feature built-in. The RDYIN input presents the asynchronous "wait request" to the " \(D\) " type flip-flop. By clocking the flip-flop with \(\phi_{2 D}\), a synchronized READY signal at the correct input level, can be connected directly to the CPU.

Figure 2. Typical Application with Am8224 and Am9080A.

\section*{APPLICATION PRECAUTIONS WHEN USING Am8224 UP TO 36 MHz}

\section*{Usage with Third Harmonic Crystal or Am9080A-4}

The use of the Am8224 with a third harmonic crystal requires a minor modification to the external circuitry associated with the Am8224. The changes are as follows:
- Series capacitor in conjunction with the xtal
- Adding a tuned circuit in the "tank" lead
- Tuning of circuit to proper frequency

It is necessary to maintain the crystal activity to a proper level if an xtal controlled circuit is to operate properly. A 20-30pfd capacitor placed in series will help achieve this level in third overtone crystal, while helping to suppress the fundamental mode. The Am8224 has an auxiliary port provided to allow for a tuned circuit. This tuned circuit eliminates the tendency of the circuit to oscillate at the crystal's fundamental. The tank or tuned circuit must have the following properties:
1. It must be parallel resonant at the crystal frequency (third order).
2. The off resonance impedance must be low enough to spoil the AC gain of the Am8224.
3. The circuit must be DC decoupled (or returned to \(\mathrm{V}_{\mathrm{CC}}\)) at a low impedance (substantially below \(100 \Omega\)).

All frequency determining components must be in close proximity to the Am8224. Insert crystal and tune tank for best waveform at Pin 12 (OSC). If counter is available, adjust for match of crystal marking. The circuit in Figure 3 will accomplish the above result for the 36 MHz range.

Figure 3.
\(\mathrm{C}_{1}=\mathrm{E} . \mathrm{F}\). Johnson
275-0430-005
\(5-30 \mathrm{pF}\) Trimmer or Equiv.
\(\mathrm{L}_{1}=\) J.W. Miller Inductor
9230-08

\section*{VCC Ground}

Due to the nature of our device (fast switching, higher voltage) it is necessary to provide a bypass capacitor from \(V_{C C}\) to ground in the immediate proximity of the Am8224. This insures proper operation of the device while reducing noise spiking on adjacent circuits.

\section*{Resin Bypass}

The use of a high impedance capacitor for timing R-C, and/or timing components remotely located from the Am8224 device may cause a disturbance to occur during the linear transition region. The capacitor for this function should be of the ceramic type and a value of 1000 pF or greater.

This can be cured by placing a \(>1000\) pfd ceramic capacitor from Resin (Pin 2) to Ground (Pin 8) in the immediate proximity of the device. This will allow the timing R-C to be placed at will.

\section*{APPLICATIONS}

\section*{LIC-626}

The Am8224 can be driven from an external source of frequency by connecting as shown and driven with approximately 500 mV over a wide frequency range.

\section*{LIC-627}

The Am8224 can oscillate without a xtal by placing a small value capacitor \((10 \rightarrow 200 \mathrm{pF})\) in place of a crystal.

\section*{Am8228 • Am8238}

System Controller and Bus Driver for 8080A Compatible Microprocessors

\section*{Distinctive Characteristics}
- Multi-byte instruction interrupt acknowledge
- Selectable single level vectored interrupt (RST-7)
- 28-pin molded or hermetic DIP package
- Single chip system controller and data bus driver for Am9080/8080A systems
- Am8238-4 high speed version available for use with \(1 \mu \mathrm{sec}\) instruction cycle of Am9080A-4
- Bi-directional three-state bus driver for CPU independent operation
- Advanced low-power Schottky processing
- Available in military and commercial temperature range
- Am8238 has extended \(\overline{\text { IOW }} / \overline{\text { MEMW }}\) pulse width

\section*{FUNCTIONAL DESCRIPTION}

The Am8228 and Am8238 are single chip System Controller Data Bus drivers for the Am9080A Microcomputer System. They generate all control signals required to directly interface Am9080A/8080A compatible system circuits (memory and \(\mathrm{I} / \mathrm{O}\)) to the CPU.

Bi-directional bus drivers with three-state outputs are provided for the system data bus, facilitating CPU independent bus operations such as direct memory access. Interrupt processing is accommodated by means of a single vectored interrupt or by means of the standard 8080A multiple byte interrupt vector operation.

\section*{ORDERING INFORMATION}
\begin{tabular}{cccl}
\begin{tabular}{c}
Package \\
Type
\end{tabular} & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & \begin{tabular}{c}
Am8228 \\
Order \\
Number
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c}
Am8238 \\
Order \\
Number
\end{tabular}} \\
\hline Molded DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & AM8228PC & AM8238PC \\
Hermetic DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & D8228 & D8238 \\
Hermetic DIP & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & AM8228DM & AM8238DM \\
Dice & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & AM8228XC & AM8238XC \\
Hermetic DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & & AM8238-4DC* \\
Molded DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & & AM8238-4PC*
\end{tabular}

\footnotetext{
*For use with Am9080A-4 with minimum
} clock period of 250 ns.

LOGIC SYMBOL

\(V_{C C}=\operatorname{Pin} 28\)
GND \(=\operatorname{Pin} 14\)
LIC-629

CONNECTION DIAGRAM Top View

\section*{Am8228-Am8238}

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Volatge to Ground Potential (Pin 28 to Pin 14) Continuous & -0.5 V to +7.0 V \\
\hline DC Voltage Applied to Outputs for HIGH Output State & -0.5 V to \(+\mathrm{V}_{\mathrm{CC}} \mathrm{max}\). \\
\hline DC Input Voltage & -1.5 V to +7.0 V \\
\hline DC Output Current, Into Outputs & 50 mA \\
\hline DC Input Current & -30 mA to +5.0 mA \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS The Following Conditions Apply Unless Otherwise Noted:
Am8228 \(\times \mathrm{M}, \mathrm{Am8238} \times \mathrm{M} \quad T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C} \quad V_{C C M I N}=4.50 \mathrm{~V} \quad V_{C C M} M A X .=5.50 \mathrm{~V}\)
\(A m 8228 \times C, A m 8238 \times C, A m 8238-4 \times C \quad T_{A}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C} \quad V_{C C M I N}=4.75 \mathrm{~V} \quad V_{C C} M A X=5.25 \mathrm{~V}\)
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE
Typ.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Parameters & Description & \multicolumn{4}{|l|}{Test Conditions (Note 2)} & Min. & (Note 1) & Max. & Units \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow{3}{*}{Output HIGH Voltage} & \multirow{3}{*}{\(V_{C C}=\) MIN .} & \multirow[b]{2}{*}{\(\mathrm{I}^{\mathrm{OH}}=-10 \mu \mathrm{~A}\)} & \multirow[b]{2}{*}{\(\mathrm{D}_{0}-\mathrm{D}_{7}\)} & MIL & 3.35 & 3.8 & & \multirow{3}{*}{Volts} \\
\hline & & & & & COM'L & 3.6 & 3.8 & & \\
\hline & & & \(1 \mathrm{OH}=-1.0 \mathrm{~mA}\) & \multicolumn{2}{|l|}{All other outputs} & 2.4 & & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OL }}\)} & \multirow[t]{2}{*}{Output Low Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{C C}=\) MIN.} & \(1 \mathrm{OL}=2.0 \mathrm{~mA}\) & \multicolumn{2}{|l|}{\(\mathrm{D}_{0}-\mathrm{D}_{7}\)} & & & 0.45 & \multirow[t]{2}{*}{Volts} \\
\hline & & & \(1 \mathrm{OL}=10 \mathrm{~mA}\) & All other & outputs & & & 0.45 & \\
\hline \(\mathrm{V}_{\mathrm{C}}\) & Input Clamp Voltage (All Inputs) & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}\)} & & -0.75 & -1.0 & Volts \\
\hline \(\mathrm{V}_{\text {TH }}\) & Input Threshold Voltage (All Inputs) & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)} & 0.8 & & 2.0 & Volts \\
\hline \multirow{3}{*}{\({ }^{\prime} \mathrm{F}\)} & \multirow{3}{*}{Input Load Current} & \multicolumn{2}{|l|}{\multirow{3}{*}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}\)}} & \multicolumn{2}{|l|}{\(\overline{\text { STSTB }}\)} & & & -500 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & \multicolumn{2}{|l|}{\(\mathrm{D}_{2}\) and \(\mathrm{D}_{6}\)} & & & -750 & \\
\hline & & & & \multicolumn{2}{|l|}{All other inputs} & & & -250 & \\
\hline \multirow[t]{2}{*}{\(I_{R}\)} & \multirow[t]{2}{*}{Input Leakage Current} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(V_{C C}=M A X ., V_{R}=5.25 \mathrm{~V}\)}} & \multicolumn{2}{|l|}{\(\mathrm{DB}_{0}-\mathrm{DB}_{7}\)} & & & 20 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & All other & inputs & & & 100 & \\
\hline IINT & INTA Current & \multicolumn{4}{|l|}{See INTA test circuit} & & & 5.0 & mA \\
\hline \multirow[t]{2}{*}{IO(OFF)} & \multirow[t]{2}{*}{Offstate Output Current (All Control Outputs)} & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}\)} & & & 100 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}\)} & & & -100 & \\
\hline Ios & Short Circuit Current (All Outputs) & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)} & -15 & & -90 & mA \\
\hline \({ }^{\text {ICC }}\) & Power Supply Current & \multicolumn{4}{|l|}{\(\mathrm{V}_{C C}=\mathrm{MAX}\).} & & 140 & 190 & mA \\
\hline
\end{tabular}

\section*{AC CHARACTERISTICS}

OVER OPERATING TEMPERATURE RANGE

\section*{Test}
 Typ.

Am8228XC/ Am8238XC

Typ.

Am8238-4XC
Typ.
Conditions Min. (Note 1) Max. Min. (Note 1) Max. Min. (Note 1) Max. Units
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline tPW & \multicolumn{2}{|l|}{Width of Status Strobe} & & 22 & & & 22 & & & 22 & & & ns \\
\hline tSS & \multicolumn{2}{|l|}{Set-up Time, Status Inputs \(\mathrm{D}_{0}-\mathrm{D}_{7}\)} & & 12 & & & 8.0 & & & 8.0 & & & ns \\
\hline \({ }^{\text {t }} \mathrm{H}\) & \multicolumn{2}{|l|}{Hold Time, Status Inputs \(\mathrm{D}_{0}-\mathrm{D}_{7}\)} & & 5.0 & & & 5.0 & & & 5.0 & & & ns \\
\hline \multirow[b]{3}{*}{\({ }^{t} \mathrm{DC}\)} & \multicolumn{2}{|l|}{Delay from STSTB to MEMR} & \multirow{4}{*}{\(C L=100 \mathrm{pF}\)} & 20 & 30 & 60 & 20 & 30 & 60 & 20 & 30 & 40 & \\
\hline & \multicolumn{2}{|l|}{Delay from \(\overline{\text { STSTB }}\) to \(\overline{\text { INTA }}, \overline{\mathrm{OR}}\)} & & 20 & 30 & 60 & 20 & 30 & 60 & 20 & 30 & 45 & ns \\
\hline & \multicolumn{2}{|l|}{Delay from \(\overline{\text { STSTB }}\) to all other Control Signals} & & 20 & 30 & 60 & 20 & 30 & 60 & 20 & 30 & 60 & \\
\hline tRR & \multicolumn{2}{|l|}{Delay from DBIN to Control Outputs} & & & 15 & 35 & & 15 & 30 & & 15 & 30 & ns \\
\hline \multirow[b]{2}{*}{\({ }^{\text {t }} \mathrm{RE}\)} & \multirow[t]{2}{*}{Delay from DBIN to 8080A Bus} & Enable & \multirow{3}{*}{\(C_{L}=25 p F\)} & & 25 & 45 & & 25 & 45 & & 12 & 20 & \\
\hline & & Disable & & & 25 & 45 & & 25 & 45 & & 25 & 35 & ns. \\
\hline \({ }^{\text {tRD }}\) & \multicolumn{2}{|l|}{Delay from System Bus to 8080A Bus During Read} & & & 15 & 30 & & 15 & 30 & & 15 & 20 & ns \\
\hline tWR & \multicolumn{2}{|l|}{Delay from \(\overline{W R}\) to Control Outputs} & \multirow{5}{*}{\(C_{L}=100 \mathrm{pF}\)} & 5.0 & 20 & 45 & 5.0 & 20 & 45 & 5.0 & 20 & 45 & ns \\
\hline tWE & \multicolumn{2}{|l|}{Delay to Enable System Bus DB \(0_{0}\)-DB7 After STSTB} & & & 25 & 36 & & 25 & 30 & & 25 & 30 & ns \\
\hline tWD & \multicolumn{2}{|l|}{Delay from 8080A Bus \(D_{0}-D_{7}\) to System Bus \(\mathrm{DB}_{0}-\mathrm{DB}_{7}\) During Write} & & 5.0 & 20 & 40 & 5.0 & 20 & 40 & 5.0 & 20 & 40 & ns \\
\hline \({ }^{\text {t }}\) E & \multicolumn{2}{|l|}{Delay from System Bus Enable to System Bus \(\mathrm{DB}_{0}-\mathrm{DB}_{7}\)} & & & 25 & 35 & & 25 & 30 & & 20 & 30 & ns \\
\hline \({ }^{\text {thD }}\) & \multicolumn{2}{|l|}{HLDA to Read Status Outputs} & & & 15 & 28 & & 15 & 25 & & 15 & 25 & ns \\
\hline \({ }^{\text {t }}\) D & \multicolumn{2}{|l|}{Set-up Time, System Bus Inputs to HLDA} & & 10 & & & 10 & & & 10 & & & ns \\
\hline \({ }^{\text {t }} \mathrm{DH}\) & \multicolumn{2}{|l|}{Hold Time, System Bus Inputs to HLDA} & & 20 & & & 20 & & & 20 & & & ns \\
\hline
\end{tabular}

Notes: 1. Typical values are for \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and nominal supply voltages.
2. For conditions shown as MIN. or MAX., use the appropriate value specified under electrical characteristics for the applicable device type.

CAPACITANCE (This parameter is periodically sampled and not \(100 \%\) tested.)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{c}{ Parameters } \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input Capacitance \\
\hline \(\mathrm{C}_{\text {OUT }}\) & Output Capacitance Control Signals \\
\hline I/O & I/O Capacitance (D or DB) \\
\hline
\end{tabular}

Test Conditions
\(\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)
\(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\)
\begin{tabular}{c|c|c|c|c|}
\multicolumn{5}{c}{ Typ. } \\
\multicolumn{2}{c}{ Min. } & (Note 1) & Max. & Units \\
\hline & 8.0 & 12 & pF \\
\hline & 7.0 & 15 & pF \\
\hline & 8.0 & 15 & pF \\
\hline
\end{tabular}

SWITCHING WAVEFORMS

\footnotetext{
Voltage measurements points: \(D_{0}-D_{7}\) (when outputs) Logic " 0 " \(=0.8 \mathrm{~V}\), Logic " \(1 "=3.0 \mathrm{~V}\). All other signals measured at 1.5 V .
}
*Extended \(\overline{\mathrm{IOW}} / \overline{\mathrm{MEMW}}\) for Am8238 only.

\section*{FUNCTIONAL DESCRIPTION}

Bi-Directional Bus Driver: An eight-bit, bi-directional bus driver is provided to buffer the Am9080A/8080A data bus from Memory and I/O devices. The Am9080A data bus has an input requirement of \({ }^{*} 3.0\) volts (min) and can drive (sink) a current of at least 3.2 mA . The Am8228 - Am8238 data bus driver matches these input requirements and provides enhanced noise immunity. The output drive is set for 10 mA typical for Memory and I/O devices.

The Bi-Directional Bus Drive is controlled by signals from the Gating Array for proper bus flow and the outputs can be forced to high impedance state (three-state) for DMA activities.

Status Latch: The Am8228 - Am8238 stores the status information in the Status Latch when the STSTB input goes "LOW". The output of the Status Latch is connected to the Gating Array and is part of the Control Signal generation.

Gating Array: The Gating Array generates control signals (\(\overline{M E M ~ R}, \overline{M E M ~ W}, \overline{1 / O R}, \overline{1 / O W}\) and \(\overline{\text { INTA }}\)) by gating the outputs of the Status Latch Am9080A signals; i.e., DBIN, WE, and HLDA.
*The 8080 A has an input requirement of 3.3 V and can drive a maximum current of 1.9 mA .

The "read" control signals (MEM R, I/O R and INTA) are derived by combinational logic from Status Bit and the DBIN input.
The "write" control signals (MEM W, I/O W) are similarly derived from the Status Bits and the WR input.
All Control Signals are "active LOW' and directly interface RAM, ROM and I/O components.
The INTA control signal is normally used to gate the "interrupt instruction port" onto the bus. It also provides a special feature in the Am8228 - Am8238. If only one basic vector is needed in the interrupt structure, the Am8228 - Am8238 can automatically insert a RST 7 instruction onto the bus. To use this option, connect the INTA output of the Am8228 Am8238 (pin 23) to the +12 volt supply through a series resistor (1 k ohms). The voltage is sensed internally by the Am8228 - Am8238 and logic is "set-up" so that when the DBIN input is active, a RST 7 instruction is gated on to the bus when an interrupt is acknowledged.
When using a multiple byte instruction as an Interrupt Instruction, the Am8228 - Am8238 will generate an INTA pulse for each of the instruction bytes.

The BUSEN (Bus Enable) input of the Gating Array is an asynchronous input that forces the data bus output buffers and control signal buffers into their high-impedance state if it is a "HIGH". If BUSEN is a "LOW", normal operation of the data buffer and control signals take place. This facilitates CPU independent bus operations such as direct memory access.

\section*{DEFINITION OF FUNCTIONAL TERMS}
\(\mathrm{D}_{7}-\mathrm{D}_{0} \quad\) Data bus to-from Am9080A/8080A
\(\mathrm{DB}_{7}-\mathrm{DB}_{0} \quad\) Data bus to-from user system
\(\overline{\overline{/ O R}} \quad\) Input/output read strobe output active LOW
\(\overline{\mathrm{I} / \mathrm{OW}} \quad\) Input/output write strobe output active LOW
\(\overline{\text { MEM R }}\) Memory read strobe, output, active LOW
\(\overline{\text { MEM W }}\) Memory write strobe, output, active LOW
DBIN Data bus input strobe, input active HIGH
\(\overline{\text { INTA }}\) Interrupt acknowledge strobe, input, active LOW
HLDA Hold input from Am9080A/8080A active HIGH
\(\overline{W R} \quad\) Write input strobe, active HIGH
BUSEN BUS ENABLE INPUT, input, 3 -state output control, active LOW for 3 -state out
\(\overline{\text { STSTB }}\) Status Strobe, input, strobes status on data bus into status latch, active LOW

Metallization and Pad Layout

DIE SIZE \(0.110^{\prime \prime} \times 0.136^{\prime \prime}\)

STATUS WORD CHART

\section*{8284A}

Clock Generator and Driver for 8086, 8088 Processors

\section*{DISTINCTIVE CHARACTERISTICS}
- Generates the System Clock for the 8086, 8088 Processors: \(5 \mathrm{MHz}, 8 \mathrm{MHz}\) with 8284 A
- Uses a crystal or a TTL signal for frequency source
- Provides local READY and Multibus* READY synchronization
- Generates system reset output from Schmitt trigger input
- Capable of clock synchronization with other 8284As

\section*{GENERAL DESCRIPTION}

The 8284A is a single chip clock generator/driver for the 8086, 8088 processors. The chip contains a crystalcontrolled oscillator, a divide-by-three counter, complete MULTIBUS* "Ready" synchronization and reset logic.

LOGIC DIAGRAM

*Multibus is a registered trademark of Intel Corp.

\section*{DEFINITION OF FUNCTIONAL TERMS}
\begin{tabular}{|c|c|}
\hline \(\overline{\operatorname{AEN}}_{1}, \overline{\mathrm{AEN}}_{2}\) & \begin{tabular}{l}
ADDRESS ENABLE (Input) \\
The \(\overline{\text { AEN }}\) signal is used to qualify the Bus Ready signal (RDY \({ }_{1}\) or RDY \({ }_{2}\)). \(\overline{\operatorname{AEN}}_{1}\) validates \(\mathrm{RDY}_{1}\) while \(\overline{\operatorname{AEN}}_{2}\) validates \(R D Y_{2}\). It is possible for the processor to access two Multi-Master System Busses if you use both signals. Both signals are tied LOW in non Multi-Master Systems.
\end{tabular} \\
\hline \(\mathrm{RDY}_{1}, \mathrm{RDY}_{2}\) & \begin{tabular}{l}
BUS READY (Input) \\
These signals are indications from a device located on the system bus that it is available or data has been received. RDY \({ }_{1}\) and RDY \(_{2}\) are qualified by \(\overline{\operatorname{AEN}}_{1}\) and \(\overline{\operatorname{AEN}}_{2}\) respectively.
\end{tabular} \\
\hline ASYNC & \begin{tabular}{l}
READY SYNCHRONOUS SELECT (Input) \\
The ASYNC signal defines the synchronization mode of the READY logic. When ASYNC is open (internal pull-up resistor is provided) or pulled HIGH there is one stage of READY Synchronization. When \(\overline{A S Y N C}\) is LOW there are two stages of READY Synchronization.
\end{tabular} \\
\hline READY & \begin{tabular}{l}
READY (Input) \\
READY is the synchronized RDY signal input. After the guaranteed hold time to the processor has been met, the READY signal is cleared.
\end{tabular} \\
\hline \(\mathrm{x}_{1}, \mathrm{x}_{2}\) & \begin{tabular}{l}
CRYSTAL IN (Inputs) \\
These are the input pins for the attached crystal. The crystal frequency is 3 times the desired process clock frequency.
\end{tabular} \\
\hline F/C & FREQUENCY/CRYSTAL SELECT (Input) When \(F / \overline{\mathrm{C}}\) is strapped HIGH, CLK is generated from the EFI input. When strapped LOW, the F/C allows the processor clock to be generated by the crystal. \\
\hline EFI & \begin{tabular}{l}
EXTERNAL FREQUENCY (Input) \\
Used in conjunction with a HIGH signal on \(F / \bar{C}\), CLK is generated from the input frequency appearing on this pin. The input signal is a square wave 3 times the frequency of the desired CLK output.
\end{tabular} \\
\hline
\end{tabular}

\section*{PROCESSOR CLOCK (Output)}

CLK is the clock output used by the processor and all devices which directly connect to the processor's local bus (including bipolar support chips and other MOS devices). An output HIGH of \(4.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right)\) is provided on this pin to drive MOS devices. The output frequency of CLK is \(1 / 3\) of the crystal on EFI input frequency and a \(1 / 3\) duty cycle.
PCLK PERIPHERAL CLOCK (Output)
This signal is a TTL level peripheral clock signal whose output frequency is \(1 / 2\) that of CLK and has a \(50 \%\) duty cycle.
OSCILLATOR OUTPUT (Output)
This signal is the TTL level output of the internal oscillator circuitry. Its frequency is equal to that of the crystal.

\section*{RESET IN (Input)}

This signal is used to generate a RESET. The 8284A provides a Schmitt trigger input so that an RC connection can be used to establish the power-up reset of proper duration.

\section*{RESET (Output)}

This signal is used to reset the 8086 family processors.
CLOCK SYNCHRONIZATION (Input)
This signal is designed to allow multiple 8284As to be synchronized to provide clocks that are in phase. CSYNC HIGH will reset the internal counters, when CSYNC goes LOW the counters will resume counting. CSYNC needs to be externally synchronized to EFI. When used with the internal oscillator, CSYNC should be hard wired to ground.

\section*{FUNCTIONAL DESCRIPTION}

\section*{OSCILLATOR}

The oscillator circuit of the 8284A is designed primarily for use with a fundamental mode, series resonant crystal from which the operating frequency is derived.
The crystal frequency should be selected at three times the required CPU clock. \(X_{1}\) and \(X_{2}\) are the two crystal input crystal connections. The output of the oscillator is buffered and brought out on OSC so that other system timing signals can be derived from this stable, crystal-controlled source.

Two \(510 \Omega\) series resistors are optional for systems which have a \(V_{C C}\) ramp time greater than (or equal to) \(1 \mathrm{~V} / \mathrm{ms}\) and/or inherent board capacitance between \(X_{1}\) or \(X_{2}\) exceeding 10pF. This capacitance value should not include the 8284A's pin capacitance. By limiting the stray capacitance to less than 10 pF on \(X_{1}\) or \(X_{2}\) the deviation from the desired fundamental frequency is minimized.

\section*{CLOCK GENERATOR}

The clock generator consists of a synchronous divide-by-three counter with a special clear input that inhibits the counting. This clear input (CSYNC) allows the output clock to be synchronized with an external event (such as another 8284A clock). It is necessary to synchronize the CSYNC input to the EFI clock external to the 8284A (see Figure 1). This is accomplished with two Schottky flip-flops. The counter output is a \(33 \%\) duty cycle clock at one-third the input frequency.
The \(F / \bar{C}\) input is a strapping pin that selects either the EFI input or the crystal oscillator as the clock for the \(\div 3\) counter. If the EFI input is selected as the clock source, the oscillator section can be used independently for another clock source. Output is taken from OSC

\section*{CLOCK OUTPUTS}

The CLK output is a \(33 \%\) duty cycle MOS clock driver designed to drive the 8086 or 8088 processors directly. PCLK is a TTL level peripheral clock signal whose output frequency is \(1 / 2\) that of CLK. PCLK has a \(50 \%\) duty cycle.

\section*{RESET LOGIC}

Reset logic for the 8284A is provided by a Schmitt trigger input \((\overline{R E S})\) and a synchronizing flip-flop to generate the reset timing.

The reset signal is synchronized to the falling edge of CLK. A simple RC network can be used to provide power-on reset by utilizing this function of the 8284A.

\section*{READY SYNCHRONIZATION}

Two READY inputs (RDY \(_{1}\), RDY \(_{2}\)) are provided to accommodate two Multi-Master system busses. Each input has a qualifier (\(\overline{\mathrm{AEN}}_{1}\) and \(\overline{\mathrm{AEN}}_{2}\), respectively). The \(\overline{\mathrm{AEN}}\) signals validate their respective RDY signals. If a Multi-Master system is not being used the \(\overline{\mathrm{AEN}}\) pin should be tied LOW.
To assure RDY setup and hold times are met, synchronization is required for all asynchronous active going edges of either RDY input. Inactive-going edges of RDY in normally ready systems do not require synchronization but must satisfy RDY setup and hold as a matter of proper system design.

The two modes of READY synchronization operation are defined by the \(\overline{A S Y N C}\) input.
When \(\overline{\text { ASYNC }}\) is LOW, two stages of synchronization are provided for active READY input signals. Positive-going asynchronous READY inputs will first be synchronized to flipflop one at the rising edge of CLK and then synchronized to flip-flop two at the next falling edge of CLK, after which time the READY output will go active (HIGH). Negative-going asynchronous READY inputs will be synchronized directly to flip-flop two at the falling edge of CLK, after which time the READY output will go inactive. This mode of operation is intended for use by asynchronous (normally not ready) devices in the system which cannot be guaranteed by design to meet the required RDY setup timing \(\mathrm{t}_{\mathrm{RIVCL}}\), on each bus cycle.
When \(\overline{\text { ASYNC }}\) is high or left open, the first READY flip-flop is bypassed in the READY synchronization logic. READY inputs are synchronized by flip-flop two on the falling edge of CLK before they are presented to the processor. This mode is available for synchronous devices that can be guaranteed to meet the required RDY setup time.
\(\overline{A S Y N C}\) can be changed on every bus cycle to select the appropriate mode of synchronization for each device in the system.

Figure 1. CSYNC Synchronization

\begin{tabular}{lr}
\hline Temperature Under Bias & 0 to \(70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline All Output and Supply Voltages & -0.5 to +7 V \\
\hline All Input Voltages & -1.0 to +5.5 V \\
\hline Power Dissipation & 1 W \\
\hline
\end{tabular}

DC CHARACTERISTICS (\(T_{A}=0\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters & Description & Test Conditions & Min & Max & Units \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{F}}\)} & Forward Input Current (\(\overline{\text { ASYNC }}\)) & \(\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}\) & & -1.3 & \multirow[b]{2}{*}{mA} \\
\hline & Other Inputs & \(\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}\) & & -0.5 & \\
\hline \multirow[b]{2}{*}{\(I_{\text {R }}\)} & Reverse Input Current (\(\overline{\text { ASYNC }}\)) & \(\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{CC}}\) & & 50 & \multirow[b]{2}{*}{\({ }_{\mu} \mathrm{A}\)} \\
\hline & Other Inputs & \(\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}\) & & 50 & \\
\hline \(\mathrm{V}_{\mathrm{c}}\) & Input Forward Clamp Voltage & \(\mathrm{I}_{\mathrm{C}} \mathrm{C}=-5 \mathrm{~mA}\) & & -1.0 & V \\
\hline Icc & Power Supply Current & & & 162 & mA \\
\hline \(\mathrm{V}_{\text {IL }}\) & Input LOW Voltage & & & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & Input HIGH Voltage & & 2.0 & & V \\
\hline \(\mathrm{V}_{\text {IHR }}\) & Reset Input HIGH Voltage & & 2.6 & & v \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & 5 mA & & 0.45 & v \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & Output HIGH Voltage CLK & -1mA & 4 & 2.5 & \multirow{2}{*}{v} \\
\hline & Other Outputs & -1mA & 2.4 & & \\
\hline \(\mathrm{V}_{\text {IHR }}-\mathrm{V}_{\text {ILR }}\) & \(\overline{\mathrm{RES}}\) Input Hysteresis & & 0.25 & & v \\
\hline
\end{tabular}

8284A
SWITCHING CHARACTERISTICS \(\left(T_{A}=0\right.\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%\))
Parameter Description Test Conditions Min Max Units
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{TIMING REQUIREMENTS} \\
\hline \(t_{\text {EHEL }}\) & - External Frequency HIGH Time & 90\% - 90\% VIN & 13 & & ns \\
\hline \(t_{\text {ELEH }}\) & External Frequency LOW Time & 10\%-10\% VIN & \(13^{*}\) & & ns \\
\hline \(\mathrm{t}_{\text {ELEL }}\) & EFI.Period & (Note 1) & 33 & & ns \\
\hline & XTAL Frequency & & 12 & 25 & MHz \\
\hline \(\mathrm{t}_{\text {R1VCL }}\) & RDY \({ }_{1}\), RDY \(_{2}\) Active Setup to CLK & ASYNC \(=\mathrm{HIGH}\) & 35 & & ns \\
\hline \({ }^{\text {t }}\) R1VCH & \(\mathrm{RDY}_{1}, \mathrm{RDY}_{2}\) Active Setup to CLK & ASYNC = LOW & 35 & & ns \\
\hline \({ }_{\text {t }}^{\text {RIVCL }}\) & RDY \({ }_{1}\), RDY \(_{2}\) Inactive Setup to CLK & & 35 & & ns \\
\hline \({ }^{\text {t CLR1X }}\) & RDY \({ }_{1}, \mathrm{RDY}_{2}\) Hold to CLK & & 0 & & ns \\
\hline \(t_{\text {AYVCL }}\) & ASYNC Setup to CLK & & 50 & & ns \\
\hline \({ }^{\text {t CLAYX }}\) & \(\overline{\text { ASYNC }}\) Hold to CLK & & 0 & & ns \\
\hline \({ }^{\text {t A1VR1V }}\) & \(\overline{\mathrm{AEN}}_{1}, \overline{\mathrm{AEN}}_{2}\) Setup to RDY, \(\mathrm{RDY}_{2}\) & & 15 & & ns \\
\hline \(\mathrm{t}_{\text {CLA1X }}\) & \(\overline{\mathrm{AEN}}_{1}, \overline{\mathrm{AEN}}_{2}\) Hold to CLK & & 0 & & ns \\
\hline \({ }^{\text {YYHEH }}\) & CSYNC Setup to EFI. & & 20 & & ns \\
\hline \({ }^{\text {t EHYL }}\) & CSYNC Hold to EFI & & 10 & & ns \\
\hline \(\mathrm{T}_{\text {YHYL }}\) & CSYNC Width & & \(2 \cdot t_{\text {ELEL }}\) & & ns \\
\hline \(\mathrm{t}_{11 \mathrm{HCL}}\) & \(\overline{\text { RES }}\) Setup to CLK & (Note 1) & 65 & & ns \\
\hline \({ }^{\text {t }}\) CLITH & \(\overline{\text { RES }}\) Hold to CLK & (Note 1) & 20 & & ns \\
\hline \(\mathrm{t}_{\text {ILIH }}\) & Input Rise Time & From 0.8 to 2.0 V & & 20 & ns \\
\hline tILIL & Input Fall Time & From 2.0 to 0.8 V & & 12 & ns \\
\hline
\end{tabular}

TIMING RESPONSES
\begin{tabular}{|c|c|c|c|c|c|}
\hline \({ }^{\text {t CLCL }}\) & CLK Cycle Period & & 125 & & ns \\
\hline \({ }^{\text {t }} \mathrm{CHCL}\) & CLK HIGH Time & & \((1 / 3\) tCLCL \()+2\) & & ns \\
\hline \({ }^{\text {t }}\) CLCH & CLK LOW Time & & (2/3 tCLCL) - 15 & & ns \\
\hline \({ }^{\text {t }}{ }^{\text {chiCH2 }}\) & \multirow[t]{2}{*}{CLK Rise or Fall Time} & \multirow[t]{2}{*}{1.0 V to 3.5 V} & & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{ns} \\
\hline \({ }^{\text {t }}\) CL2CL1 & & & & & \\
\hline \(t_{\text {PHPL }}\) & PCLK HIGH Time & & \({ }^{\text {chelcl - } 20}\) & & ns \\
\hline \(t_{\text {PLPH }}\) & PCLK LOW Time & & \(\mathrm{t}_{\mathrm{CLCL}}\) - 20 & & ns \\
\hline \(t_{\text {RYLCL }}\) & Ready Inactive to CLK (See Note 3) & & -8 & & ns \\
\hline \(t_{\text {RYHCH }}\) & Ready Active to CLK (See Note 2) & & \((2 / 3\) tCLCL \()-15\) & & ns \\
\hline \({ }^{\text {t CLIL }}\) & CLK to Reset Delay & & & 40 & ns \\
\hline \({ }^{\text {t CLPH }}\) & CLK to PCLK HIGH Delay & & & 22 & ns \\
\hline \({ }^{\text {t CLPL }}\) & CLK to PCLK LOW Delay & & & 22 & ns \\
\hline tolch & OSC to CLK HIGH Delay & & -5 & 22 & ns \\
\hline tolcl & OSC to CLK LOW Delay & & 2 & 35 & ns \\
\hline \({ }^{\text {toloh }}\) & Output Rise Time (except CLK) & From 0.8 to 2.0 V & & 20 & ns \\
\hline tohol & Output Fall Time (except CLK) & From 2.0 to 0.8 V & & 12 & ns \\
\hline
\end{tabular}

Notes: 1. Setup and hold necessary only to guarantee recognition at next clock.
2. Applies only to \(T_{3}\) and \(T_{W}\) states.
3. Applies only to \(T_{2}\) states.

\section*{AC TESTING INPUT, OUTPUT WAVEFORM}

AB1-073
AC testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 1.5 V for both a logic " 1 " and " 0 ".

AC TESTING LOAD CIRCUIT (CLK, READY)

AB1-074

AC TESTING LOAD CIRCUIT (PCLK, OSC, RESET)
\(C_{L}=100 \mathrm{pF}\)

AB1-075

8284A

\section*{READY TO CLOCK (USING EFI)}

Notes: 1. \(C_{L}=100 \mathrm{pF}\)
2. \(C_{L}=30 \mathrm{pF}\)

AB1.082

\section*{8288 \\ Bus Controller}

\section*{DEFINITION OF FUNCTIONAL TERMS}
\(\overline{\mathbf{s}}_{\mathbf{0}}, \overline{\mathbf{s}}_{1}, \overline{\mathbf{s}}_{\mathbf{2}} \quad \overline{\text { STATUS }}\) (Input)
These signals are the status input pins from the microprocessor. The 8288 decodes these inputs to generate command and control signals.

\section*{CLK CLOCK (Input) Clock signal from the clock generator.}

ALE ADDRESS LATCH ENABLE (Output)
This signal strobes an address into the address latches. The latching occurs on the falling edge (HIGH to LOW) transition.
DEN DATA ENABLE (Output)
This signal enables the data transceivers onto the data bus (local or system).
DATA TRANSMIT/ \(\overline{\text { RECEIVE }}\) (Output)
This signal determines the direction of data flow through the transceivers.
\(\overline{\text { AEN }} \overline{\text { ADDRESS ENABLE }}\) (Input)
This signal enables the 8288 command outputs at least 115 ns after it becomes active LOW. When this pin goes inactive, it 3 -states the command output drivers.
CEN COMMAND ENABLE (Input)
This signal, when LOW, enables all command outputs and the DEN and PDEN control outputs are forced to their inactive states.

IOB INPUT/OUTPUT BUS MODE (Input)
When strapped HIGH the 8288 functions in the I/O Bus mode. When LOW the 8288 functions in the System Bus mode.
\(\overline{\text { AIOWC }} \overline{\text { ADVANCED I/O WRITE COMMAND (Output) }}\) The AIOWC gives I/O devices early indication of a write instruction by issuing an I/O Write Command earlier in the machine cycle.
\(\overline{\text { IOWC }}\)
\(\overline{\text { IORC }}\)

ADVANCED MEMORY WRITE (Output)
The AMWC gives memory devices an early indication of a write instruction by issuing a memory write command earlier in the machine cycle.
\(\overline{\text { MWTC }}\) MEMORY WRITE (Output)
This signal instructs the memory to record the data present on the data bus.

\section*{MEMORY READ (Output)}

This signal instructs the memory to drive its data onto the data bus.

\section*{INTERRUPT ACKNOWLEDGE (Output)}

This signal informs the interrupting device that its interrupt has been acknowledged and to drive vectoring information onto the data bus.
MCE/ \(\overline{\text { PDEN }}\) MASTER CASCADE ENABLE/ PERIPHERAL DATA ENABLE (Output)
Dual Function pin:
MCE (IOB LOW): This signal occurs during an interrupt sequence. Its function is to read a Cascade Address from a master Priority Interrupt Controller onto the data bus.
\(\overline{\text { PDEN (IOB HIGH): This signal enables the data }}\) bus transceiver for the I/O Bus during I/O instructions. It performs the same function for the I/O Bus that DEN performs for the system bus.

\section*{FUNCTIONAL DESCRIPTION}

\section*{COMMAND AND CONTROL LOGIC}

The command logic decodes the three CPU status lines \(\left(\overline{\mathrm{S}}_{0}, \overline{\mathrm{~S}}_{1}\right.\), \(\overline{\mathrm{S}}_{2}\)) to determine what command is to be issued.
This chart shows the meaning of each status "word."
\begin{tabular}{|c|c|c|l|l|}
\hline\(\overline{\mathbf{S}}_{\mathbf{2}}\) & \(\overline{\mathbf{S}}_{\mathbf{1}}\) & \(\overline{\mathbf{S}}_{\mathbf{0}}\) & Processor State & \multicolumn{1}{|c|}{\begin{tabular}{c}
\(\mathbf{8 2 8 8}\) \\
Command
\end{tabular}} \\
\hline 0 & 0 & 0 & Interrupt Acknowledge & \(\overline{\text { INTA }}\) \\
\hline 0 & 0 & 1 & Read I/O Port & \(\overline{\overline{O R C}}\) \\
\hline 0 & 1 & 0 & Write I/O Port & \(\overline{\text { IOWC, }} \overline{\overline{\text { AIOWC }}}\) \\
\hline 0 & 1 & 1 & Halt & None \\
\hline 1 & 0 & 0 & Code Access & \(\overline{\text { MRDC }}\) \\
\hline 1 & 0 & 1 & Read Memory & \(\overline{\text { MRDC }}\) \\
\hline 1 & 1 & 0 & Write Memory & \(\overline{\text { MWTC }}, \overline{\text { AMWC }}\) \\
\hline 1 & 1 & 1 & Passive & None \\
\hline
\end{tabular}

\section*{I/O BUS MODE}

The 8288 is put into the I/O Bus mode by strapping the IOB pin HIGH. This mode allows one 8288 Bus Controller to handle two external buses. This allows the CPU to access the I/O Bus with no waiting involved. In the I/O Bus Mode all I/O command lines (INTA, IORC, \(\overline{\text { IOWC, }}, \overline{\text { AIOWC }}\)) are always enabled. When the processor initiates an I/O Command, the 8288 immediately activates the command lines using \(\overline{\text { PDEN }}\) and \(\mathrm{DT} / \overline{\mathrm{R}}\) to control the I/O bus transceiver. There is no arbitration present in this system, so the I/O command lines should not be used to control the system bus. Normal memory access requires a "Bus Ready" signal (AEN LOW) before it will proceed. The IOB mode is recommended if I/O or peripherals dedicated to one processor exist in a multiprocessor based system.

\section*{SYSTEM BUS MODE}

The 8288 is put into the System Bus mode by strapping the IOB pin LOW. This mode is used when only one bus exists. No command is issued until 115 ns after the \(\overline{\mathrm{AEN}}\) line is activated. Bus arbitration is assumed, and this logic will inform the bus controller via the \(\overline{\mathrm{AEN}}\) line when the bus is free for use. Both I/O commands and memory wait for bus arbitration.

\section*{COMMAND OUTPUTS}

To prevent the processor from entering unnecessary wait states, the advanced write commands initiate write procedures early in the machine cycle.

The command outputs are:
\begin{tabular}{ll}
\(\overline{\text { MRDC }}\) & - Memory Read Command \\
\(\overline{M W T C}\) & - Memory Write Command \\
\(\overline{\overline{I O R C}}\) & \(-1 / O\) Read Command \\
\(\overline{\text { IOWC }}\) & - I/O Write Command \\
\(\overline{\text { AMWC }}\) & - Advanced Memory Write Command \\
\(\overline{A I O W C}\) & - Advanced I/O Write Command \\
\(\overline{\text { INTA }}\) & - Interrupt Acknowledge
\end{tabular}
\(\overline{\text { INTA }}\) (Interrupt Acknowledge) acts as an I/O read during an interrupt cycle. Its purpose is to inform an interrupting device that its interrupt is being acknowledged and that it should place vectoring information onto the data bus.

\section*{CONTROL OUTPUTS}

The Data Enable (DEN), Data Transmit/ \(\overline{\text { Receive }}\) (DT/ \(/ \bar{R}\)) and Master Cascade Enable/Peripheral Data Enable (MCE/PDEN) are the control outputs of the 8288. The DEN signal determines when the external bus should be enabled onto the local bus while the \(\mathrm{DT} / \overline{\mathrm{R}}\) determines the direction of the data transfer. These two signals usually go to the chip select and direction pins of a transceiver.
The MCE/PDEN function is determined by the IOB selection. When IOB is HIGH the PDEN serves as a dedicated data enable signal for the I/O or Peripheral System Bus.

\section*{INTERRUPT ACKNOWLEDGE AND MCE}

The MCE signal is used during an interrupt acknowledge cycle if the 8288 is in the System Bus mode (IOB Low). An interrupt sequence consists of two interrupt acknowledge cycles occurring back to back. No data or address transfers take place during the first cycle. Logic should be provided to mask off MCE during this cycle. Just before the second cycle begins the MCE signal gates a master Priority Interrupt Controller's (PIC) cascade address onto the processor's local bus where ALE (Address Latch Enable) strobes it into the address latches. On the leading edge of the second interrupt cycle the addressed slave PIC gates an interrupt vector onto the system data bus where it is read by the processor.
The MCE signal is not used if the system only contains one PIC. If this is the case the second Interrupt Acknowledge signal gates the interrupt vector onto the processor bus.

\section*{ADDRESS LATCH ENABLE AND HALT}

Address Latch Enable (ALE) occurs during each machine cycle and serves to strobe the current address into the address latches. ALE also serves to strobe the status (\(\overline{\mathrm{S}}_{0}, \overline{\mathrm{~S}}_{1}, \overline{\mathrm{~S}}_{2}\)) into a latch for halt state decoding.

\section*{COMMAND ENABLE}

The Command Enable (CEN) input acts as a command qualifier for the 8288. If the CEN pin is HIGH the 8288 functions normally. If the CEN pin is pulled LOW, all command lines are held in their inactive state (not 3 -state). This feature can be used to implement memory partitioning and to eliminate address conflicts between system bus devices and resident bus devices.
\begin{tabular}{lr}
\hline Temperature Under Bias & 0 to \(70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline All Output and Supply Voltages & -0.5 to +7.0 V \\
\hline All Input Voltages & -1.0 to +5.5 V \\
\hline Power Dissipation & 1.5 W \\
\hline
\end{tabular}
*Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0\right.\) to \(\left.70^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Description & Test Conditions & Min & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{c}}\) & Input Clamp Voltage & \(\mathrm{IC}=-5 \mathrm{~mA}\) & & -1 & V \\
\hline ICC & Power Supply Current & & & 230 & mA \\
\hline \(I_{F}\) & Forward Input Current & \(\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}\) & & -0.7 & mA \\
\hline \(i_{R}\) & Reverse Input Current & \(\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{CC}}\) & & 50 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\text {OL }}\) & Output Low Voltage Command Outputs & \(\mathrm{IOL}=32 \mathrm{~mA}\) & & 0.5 & V \\
\hline & Control Outputs & \(1 \mathrm{OL}=16 \mathrm{~mA}\) & & 0.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output High Voltage Command Outputs & \(\mathrm{IOH}=-5 \mathrm{~mA}\) & 2.4 & & V \\
\hline & Control Outputs & \(\mathrm{IOH}=-1 \mathrm{~mA}\) & 2.4 & & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Input Low Voltage & & & 0.8 & v \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input High Voltage & & 2.0 & & V \\
\hline IofF & Three-State Leakage & \(V_{\text {OFF }}=0.4\) to 5.25 V & & 100 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

AC CHARACTERISTICS \(\left(V_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0\right.\) to \(\left.70^{\circ} \mathrm{C}\right)\)

\section*{AC TESTING INPUT, OUTPUT WAVEFORM}

AB1-085
AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ." The clock is driven at 4.3 V and 0.25 V . Timing measurements are made at 1.5 V for both a logic " 1 " and " 0 ."

TEST LOAD CIRCUITS

\section*{3-State to High}

Command Output Test Load

Control Output Test Load

\section*{WAVEFORMS}

ABI-089

Notes: 1. Address/data bus is shown only for reference purposes.
2. Leading edge of ALE and MCE is determined by the falling edge of CLK or status going active, whichever occurs last.
3. All timing measurements are made at 1.5 V unless specified otherwise.

\section*{WAVEFORMS (Cont.)}

DEN, PDEN QUALIFICATION TIMING

ADDRESS ENABLE (AEN) TIMING (3-STATE ENABLE/DISABLE)

INDEX NUMERIC DEVICEINDEX
SECTION FUNCTIONINDEX
```

SYSTEMS
DESIGN
BIPOLAR LSI/VLSITECHNOLOCIES
Am2900 SYSTEMMS SOLUTIONS

```

```

DESICN
AIDS

```

\section*{DEVELOPMENT SYSTEMS AND SOFTWARE EVALUATION BOAFDS ANDKITS TRANING AND APPLICATIONS MATERIAL}

\[
\begin{aligned}
& \text { Am2960 } 70 \\
& \text { MEMORY } \\
& \text { SUPPORT }
\end{aligned}
\]
DYNAMIC VEMORY CONTROL MEMORY TIMING/CONTROL UNITS ERROR DETECTIONAND CORRECTION

\section*{Am2900 \\ PROCESSORS \\ EIT-SLICE PROCESSORS \\ AND PERIPHERALS MICROCODE SEQUENCERS}

Am29100
CONTROLLER
FAMILY
16-BIT MICROPROCESSOR INTERRUPTIBLE SEOUENCERS LSI PERIPHERALS
\[
\begin{aligned}
& \text { Am29500 } 16 \times 16 \text { PARALLEL MULTIPLIERS } \\
& \text { ARPAY AND DIGITAL } \\
& \text { SIGNALPROCESSING }
\end{aligned}
\]

Am29800
HICH PERFORMANCE
BUS INTERFACE
8,9, AND 10 -BIT IMOX BUS INTERFACE DIAGNOSTIC REGISTERS

Am25S HIGHPERFORMANCE SCHOTTKYLOGIC
Am25LS
LOW-POWER SCHOTTKYLOCIC
\(8 \times 8\) PARALLEL MULTIPLIERS

Am265

HIGH PERFORMANCE SCHOTTKY BUS WTERFACE
Am26LS DATA COMMUNICATIONS INTERFACE

8100
8200
MOS MICROPROCESSOR SUPPORT PRODUCTS FOR 8-BIT AND 16-BIT MICROPROCESSORS

\section*{MEMORIES, \\ PALs, \\ MOS PERIPHERALS,}

PROMs, BIPOLAR RAMs, MOS STATIC RAMs 20-PIN AND 24-PIN PALS, MOS LSI PERIPHERALS VERY HIGH SPEED DATA ACQUISITION
GENERAL
INFORMATION
PACKAGING, ORDERING INFORMATION TESTING, QUALTTY ASSURANCE/GUARANTEES GATE COUNTS, DIE SIZES, RELIABILITY

\section*{PALs, PROMs, MOS and Bipolar RAMs, MOS Peripherals, Analog and Data Acquisition Index}
PROM Guide 12-1
Bipolar RAM Guide 12-4
MOS RAM Guide 12-6
MOS ROM Guide 12-8
Twenty-Pin PALs Product Specification 12-9
MOS LSI/Peripherals Guide 12-23
Analog and Data Acquisition Guide 12-26

\title{
Bipolar PROM \\ Functional Index and Selection Guide
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Part Number & Organization & Access Time COM'L/MIL Max & \[
\begin{gathered}
\text { ICC } \\
\text { COM'L/MIL } \\
\text { Max }
\end{gathered}
\] & Output & Number of Pins & Packages & Comments \\
\hline Am27LS18 \({ }^{1}\) & \(32 \times 8\) & 50/65 & 80/80 & OC & 16 & D, P, F, L & \\
\hline Am27LS19 \({ }^{1}\) & \(32 \times 8\) & 50/65 & 80/80 & 3 S & 16 & D, P, F, L & \\
\hline Am27S18 & \(32 \times 8\) & 40/50 & 115/115 & OC & 16 & D, P, F, L & \\
\hline Am27S18A & \(32 \times 8\) & 25/35 & 115/115 & OC & 16 & D, P, F, L & \\
\hline Am27S19 & \(32 \times 8\) & 40/50 & 115/115 & 3 S & 16 & D, P, F, L & \\
\hline Am27S19A & \(32 \times 8\) & 25/35 & 115/115 & 3 S & 16 & D, P, F, L & \\
\hline Am27S20 & \(256 \times 4\) & 45/60 & 130/130 & OC & 16 & D, P, F, L & \\
\hline Am27S20A & \(256 \times 4\) & 30/40 & 130/130 & OC & 16 & D, P, F, L & \\
\hline Am27S21 & \(256 \times 4\) & 45/60 & 130/130 & 35 & 16 & D, P, F, L & \\
\hline Am27S21A & \(256 \times 4\) & 30/40 & 130/130 & 35 & 16 & D, P, F, L & \\
\hline Am27S12 & \(512 \times 4\) & 50/60 & 130/130 & OC & 16 & D, P, F, L & \\
\hline Am27S12A & \(512 \times 4\) & 30/40 & 130/130 & OC & 16 & D, P, F, L & \\
\hline Am27S13 & \(512 \times 4\) & 50/60 & 130/130 & 35 & 16 & D, P, F, L & \\
\hline Am27S13A & \(512 \times 4\) & 30/40 & 130/130 & 35 & 16 & D, P, F, L & \\
\hline Am27S15 & \(512 \times 8\) & 60/90 & 175/185 & 35 & 24 & D, P, F, L & \\
\hline Am27S25 & \(512 \times 8\) & N.A. \({ }^{2}\) N.A. \({ }^{2}\) & 185/185 & 35 & 24 & D, P, F, L & Output registers, THINDIP Pkg \({ }^{3}\) \\
\hline Am27S25A & \(512 \times 8\) & N.A. \({ }^{4}\) N.A. \({ }^{4}\) & 185/185 & 35 & 24 & D, P, F, L & \begin{tabular}{l}
Output registers, \\
THINDIP Pkg \({ }^{3}\)
\end{tabular} \\
\hline Am27S27 & \(512 \times 8\) & N.A. \({ }^{2}\) N.A. \({ }^{2}\) & 185/185 & 3 S & 22 & D, P, L & Output registers \\
\hline Am27S28 & \(512 \times 8\) & 55/70 & 160/160 & OC & 20 & D, P, L & \\
\hline Am27S28A & \(512 \times 8\) & 35/45 & 160/160 & OC & 20 & D, P, L & \\
\hline Am27S29 & \(512 \times 8\) & 55/70 & 160/160 & 3 S & 20 & D, P, L & \\
\hline Am27S29A & \(512 \times 8\) & 35/45 & 160/160 & 35 & 20 & D, P, L & \\
\hline Am27S30 & \(512 \times 8\) & 55/70 & 175/175 & OC & 24 & D, P, F, L & \\
\hline Am27S30A & \(512 \times 8\) & 35/45 & 175/175 & OC & 24 & D, P, F, L & \\
\hline Am27S31 & \(512 \times 8\) & 55/70 & 175/175 & 3 S & 24 & D, P, F, L & \\
\hline Am27S31A & \(512 \times 8\) & 35/45 & 175/175 & 3 S & 24 & D, P, F, L & \\
\hline Am27S32 & \(1024 \times 4\) & 55/70 & 140/145 & OC & 18 & D, P, F, L & \\
\hline Am27S32A & \(1024 \times 4\) & 35/45 & 140/145 & OC & 18 & D, P, F, L & Ulitra fast \\
\hline Am27S33 & \(1024 \times 4\) & 55/70 & 140/145 & 3 S & 18 & D, P, F, L & \\
\hline Am27S33A & \(1024 \times 4\) & 35/45 & 140/145 & 3 S & 18 & D, P, F, L & Ulitra fast \\
\hline Am27S35 & \(1024 \times 8\) & N.A. \({ }^{2}\) N.A. \({ }^{2}\) & 185 & 35 & 24 & D, P, F, L & Output registers, asynchronous initialize, THINDIP Pkg \({ }^{3}\) \\
\hline Am27S35A & \(1024 \times 8\) & N.A. \({ }^{4}\) N.A. \({ }^{4}\) & 185 & 35 & 24 & D, P, F, L & Ulitra fast, output registers, asynchronous initialize, THINDIP \(\mathrm{Pkg}^{3}\) \\
\hline Am27S37 & \(1024 \times 8\) & N.A. \({ }^{2}\) N.A. \({ }^{2}\) & 185 & 35 & 24 & D, P, F, L & Output registers, synchronous initialize, THINDIP \(\mathrm{Pkg}^{3}\) \\
\hline
\end{tabular}

\section*{BIPOLAR PROM (Cont.)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Part Number & Organization & Access Time COM'L/MIL Max & \[
\begin{gathered}
\text { ICC } \\
\text { COM'L/MIL } \\
\text { Max }
\end{gathered}
\] & Output & Number of Pins & Packages & Comments \\
\hline Am27S37A & \[
1024 \times 8
\] & N.A. \({ }^{4}\) N.A. \({ }^{4}\) & 185 & 3 S & - 24 & \(D, P, F, L\) & Ultra fast, output registers, synchronous initialize, THINDIP \(\mathrm{Pkg}^{3}\) \\
\hline Am27S180 & \(1024 \times 8\) & 60/80 & 185/185 & OC & 24 & D, P, F, L & \\
\hline Am27S180A & \(1024 \times 8\) & 35/50 & 185/185 & OC & 24 & D, P, F, L & Ultra fast \\
\hline Am27S181 & \(1024 \times 8\) & 60/80 & 185/185 & 3 S & 24 & D, P, F, L & \\
\hline Am27S181A & \(1024 \times 8\) & 35/50 & 185/185 & 35 & 24 & D, P, F, L & Ultra fast \\
\hline Am27PS181 & \(1024 \times 8\) & & & 3 S & 24 & D, P, F, L & Power switched \\
\hline Am27PS181A & \(1024 \times 8\) & & & 35 & 24 & D, P, F, L & Power switched \\
\hline Am27S280 & \(1024 \times 8\) & 60/80 & 185/185 & OC & 24 & D, P, F, L & THINDIP \(\mathrm{Pkg}^{3}\) \\
\hline Am27S280A & \(1024 \times 8\) & 35/50 & 185/185 & OC & 24 & D, P, F, L & Ultra fast, THINDIP Pkg \({ }^{3}\) \\
\hline Am27S281 & \(1024 \times 8\) & 60/80 & 185/185 & 3S & 24 & D, P, F, L & THINDIP Pkg \({ }^{3}\) \\
\hline Am27S281A & \(1024 \times 8\) & 35/50 & 185/185 & 3S & 24 & D, P, F, L & Ultra fast, THINDIP Pkg \({ }^{3}\) \\
\hline Am27PS281 & \(1024 \times 8\) & & & 3 3 & 24 & D, P, F, L & Power switched, THINDIP Pkg \({ }^{3}\) \\
\hline Am27PS281A & \(1024 \times 8\) & & & 3 3 & 24 & D, P, F, L & Ultra fast, power switched, THINDIP \(\mathrm{Pkg}^{3}\) \\
\hline Am27S184 & \(2048 \times 4\) & 50/55 & 150/150 & OC & 18 & D, P, F, L & \\
\hline Am27S184A & \(2048 \times 4\) & 35/45 & 150/150 & OC & 18 & D, P, F, L & Ultra fast \\
\hline Am27S185 & \(2048 \times 4\) & 50/55 & 150/150 & 35 & 18 & D, P, F, L & \\
\hline Am27S185A & \(2048 \times 4\) & 35/45 & 150/150 & 3 S & 18 & D, P, F, L & Ultra fast \\
\hline Am27LS184 & \(2048 \times 4\) & 60/65 & 120/125 & OC & 18 & D, P, F, L & Low power \\
\hline Am27LS185 & \(2048 \times 4\) & 60/65 & 120/125 & 3 S & 18 & \(D, P, F, L\) & Low power \\
\hline Am27PS185 & \(2048 \times 4\) & 60/65 & 150/75 \({ }^{5}\) & 3 S & 18 & D, P, F, L & Power switched \\
\hline Am27S190 & \(2048 \times 8\) & 50/65 & 185/185 & OC & 24 & D, P, F, L & \\
\hline Am27S190A & \(2048 \times 8\) & 35/50 & 185/185 & OC & 24 & \(D, P, F, L\) & Ultra fast \\
\hline Am27S191 & \(2048 \times 8\) & 50/65 & 185/185 & 3S & 24 & \(D, P, F, L\) & \\
\hline Am27S191A & \(2048 \times 8\) & 35/50 & 185/185 & 3 S & 24 & D, P, F, L & Ultra fast \\
\hline Am27PS191 & \(2048 \times 8\) & 65/75 & \(185 / 80^{5}\) & 3S & 24 & D, P, F, L & Power switched \\
\hline Am27PS191A & \(2048 \times 8\) & 50/65 & \(185 / 80^{5}\) & 3S & 24 & D, P, F, L & Ultra fast, power switched \\
\hline Am27S290 & \(2048 \times 8\) & 50/65 & 185/185 & OC & 24 & D, P, F, L & THINDIP \(\mathrm{Pkg}^{3}\) \\
\hline Am27S290A & \(2048 \times 8\) & 35/50 & 185/185 & OC & 24 & D, P, F, L & Ultra fast, THINDIP Pkg \({ }^{3}\) \\
\hline Am27S291 & \(2048 \times 8\) & 50/65 & 185/185 & 35 & 24 & \(D, P, F, L\) & THINDIP \(\mathrm{Pkg}^{3}\) \\
\hline Am27S291A & \(2048 \times 8\) & 35/50 & 185/185 & 35 & 24 & D, P, F, L & Ultra fast, THINDIP Pkg \({ }^{3}\) \\
\hline Am27PS291 & \(2048 \times 8\) & 65/75 & . \(185 / 80^{5}\) & \(3 S\) & 24 & D, P, F, L & Power switched, THINDIP Pkg \({ }^{3}\) \\
\hline Am27PS291A & \(2048 \times 8\) & 50/65 & \(185 / 80^{5}\) & 3S & 24 & D, P, F, L & Ultra fast, power switched, THINDIP Pkg \({ }^{3}\). \\
\hline Am27S40 & \(4096 \times 4\) & 50/65 & 165/170 & OC & 20 & D, P, L & \\
\hline Am27S40A & \(4096 \times 4\) & 35/50 & 165/170 & OC & 20 & D, P, L & Ultra fast \\
\hline Am27S41 & \(4096 \times 4\) & 50/65 & 165/170 & 35 & 20 & D, P, L. & \\
\hline Am27S41A & \(4096 \times 4\) & 35/50 & 165/170 & 35 & 20 & D, P, L & Ultra fast \\
\hline Am27PS41 & \(4096 \times 4\) & 50/65 & \(170 / 85^{5}\) & 3S & 20 & D, P, L & Power switched \\
\hline
\end{tabular}

\section*{BIPOLAR PROM (Cont.)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Part Number & Organization & Access Time COM'L/MIL Max & \[
\begin{gathered}
\text { ICc } \\
\text { COM'L/MIL } \\
\text { Max }
\end{gathered}
\] & Output & Number of Pins & Packages & Comments \\
\hline Am27S43 & \(4096 \times 8\) & N.A. & 185 & 3S & 24 & D, P, F, L & \\
\hline Am27S43A & \(4096 \times 8\) & N.A. & 185 & 3S & 24 & D, P, F, L & Ulitra fast \\
\hline Am27PS43 & \(4096 \times 8\) & N.A. & N.A. & 35 & 24 & D, P, F, L & Power switched \\
\hline Am27S45 & \(2048 \times 8\) & N.A. \({ }^{2}\) & 185/185 & 35 & 24 & D, P, L & Output registers, asynchronous initialize, THINDIP Pkg \({ }^{3}\) \\
\hline Am27S45A & \(2048 \times 8\) & N.A. \({ }^{4}\) & 185/185 & 35 & 24 & D, P, L & Ultra fast, output registers, asynchronous initialize, THINDIP Pkg \({ }^{3}\) \\
\hline Am27S47 & \(2048 \times 8\) & N.A. \({ }^{\text {² }}\) & 185/185 & 3S & 24 & D, P, L & Output registers, synchronous initialize, THINDIP Pkg \({ }^{3}\) \\
\hline Am27S47A & \(2048 \times 8\) & N.A. \({ }^{4}\) & 185/185 & 3 S & 24 & D, P, L & Ultra fast, output registers, synchronous initialize, THINDIP Pkg \({ }^{3}\) \\
\hline
\end{tabular}

Notes: 1. Replaces Am27LS08/09
2. Contains built-in pipeline registers: nominal address to clock setup time \(=35 \mathrm{~ns}\) (typ), clock to output \(=20 \mathrm{~ns}\) (typ).
3. \(300-\) mil lateral pin spacing.
4. Contains built-in pipeline registers: nominal address to clock setup time \(=25 \mathrm{~ns}(\) typ \()\), clock to output \(=15 \mathrm{~ns}(\) typ \()\).
5. ICC are power up and power down current limits respectively.

\section*{Bipolar Memory RAM}

\section*{Functional Index and Selection Guide}

BIPOLAR ECL RAM
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Part Number & Organization & Access Time COML/MIL Max & \[
\begin{gathered}
\text { IEE } \\
\text { COML/MIL } \\
\operatorname{Max}
\end{gathered}
\] & ECL Series & Number of Pins & Packages & Comments \\
\hline Am10415SA & \(1024 \times 1\) & 15/20 & -150/-165 & 10K & 16 & D, P, F, L & \\
\hline Am10415A & \(1024 \times 1\) & 20/25 & -150/-165 & 10K & 16 & D, P, F, L & \\
\hline Am10415 & \(1024 \times 1\) & 35/40 & -150/-165 & 10K & 16 & D, P, F, L & \\
\hline Am100415A & \(1024 \times 1\) & 15/- & -150/- & 100K & 16 & D, P, F, L & \\
\hline Am100415 & \(1024 \times 1\) & 20/- & -150/- & 100K & 16 & D, P, F, L & \\
\hline Am10470SA & \(4096 \times 1\) & 15/20 & -230/-255 & 10K & 18 & D, \(\mathrm{F}^{1}, \mathrm{~L}\) & \\
\hline Am10470A & \(4096 \times 1\) & 25/30 & -200/-220 & 10K & 18 & D, \(\mathrm{F}^{1}, \mathrm{~L}\) & \\
\hline Am10470 & \(4096 \times 1\) & 35/40 & -200/-220 & 10K & 18 & D, \(\mathrm{F}^{1}, \mathrm{~L}\) & \\
\hline Am100470SA & \(4096 \times 1\) & 15/- & -230/- & 100K & 18 & D, \(\mathrm{F}^{1}, \mathrm{~L}\) & \\
\hline Am100470A & \(4096 \times 1\) & 25/- & -195/- & 100K & 18 & D, \(\mathrm{F}^{1}, \mathrm{~L}\) & \\
\hline Am100470 & \(4096 \times 1\) & 35/- & -195/- & 100K & 18 & D, \(\mathrm{F}^{1}, \mathrm{~L}\) & \\
\hline Am10474A & \(1024 \times 4\) & 15/20 & -230/-255 & 10K & 24 & D, F, L & \\
\hline Am10474 & \(1024 \times 4\) & 25/30 & -230/-220 & 10K & 24 & D, F, L & \\
\hline Am100474A & \(1024 \times 4\) & 15/- & -230/- & 100K & 24 & D, F, L & \\
\hline Am100474 & \(1024 \times 4\) & 25/- & -200/- & 100K & 24 & D, F, L & \\
\hline
\end{tabular}

Note: 1. For flat package consult factory.

BIPOLAR TTL RAM
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Part Number & Organization & Access Time COML/MIL Max & \[
\begin{gathered}
\text { Icc } \\
\text { COML/MIL } \\
\text { Max }
\end{gathered}
\] & Output & Number of Pins & Packages (Note 1) & Comments \\
\hline Am27S02A & \(16 \times 4\) & 25/30 & 100/105 & OC & 16 & D, P, F, L & \multirow{2}{*}{Ultra Fast} \\
\hline Am27S03A & \(16 \times 4\) & 25/30 & 100/105 & 3 S & 16 & D, P, F, L & \\
\hline Am27S02 & \(16 \times 4\) & 35/50 & 105/105 & OC & 16 & D, P, F, L & \\
\hline Am27S03 & \(16 \times 4\) & 35/50 & 125/125 & 3 S & 16 & D, P, F, L & \\
\hline Am27LS02 & \(16 \times 4\) & 55/65 & 35/38 & OC & 16 & D, P, F, L & \multirow{2}{*}{Low Power} \\
\hline Am27LS03 & \(16 \times 4\) & 55/65 & 35/38 & 35 & 16 & D, P, F, L & \\
\hline Am74/54S289 & \(16 \times 4\) & 35/50 & 105/105 & OC & 16 & D, P, F, L & \\
\hline Am74/54S189 & \(16 \times 4\) & 35/50 & 125/125 & 35 & 16 & D, P, F, L & \\
\hline Am27S06A & \(16 \times 4\) & 25/30 & 100/105 & OC & 16 & D, P, F, L & \multirow{4}{*}{Noninverting Outputs} \\
\hline Am27S07A & \(16 \times 4\) & 25/30 & 100/105 & 35 & 16 & D, P, F, L & \\
\hline Am27S06 & \(16 \times 4\) & 35/50 & 100/105 & OC & 16 & D, P, F, L & \\
\hline Am27S07 & \(16 \times 4\) & 35/50 & 100/105 & 3 S & 16 & D, P, F, L & \\
\hline Am27LS06 & \(16 \times 4\) & 55/65 & 35/38 & OC & 16 & D, P, F, L & \multirow[t]{2}{*}{Noninverting Outputs, Low Power} \\
\hline Am27LS07 & \(16 \times 4\) & 55/65 & 35/38 & 3 S & 16 & D, P, F, L & \\
\hline Am3101A & \(16 \times 4\) & 35/50 & 100/105 & OC & 16 & D, P, F, L & \\
\hline Am3101-1 & \(16 \times 4\) & 35/50 & 100/105 & OC & 16 & D, P, F, L & \multirow[t]{2}{*}{Write Transparent \({ }^{2}\)} \\
\hline Am3101 & \(16 \times 4\) & 50/60 & 100/105 & OC & 16 & D, P, F, L & \\
\hline
\end{tabular}

Chip-Pak is a trademark of Advanced Micro Devices, Inc. \(12-4\)

BIPOLAR TTL RAM (Cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Part Number & Organization & Access Time COM'L/MIL Max & \[
\begin{gathered}
\text { ICC } \\
\text { COM'L/MIL } \\
\text { Max }
\end{gathered}
\] & Output & Number of Pins & \begin{tabular}{l}
Packages \\
(Note 1)
\end{tabular} & Comments \\
\hline Am31L01A & \(16 \times 4\) & 55/65 & 35/38 & OC & 16 & D, P, F, L & \multirow[t]{2}{*}{Low Power, Write Transparent \({ }^{2}\)} \\
\hline Am31L01 & \(16 \times 4\) & 80/90 & 35/38 & OC & 16 & D, P, F, L & \\
\hline Am74/5489-1 & \(16 \times 4\) & 35/50 & 100/105 & OC & 16 & D, P, F, L & \multirow[b]{2}{*}{Write Transparent \({ }^{2}\)} \\
\hline Am74/5489 & \(16 \times 4\) & 50/60 & 100/105 & OC & 16 & D, P, F, L & \\
\hline Am27LS00A & \(256 \times 1\) & 35/45 & 115/115 & 3 S & 16 & D, P, F, L & \multirow[b]{2}{*}{Ultra Fast} \\
\hline Am27LS01A & \(256 \times 1\) & 35/45 & 115/115 & OC & 16 & D, P, F, L & \\
\hline Am27LS00 & \(256 \times 1\) & 45/55 & 70/70 & 3 S & 16 & D, P, F, L & \multirow[b]{2}{*}{Fast, Low Power} \\
\hline Am27LS01 & \(256 \times 1\) & 45/55 & 70/70 & OC & 16 & D, P, F, L & \\
\hline Am27LS00-1A & \(256 \times 1\) & 35/45 & 115/115 & 3 S & 16 & D, P, F, L & \multirow{4}{*}{Noninverting Outputs} \\
\hline Am27LS01-1A & \(256 \times 1\) & 35/45 & 115/115 & OC & 16 & D, P, F, L & \\
\hline Am27LS00-1 & \(256 \times 1\) & 45/55 & 70/70 & 3 S & 16 & D, P, F, L & \\
\hline Am27LS01-1 & \(256 \times 1\) & 45/55 & 70/70 & OC & 16 & D, P, F, L & \\
\hline Am93415A & \(1024 \times 1\) & 30/40 & 155/170 & OC & 16 & D, P, F, L & \multirow[b]{2}{*}{Ulitra Fast} \\
\hline Am93425A & \(1024 \times 1\) & 30/40 & 155/170 & 3 S & 16 & D, P, F, L & \\
\hline Am93415 & \(1024 \times 1\) & 45/65 & 155/170 & OC & 16 & D, P, F, L & \\
\hline Am93425 & \(1024 \times 1\) & 45/65 & 155/170 & 3 S & 16 & D, P, F, L & \\
\hline Am93412A & \(256 \times 4\) & 35/45 & 155/170 & OC & \(22^{3}\) & D, P, F, L & \multirow[b]{2}{*}{Ultra Fast} \\
\hline Am93422A & \(256 \times 4\) & 35/45 & 155/170 & 3 S & \(22^{3}\) & D, P, F, L & \\
\hline Am93412 & \(256 \times 4\) & 45/60 & 155/170 & OC & \(22^{3}\) & D, P, F, L & \\
\hline Am93422 & \(256 \times 4\) & 45/60 & 155/170 & 3 S & \(22^{3}\) & D, P, F, L & \\
\hline Am93L412A & \(256 \times 4\) & 45/55 & 80/90 & OC & \(22^{3}\) & D, P, F, L & \multirow{4}{*}{Low Power} \\
\hline Am93L422A & \(256 \times 4\) & 45/55 & 80/90 & 3 S & \(22^{3}\) & D, P, F, L & \\
\hline Am93L412 & \(256 \times 4\) & 60/75 & 80/90 & OC & \(22^{3}\) & D, P, F, L & \\
\hline Am93L422 & \(256 \times 4\) & 60/75 & 80/90 & 3 S & \(22^{3}\) & D, P, F, L & \\
\hline
\end{tabular}

Notes: 1. \(\mathrm{D}=\) Hermetic DIP, \(\mathrm{P}=\) Molded DIP, \(\mathrm{F}=\) Cerpak, \(\mathrm{L}=\) Chip- \(\mathrm{Pak}^{\top \mathrm{TM}}\).
2. Complement of data in is available on the outputs in the write mode when both \(\overline{\mathrm{CS}}\) and \(\overline{\mathrm{WE}}\) are low.
3. Cerpak \((F)\) is 24 pin.

\section*{MOS Memory}

1K STATIC RAMs Functional Index and Selection Guide
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Part \\
Number
\end{tabular}} & Organization & \begin{tabular}{c}
Access \\
Time (ns)
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c}
Power Dissipation (mW) \\
Standby
\end{tabular}} & Active & Pins & \begin{tabular}{c}
Supply \\
Voltage (V)
\end{tabular} & \begin{tabular}{c}
Temp \\
Range
\end{tabular} \\
\hline Am9101A Package
\end{tabular}

4K STATIC RAMs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Am21L41-12 & \(4096 \times 1\) & 120 & 25 & 200 & 18 & 5 & C & D, P \\
\hline Am21L41-15 & \(4096 \times 1\) & 150 & 25 & 200 & 18 & 5 & C & D, P \\
\hline Am21L41-20 & \(4096 \times 1\) & 200 & 25 & 200 & 18 & 5 & C & D, P \\
\hline Am21L41-25 & \(4096 \times 1\) & 250 & 25 & 250 & 18 & 5 & C & D, P \\
\hline Am9044B & \(4096 \times 1\) & 450 & & 350 & 18 & 5 & C, M & D, P \\
\hline Am90L44B & \(4096 \times 1\) & 450 & & 250 & 18 & 5 & C, M & D, P \\
\hline Am9044C & \(4096 \times 1\) & 300 & & 350 & 18 & 5 & C, M & D, P. \\
\hline Am90L44C & \(4096 \times 1\) & 300 & & 250 & 18 & 5 & C, M & D, P \\
\hline Am9044D & \(4096 \times 1\) & 250 & & 350 & 18 & 5 & C, M & D, P \\
\hline Am90L44D & \(4096 \times 1\) & 250 & & 250 & 18 & 5 & C, M & D, P \\
\hline Am9044E & \(4096 \times 1\) & 200 & & 350 & 18 & 5 & C & D, P \\
\hline Am90L44E & \(4096 \times 1\) & 200 & & 250 & 18 & 5 & C & D, P \\
\hline Am9244B & \(4096 \times 1\) & 450 & 150 & 350 & 18 & 5 & C, M & D, P \\
\hline Am92L44B & \(4096 \times 1\) & 450 & 100 & 250 & 18 & 5 & C, M & D, P \\
\hline Am9244C & \(4096 \times 1\) & 300 & 150 & 350 & 18 & 5 & C, M & D, P \\
\hline Am92L44C & \(4096 \times 1\) & 300 & 100 & 250 & 18 & 5 & C, M & D, P \\
\hline Am9244D & \(4096 \times 1\) & 250 & 150 & 350 & 18 & 5 & C, M & D, P \\
\hline Am92L44D & \(4096 \times 1\) & 250 & 100 & 250 & 18 & 5 & C, M & D, P \\
\hline Am9244E & \(4096 \times 1\) & 200 & 150 & 350 & 18 & 5 & C & \(D, P\) \\
\hline Am92L44E & \(4096 \times 1\) & 200 & 100 & 250 & 18 & 5 & C & D, P \\
\hline Am9114B & \(1024 \times 4\) & 450 & & 350 & 18 & 5 & C, M & \(D, P, F\) \\
\hline Am91L14B & \(1024 \times 4\) & 450 & & 250 & 18 & 5 & C, M & D, P, F \\
\hline Am9114C & \(1024 \times 4\) & 300 & & 350 & 18 & 5 & C, M & D, P, F \\
\hline Am91L14C & \(1024 \times 4\) & 300 & & 250 & 18 & 5 & C, M & \(D, P, F\) \\
\hline Am9114E & \(1024 \times 4\) & 200 & & 350 & 18 & 5 & C, M & D, P \\
\hline Am91L14E & \(1024 \times 4\) & 200 & & 250 & 18 & 5 & C & D, P \\
\hline Am9124B & \(1024 \times 4\) & 450 & 150 & 350 & 18 & 5 & C, M & D, P, F \\
\hline Am91L24B & \(1024 \times 4\) & 450 & 100 & 250 & 18 & 5 & C, M & D, P,F \\
\hline Am9124C & \(1024 \times 4\) & 300 & 150 & 350 & 18 & 5 & C, M & D, P, F \\
\hline Am91L24C & \(1024 \times 4\) & 300 & 100 & 250 & 18 & 5 & C, M & D, P, F \\
\hline
\end{tabular}

\section*{4K STATIC RAMs (Cont.)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Part Number} & \multirow[b]{2}{*}{Organization} & \multirow[t]{2}{*}{\begin{tabular}{l}
Access \\
Time (ns)
\end{tabular}} & \multicolumn{2}{|l|}{Power Dissipation (mW)} & \multirow[b]{2}{*}{Pins} & \multirow[t]{2}{*}{Supply Voltage (V)} & \multirow[t]{2}{*}{Temp. Range} & \multirow[b]{2}{*}{Package} \\
\hline & & & Standby & Active & & & & \\
\hline Am2147-35 & \(4096 \times 1\) & 35 & 165 & 990 & 18 & 5 & C & D \\
\hline Am2147-45 & \(4096 \times 1\) & 45 & 165 & 990 & 18 & 5 & M & D, L \\
\hline Am2147-55 & \(4096 \times 1\) & 55 & 165 & 990 & 18 & 5 & C, M & D, L \\
\hline Am2147-70 & \(4096 \times 1\) & 70 & 110 & 880 & 18 & 5 & C, M & D, L \\
\hline Am21L47-45 & \(4096 \times 1\) & 45 & 83 & 688 & 18 & 5 & C & D \\
\hline Am21L47-55 & \(4096 \times 1\) & 55 & 83 & 688 & 18 & 5 & C & D \\
\hline Am2148-55 & \(1024 \times 4\) & 55 & 165 & 990 & 18 & 5 & C, M & D, L \\
\hline Am2148-70 & \(1024 \times 4\) & 70 & 165 & 990 & 18 & 5 & C, M & D, L \\
\hline Am2149-55 & \(1024 \times 4\) & 55 & - & 990 & 18 & 5 & C, M & D, L \\
\hline Am2149-70 & \(1024 \times 4\) & 70 & - & 990 & 18 & 5 & C, M & D, L \\
\hline
\end{tabular}

16K STATIC RAMs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Part Number} & \multirow[b]{2}{*}{Organization} & \multirow[t]{2}{*}{\begin{tabular}{l}
Access \\
Time (ns)
\end{tabular}} & \multicolumn{2}{|l|}{Power Dissipation (mW)} & \multirow[b]{2}{*}{Pins} & \multirow[t]{2}{*}{Supply Voltage (V)} & \multirow[t]{2}{*}{Temp Range} & \multirow[b]{2}{*}{Package} \\
\hline & & & Standby & Active & & & & \\
\hline Am9128-10 & \(2048 \times 8\) & 100 & 83 & 660 & 24 & 5 & C & D, P \\
\hline Am9128-15 & \(2048 \times 8\) & 150 & 83 & 550 & 24 & 5 & C, M & D, P \\
\hline Am9128-20 & \(2048 \times 8\) & 200 & 165 & 660 & 24 & 5 & C, M & D, P \\
\hline Am9128-70* & \(2048 \times 8\) & 70 & 165 & 770 & 24 & 5 & C & D, P \\
\hline Am9167-45* & \(16384 \times 1\) & 45 & 165 & 660 & 20 & 5 & C & D \\
\hline Am9167-55* & \(16384 \times 1\) & 55 & 165 & 660 & 20 & 5 & C, M & D \\
\hline Am9168-45* & \(4096 \times 4\) & 45 & 165 & 660 & 20 & 5 & C & D \\
\hline Am9168-55* & \(4096 \times 4\) & 55 & 165 & 660 & 20 & 5 & C, M & D \\
\hline
\end{tabular}
*Available in 1983

\section*{DYNAMIC RAMs}
\begin{tabular}{|c|c|c|cc|c|c|c|c|}
\hline \begin{tabular}{c}
Part \\
Number
\end{tabular} & Organization & \begin{tabular}{c}
Access \\
Time (ns)
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c}
Power Dissipation (mW) \\
Standby
\end{tabular}} & Active & Pins & \begin{tabular}{c}
Supply \\
Voltage (V)
\end{tabular} & \begin{tabular}{c}
Temp \\
Range
\end{tabular} \\
\hline Package \\
\hline Am9016C & \(16384 \times 1\) & 300 & 20 & 420 & 16 & \(+12 \pm 5\) & \(\mathrm{C}, \mathrm{L}\) & \(\mathrm{P}, \mathrm{D}, \mathrm{L}\) \\
Am9016D & \(16384 \times 1\) & 250 & 20 & 420 & 16 & \(+12 \pm 5\) & \(\mathrm{C}, \mathrm{L}\) & \(\mathrm{P}, \mathrm{D}, \mathrm{L}\) \\
Am9016E & \(16384 \times 1\) & 200 & 20 & 420 & 16 & \(+12 \pm 5\) & \(\mathrm{C}, \mathrm{L}\) & \(\mathrm{P}, \mathrm{D}, \mathrm{L}\) \\
Am9016F & \(16384 \times 1\) & 150 & 20 & 420 & 16 & \(+12 \pm 5\) & C & \(\mathrm{P}, \mathrm{D}, \mathrm{L}\) \\
\hline
\end{tabular}

ROMs
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c}
Part \\
Number
\end{tabular} & Organization & \begin{tabular}{c}
Access Time \\
(ns)
\end{tabular} & \begin{tabular}{c}
Temp \\
Range
\end{tabular} & \begin{tabular}{c}
Supply \\
Voltage
\end{tabular} & Pins & \begin{tabular}{c}
Operating Power \\
Max (mW)
\end{tabular} & Outputs \\
\hline 8316E & \(2048 \times 8\) & 450 & C, M & +5 & 24 & 499 & 3-State \\
Am9218B & \(2048 \times 8\) & 450 & C, M & +5 & 24 & 368 & 3-State \\
Am9218C & \(2048 \times 8\) & 350 & C & +5 & 24 & 368 & 3-State \\
Am9232B & \(4096 \times 8\) & 450 & C, M & +5 & 24 & 420 & 3 -State \\
Am9232C & \(4096 \times 8\) & 300 & C & +5 & 24 & 420 & 3-State \\
Am9232D & \(4096 \times 8\) & 250 & C & +5 & 24 & 420 & 3-State \\
Am9233B & \(4096 \times 8\) & 450 & C, M & +5 & 24 & 420 & 3-State \\
Am9233C & \(4096 \times 8\) & 300 & C & +5 & 24 & 420 & 3-State \\
Am9233D & \(4096 \times 8\) & 250 & C & +5 & 24 & 420 & 3-State \\
Am9264B & \(8192 \times 8\) & 450 & C, M & +5 & 24 & 440 & 3-State \\
Am9264C & \(8192 \times 8\) & 300 & C & +5 & 24 & 440 & 3-State \\
Am9264D & \(8192 \times 8\) & 250 & C & +5 & 24 & 440 & 3-State \\
Am9265B & \(8192 \times 8\) & 450 & C, M & +5 & 28 & \(440,110^{1}\) & 3-State \\
Am9265C & \(8192 \times 8\) & 300 & C & +5 & 28 & \(440,110^{1}\) & 3-State \\
Am9265D & \(8192 \times 8\) & 250 & C & +5 & 28 & \(440,110^{1}\) & 3-State \\
Am92128B & \(16384 \times 8\) & 450 & C, M & +5 & 28 & 440,1371 & 3-State \\
Am92128C & \(16384 \times 8\) & 300 & C & +5 & 28 & 440,1371 & 3-State \\
Am92128D & \(16384 \times 8\) & 250 & C & +5 & 28 & \(440,137^{1}\) & 3-State \\
Am92256B & \(32768 \times 8\) & 450 & C & +5 & 28 & \(660,165^{1}\) & 3-State \\
Am92256C & \(32768 \times 8\) & 300 & C & +5 & 28 & \(660,165^{1}\) & 3-State \\
Am92256D & \(32768 \times 8\) & 250 & C & +5 & 28 & \(660,165^{1}\) & 3-State \\
\hline
\end{tabular}

Note: 1. Standby

\title{
AMD 20-Pin PAL* Family \\ 20-Pin IMOX \({ }^{\text {TM }}\) Programmable Array Logic Elements
}

\section*{DISTINCTIVE CHARACTERISTICS}
- Fast
- High speed "A" versions
\(\left(\mathrm{t}_{\mathrm{pd}}=25 \mathrm{~ns}, \mathrm{t}_{\mathrm{s}}=20 \mathrm{~ns}, \mathrm{t}_{\mathrm{co}}=15 \mathrm{~ns}, \max \right)\)
- Standard speed versions
\(\left(\mathrm{t}_{\mathrm{pd}}=35 \mathrm{~ns}, \mathrm{t}_{\mathrm{s}}=30 \mathrm{~ns}, \mathrm{t}_{\mathrm{co}}=25 \mathrm{~ns}, \max \right)\)
- Flexible
- User programmability allows customized designs
- Eases design updates in prototype or product
- Low Cost
- Reduces board space/chip count
- Reduces design time
- Reduces inventory cost
- Reliable
- Proven Platinum-Silicide fuse technology
- Fully AC and DC tested
- Preload of output registers allows full logical testing

\section*{FUNCTIONAL DESCRIPTION}

AMD PALs are high speed electrically programmable array logic elements. They utilize the familiar sum-of-products (AND-OR) structure allowing users to program custom logic functions to fit most applications precisely.
Initially the AND gates are connected, via fuses, to both the true and complement of every input. By selective programming of fuses the AND gates may be "connected" to only the true input (by blowing the complement fuse), to only the complement input (by blowing the true fuse), or to neither type of input (by blowing both fuses) establishing a logical "don't care." When both the true and complement fuses are left intact a logical false results on the output of the AND gate. An AND gate with all fuses blown will assume the logical true state. The outputs of the AND gates are connected to fixed OR gates. The only limitations imposed are the number of inputs to the AND gates (up to 16) and the number of AND gates per OR (up to 8).
The part types in the AMD PAL family are differentiated by the allocation of registered (with internal feedback) and combinatorial (bi-directional and dedicated) outputs. All combinatorial AMD PALs are available in both active HIGH (AND-OR) and active LOW (AND-OR-INVERT) versions.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable, long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link programmable logic.
The AMD PAL family is manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process permits an increase in density and a decrease in internal capacitance resulting in the fastest possible programmable logic devices.
The AMD PAL family also incorporates the unique capability of preloading the output registers during testing to any desired value. Preload is invaluable when testing the logical functionality of a programmed AMD PAL.

AMD PAL FAMILY TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline art & \multirow[b]{2}{*}{Array Inputs} & \multirow[b]{2}{*}{Logic} & \multirow[b]{2}{*}{OE} & \multirow[b]{2}{*}{Outputs} & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(t_{\text {pd }}\) \\
(MAX)
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathbf{t}_{\mathbf{s}} \\
(\text { MAX })
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\mathrm{t}_{\mathrm{co}}\)
(MAX)} & \\
\hline Number & & & & & STD & A & STD & A & STD & A & \\
\hline AmPAL 16R8 & \begin{tabular}{l}
(8) Dedicated \\
(8) Feedback
\end{tabular} & (8) 8-Wide AND-OR & Dedicated & Registered Inverting & - & - & 30 & 20 & 25 & 15 & ns \\
\hline \multirow{2}{*}{AmPAL16R6} & \multirow[t]{2}{*}{\begin{tabular}{l}
(8) Dedicated \\
(6) Feedback \\
(2) Bidirectional
\end{tabular}} & (6) 8-Wide AND-OR & Dedicated & Registered Inverting & \multirow{2}{*}{35} & \multirow{2}{*}{25} & \multirow{2}{*}{30} & \multirow{2}{*}{20} & \multirow{2}{*}{25} & \multirow{2}{*}{15} & \multirow{2}{*}{ns} \\
\hline & & (2) 7-Wide AND-OR-INVERT & Programmable & Bidirectional & & & & & & & \\
\hline \multirow[t]{2}{*}{AmPAL 16 R4} & \multirow[t]{2}{*}{\begin{tabular}{l}
(8) Dedicated \\
(4) Feedback \\
(4) Bidirectional
\end{tabular}} & (4) 8-Wide AND-OR & Dedicated & Registered Inverting & \multirow[t]{2}{*}{35} & \multirow[t]{2}{*}{25} & \multirow[t]{2}{*}{30} & \multirow[t]{2}{*}{20} & \multirow[t]{2}{*}{25} & \multirow[t]{2}{*}{15} & \multirow[t]{2}{*}{ns} \\
\hline & & (4) 7-Wide AND-OR-INVERT & Programmable & Bidirectional & & & & & & & \\
\hline AmPAL16L8 & \begin{tabular}{l}
(10) Dedicated \\
(6) Bidirectional
\end{tabular} & (8) 7-Wide AND-OR-INVERT & Programmable & \begin{tabular}{l}
(6) Bidirectional \\
(2) Dedicated
\end{tabular} & 35 & 25 & - & - & - & - & ns \\
\hline AmPAL16H8 & \begin{tabular}{l}
(10) Dedicated \\
(6) Bidirectional
\end{tabular} & (8) 7-Wide AND-OR & Programmable & \begin{tabular}{l}
(6) Bidirectional \\
(2.) Dedicated
\end{tabular} & 35 & 25 & - & - & - & - & ns \\
\hline AmPAL16LD8 & \begin{tabular}{l}
(10) Dedicated \\
(6) Bidirectional
\end{tabular} & (8) 8-Wide AND-OR-INVERT & - & Dedicated & 35 & 25 & - & - & - & - & ns \\
\hline AmPAL.16HD8 & \begin{tabular}{l}
(10) Dedicated \\
(6) Bidirectional
\end{tabular} & (8) 8-Wide AND-OR & - & Dedicated & 35 & 25 & - & - & - & - & ns \\
\hline
\end{tabular}

\footnotetext{
*PAL is a registered trademark of Monolithic Memories, Inc.
}

IMOX is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)
\begin{tabular}{lr}
\hline Storage Temperature & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline Temperature (Ambient) Under Bias & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous & -0.5 to \(+\mathbf{7 V}\) \\
\hline DC Voltage Applied to Outputs (Except During Programming) & -0.5 V to \(+\mathrm{V}_{\mathrm{CC}} \mathrm{max}\) \\
\hline DC Voltage Applied to Outputs During Programming & 21 V \\
\hline Output Current Into Outputs During Programming (Max Duration of 1 sec\()\) & 200 mA \\
\hline DC Input Voltage & -0.5 to +5.5 V \\
\hline DC Input Current & -30 to +5 mA \\
\hline
\end{tabular}

\section*{OPERATING RANGE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameters} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|l|}{Commercial} & \multicolumn{2}{|c|}{Military} & \multirow[b]{2}{*}{Units} \\
\hline & & Min & Max & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{cc}}\) & Supply Voltage & 4.75 & 5.25 & 4.50 & 5.50 & V \\
\hline \({ }^{T}\) A & Operating Free Air Temperature & 0 & 75 & -55 & & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{C}}\) & Operating Case Temperature & & & & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameters & Description & \multicolumn{3}{|c|}{Test Conditions} & Min & Typ (Note 1) & Max & Units \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow[b]{2}{*}{Output HIGH Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M I N, \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & \(1 \mathrm{OH}=-3.2 \mathrm{~mA}\) & COM'L & \multirow{2}{*}{2.4} & \multirow{2}{*}{3.5} & & \multirow{2}{*}{Volts} \\
\hline & & & \(1 \mathrm{OH}=-2 \mathrm{~mA}\) & MIL & & & & \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[b]{2}{*}{Output LOW Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M I N, \\
& V_{I N}=V_{I H} \text { or } V_{I L}
\end{aligned}
\]} & \(\mathrm{l}^{\mathrm{OL}}=24 \mathrm{~mA}\) & COM'L & & & \multirow[b]{2}{*}{0.50} & \multirow[b]{2}{*}{Volts} \\
\hline & & & \(1 \mathrm{OL}=12 \mathrm{~mA}\) & MIL & & & & \\
\hline \[
\begin{aligned}
& \mathrm{V}_{1 H} \\
& \text { (Note 2) }
\end{aligned}
\] & Input HIGH Level & \multicolumn{3}{|l|}{Guaranteed input logical HIGH voltage for all inputs} & 2.0 & & & Volts \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) (Note 2) & Input LOW Level & \multicolumn{3}{|l|}{Guaranteed input logical LOW voltage for all inputs} & & & 0.8 & Volts \\
\hline ILL. & Input LOW Current & \multicolumn{3}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}\)} & & -20 & -250 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{IIH}^{\text {H }}\) & Input HIGH Current & \multicolumn{3}{|l|}{\(V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}\)} & & & 25 & \(\mu \mathrm{A}\) \\
\hline 1 & Input HIGH Current & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\)} & & & 1.0 & mA \\
\hline Isc & Output Short Circuit Current & \multicolumn{3}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) (Note 3)} & -30 & -60 & -90 & mA \\
\hline \multirow[b]{2}{*}{Icc} & \multirow[b]{2}{*}{Power Supply Current} & \multirow[b]{2}{*}{All inputs \(=\) GND, \(\mathrm{V}_{\mathrm{CC}}=\) MAX} & 16L8, 16H8, 16H 16L8A, 16H8A, & \begin{tabular}{l}
LD8 \\
A, 16LD8A
\end{tabular} & & 110 & 155 & \multirow[b]{2}{*}{mA} \\
\hline & & & 16R8, 16R6, 16R 16R8A, 16R6A, & & & 120 & 180 & \\
\hline \(\mathrm{V}_{1}\) & Input Clamp Voltage & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}\)} & & -0.9 & -1.2 & Volts \\
\hline lozh & \multirow[t]{2}{*}{Output Leakage Current (Note 4)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M A X, V_{\mathrm{IL}}=0.8 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{H}}=2.0 \mathrm{~V}
\end{aligned}
\]} & \(\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}\) & & & & 100 & \multirow{2}{*}{\(\mu \mathrm{A}\)} \\
\hline lozl & & & \(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\) & & & & -100 & \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input Capacitance & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}\) (Note 5)} & & 6 & & \multirow{2}{*}{pF} \\
\hline Cout & Output Capacitance & \multicolumn{3}{|l|}{Vout \(=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}\) (Note 5)} & & 9 & & \\
\hline
\end{tabular}

Notes: 1. Typical limits are at \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT \(=0.5 \mathrm{~V}\) has been chosen to avoid test problems caused by tester ground degradation.
4. I/O pin leakage is the worst case of IOZX or IIX (where \(X=H\) or \(L\)).
5. These parameters are not \(100 \%\) tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE HIGH SPEED
(Unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{HIGH SPEED} & \multirow[b]{2}{*}{Test Conditions} & \multirow[b]{2}{*}{Typ
(Note 1)} & \multicolumn{2}{|c|}{COM'L} & \multicolumn{2}{|c|}{MIL} & \\
\hline Parameters & Description & & & Min & Max & Min & Max & Units \\
\hline tPD & Input or Feedback to Non-Registered Output 16L8A, 16R6A, 16R4A, 16LD8A, 16H8A, 16HD8A & \multirow{11}{*}{\begin{tabular}{l}
COM'L \\
\(R_{1}=200\)
\[
R_{2}=390
\] \\
MIL.
\[
\begin{aligned}
& R_{1}=390 \\
& R_{2}=750
\end{aligned}
\]
\end{tabular}} & 12 & & 25 & & 30 & ns \\
\hline teA & Input to Output Enable 16L8A, 16R6A, 16R4A, 16H8A & & 12 & & 25 & & 30 & ns \\
\hline \({ }_{\text {teR }}\) & Input to Output Disable 16L8A, 16R6A, 16R4A, 16H8A & & 12 & & 25 & & 30 & ns \\
\hline tPZX & Pin 11 to Output Enable 16R8A, 16R6A, 16R4A & & 8 & & 20 & & 25 & ns \\
\hline tpxz & Pin 11 to Output Disable 16R8A, 16R6A, 16R4A & & 8 & & 20 & & 25 & ns \\
\hline tco & Clock to Output 16R8A, 16R6A, 16R4A & & 8 & & 15 & & 20 & ns \\
\hline \(\mathrm{t}_{\mathrm{s}}\) & Input or Feedback Setup Time 16R8A, 16R6A, 16R4A & & 10 & 20 & & 25 & & ns \\
\hline \(\mathrm{t}_{\mathrm{H}}\) & Hold Time 16R8A, 16R6A, 16R4A & & -10 & 0 & & 0 & & ns \\
\hline tp & Clock Period & & & 35 & & 45 & & ns \\
\hline \({ }^{\text {tw }}\) & Clock Width & & & 15 & & 20 & & ns \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Frequency & & & & 28.5 & & 22 & MHz \\
\hline
\end{tabular}

Notes: 1. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
2. tpD is tested with switch \(\mathrm{S}_{1}\) closed and \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\).
3. For three-state outputs, output enable times are tested with \(C_{L}=50 \mathrm{pF}\) to the 1.5 V level; \(\mathrm{S}_{1}\) is open for high impedance to HIGH tests and closed for high impedance to LOW tests. Output disable times are tested with \(C_{L}=5 p F\). HIGH to high impedance tests are made to an output voltage of \(\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}\) with \(\mathrm{S}_{1}\) open; LOW to high impedance tests are made to the \(\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}\) level with \(\mathrm{S}_{1}\) closed.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SPEED} & \multirow[t]{2}{*}{Test Conditions} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Typ } \\
& \text { (Note 1) }
\end{aligned}
\]} & \multicolumn{2}{|c|}{COM'L} & \multicolumn{2}{|c|}{MIL} & \\
\hline Parameters & Description & & & Min & Max & Min & Max & Units \\
\hline tPD & Input or Feedback to Non-Registered Output 16L8, 16R6, 16R4, 16LD8, 16H8, 16HD8 & \multirow{11}{*}{\begin{tabular}{l}
\[
\begin{gathered}
\text { COM'L } \\
R_{1}=200 \\
R_{2}=390
\end{gathered}
\] \\
MIL
\[
\begin{aligned}
& R_{1}=390 \\
& R_{2}=750
\end{aligned}
\]
\end{tabular}} & 17 & & 35 & & 40 & ns \\
\hline \(\mathrm{t}_{\mathrm{EA}}\) & Input to Output Enable 16L8, 16R6, 16R4, 16H8 & & 17 & & 35 & & 40 & ns \\
\hline ter & Input to Output Disable 16L8, 16R6, 16R4, 16H8 & & 17 & & 35 & & 40 & ns \\
\hline tPZX & Pin 11 to Output Enable 16R8, 16R6, 16R4 & & 12 & & 25 & & 25 & ns \\
\hline tpXZ & Pin 11 to Output Disable 16R8, 16R6, 16R4 & & 12 & & 25 & & 25 & ns \\
\hline tco & Clock to Output 16R8, 16R6, 16R4 & & 12 & & 25 & & 25 & ns \\
\hline \(t_{s}\) & Input or Feedback Setup Time 16R8, 16R6, 16R4 & & 15 & 30 & & 35 & & ns \\
\hline \(t_{H}\) & Hold Time 16R8, 16R6, 16R4 & & -10 & 0 & & 0 & & ns \\
\hline \(t_{P}\) & Clock Period & & & 55 & & 60 & & ns \\
\hline tw & Clock Width & & & 20 & & 25 & & ns \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Frequency & & & & 18 & & 16.5 & MHz \\
\hline
\end{tabular}

Notes: 1. Typical limits are at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
2. tPD is tested with switch \(S_{1}\) closed and \(C_{L}=50 \mathrm{pF}\).
3. For three-state outputs, output enable times are tested with \(C_{L}=50 \mathrm{pF}\) to the 1.5 V level; \(\mathrm{S}_{1}\) is open for high impedance to HIGH tests and closed for high impedance to LOW tests. Output disable times are tested with \(C_{L}=5 \mathrm{pF}\). HIGH to high impedance tests are made to an output voltage of \(\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}\) with \(\mathrm{S}_{1}\) open; LOW to high impedance tests are made to the \(\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}\) level with \(\mathrm{S}_{1}\) closed.

\section*{AC TEST LOAD}

AMD 20-Pin PAL Family

12-18

\section*{PROGRAMMING}

Each AMD PAL fuse is programmed with a simple sequence of voltages applied to two control pins (1 and 11) and a programming voltage pulse applied to the output under programming. Addressing of the 2048 element fuse array is accomplished with normal TTL levels on eight input pins (five select the input line number and three select the product term number). \(\mathrm{V}_{\mathrm{CC}}\) is maintained at a normal level throughout the programming and verify cycle - no extra high levels are required.
The necessary sequence of levels for programming any fuse is shown in the Programming Timing Diagram. The address of each fuse in terms of Input Line Number and Product Term Line Number is defined by the Fuse Address Tables 1 and 2. Current, voltage and timing requirements for each pin are specified in the Programming Parameter Table below.
The 16L8, 16R8, 16R6, 16R4, 16H8, 16LD8 and 16HD8 use identical programming conditions and sequences.
After all programming has been completed, the entire array should be reverified at \(\mathrm{V}_{\mathrm{CCL}}\) and again at \(\mathrm{V}_{\mathrm{CCH}}\). Reverification can be accomplished by reading all eight outputs in paraliel rather than one at a time. The array fuse verification cycle checks that
the correct array fuses have been blown and can be sensed by the outputs.
AMD PALs have been designed with many internal test features that are used to assure high programming yield and correct logical operation for a correctly programmed part.
An additional fuse is provided on each AMD PAL circuit to prevent unauthorized copying of AMD PAL fuse patterns when design security is desired. Blowing the security fuse blocks entry to the fuse pattern verify mode.
To blow the security fuse:
1. Power up part to \(V_{C C P}\)
2. Raise Pin 5 to \(\mathrm{V}_{\mathrm{HH}}\).
3. Pulse Pin 11 from ground to \(\mathrm{V}_{\mathrm{OP}}\) for a \(50 \mu \mathrm{sec}\) duration.
4. Perform a normal end-of-programming verify cycle at \(\mathrm{V}_{\mathrm{CCL}}\) and \(\mathrm{V}_{\mathrm{CCH}}\). All fuse locations should be sensed as blown if the security fuse has been successfully blown.
Note that parts with the security fuse blown may not be returned as programming rejects.
AMD PALs normally have high programming yields (\(>98 \%\)). Programming yield losses are frequently due to poor socket contact, equipment out of calibration or improperly used.

PROGRAMMING PARAMETERS \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & \multicolumn{2}{|r|}{Description} & Min & Typ & Max & Units \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{HH}}\)} & \multirow{2}{*}{Control Pin Extra High Level} & Pin 1 @ 10-40mA & 10 & 11 & 12 & \multirow{2}{*}{Volts} \\
\hline & & Pin 11 @ 10-40mA & 10 & 11 & 12 & \\
\hline \(\mathrm{V}_{\mathrm{OP}}\) & \multicolumn{2}{|l|}{Program Voltage Pins 12-19@15-200mA} & 18 & 20 & 22 & Volts \\
\hline \(\mathrm{V}_{\text {IHP }}\) & \multicolumn{2}{|l|}{Input High Level During Programming and Verify} & 2.4 & 5 & 5.5 & Volts \\
\hline \(\mathrm{V}_{\text {ILP }}\) & \multicolumn{2}{|l|}{Input Low Level During Programming and Verify} & 0.0 & 0.3 & 0.5 & Volts \\
\hline \(V_{\text {CCP }}\) & \multicolumn{2}{|l|}{\(V_{C C}\) During Programming @ \(\mathrm{I}_{C C}=50-200 \mathrm{~mA}\)} & 5 & 5.2 & 5.5 & Volts \\
\hline \(\mathrm{V}_{\text {CCL }}\) & \multicolumn{2}{|l|}{\(V_{C C}\) During First Pass Verification @ ICC \(=50-200 \mathrm{~mA}\)} & 4.1 & 4.3 & 4.5 & Volts \\
\hline \(\mathrm{V}_{\mathrm{CCH}}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}\) During Second Pass Verification @ ICC \(=50-200 \mathrm{~mA}\)} & 5.4 & 5.7 & 6.0 & Volts \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {Blown }}\)} & \multirow[t]{2}{*}{Successful Blown Fuse Sense Level @ Output} & 16L8, 16R8, 16R6, 16R4, 16LD8 16L8A, 16R8A, 16R6A, 16R4A, 16LD8A & & 0.3 & 0.5 & \multirow[t]{2}{*}{Volts} \\
\hline & & 16H8, 16HD8, 16H8A, 16HD8A & 2.4 & 3 & & \\
\hline \(\mathrm{dV}_{\text {OP } / \text { dt }}\) & \multicolumn{2}{|l|}{Rate of Output Voltage Change} & 20 & & 250 & \(\mathrm{V} / \mu \mathrm{sec}\) \\
\hline \(\mathrm{dV}_{11} / \mathrm{dt}\) & \multicolumn{2}{|l|}{Rate of Fusing Enable Voltage Change (Pin 11 Rising Edge)} & 100 & & 1000 & \(\mathrm{V} / \mu \mathrm{sec}\) \\
\hline tp & \multicolumn{2}{|l|}{Fusing Time First Attempt} & 40 & 50 & 100 & \(\mu \mathrm{sec}\) \\
\hline P & \multicolumn{2}{|l|}{Subsequent Attempts} & 4 & 5 & 10 & msec \\
\hline \(t_{D}\) & \multicolumn{2}{|l|}{Delays Between Various Level Changes} & 100 & 200 & 1000 & ns \\
\hline tv & \multicolumn{2}{|l|}{Period During which Output is Sensed for \(\mathrm{V}_{\text {Blown }}\) Level} & & & 500 & ns \\
\hline \(\mathrm{V}_{\text {ONP }}\) & \multicolumn{2}{|l|}{Pull-Up Voltage On Outputs Not Being Programmed} & \(V_{\text {CCP }}-0.3\) & \(\mathrm{V}_{\text {CCP }}\) & \(\mathrm{V}_{\text {CCP }}+0.3\) & Volts \\
\hline R & \multicolumn{2}{|l|}{Pull-Up Resistor On Outputs Not Being Programmed} & 1.9 & 2 & 2.1 & K \(\Omega\) \\
\hline
\end{tabular}

AMD PAL PROGRAMMING EQUIPMENT INFORMATION
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Source and \\
Location
\end{tabular} & \begin{tabular}{l}
Data I/O \\
10525 Willows Rd. N.E. \\
Redmond, WA 98052
\end{tabular} & \begin{tabular}{l}
Kontron Electronics, Inc. \\
630 Price Avenue \\
Redwood City, \\
CA 94063
\end{tabular} & \begin{tabular}{l}
Stag Microsystems \\
\(528-5\) Weddel Drive \\
Sunnyvale, \\
CA 94086
\end{tabular} \\
\hline \begin{tabular}{l}
Programmer \\
Model(s)
\end{tabular} & \begin{tabular}{l}
Model-100, 29, \\
19 or 17
\end{tabular} & \begin{tabular}{l}
Model-MPP-80S \\
or EPP80
\end{tabular} & Model-PPX \\
\hline \begin{tabular}{l}
AMD PAL \\
Personality \\
Module
\end{tabular} & \begin{tabular}{l}
Logicpak \\
\(950-1942-001\)
\end{tabular} & MOD-33 & PPM2200 \\
\hline \begin{tabular}{l}
Socket \\
Adapter
\end{tabular} & \(715-1947-003\) & SA37 & Am202S \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\frac{I T}{\|}
\] & \(\underline{\omega}\) & \multicolumn{2}{|l|}{} \\
\hline & & \(\bullet\) & \multirow[t]{5}{*}{} \\
\hline & エエエエエエエエrrrrrrrrエエエエ & \(\infty\) & \\
\hline & & \(\checkmark\) & \\
\hline & & 0 & \\
\hline & エrエrエrエrエrエrエrエrエrエrエrエrエrエrエrエr & \(\boldsymbol{T}\) & \\
\hline
\end{tabular}
SIMPLIFIED PROGRAMMING DIAGRAM

TABLE 2．PRODUCT TERM ADDRESSING
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\multirow[b]{2}{*}{Product Term Line Number}} & \multicolumn{3}{|l|}{Product Term Select Address Pin} \\
\hline & & & & & & & & 4 & 3 & 2 \\
\hline 0 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & L & L & L \\
\hline 1 & 9 & 17 & 25 & 33 & 41 & 49 & 57 & L & L & H \\
\hline 2 & 10 & 18 & 26 & 34 & 42 & 50 & 58 & L & H & L \\
\hline 3 & 11 & 19 & 27 & 35 & 43 & 51 & 59 & L & H & H \\
\hline 4 & 12 & 20 & 28 & 36 & 44 & 52 & 60 & H & L & L \\
\hline 5 & 13 & 21 & 29 & 37 & 45 & 53 & 61 & H & L & H \\
\hline 6 & 14 & 22 & 30 & 38 & 46 & 54 & 62 & H & H & L \\
\hline 7 & 15 & 23 & 31 & 39 & 47 & 55 & 63 & H & H & H \\
\hline \[
\begin{array}{|c|}
\hline \text { Pin } \\
19
\end{array}
\] & \[
\begin{gathered}
\hline \text { Pin } \\
18
\end{gathered}
\] & \[
\begin{gathered}
\text { Pin } \\
17
\end{gathered}
\] & \[
\begin{gathered}
\text { Pin } \\
16
\end{gathered}
\] & \[
\begin{aligned}
& \text { Pin } \\
& 15
\end{aligned}
\] & \[
\begin{gathered}
\text { Pin } \\
14
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline \text { Pin } \\
13
\end{array}
\] & \[
\begin{gathered}
\hline \text { Pin } \\
12
\end{gathered}
\] & & & \\
\hline \multicolumn{8}{|r|}{Programming Access and Verify Pin} & & & \\
\hline \multicolumn{8}{|l|}{\[
\begin{aligned}
& L=V_{I L P} \\
& H=V_{I H P}
\end{aligned}
\]} & & & \\
\hline
\end{tabular}

\section*{PRELOAD OF REGISTERED OUTPUTS}

AMD PAL registered outputs are designed with extra circuitry to allow loading each register asynchronously to either a HIGH or

LOW state. This feature simplifies testing since any initial state for the registers can be set to optimize test sequencing.

The pin levels and timing necessary to perform the PRELOAD function are detailed below:

ORDERING INFORMATION

*Chip-Paks are rated at maximum case temperature only.

\title{
MOS Microprocessor
}

Family Selector Guide
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 8086/88 & 8085A & 8085A-2 & 8080A & Z8001/2 \(\dagger\) & Z8001/2-A \\
\hline Clock Period & 200ns & 320ns & 200ns & 480ns & 250ns & 165ns \\
\hline Clock Generator & 8284A & On-Chip & On-Chip & 8224 & 8127 & 8127 \\
\hline Arithmetic Processing Unit & 8087 & \[
\begin{aligned}
& 9511 \mathrm{~A}-1 \\
& 9512-1
\end{aligned}
\] & \[
\begin{aligned}
& 9511 \mathrm{~A}-4 \\
& 9512-1
\end{aligned}
\] & \[
\begin{aligned}
& 9511 \mathrm{~A} \\
& 9512
\end{aligned}
\] & \[
\begin{aligned}
& 9511 \mathrm{~A}-4 \\
& 9512-1
\end{aligned}
\] & \[
\begin{aligned}
& 9511 \mathrm{~A}-4 \\
& 9512-1
\end{aligned}
\] \\
\hline Interrupt Controller & 8259A-5 & \[
\begin{aligned}
& \text { 9519A } \\
& 8259 A
\end{aligned}
\] & \[
\begin{aligned}
& \text { 9519A-4 } \\
& 8259 \mathrm{~A}-5
\end{aligned}
\] & \[
\begin{aligned}
& \text { 9519A } \\
& \text { 8259A }
\end{aligned}
\] & 9519A-1 & 9519A-1 \\
\hline DMA Controller & \[
\begin{aligned}
& 8089 \\
& 9516 A \\
& 9517 A-5
\end{aligned}
\] & 9517A-4 & 9517A-5 & 9517A & \[
\begin{aligned}
& 8016 \\
& 9517 \mathrm{~A}-4
\end{aligned}
\] & 8016A \\
\hline Dynamic Memory Controller & 2964B & 2964B & 2964B & 2964B & 2964B & 2964B \\
\hline Serial I/O & \[
\begin{aligned}
& 8251 \mathrm{~A} \\
& 8530 \mathrm{~A} \\
& 8030 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 8251 A \\
& 8530
\end{aligned}
\] & \[
\begin{aligned}
& 8251 A \\
& 8530 A
\end{aligned}
\] & 8251A & 8030 & 8030A \\
\hline Parallel I/O & \[
\begin{aligned}
& \text { 8255A-5 } \\
& 8036 A
\end{aligned}
\] & 8255A-5 & 8255A-5 & 8255A & 8036 & 8036A \\
\hline Counter Timer I/O & \begin{tabular}{l}
9513 \\
8036A \\
8073
\end{tabular} & \[
\begin{aligned}
& 9513 \\
& 8253-5
\end{aligned}
\] & \[
\begin{aligned}
& 9513 \\
& 8253-5
\end{aligned}
\] & \[
\begin{aligned}
& 9513 \\
& 8253
\end{aligned}
\] & 8073 & 8073 \\
\hline FIFO I/O & 8038 & 8038 & 8038 & 8038 & 8038 & 8038 \\
\hline Data Ciphering Processor & 8068 & 8068 & 8068 & 9518 & 8068 & 8068 \\
\hline Error Detection and Correction & 2960 & 2960 & 2960 & 2960 & 2960 & 2960 \\
\hline Burst Error Processor & \[
\begin{aligned}
& 8065 \\
& 9520
\end{aligned}
\] & \[
\begin{aligned}
& 8065 \\
& 9520
\end{aligned}
\] & \[
\begin{aligned}
& 8065 \\
& 9520
\end{aligned}
\] & \[
\begin{aligned}
& 8065 \\
& 9520
\end{aligned}
\] & \[
\begin{aligned}
& 8065 \\
& 9520
\end{aligned}
\] & \[
\begin{aligned}
& 8065 \\
& 9520
\end{aligned}
\] \\
\hline CRT Controller & \[
\begin{aligned}
& 8275 \\
& 8052
\end{aligned}
\] & 8275 & 8275 & 8275 & 8052 & 8052A \\
\hline I/O Processor & 8089 & N/A & N/A & N/A & N/A & N/A \\
\hline RAM I/O & N/A & 8155/6 & 8155/6-2 & N/A & N/A & N/A \\
\hline Memory Management Unit & N/A & N/A & N/A & N/A & 8010 & 8010A \\
\hline Bus Control/ Arbiter & \[
\begin{aligned}
& 8288 \\
& 8289
\end{aligned}
\] & N/A & N/A & N/A & N/A & N/A \\
\hline Bus Latches & 29841-6 & 29841-6 & 29841-6 & 29841-6 & 29841-6 & 29841-6 \\
\hline Bus Buffers & 29827/28 & 29827/28 & 29827/28 & -29827/28 & 29827/28 & 29827/28 \\
\hline \begin{tabular}{l}
Bus \\
Transceivers
\end{tabular} & 29861-4 & 29861-4 & 29861-4 & 29861-4 & 29861-4 & 29861-4 \\
\hline EDC Buffers & 2961/2 & 2961/2 & 2961/2 & 2961/2 & 2961/2 & 2961/2 \\
\hline RAM Drivers & 2965/6 & 2965/6 & 2965/6 & 2965/6 & 2965/6 & 2965/6 \\
\hline
\end{tabular}

\section*{Components}
\begin{tabular}{|c|c|c|}
\hline Z8001/2 Family & 8010 & Memory Management Unit* \\
\hline \multirow[t]{17}{*}{System Components} & 8016 & Data Transfer Controller \\
\hline & 8030 & Serial Communication Controller* \\
\hline & 8036 & Counter I/O \\
\hline & 8038 & FIFO I/O Interface \\
\hline & 8052 & CRT Controller** \\
\hline & 8060 & FIFO Buffer/FIO Expander* \\
\hline & 8065 & Burst Error Processor \\
\hline & 8068 & Data Ciphering Processor \\
\hline & 8073 & System Timing Controller \\
\hline & 29861-4 & High Performance Bus Transceivers* \\
\hline & 8121 & Octal Comparator \\
\hline & 8127 & Clock Generator and Controller \\
\hline & 29827/28 & High Performance Bus Buffers* \\
\hline & 8163 & Refresh and EDC Controller (16 MHz) \\
\hline & 8167 & Refresh and EDC Controller (22 MHz) \\
\hline & 29821-6 & High Performance Bus Registers \\
\hline & 29841-6 & High Performance Bus Latches* \\
\hline Bipolar Support & 25LS244 & Octal Buffer \\
\hline \multirow[t]{12}{*}{Circuits} & 25LS2521 & Octal Comparator \\
\hline & 25LS2536 & Octal Address Decoder \\
\hline & 25LS2548 & Octal Decoder with ACK \\
\hline & 29821-6 & High Performance Bus Registers \\
\hline & 2925 & Clock Generator \\
\hline & 29861-4 & High Performance Bus Transceiver* \\
\hline & 2948/49 & Octal Bus Transceiver \\
\hline & 2960 & 16-Bit Error Detection and Correction \\
\hline & 2961/62 & EDC Buffers \\
\hline & 2964B & Dynamic Memory Controller \\
\hline & 2965/66 & RAM Drivers \\
\hline & 29841-6 & High Performance Bus Latches* \\
\hline
\end{tabular}

\footnotetext{
*Q3-4 '82 Introduction
**1983 Introduction
}

\section*{Analog Data Acquisition Product Guide and Cross Reference}

\section*{DIGITAL-TO-ANALOG CONVERTERS}
```

GENERAL PURPOSE 8-BIT
DAC-08 . Industry Standard 8-Bit Muluplying DA
Am1508/408 : Multiplying DA
SSST508A/4408A Muttiplying D/A
MICROPROCESSOR COMPATIBLE 8-BIT
Am6080 :% Contains 8-Bit Data Latch with Write, Chip Select and Date Enable Logic On-Chip
Am6081 :% Same as Am6080 Plus On-Chip Multplexer
GENERAL PURPOSE 12-EIT
Am6012 : Low Cost, 250ns Setling Time. Multplying 12-Bit D/A
Am6022*:*: High-Speed Version of Am6012, 75ns Setting Time
MICROPROCESSOR COMPATIBLE 12-EIT
Am6082*: % Contains Reference Double Buffered Latch, Control Logic and High-Speed Op Amp.
150ns Current or 400ns Vottage Setting Time
GENERAL PURPOSE 14-BIT
Am6014*:* 44-Bit Plus Sign Muliplying D/A 500ns Setting Tmme
COMPANDING
Am6070 %:8-Bit,72dB of Dynamic Range for Control Systems
Am6072 = % 8-Bit \mu-Law for PCM Communication Systems.

```

\section*{ANALOG-TO-DIGITAL CONVERTERS}
```

HIGH-SPEED 4-BIT
Am6688 :% 100MHz Sampling Rate, 8-Bit Accuracy, Flash Converter
HIGH-SPEED6-BIT
Am6606*: % 100MHz Sampling Rate, 8-Bit Accuracy Flash Converter
HCH-SPEED MCROPROCESSOR CONPATIBLE8-BIT
Am6108/6148**: Ius Conversion Tine, Contains Reterence, DAC, Comparator, SAF, Scale Resistors, 3-State
Buffers and ControlLoglc
HGH-SPEED MICROPROCESSOR COMPATIBLE 12-BIT
Am6112 : % 3\mus Conversion Time, Contains Feference,DAC, Comparator, SAA, Scaie Resistors:
3-State Buffers and Control Logic

```

SAMPLE AND HOLD AMPLIFIERS
```

GENERAL PURPOSE
LF1981398 * Less than 10\mus Acquisition Time, Industry Standard Sample and Hold
Hich-SPEED
Am6420*: 500ns Acquisition Time, 10ns Aperture Delay, 0.01% Lineanity Error

```

\footnotetext{
*In development.
**Am6148 is the slim 24-pin, 0.3" version of the Am6108.
}

\section*{VOLTAGE COMPARATORS}
```

Am685
lans Propagauion Deiay, 1i. Outpu
8ns Propagation Delay,Dual 685
ECLOutput
Dual Precision
High Accuracy, Low Cost
Dual High Speed, }\pm5\textrm{V}\mathrm{ to =15V Supply
Quad, Low Power, High Acouracy

```

OPERATIONAL AMPLIFIERS
```

LF155/156 FET-hput, High Slew Rate and Fast Setting Time
LM108: Low Power, $\pm 2 \mathrm{~V}$ to $\approx 20 \mathrm{~V}$ Supply
LM118 : High Speed, 15 MHz Bandwidh
LM148 : Quad, Low Power 741

```

\section*{CROSS REFERENCE}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline P\% ANO & Mational & Fitretid & Signetics & PM & Motorola & Raytheon & Analog Devices \\
\hline DAC-68AG DAC-OBHO DAC-0BHN & \begin{tabular}{l}
DACOBDOLAS \\
dacorozics \\
DAC0802LCN
\end{tabular} & MAOBOVADM: \(\mu\) A0801HDC MAOBOMPC & \begin{tabular}{l}
SE5009F \\
NE5009F \\
NE5009N
\end{tabular} & \[
\begin{aligned}
& \text { DAC-08AO } \\
& \text { DAC-08HC } \\
& \text { DAC-08HP }
\end{aligned}
\] & DAC-08AO DAC-OBHO DAC-08HP & DAC-08ADM DAC-O8HDM DAC-08HEM & ADDAC-08AD ADDAC-08HD \\
\hline DAC-080 DAC-OBEC DAC-0BEN & DAC0800LJ dacobooles DACOBOOLCN & \(\mu A 08010 \mathrm{M}\) pA080TEDC aAg801EPC & \[
\begin{aligned}
& \text { SES5008F } \\
& \text { NE5008F } \\
& \text { NE } 5008 \mathrm{~N}
\end{aligned}
\] & DAC-080 DAC-OBEO DAC-08ER & DAC-0BC DAC-0BEO DAC-08EP & DAC-0BDM DAC-DBEDM DAC-08EEM & ADDAC-08D ADDAC-08ED \\
\hline DAC-08CO DAC-OBCN & DACO8ONCJ DACDBOILCN & HAOBDICDC \(\mu A 0801 C P C\) & NE5007F NE5007N & DAc-osce DAC-08CP & DAC-OBCO DAC-0BCP & DAC-OBCDM DAC-OBCBM & ADDAC-OBCD \\
\hline ANIS08L8 AMi408L8 AN1408NB & \begin{tabular}{l}
DACOBOBLJ \\
Dacoboblcj \\
DACOBOBLCN
\end{tabular} & pA0802DN \(\mu \mathrm{A} 0802 \mathrm{ADC}\) MA0802APC & MC1508-AF
MC1408-8F
MCT408-8N & & \begin{tabular}{l}
MC1503L8 \\
MCH08L8 \\
MC1408P8
\end{tabular} & & AD1508-8D AD1408-8D \\
\hline ANtho8lt AMT408N7 & dacobozics DACOBOZLCN & \({ }^{\mu A 0802 B D C}\) \(\mu\) A0802BPC & \begin{tabular}{l}
NC1408-7F \\
MC1408-7N
\end{tabular} & & MC1408L7 NCi408P7 & & AD1408-7D \\
\hline AN1408L6 AM140BN6 & DAC0Bo6tCS DACEBO6LCN & uA0802CDC 4 Ab802cpe & MC1408-6F MC1408-6N & & MC1408L6 MC1408P6 & & \\
\hline \[
\begin{aligned}
& \text { SSSi508A-80 } \\
& \text { SSS1408A-80 } \\
& \text { SSS1408A-7Q } \\
& \text { SSST408A-60 }
\end{aligned}
\] & & & & SSS1500A-80
SSS1408A-80
SSS1408A-70
SSS1408A-6Q & & & \\
\hline AM6012ADM ANGOT2ADC ANGOT2APC AM60120M AN6012DC AN60t2PC & & & & & & & \\
\hline AM6070ADM AMEOTOADC AN6070DM AM60700C & & & & \begin{tabular}{l}
DAC-76BX \\
DAC-76EX \\
DAC-76X \\
DAC-76CX
\end{tabular} & & & \\
\hline AN6072DM AM6072DC & \[
48
\] & & & DAC-86EX & \[
=
\] & & \\
\hline AM6080 AN6081 & DACOB30/1/2t & & NES018f19 & DAC-8084888 & & & \[
\text { ADS58 } \dagger
\] \\
\hline AM6688 & & & & & MC6108 & & \\
\hline AM6 108 & ADC0820t & & & & & & AD570t AND \\
\hline AM6148 & ADCo820t & & & & & & AD7574 \\
\hline LF198 & LFi98 & \(\mu\) AF198 & NE5637 \% \({ }^{\text {d }}\) & (-3 + & - & & - \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Functional equivalent only
}
NDEX
SECTION
NUMERIC DEVICE NDEX
FUNCTIONINDEX

\begin{tabular}{lc}
Am2900 & BIT-SLICEPROCESSORS \\
MROCESSORS & MICROCODESEQUENCERS \\
ANDPERPHERALS & LSI PERIPHERASS
\end{tabular}

```

Am29100
CONTROLLER
FAMILY

```
16-BIT MICROPROCESSOR
WTERRUPTELE SEOUENCERS
LSI PERIPHERALS
Am29500 \(16 \times 16\) PARALLEL MULTIPLERS
ARRAY AND DIGITAL MULTIPORTPIPELINEDPROCESSORS
SIGNAL PROCESSING FFTADDESS SEOUENCERS

> Am29500 ARRAY AND DICITAL SIGNAL PROCESSING

MULTIPORT PIPELINED PROCESSORS MULIPORTPIPELNEDPROGE

Am 29800
HIGH PERFORMANCE 8,9, AND 10 -BITIMOX BUS INTERFACE DIACNOSTIC REGISTERS imox comparators

HICHPERFORMANCE SCHOTTKYLOCIC
Am25S
Am25LS
LOW-POWER SCHOTTKYLOGIC
\(8 \times 8\) PARALLELMULTIPLIERS

8100
8200
80

\begin{tabular}{|c|c|}
\hline MEMORIES, PALs, MOS PERIPHERALS, ANALOG & \begin{tabular}{l}
PROMS, BIPOLAR RAMS, MOS STATIC RAMS 20-PINAND 24-PINPALS, MOSLSIPERIPHERALS \\
VERY HIGH SPEED DATA ACCUISITION
\end{tabular} \\
\hline
\end{tabular}

\author{
GENERAL
} TESTING, QUALITY ASSURANCE/GUARANTEES GATE COUNTS, DIE SIZES, RELIABILITY

\section*{General Information Index}
Quality/Testing
Guidelines on Testing Am2900 Family Devices 13-1
Test Aids Available for Am2900 Devices 13-5
Reliability
IMOX \({ }^{\text {M }}\) Process Reliability Report 13-6
Device Data
Gate Counts and Die Sizes by Device 13-11
Package Data
Package Material Configuration 13-16
Thermal Characterization of Packaged Devices 13-17
Package Outlines (Physical Dimensions) 13-20
Ordering Information
Ordering Information 13-31
Sales Offices, Sales Representatives and Distributors 13-32

\title{
Guidelines on Testing Am2900 Family Devices
}

\section*{I. INTRODUCTION}

The Am2900 Family represents a major step forward in bipolar technology, in that each device contains a number of MSI-type functions interconnected on one chip. The gate counts in the parts comprising the Am2900 Family are around 10-100 times the gate count of MSI functions. While this produces a number of advantages for manufacturing, such as reduced component count and lower costs, it complicates the incoming-inspection problem because test programs tend to be long and complex and must be carefully designed to insure that all bad parts are rejected and most good parts are accepted. While stating these two criteria is simple, reducing them to practice is not. LSI devices are not as "forgiving" of simplifications in test patterns and assumptions about forcing functions and noise levels, as their simpler counterparts. These notes are intended to point out some common areas of difficulty and their solutions.

\section*{II. THE PURPOSE OF TESTING}

Testing is performed at most facilities during an inspection of purchased material. The reason, of course, is that it is much less expensive to screen parts then, than it is to troubleshoot and repair completed boards. Ideally, all the parts passed by incoming inspection will work in the system. This is insured through a specification which defines the way the part must behave in the system, and the incoming test should confirm that devices received meet the specification. The incoming test should not reject devices which meet the specification. When test programs are too tight or test for conditions not contained in the specification, delays in shipments occur and significant costs are incurred by both the vendor and the buyer trying to resolve "correlation problems."

\section*{III. GUARANTEEING THAT THE PARTS WORK}

One step in testing devices is to perform DC parametric tests: \(I_{C C}, V_{O H}, V_{\mathrm{OL}}\) and the like. These tests on bipolar LSI are not really different from those performed on simpler TTL devices, except that the number of pins involved is greater, and more complex set-ups may be required to put outputs in the proper state for testing. Another step is functional testing, and for bipolar LSI, function tests are significantly different than for MSI. The function tests must first insure that the device is capable of working, i.e., it's hooked up correctly inside. These kinds of tests can be described as "stuck-at-one, stuck-at-zero" tests, because they are designed to exercise each gate in the part. Even for a part as complex as the Am2901, the "stuck-at" tests can be performed quickly. Less than 400 test patterns must be applied to the part to exercise every gate.
But, "stuck-at" tests make an assumption: if a gate works, then it works regardless of the state of other gates in the circuit. Each gate is treated independently, but, in the integrated circuit, no gate is an island. The performance of one gate can, in fact, depend on the states of surrounding gates, because they share common inputs or common ground lines.
These possible faults are often not tested by "stuck-at" tests, because they are not independent of the state of surrounding logic. These potential faults depend on the physical and logical construction of the circuit. They are usually called "pattern sensitivities." Pattern-sensitive faults, like the two described above,
are not something new. All digital products exhibit pattern sensitivities - even SSI. But, on simpler parts, either traditional "stuck-at" tests happen to find most of them, or the parts are easy enough to test that all possible data patterns are generated during testing. Neither of these circumstances is true for bipolar LSI. A special effort must be made to apply many data patterns to the devices to check for pattern-sensitive faults. This has been done for years with RAM patterns such as GALPAT. It must now be done with logic functions as well.
In the devices in the Am2900 Family, as with RAMs, testing all possible data patterns is not practical, but, the various MSI kinds of functions in the devices (register, ALU, multiplexer, etc.) can generally be logically isolated, and each of those functions should be checked independently for all possible data patterns. This principle works because (1) as a rule, it is possible to control the MSI functions in a 2900 part with some degree of independence, and (2) the MSI functions are usually physically separated on the die, so that a data pattern within one MSI block will not exhibit pattern sensitivity dependent on the data in another MSI block.
In the Am2901, for example, ALU tests using the two RAM ports as data sources are unlikely to be affected by the state of the data inputs or the \(Q\) register. The shift multiplexer at the input of the RAM is unlikely to be affected by the Q register or the ALU source-select multiplexers. The control logic for the ALU source multiplexers should not be affected by anything in the ALU. By applying these kinds of principles intelligently function tests can be constrained to a few thousand tests which provide a very high confidence level that the part is not subject to pattern-sensitive faults within its operating range.
As an example of the test philosophy used on these parts, the function tests for the Am2901 are described below.

\section*{Am 2901 FUNCTION TEST DESCRIPTION}

The following describes the function tests performed on the Am2901. The \(\overline{O E}\) pin is low during the entire function tests and each test gets one clock pulse.

\section*{A-Port Galpat via ALU}

These are tests in which the A-address of the 2-port RAM is tested for Galloping "ones" in a field of "zeros." During these tests, the B -address is the same as the A -address and OP code 337 is used for a write operation, while OP code 134 is used for a write operation, while OP code 134 is used for a read operation. The four shift-operation pins, \(Q_{0}, Q_{3}, R A M_{0}\) and \(R A M_{3}\), are ignored.

\section*{B-Port Galpat via ALU}

These are tests in which the B-address of the 2-port RAM is tested for Galloping "ones" in a field of "zeros." During these tests, the A -address is the inverse of the B -address and OP code 337 is used for a write operation while OP code 133 is used for a read operation. The four shift-operation pins, \(Q_{0}, Q_{3}, R A M M_{0}\) and RAM \(_{3}\), are ignored.

\section*{A-Port Galpat Bypass ALU}

These are tests in which the A-address of the 2-port RAM is tested for Galloping "ones" in a field of "zeros." During these tests, the B -address is the inverse of the A -address and OP code

THE Am2901 4-BIT MICROPROCESSOR SLICE

337 is used for a write operation while OP code 233 is used for a read operation. The four shift-operation pins, \(Q_{0}, Q_{3}, R A M_{0}\) and RAM \(_{3}\), are ignored.
Repeat 1 above by inverting the Data and Y output information on \(D_{3-0}\) and \(Y_{3-0}\). All other outputs are ignored. This performs Galloping "zeros" in a field of "ones" for the A-Port via ALU.
Repeat Item 2 above by inverting the Data and Y output information on \(D_{3-0}\) and \(Y_{3-0}\). All other outputs are ignored. This performs Galloping "zeros" in a field of "ones" for the A-Port via ALU.
Repeat Item 3 above by inverting Data and \(Y\) output information on \(D_{3-0}\) and \(Y_{3-0}\). All the other outputs are ignored. This is Galloping "zeros" in a field of "ones" for A-Port bypass ALU.

\section*{ALU Source Code}

During these tests, the A and B -addresses are at word locations preloaded with known values. The Q register is also preloaded. Then, with the ALU destination OP code \(=1\) (No-OP) and the ALU function code \(=6\) (exclusive OR), the source code is cycled through from 0-7. The function code is then modified to 7 (exclusive NOR) and the source code sequence is cycled through once more.

\section*{ALU Function Code}

During these tests, the memory is preloaded with content equal to the address. In other words, word 0 is loaded with 0 , word 1 with 1 , and so on. Then, with A -address \(=\mathrm{B}\)-address, a destination OP code of 1 (No OP), and a source OP code of 1 (A\&B Port selected), the ALU function code is cycled through the sequence of \(7,5,4,0,1,3,2,6\) for every set of A\&B address. This whole sequence is then repeated with \(A\)-address equal to the inverse of the B -address.

\section*{Arithmetic Operation \& Carry Generation}

During these tests, the memory is preloaded with content address. With OP code 105, whereby D input is added to the A-Port of the memory, the tester cycles through every possible D input added to every word in memory with carry in being both one and zero.

\section*{Q Register Operation}

During these tests, the Q register is first loaded with all zeros. Then, with \(\mathrm{Cn}=0\) and with OP code 006, whereby Q register is loaded with the sum of data input and Q-register content on every clock cycle, the device is clocked through all possible data inputs. The Cn input is then changed to a ONE, and with OP code 016 whereby \(Q\) register is loaded with the difference of Q-D. The device is clocked through all possible data input again. This checks both the add and subtract modes of the ALU, the internal-carry-lookahead circuitry and the Q-register operation.

\section*{Q Register Shifting}

During these tests, a unique string of data (11100001 010011011110) is shifted into the appropriate shift inputs. OP codes used in this group of tests are 432 for shift left, 532 for no shift, 632 for shift right and 732 for no shift.

\section*{RAM Shifting}

During these tests, A and B -address are at word 0 . A string of data (11100001010011011110) is shifted into the appropriate shift inputs. OP codes used are 434 and 533 for left shift, 634 and 733 for right shift.

\section*{IV. AVOIDING THE REJECTION OF GOOD DEVICES}

Discrepancies in testing results between the vendor and the buyer result in much irritation and substantial costs for both.

Some of the common sources of these discrepancies are discussed below.

\section*{Testing for Unspecified or "don't care" Conditions}

The data sheet (or purchase specification) defines the characteristics of the part. It is hard enough to test for everything specified without adding additional tests for unspecified parameters. If the state of an output is not specified under certain conditions, then it should not be tested.

\section*{Noise}

Many testing problems result from noise produced by the interactions of the device being tested and the test system. Typical test fixtures have lead inductances several times that of a PC board socket. This inductance, especially in the device ground path, is the source of these problems.
When the inputs to the device are changed there is a sequence of rapid changes in the devices ground currently as signals propagate through internal gates to the outputs. These appear as changes in the voltage drop across the device ground lead. This voltage drop can be as much as 2 volts across a few inches of wire. Rise times are on the order of 1 nsec and pulse widths range from 2 to 10 nsec . Output tranisient current during switching may be 50 to 100 mA . The test systems input and output reference voltages are set with respect to tester ground and are not effected by these transients. Consequently the effective input voltages to the device will vary. If the ground pin goes up 1 volt, all the inputs effectively go down 1 volt.
This must be considered in selecting levels for \(\mathrm{V}_{\mathbb{H}}\) and \(\mathrm{V}_{I H}\). The device data sheet says \(\mathrm{V}_{\mathrm{IL}}\) must be less than 0.8 V and \(\mathrm{V}_{1 H}\) more than 2.0 V . But this is as measured at the device package pins, between input and ground. This means that if the ground varies \(\pm 0.5\) volt the input levels must be \(\mathrm{V}_{\mathrm{IL}} \leqslant 0.3 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{IH}} \leqslant 2.5 \mathrm{~V}\). If this is not done, a noise pulse could, for example, make the clock input effectively go high in the middle of the clock low time, causing an extra clock pulse. A similar situation exists at the device outputs, requiring \(V_{O L}\) to be set higher, and \(V_{O H}\) lower, than the data sheet numbers. AMD uses \(\mathrm{V}_{\mathrm{IL}}=\mathrm{OV}, \mathrm{V}_{\mathrm{IH}}=3 \mathrm{~V}, \mathrm{VOL}\) \(=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2 \mathrm{~V}\) for functional tests.
Proper observations are important to the understanding and control of these problems. Small changes in timing, bypass capacitors, etc will have large effects on the noise. An oscilloscope of 200 MHz or greater bandwidth is essential. Noise voltage should be measured at the device ground pin (at the device package edge, not the bottom of the test socket). Connect the probe ground to the tester chassis. In order to see the peak noise voltage, cycle the tester through a long pattern. Trigger the scope internally from the noise waveform. Turn the trigger level slowly up until the trace is almost lost. The peak noise voltage will appear at the left side of the screen. Sweep speed should be about 10 nsec/div. Repeat for the peak of the opposite polarity.
Another useful technique is to identify a particular test pattern location which causes significant noise. Sync the oscilloscope to this test cycle. Using a two channel scope, connect one channel to an input pin and the other channel to the device ground pin. Invert the channel on the ground pin and add the two channels. The waveform will show the effective input levels.
An additional problem is introduced by I/O pins. When output load circuits are connected to these pins the tester must drive the load and the device when the pins are inputs. If the tester has a driver impedance of 50 ohms and the load supplies 16 mA into \(\mathrm{V}_{\mathrm{OL}}\), the input level produced will be 0.8 V too high. This must be compensated by further reducing the programmed \(\mathrm{V}_{\mathrm{IL}}\) for only the I/O pins. Some devices are sensitive to input voltages below ground.

\section*{Guidelines}

If the tester does not provide suitable alternate driver supplies, it may be necessary to provide resistor pullups for input-only pins.

The same ground lead inductance problems causes difficulties in DC testing. Many DC tests require some functional sequence to produce the correct device state. The input levels must be such to avoid false clocks, etc. DC tests may be used to verify input threshold levels. To do this, an output test such as \(\mathrm{V}_{\mathrm{OL}}\) or \(\mathrm{V}_{\mathrm{OH}}\) is selected where the outputs combinatorally depend on the inputs. Using non-threshold levels the appropriate input conditions are applied. The input levels are then reprogrammed to threshold levels. The outputs are then measured for \(\mathrm{V}_{\mathrm{OL}}\) or \(\mathrm{V}_{\mathrm{OH}}\). It is not possible to do the functional set-up with threshold levels, even if it is only a single line, as oscillations may occur. Switching between alternate driven supplies also may generate sufficient noise to cause problems.

\section*{AC Testing}

Many modern testers allow switching tests to be performed during the application of complex test sequences. The switching and function tests can then occur together. Unfortunately, this blurs the distinction between functional failure and switching-speed failure when a device is rejected, so, it is a good idea to do some preliminary function testing with "loose" AC limits before trying to do everything at once. When function and AC testing are combined, it is important to consider the driving conditions under which the AC parameters are tested. Switching measurements on Bipolar ICs are usually made with input levels switching between 0 V and 3.0 V (sometimes 0.4 V and 2.4 V are used). The output transition is measured at 1.5 V (sometimes at 1.3 V).

They are never specified at threshold levels (0.8 V and 2.0 V) because of noise problems.
Realistic \(A C\) tests require sequencing through many lines of test pattern to include a variety of data paterns. Unfortunately the AC accuracy of most modern logic testers is not as good as memory testers. There are often significant differences between different waveform formats. The position of an edge may depend on whether adjacent pins are switching and whether they are going up or down. This limits the accuracy of testing, especially for such parameters as hold times, where tester error usually exceeds the difference between device typical and data sheet maximum. This may be observed on an oscilloscope by cycling the tester and synchronizing the scope to a repetitive pulse, such as the device clock pin.* Do not trigger the scope on any particular tester cycle. Observing a device input on the second scope channel will show many overlapping transitions, positive and negative. The width of this band must be added to other error sources to determine tester accuracy.

\section*{Temperature Testing}

Integrated circuits are specified to operate over either the commercial range of \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) or the military range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). Standard screening procedures (from MIL-STD-883) call for \(100 \%\) testing at \(25^{\circ} \mathrm{C}\) followed by sample testing at the high and low temperature. Many users duplicate this test sequence in their incoming inspection, and some test 100\% at temperature.

Testing problems are rarely encountered at low temperatures, if care is taken to prevent ice formation on the test socket. At high temperature, difficulties may arise because of the difficulty in creating a test environment which is representative of the thermal conditions found in the system.
High temperature testing with a controlled ambient temperature is very difficult because the thermal coefficient between the package and the surrounding environment depends on humidity, rate of air flow, package color, connections to package pins, and position of surrounding devices. For testing purposes, only the case temperature can really be controlled. (Most systems' thermal engineering is also designed to control case temperatures.)

\section*{V. INCOMING INSPECTION AND \\ TESTING SUPPORT PRODUCTS}

AMD provides several products to assist in the development of incoming inspection testing for most Am2900 LSI devices. See the table on the following page for specifics by device.

\section*{Sentry Test Programs}

These are complete data sheet function, DC and AC parameter programs. They run on a Fairchild Sentry VII with low voltage test heads, 4 K local memory and SPM. Complete load board documentation is included. Programs are supplied on magnetic tape in TDX format. Source files in ASCII code on magnetic tape can be provided for those who wish to generate test programs for other testers. Test programs require a licensing agreement.

\section*{Correlation Kit}

This consists of two devices and datalog from AMD's characterization program.

\footnotetext{
*Use a sweep speed of 1nsec/div
}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline Order Code & Description \\
\hline AM29XX - SEN & Sentry Test Program \\
AM29XX - KIT & CorrelationKit \\
\hline
\end{tabular}

\section*{Test Aids for Am2900 Devices}

AMD provides Sentry Test Tapes with Loadboard Documentation and Correlation Kits to assist in the development of incoming inspection for most Am2900 LSI/VLSI devices. These test aids may be ordered directly from Advanced Micro Devices, although Sentry test tapes require a pre-signed license agreement. For further ordering information contact your local AMD Sales Office or Sales Representative.

Current status of test aids by device is given below. For more information on testing Am2900 LSI/VLSI, see the note in this section: "Guidelines on Testing Am2900 Family Devices."
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Part \\
Number
\end{tabular} & \begin{tabular}{l}
Sentry Test Program (Am29XXX - SEN) \\
(Note 1)
\end{tabular} & \begin{tabular}{l}
Correlation Kit (Am29XXX - KIT) \\
(Note 2)
\end{tabular} \\
\hline AM2901B & \(\checkmark\) & \(\checkmark\) \\
\hline AM2901C & \(\checkmark\) & \(\checkmark\) \\
\hline AM2903 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2903A & Mid-1983 & Mid-1983 \\
\hline AM2904 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2909A & \(\checkmark\) & \(\checkmark\) \\
\hline AM2910 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2910A & Planned & Planned \\
\hline AM2911A & \(\checkmark\) & \(\checkmark\) \\
\hline AM2914 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2925 & Mid-1983 & Mid-1983 \\
\hline AM2930 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2932 & Fall/1983 & Fall/1983 \\
\hline AM2940 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2942 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2950 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2950A & Planned & Planned \\
\hline AM2951 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2951A & Planned & Planned \\
\hline AM2952 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2952A & Planned & Planned \\
\hline AM2953 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2953A & Planned & Planned \\
\hline AM2960 & \(\checkmark\) & \(\checkmark\) \\
\hline AM2960A & Planned & Planned \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Part \\
Number
\end{tabular} & Sentry Test Program (Am29XXX - SEN) (Note 1) & Correlation Kit (Am29XXX - KIT) (Note 2) \\
\hline AM2964B & Mid-1983 & Mid-1983 \\
\hline AM2968 & Planned & Planned \\
\hline AM2969 & Planned & Planned \\
\hline AM2970 & Planned & Planned \\
\hline AM29112 & Planned & Planned \\
\hline AM29116 & \(\checkmark\) & \(\checkmark\) \\
\hline AM29116A & Planned & Planned \\
\hline AM29118 & Planned & Planned \\
\hline AM29203 & Mid-1983 & Mid-1983 \\
\hline AM29501 & Planned & Planned \\
\hline AM29510 & Planned & Planned \\
\hline AM29516 & Mid-1983 & Mid-1983 \\
\hline AM29516A & Planned & Planned \\
\hline AM29517 & Mid-1983 & Mid-1983 \\
\hline AM29517A & Planned & Planned \\
\hline AM29520 & Mid-1983 & Mid-1983 \\
\hline AM29521 & Mid-1983 & Mid-1983 \\
\hline AM29526 & Planned & Planned \\
\hline AM29527 & Planned & Planned \\
\hline AM29528 & Planned & Planned \\
\hline AM29529 & Planned & Planned \\
\hline AM29540 & Planned & Planned \\
\hline AM29705 & \(\checkmark\) & \(\checkmark\) \\
\hline AM29705A & Mid-1983 & Mid-1983 \\
\hline AM29707 & Mid-1983 & Mid-1983 \\
\hline
\end{tabular}

Notes: 1. Sentry Test Programs - these are complete data sheet function, DC and AC parameter programs. They run on a Fairchild Sentry VII with low voltage test heads, 4 K local memory and SPM. Complete load board documentation is included. Programs are supplied on magnetic tape in TDX format. Source files in ASCII code on magnetic tape can be provided for those who wish to generate test programs for other testers. Test programs require a licensing agreement.
2. Correlation Kit - consists of two devices and datalog from AMD's characterization program.

\title{
IMOX \({ }^{\text {T }}\) Reliability Report
}

\section*{Advanced Micro Devices}

\section*{INTRODUCTION}

This report is a comprehensive summary of reliability test data accumulated on AMD's IMOX process. IMOX is an acronym for ion-IMplanted/micro-OXide isolation. AMD presently uses this wafer fabrication process on all new Bipolar products, including Bipolar Memory, Interface, Logic and Microprocessor devices. We present not only the statistical data, but also discuss the process itself, typical failure mechanisms, and the test methodology behind the data. The results show experimental and statistical proof that the AMD IMOX process ensures system designers of long life and highly reliable Bipolar devices.
In line with Advanced Micro Devices' commitment to provide customers with high quality, high performance devices, we will continue to evaluate devices for reliability through ongoing HTOL (high temperature operating life) testing. This report will be updated at regular intervals as new reliability data is accumulated.

\section*{PROCESS}

The IMOX process utilizes ion-implanted transistors, oxide isolation and dual-layer metal to create fast, high performance Bipolar devices that consume less power as well.

IMOX processing allows for reduction of transistor geometries and the amount of unused space surrounding a transistor, which means that individual transistors can be built significantly smal-

Figure 1. Normalized Distributions of STTL/LSI Malfunctions
ler and closer together. Since decreased geometries are obtained without a reduction in photolithographic line width, no increase in the process sensitivity occurs. Speed is one of the most vital characteristics of a Bipolar device. With the tighter layout and reduced capacitances of IMOX processing, we have improved.the speed on many devices by as much as \(25-30 \%\). Tighter layouts have also allowed us to utilize previously unavailable die space for increased complexity. This is represented in two new AMD Bipolar VLSI devices, the Bipolar Microprocessor, Am29116 and the \(16 \times 16\) Parallel Multiplier, Am29517.

\section*{FAILURE MECHANISMS}

Failures in integrated circuits are frequently categorized by the phase of manufacturing or the component of the part's structure that is associated with the determined failure mechanism. Failure distributions often are presented as pie charts with slices of the pie named for these categories (see Figures 1 and 2). The failure category distribution percentages are roughly those expected for Bipolar IMOX devices. Each of these categories may contain several distinct failure mechanisms - the basic physical or chemical process that results in a failure. The external indicators of a failure (the failure mode) are generally electrical in nature: opens, shorts, non-functional or parametric anomalies. There may be different mechanisms indicated by a single failure mode. The following is a discussion of the commonly observed failure mechanisms in integrated circuits.

Figure 2. AMD Observed Distributions of STTL/LSI Malfunctions

\section*{IMOX Reliability Report}

\section*{DIFFUSION}

Diffusion related mechanisms generally cause marginal device parameters which effect the performance of the device in certain operationally extreme situations. Electrical stresses induced during operation at elevated temperatures are effective in screening marginal diffusion problems. The activation energy associated with this general mechanism is difficult to assign without knowing more about the exact process, but it can be assumed to be 1.0 eV for other than the dielectric breakdown.

\section*{OXIDE}

Oxide related faults can be found in the thermally grown oxide regions or in the deposited passivation layers. Defects in the latter sometimes lead to chemical attack of the underlying layers if corrosive elements are present. Activation energies for these types of defects are very large (\(>1.0 \mathrm{eV}\)). Metal-to-metal or metal-to-semiconductor breakdown can also occur. These are often caused by pinholes, contaminants in the oxide or with photolithographic defects. Though the time dependence for oxide failure is more voltage than temperature related, life-tests are effective in electrically stressing oxide imperfections.

\section*{BULK}

Bulk (silicon) defects are those associated with the silicon wafer or die itself, such as crystal imperfections, resistivity gradients, expitaxial layer defects, damage to the die, and foreign material percipitates. These defects in themselves do not change with time at even the highest die operating temperatures, but they can become part of the active region of the device when built-in charge changes occur. This failure mode is very rare. Of the total failure rate percentage, this type of failure occurs less than \(1 \%\) of the time.

\section*{SURFACE}
lonic contamination inducing inversion and channeling are the most frequently detected surface related mechanisms. At elevated temperatures, ions become mobile in or on the oxide covering the die. If the device is powered, the ions will be attracted to high field regions that exist near reverse biased junctions. This accumulation of charge can induce a surface layer (channel) of a conduction type opposite to that of the adjacent region (inversion), i.e., an N -type channel on a P -type region. Additional modes of failure are altered parasitic device characteristics, parasitic capacitance and "leaky" bipolar junction characteristics. The effects of built-in charge may be very slow in appearing, showing up only after many hours under bias at elevated temperatures. The activation energy associated with charge migration in silicon dioxide has been found to be 0.5 to 1.0 eV .

\section*{METALLIZATION}

A familiar mechanism of metallization-related failures is metal migration. When high current densities on the order of hundreds of thousands of amps per square centimeter occur at elevated temperatures, the metal (aluminum) atoms are carried along by the electron flow, causing migration of the metallization opposite to the direction of current flow which results in wear out. This may be in the form of disconnects, breaks, metal lead opens, etc. AMD's design rules for a metallization stripe cross section provide for a maximum current density of 200,000 amperes per square centimeter, well within the MIL-M-38510 maximum allowable current density for glassivated aluminum conductors. The activation energy of electromigration has been determined to be 0.5 to 1.0 eV .

Open metallization detected in failed devices may be due to metal migration. The high current condition required to cause metal migration is often found to be the result of a defective circuit element. Photolithographic or masking defects sometimes result in reduction of metallization cross-section which is sufficient to allow metal migration to occur. The mechanism by which a severely scratch-damaged metal stripe opens in a very localized area is probably metal migration. Open or short conditions will be easily detected during internal visual inspection. Subtle defects, such as reduced cross-sectional area, can be detected by a dynamic life test at high temperature.

\section*{INTERCONNECT, WIREBOND AND \\ PACKAGE SEAL/LEAD DEFECTS}

The interconnect category includes failures that result from the "flying" lead being damaged by nicking, by work-stressing during bonding and by handling subsequent to the wirebond operation. The wirebond category includes all types of bond failures, including intermetallic formation. The package seal/lead defect category includes hermeticity failures and hermeticity-related failures such as corrosion. None of these failure types are found in a life-test program. They are controlled by material selection, receiving inspection and extensive control of the assembly process. The success at these controls is verified by examining the results of quality conformance testing for military and "Hi-Rel" customers, specifically, the group \(B\) and group \(D\) tests (MIL-STD-883, method 5005). The group B test (lot acceptance test) includes a wirebond strength test. The group \(D\) test is a purepackage quality conformance test and includes tests for lead integrity, resistance to thermal shock, temperature cycling, moisture resistance, mechanical shock, vibration, centrifuge, and salt atmosphere exposure. Group B and D testing is periodically performed by AMD and is available for inspection.

\section*{ACCELERATED TESTING}

Semiconductor devices fail as a consequence of certain physical, metallurgical and chemical processes, all of which have temperature-dependent rates. The rates may also be potential or current dependent, but these dependencies are generally second-order effects. Users of electronic components are aware of the thermal effect and have frequently borrowed the organic chemist's rule of thumb, that reaction rates double for a \(10^{\circ} \mathrm{C}\) temperature rise, to estimate the effects of high temperature life testing. This procedure does not provide the proper acceleration factor if applied for more than a decade or two of temperature and is quite inaccurate in estimating a \(70^{\circ} \mathrm{C}\) equivalence for a \(125^{\circ} \mathrm{C}\) life test.
For most processes causing semiconductor failures, the Arrhenius equation enables us to determine realistic failure rates. Temperature variations and their corresponding reaction rates can also be calculated for semiconductor devices. The following equation can be used over the entire temperature range:
\[
\lambda(T)=C_{1} \exp \left(-E_{a} / K T\right)
\]
where:
\[
\begin{aligned}
\lambda(\mathrm{T})= & \text { device failure rate (temperature-dependent) } \\
\mathrm{T}= & \text { absolute temperature }\left({ }^{\circ} \mathrm{K}\right) \\
\mathrm{K}= & \text { Boltzmann's constant }\left(8.62 \times 10^{-5} \mathrm{eV} /{ }^{\circ} \mathrm{K}\right) \\
\mathrm{E}_{\mathrm{a}}= & \text { activation energy of the individual device failure } \\
& \text { mechanisms }(\mathrm{eV}) \\
\mathrm{C}_{1}= & \text { a constant }
\end{aligned}
\]

The temperatures used are junction temperatures, and the ability to use higher temperatures to achieve acceleration is constrained by the maximum permissible junction temperature under bias. Junction temperatures can be computed using power dissipation and package thermal characteristics. The following equation shows how those temperatures were derived:
\[
T_{J}=T_{A}+\theta J A\left[\left(\mathrm{ICC}_{\max }\right)\left(\mathrm{V}_{\mathrm{CC}}^{\text {max }} \text {) }\right)\right]
\]

To determine the acceleration factor for temperature, \(T_{2}\), with reference to another temperature, \(\mathrm{T}_{1}\), simply divide the failure rate equations for the two temperatures:
\[
\text { A.F. }=\frac{\lambda\left(T_{1}\right)}{\lambda\left(T_{2}\right)}=\exp \left[\frac{E_{a}}{K}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\right]
\]
where:
\[
\begin{array}{ll}
\text { A.F. } & =\text { acceleration factor } \\
\lambda\left(\mathrm{T}_{1}\right) / \lambda\left(\mathrm{T}_{2}\right) & =\text { ratio of reaction rates (failure) }
\end{array}
\]

This equation contains one constant whose value is not known from physical theory: the activation energy, \(\mathrm{E}_{\mathrm{a}}\). Activation energy reflects the temperature dependence of a particular failure mechanism or group of mechanisms. It has been determined experimentally for some specific processes. Various investigators disagree as to the exact value of \(\mathrm{E}_{\mathrm{a}}\) because such experiments are difficult to conduct and spurious failures occur to cloud the results. Table 1 shows the range of these values as determined by experimentation.

TABLE 1.

\section*{ACTIVATION ENERGIES FOR CERTAIN PROCESSES}
\begin{tabular}{|lr|}
\hline Surface Contamination & \(1.2-1.40 \mathrm{eV}\) \\
Electromigration & \(0.5-1.00 \mathrm{eV}\) \\
Oxide Defects (dielectric breakdown) & \(0.3-0.40 \mathrm{eV}\) \\
Corrosion & \(0.3-0.60 \mathrm{eV}\) \\
Intermetallic Growth (gold aluminum) & \(1.0-1.05 \mathrm{eV}\) \\
Slow Trapping & 1.30 eV \\
\hline
\end{tabular}

\section*{RELIABILITY TEST STUDY}

The approach used in this report for evaluating reliability involves the concept of failure rates as a function of time. Life expectancy of devices can be categorized into three distinct intervals:
a. Infant Mortality
b. Operating Range
c. Old Age Mortality

An example of this distribution is shown in Figure 4. The results of this study are from long-term life tests. These tests are performed for 1000 hours or more without an initial burn-in. Therefore, "Infant Mortalities" are included in the failure rates of the units tested. With the inclusion of a burn-in process, the failure rates of the IMOX devices are expected to be less than the failure rates calculated in this report.

An Arrhenius plot may be used to predict the effect of temperature shift for a particular population at a given average activation energy. This plot has been set up around a 1000 -hour test at \(125^{\circ} \mathrm{C}\) for two activation energies, 1.0 eV and 0.466 eV . Equivalent test times of other temperatures may be determined for either a 1.0 eV or a 0.466 eV process. For example, an equivalent test time for 0.466 eV at any temperature may be determined by simply picking an appropriate temperature and reading the number of hours corresponding to the intersection of the temperature and the 0.466 eV line.

Figure 3. Arrhenius Plot

Figure 4. Life Expectancy of Devices

\section*{IMOX Reliability Report}

Table 2 shows that units were subjected to HTOL (High Temperature Operating Life) testing at \(125^{\circ} \mathrm{C}\) and \(150^{\circ} \mathrm{C}\) per MIL-STD-883, method 1005 and 1015, conditions C and D. For an example of an HTOL circuit, see Figure 5. Data was collected on the SN54LS374A and the Am27S184/185 (cerdip and plastic) devices. The testing yielded \(10,864,000\) device hours worth of data. In total, 20 failures were recorded indicating a failure rate range (at \(60 \%\) confidence level) of \(0.183-0.50\) per 1000 hours at \(125^{\circ} \mathrm{C}\) using the chi-squared distribution.
This table also includes corresponding calculated failure rates at lower temperatures using an activation energy level of 1.0 eV . The failure rate for the IMOX processed SN54LS374A is less than \(.0025 \%\) per Khr at \(70^{\circ} \mathrm{C}\) (cerdip) and less than .0045 per Khr at \(70^{\circ} \mathrm{C}\) (plastic). The failure rate for the Am27S184/185 is less than .0120 per Khr. The lower temperatures \(\left(70^{\circ} \mathrm{C}\right.\) and \(25^{\circ} \mathrm{C}\)) are chosen to give users reliability predictions at the high end of the commercial operating temperature range and at the average "room temperature" operating temperature of a commercial system.
Other IMOX Bipolar devices which are presently undergoing HTOL testing are: Am2901C, Am29116 and Am29516. After recently completing 1000 cumulative hours of dynamic life testing (condition D) at \(125^{\circ} \mathrm{C}\), the 94 -piece lot of Am2901C's resulted in a zero reject rate. Preliminary data has been gathered on each device type. At this time, statistically calculated rates would not accurately reflect the products' failure rate. After further testing is complete, failure rates will be calculated for each product and supplied in an addendum to this report.

\section*{SUMMARY}

This report summarizes the actual reliability testing of AMD's proprietary process, IMOX. The statistical data and charts are presented to provide accurate comparative information. The demonstrated failure rates of the devices at \(70^{\circ} \mathrm{C}\) reflect the high reliability of IMOX processed products. The design rules for IMOX processing are the same for all Bipolar products. Therefore, similar testing performed on other Bipolar devices, i.e., Am29116, would also result in very low failure rates as seen in this study.

Analysis of the various failures have shown that the device failures were of a random mode and their degree of occurrence was inconsistent. No inherent process failure mechanism has been found in the IMOX process. In conclusion, IMOX is the superior method for Bipolar wafer fabrication and for building high reliability into AMD devices.

POWER SUPPLY SETTINGS
\begin{tabular}{|c|c|c|}
\hline Supply No. & Signal & Voltage \\
\hline 1 & \(\mathrm{~V}_{\mathrm{BB}}\) & \(+5.0 \mathrm{~V} \pm\) \\
\hline 2 & \(\mathrm{~V}_{\mathrm{CC}}\) & \(+5.0 \mathrm{~V} \pm\) \\
\hline
\end{tabular}

Conditions: 1. Pin 10: Device Ground
2. Pin 11: \(\mathrm{CP}_{1}-100 \mathrm{KHz} \pm 10 \%\) High levels: +3.0 V to +5.0 V Low levels: -0.2 V to -1.2 V

MIL-STD-883 Method 1015 Condition C
C - Steady state, power and reverse bias. inputs reverse biased.
This circuit was used for testing the SN54LS374A.

Figure 5. HTOL Circuit Configuration

TABLE 2. IMOX RELIABILITY OPERATING LIFE TEST DATA SUMMARY

Notes: 1. All calculated failure rates and Fits Nos. use the Arrhenius Equation with 1.0 VeV activation energy.
2. Fits \(=\) Failure in \(10^{9} \mathrm{hrs}\) at \(70^{\circ} \mathrm{C}\) and \(25^{\circ} \mathrm{C}\) using a \(60 \%\) confidence level.

\section*{References}

IMOX Reliability Report by Beverly Henry. In preparation of this report, Chris King, Wisty Olsson, Ann Rosser, Chris Schmidt and Pauline Seales provided valuable assistance.

\section*{Gate Counts and Die Sizes by Device}

The following data is useful for hybrid design and for MIL-STD reliability calculations. The gate counts are only an approximation for LSI devices because the circuit implementation often uses multi-level gates and unique logic structures, not just NAND and NOR gates.

Am25S/25LS
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Equivalent Number of Gates (Approximate) & Die Area
\[
\text { (in Mils }{ }^{2}=.001 \times .001 \mathrm{in} . \text {) }
\] & Die Dimensions (in Mils = . 001 in.) \\
\hline AM25S05 & 86 & 9680 & \(88 \times 110\) \\
\hline AM25LS07 & 26 & 6300 & \(75 \times 84\) \\
\hline AM25S07 & 26 & 5810 & \(70 \times 83\) \\
\hline AM25LS08 & 18 & 4575 & \(75 \times 61\) \\
\hline AM25S08 & 18 & 4891 & \(67 \times 73\) \\
\hline AM25L.S09 & 30 & 4575 & \(75 \times 61\) \\
\hline AM25S09 & 30 & 4891 & \(67 \times 73\) \\
\hline AM25S10 & 29 & 3696 & \(56 \times 66\) \\
\hline AM25LS14 & \multicolumn{3}{|c|}{Replaced by Am25LS14A} \\
\hline AM25LS14A & 167 & 7980 & \(84 \times 95\) \\
\hline AM25LS15 & 92 & 9025 & \(95 \times 95\) \\
\hline AM25S18, & 30 & 6083 & \(77 \times 79\) \\
\hline AM25LS22 & 82 & 10,752 & \(96 \times 112\) \\
\hline AM25LS23 & 88 & 10,752 & \(96 \times 112\) \\
\hline AM25S557 & 1115 & 28,215 & \(171 \times 165\) \\
\hline AM25S558 & 1115 & 28,215 & \(171 \times 165\) \\
\hline AM25LS2513 & 33 & 6970 & \(82 \times 85\) \\
\hline AM25LS2517 & 89 & 9828 & \(91 \times 108\) \\
\hline AM25LS2518 & 30 & 8217 & \(83 \times 99\) \\
\hline AM25LS2519 & 59 & 8217 & \(83 \times 99\) \\
\hline AM25LS2520 & 84 & 8880 & \(80 \times 111\) \\
\hline AM25LS2521 & 26 & 4662 & \(63 \times 74\) \\
\hline AM25LS2535 & 52 & 7920 & \(80 \times 99\) \\
\hline AM25LS2536 & 66 & 8316 & \(84 \times 99\) \\
\hline AM25LS2537 & 42 & 7776 & \(81 \times 96\) \\
\hline AM25LS2538 & 34 & 7776 & \(81 \times 96\) \\
\hline AM25LS2539 & 38 & 7776 & \(81 \times 96\) \\
\hline AM25LS2548 & 18 & 7776 & \(81 \times 96\) \\
\hline AM25LS2568 & 87 & 8549 & \(87 \times 103\) \\
\hline AM25LS2569 & 79 & 8549 & \(87 \times 103\) \\
\hline
\end{tabular}

Gate Counts and Die Sizes
Am26S/26LS
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Equivalent Number of Gates (Approximate) & Die Area
\[
\text { (in Mils } \left.{ }^{2}=.001 \times .001 \mathrm{in} .\right)
\] & Die Dimensions (in Mils = . 001 in.) \\
\hline AM26S02 & N/A & 4402 & \(62 \times 71\) \\
\hline AM26S10 & 9 & 4425 & \(59 \times 75\) \\
\hline AM26S.11 & 13 & 4425 & \(59 \times 75\) \\
\hline AM26S12 & 9 & 5112 & \(71 \times 72\) \\
\hline AM26S12A & 9 & 5112 & \(71 \times 72\) \\
\hline AM26LS27 & \multicolumn{3}{|c|}{In development} \\
\hline AM26LS28 & \multicolumn{3}{|c|}{In development} \\
\hline AM26LS29 & 6 & 6580 & \(70 \times 94\) \\
\hline AM26LS30 & 6 & 6580 & \(70 \times 94\) \\
\hline AM26LS31 & 10 & 5628 & \(67 \times 84\) \\
\hline AM26LS32 & 6 & 4704 & \(56 \times 84\) \\
\hline AM26LS32B & 6 & 4704 & \(56 \times 84\) \\
\hline AM26LS33 & 6 & 4704 & \(56 \times 84\) \\
\hline AM26LS34 & 6 & 4704 & \(56 \times 84\) \\
\hline AM26LS38 & 72 & 6208 & \(64 \times 97\) \\
\hline
\end{tabular}

\section*{Am2900}
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Equivalent Number of Gates (Approximate) & Die Area
\[
\text { (in Mils }{ }^{2}=.001 \times .001 \text { in.) }
\] & Die Dimensions (in Mils = . 001 in .) \\
\hline AM2901 & \multicolumn{3}{|c|}{Replaced by Am2901B and Am2901C} \\
\hline AM2901A & \multicolumn{3}{|c|}{Replaced by Am2901B and Am2901C} \\
\hline AM2901B & 538 & 14,976 & \(117 \times 128\) \\
\hline AM2901C & 550 & 15,990 & \(130 \times 123\) \\
\hline AM2902 & \multicolumn{3}{|c|}{Replaced by Am2902A} \\
\hline AM2902A & 19 & 4154 & \(62 \times 67\) \\
\hline AM2903 & 630 & 32,111 & \(163 \times 197\) \\
\hline AM2903A & 752 & 36,808 & \(172 \times 214\) \\
\hline AM2904 & 283 & 22,540 & \(140 \times 161\) \\
\hline AM2905 & 49 & 10,400 & \(80 \times 130\) \\
\hline AM2906 & 56 & 10,400 & \(80 \times 130\) \\
\hline AM2907 & 52 & 9064 & \(88 \times 103\) \\
\hline AM2908 & 52 & 9064 & \(88 \times 103\) \\
\hline AM2909 & \multicolumn{3}{|c|}{Replaced by Am2909A} \\
\hline AM2909A & 225 & 6831 & \(69 \times 99\) \\
\hline AM2910 & 736 & 32,980 & \(170 \times 194\) \\
\hline AM2910A & \multicolumn{3}{|c|}{In development} \\
\hline AM2911 & \multicolumn{3}{|c|}{Replaced by Am2911A} \\
\hline AM2911A & 221 & 6664 & \(68 \times 98\) \\
\hline AM2912 & 9 & 4425 & \(59 \times 75\) \\
\hline AM2913 & 33 & 6970 & \(82 \times 85\) \\
\hline AM2914 & - 335 & 24,871 & \(133 \times 187\) \\
\hline AM2915A & 49 & 9620 & \(74 \times 130\) \\
\hline AM2916A & 56 & 9620 & \(74 \times 130\) \\
\hline AM2917A & 52 & 9620 & \(74 \times 130\) \\
\hline AM2918 & 30 & 6083 & \(77 \times 79\) \\
\hline
\end{tabular}

Am2900 (Cont.)
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Equivalent Number of Gates (Approximate) & Die Area
\[
\text { (in Mils }{ }^{2}=.001 \times .001 \text { in.) }
\] & Die Dimensions (in Mils = . 001 in .) \\
\hline AM29LS18 & 30 & 8217 & \(83 \times 99\) \\
\hline AM2919 & 59 & 8217 & \(83 \times 99\) \\
\hline AM2920 & 84 & 8880 & \(80 \times 111\) \\
\hline AM2921 & 34 & 7776 & \(81 \times 96\) \\
\hline AM2922 & 52 & 7920 & \(80 \times 99\) \\
\hline AM2923 & 18 & 4288 & \(64 \times 67\) \\
\hline AM2924 & 17 & 4550 & \(65 \times 70\) \\
\hline AM2925 & 120 & 11,834 & \(97 \times 122\) \\
\hline AM2926 & 10 & 5278 & \(58 \times 91\) \\
\hline AM2927 & 72 & 12,096 & \(87 \times 144\) \\
\hline AM2928 & 95 & 12,096 & \(87 \times 144\) \\
\hline AM2929 & 10 & 5278 & \(58 \times 91\) \\
\hline AM2930 & 548 & 26,600 & \(133 \times 200\) \\
\hline AM2932 & 521 & 26,600 & \(133 \times 200\) \\
\hline AM2940 & 415 & 32,037 & \(177 \times 181\) \\
\hline AM2942 & 415 & 32,037 & \(177 \times 181\) \\
\hline AM2946 & 18 & 6141 & \(69 \times 89\) \\
\hline AM2947 & 18 & 6141 & \(69 \times 89\) \\
\hline AM2948 & 18 & 6141 & \(69 \times 89\) \\
\hline AM2949 & 18 & 6141 & \(69 \times 89\) \\
\hline AM2950 & 175 & 14,766 & \(107 \times 138\) \\
\hline AM2950A & \multicolumn{3}{|c|}{In development} \\
\hline AM2951 & 175 & 14,766 & \(107 \times 138\) \\
\hline AM2951A & \multicolumn{3}{|c|}{In development} \\
\hline AM2952 & 102 & 14,873 & \(107 \times 139\) \\
\hline AM2952A & \multicolumn{3}{|c|}{In development} \\
\hline AM2953 & 102 & 14,873 & \(107 \times 139\) \\
\hline AM2953A & \multicolumn{3}{|c|}{In development} \\
\hline AM2954 & 50 & 7968 & \(96 \times 83\) \\
\hline AM2955 & 50 & 7968 & \(96 \times 83\) \\
\hline AM2956 & 50 & 7854 & \(66 \times 119\) \\
\hline AM2957 & 50 & 7854 & \(66 \times 119\) \\
\hline AM2958 & 10 & 5369 & \(59 \times 91\) \\
\hline AM2959 & 10 & 5369 & \(59 \times 91\) \\
\hline AM2960 & 450 & 13,056 & \(102 \times 128\) \\
\hline AM2960A & \multicolumn{3}{|c|}{In development} \\
\hline AM2961 & 82 & 8874 & \(102 \times 87\) \\
\hline AM2962 & 74 & 8874 & \(102 \times 87\) \\
\hline AM2964B & 170 & 22,308 & \(156 \times 143\) \\
\hline AM2965 & 10 & - 5640 & \(94 \times 60\) \\
\hline AM2966 & 10 & 5640 & \(94 \times 60\) \\
\hline AM2968 & \multicolumn{3}{|c|}{In development} \\
\hline AM2969 & \multicolumn{3}{|c|}{In development} \\
\hline AM2970 & \multicolumn{3}{|c|}{In development} \\
\hline AM29112 & \multicolumn{3}{|c|}{In development} \\
\hline AM29116 & 2500 & 78,061 & \(251 \times 311\) \\
\hline AM29116A & \multicolumn{3}{|c|}{In development} \\
\hline
\end{tabular}

Gate Counts and Die Sizes
Am2900 (Cont.)
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Equivalent Number of Gates (Approximate) & Die Area
\[
\text { (in Mils² = . } 001 \times .001 \mathrm{in} . \text {) }
\] & Die Dimensions (in Mils = . 001 in .) \\
\hline AM29203 & 752 & 36,808 & \(172 \times 214\) \\
\hline AM29501 & 1000 & 64,158 & \(289 \times 222\) \\
\hline AM29510 & . & In development & \\
\hline AM29516 & 2100 & 55,500 & \(250 \times 222\) \\
\hline AM29516A & & In development & - \\
\hline AM29517 & 2100 & 55,500 & \(250 \times 222\) \\
\hline AM29517A & & In development & \\
\hline AM29520 & 362 & 15,327 & \(117 \times 131\) \\
\hline AM29521 & 362 & 15,327 & \(117 \times 131\) \\
\hline AM29526 & N/A & - N/A & N/A \\
\hline AM29527 & N/A & N/A & N/A \\
\hline AM29528 & N/A & N/A & N/A \\
\hline AM29529 & N/A & N/A & N/A \\
\hline AM29540 & 1125 & N/A & N/A \\
\hline AM29705 & 258 & 13,056 & \(102 \times 128\) \\
\hline AM29705A & 206 & 9984 & \(104 \times 96\) \\
\hline AM29707 & 207 & 9984 & \(104 \times 96\) \\
\hline AM29803A & N/A & N/A & N/A \\
\hline AM29806 & 42 & 6468 & \(66 \times 98\) \\
\hline AM29809 & 42 & 6468 & \(66 \times 98\) \\
\hline AM29811A & N/A & N/A & N/A \\
\hline AM29818 & 152 & 11,328 & \(96 \times 118\) \\
\hline AM29821 & 72 & 5376 & \(64 \times 84\) \\
\hline AM29822 & 72 & 5376 & \(64 \times 84\) \\
\hline AM29823 & 68 & 5376 & \(64 \times 84\) \\
\hline AM29824 & 68 & 5376 & \(64 \times 84\) \\
\hline AM29825 & 61 & 5376 & \(64 \times 84\) \\
\hline AM29826 & 61 & 5376 & \(64 \times 84\) \\
\hline AM29827 & 11 & N/A & N/A \\
\hline AM29828 & 11 & N/A & N/A \\
\hline AM29833 & \multicolumn{3}{|c|}{In development} \\
\hline AM29834 & \multicolumn{3}{|c|}{In development} \\
\hline AM29841 & 52 & 5376 & \(84 \times 64\) \\
\hline AM29842 & 52 & 5376 & \(84 \times 64\) \\
\hline AM29843 & 49 & 5376 & \(84 \times 64\) \\
\hline AM29844 & 49 & 5376 & \(84 \times 64\) \\
\hline AM29845 & 44 & 5376 & \(84 \times 64\) \\
\hline AM29846 & 44 & 5376 & \(84 \times 64\) \\
\hline AM29853 & \multicolumn{3}{|c|}{In development} \\
\hline AM29854 & \multicolumn{3}{|c|}{In development} \\
\hline AM29861 & 22 & N/A & N/A \\
\hline AM29862 & 22 & N/A & N/A \\
\hline AM29863 & 20 & N/A & N/A \\
\hline AM29864 & 20 & N/A & N/A \\
\hline
\end{tabular}

8XXX MOS MPU Support
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Equivalent Number of Gates (Approximate) & Die Area
\[
\text { (in Mils² }=.001 \times .001 \mathrm{in} . \text {) }
\] & Die Dimensions (in Mils = . 001 in .) \\
\hline AM8120 & 84 & 8880 & \(80 \times 111\) \\
\hline AM8127 & 135 & 8624 & \(98 \times 88\) \\
\hline AM8163 & 350 & 28,860 & \(185 \times 156\) \\
\hline AM8167 & 350 & 28,860 & \(185 \times 156\) \\
\hline AM8212 & N/A & 10,192 & \(91 \times 112\) \\
\hline AM8216 & 10 & 5940 & \(66 \times 90\) \\
\hline AM8224 & 47 & 7140 & \(85 \times 84\) \\
\hline AM8226 & 10 & 5940 & \(66 \times 90\) \\
\hline AM8228 & N/A & 14,960 & \(110 \times 136\) \\
\hline AM8238 & N/A & 14,960 & \(110 \times 136\) \\
\hline
\end{tabular}

\section*{Package Material Configurations}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|c|}{Multilayer Ceramic} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Ceramic Cerdip}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Plastic}} \\
\hline & \multicolumn{2}{|l|}{Brazed Packages} & Chip Carrier & & & & \\
\hline Package Body Material & \multicolumn{2}{|l|}{90\% Alumina (Min)} & 90\% Alumina (Min) & \multicolumn{2}{|l|}{90\% Alumina (Min)} & \multicolumn{2}{|l|}{Novolac Epoxy} \\
\hline Die Attach Pad Metallization & Gold & & Gold & Gold & \begin{tabular}{l}
Silver \\
Palladium
\end{tabular} & Gold & Silver \\
\hline Die Attach Material & Gold/Silicon & & Gold/Silicon & Gold/ Silicon & Gold & Gold/ Silicon & \begin{tabular}{l}
Silver \\
Epoxy
\end{tabular} \\
\hline Die Attach Temperature & \(440^{\circ} \mathrm{C}\) Max & & \(440^{\circ} \mathrm{C} \mathrm{Max}\) & \(440^{\circ} \mathrm{C} \mathrm{M}\) & & \(440^{\circ} \mathrm{C}\) Max & \begin{tabular}{l}
\(200^{\circ} \mathrm{C}\) \\
(Curing Temp)
\end{tabular} \\
\hline Bond Finger Metallization & \multicolumn{2}{|l|}{Gold} & Gold & \multicolumn{2}{|l|}{Aluminum} & \multicolumn{2}{|l|}{Gold or Silver} \\
\hline Bonding Wire & \multicolumn{2}{|l|}{Aluminum \(/ 1 \%\) Silicon} & Aluminum/1\% Silicon & \multicolumn{2}{|l|}{Aluminum \(/ 1 \%\) Silicon} & \multicolumn{2}{|l|}{Gold} \\
\hline Bonding Method & \multicolumn{2}{|l|}{Ultrasonic} & Ulitrasonic & \multicolumn{2}{|l|}{Ultrasonic} & \multicolumn{2}{|l|}{Ball-bonding} \\
\hline Seal Ring Metallization & \multicolumn{2}{|l|}{Gold} & Gold & \multicolumn{2}{|l|}{None} & \multicolumn{2}{|l|}{N/A} \\
\hline Seal Material & Gold/Tin & Lead/Tin/ Silver & Gold/Tin & \multicolumn{2}{|l|}{Vitreous Glass} & \multicolumn{2}{|l|}{N/A} \\
\hline Lid Material & \begin{tabular}{l}
Alloy 42 \\
(Gold Plated)
\end{tabular} & \begin{tabular}{l}
Alloy 42 \\
Tin Plated
\end{tabular} & Alloy 42 (Gold Plated) & \multicolumn{2}{|l|}{90\% Alumina (Min)} & \multicolumn{2}{|l|}{N/A} \\
\hline Seal Temperature & \multicolumn{2}{|l|}{\(370^{\circ} \mathrm{C}\) Max} & \(370^{\circ} \mathrm{C}\) Max & \multicolumn{2}{|l|}{\(470^{\circ} \mathrm{C} \mathrm{Max}\)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(175^{\circ} \mathrm{C}\) Max \\
(Mold Temperature)
\end{tabular}} \\
\hline Seal Ambient & \multicolumn{2}{|l|}{Nitrogen} & Nitrogen & \multicolumn{2}{|l|}{Air} & \multicolumn{2}{|l|}{N/A} \\
\hline Lead Material & \multicolumn{2}{|l|}{Alloy 42} & N/A & \multicolumn{2}{|l|}{Alloy 42} & Alloy 42 & Copper \\
\hline Lead Finish & Gold & Tin & N/A & \multicolumn{2}{|l|}{Tin} & \multicolumn{2}{|l|}{Solder} \\
\hline
\end{tabular}

\title{
Thermal Characterization of Packaged Devices
}

\section*{AMD Technical Report TR-202 by J.L. Hayward}

\section*{DEFINITION OF THERMAL RESISTANCE}

The reliability of an integrated circuit is largely dependent on the maximum temperature which the device will attain during operation. Because the stability of a semiconductor junction declines with increasing temperature, knowledge of the thermal properties of the packaged device becomes an important factor during device design. In order to increase the operating lifetime of a given device, the junction temperatures must be minimized. This demands knowledge of the thermal resistance of the completed assembly and specification of the conditions in which the device will function properly. As devices become both smaller and more complex and the requirement for high speed operation becomes more important, heat dissipation will become an ever more critical parameter.
Thermal resistance is defined as the temperature rise per unit power dissipation above some referenced condition. The unit of measure is typically \({ }^{\circ} \mathrm{C} /\) watt. The relationship between junction temperature and thermal resistance is given by:
\[
\begin{equation*}
T_{j}=T_{x}+P_{d} R_{\theta J X} \tag{1}
\end{equation*}
\]
where \(\mathrm{T}_{\mathrm{j}}=\) junction temperature
\(T_{\mathrm{x}}=\) reference temperature
\(\mathrm{P}_{\mathrm{d}}=\) power dissipation
\(\mathrm{R}_{\theta \mathrm{JX}}=\) thermal resistance
\(X \quad=\) some defined test condition.
In general, one of three conditions is defined for measurement of thermal resistance:
\begin{tabular}{|c|c|}
\hline \(\mathrm{R}_{\text {өJC }}\) & - thermal resistance measured with reference to the temperature at some specified point on the package surface. \\
\hline \(\mathrm{R}_{\theta \mathrm{JA}}\) (still air) & - thermal resistance measured with respect to the temperature of a specified volume of still air. \\
\hline \(\mathrm{R}_{\theta \mathrm{JA}}\) (moving air) & - thermal resistance measured with respect to the temperature of air moving at a specified velocity. \\
\hline \multicolumn{2}{|l|}{The relationship between \(R_{\theta J C}\) and \(R_{\theta J A}\) is} \\
\hline & \(\mathrm{R}_{\theta J \mathrm{JA}}=\mathrm{R}_{\theta \mathrm{JC}}+\mathrm{R}_{\theta \mathrm{CA}}\) \\
\hline
\end{tabular}
where \(R_{\theta C A}\) is a measure of the heat dissipation due to natural convection (still air) or forced convection (moving air) and the effect of heat radiation and mounting techniques. \(R_{\theta J C}\) is dependent solely on material properties and package geometry; \(\mathrm{R}_{\theta \mathrm{JA}}\) includes the influence of the surface area of the package and environmental conditions. Each of these definitions of thermal resistance is an attempt to simulate some manner in which the package device may be used.
The thermal resistance of a packaged device, however measured, is a summation of the thermal resistances of the individual components of the assembly. These in turn are functions of the thermal conductivity of the component materials and the geometry of the heat flow paths. Like other material properties, thermal conductivity is usually temperature dependent. For
alumina and silicon, two common package materials, this dependence can amount to a \(30 \%\) variation in thermal conductivity over the operating temperature range of the device. The thermal resistance of a component is given by
\[
\begin{equation*}
R_{\theta}=\frac{\mathrm{L}}{\mathrm{~K}(\mathrm{~T}) \mathrm{A}} \tag{2}
\end{equation*}
\]
where \(L=\) length of the heat flow path
\(A=\) cross sectional area of the heat flow path
\(K(T)=\) thermal conductivity as a function of temperature
and the overall thermal resistance of the assembly (discounting convective effects) will be:
\[
R_{\theta}=\Sigma R_{\theta n}=\Sigma \frac{L}{K_{n} A}
\]

But since the heat flow path through a component is influenced by the materials surrounding it, determination of \(L\) and \(A\) is not always straightforward.
A second factor that effects the thermal resistance of a packaged device is the power dissipation level and, more particularly, the relationship between power level and die geometry, i.e., power distribution and power density. By rearrangement of equation 1 to
\[
\begin{equation*}
P_{d}=\frac{1}{R_{\theta J X}}\left(T_{j}-T_{x}\right)=\frac{1}{\Sigma R_{\theta n}}\left(T_{j}-T_{x}\right) \tag{3}
\end{equation*}
\]
the relationship between \(P_{d}\) and \(T_{j}\) can be more clearly seen. Thus, to dissipate a greater quantity of heat for a given geometry, \(T_{j}\) must increase and, since the individual \(R_{\theta n}\) will also increase with temperature, the increase in \(\mathrm{T}_{\mathrm{j}}\) will not be a linear function of increasing power levels.

A third factor of concern is the quality of the material interfaces. In terms of package construction, this relates specifically to the die attach bond, and for those packages having a heatsink, the heatsink attach bond. The quality of the die attach bond will most severely influence the package thermal resistance as this is the area which first impedes the transfer of heat out of the silicon die. Indeed, it seems likely that the initial thermal response of a powered device can be directly related to the quality of the die attach bond.

\section*{EXPERIMENTAL METHOD}

The technique for measurement of thermal resistance involves the identification of a temperature-sensitive parameter on the device and monitoring this parameter while the device is powered. For bipolar integrated circuits the forward voltage of the substrate isolation diode provides a convenient parameter to measure and has the advantage of a linear dependence on temperature. MOS devices which do not have an accessible substrate diode present greater measurement difficulties and may require simulation through use of a specially designed thermal test die. Choice of the parameter to be measured must be made with some care to insure that the results of the measurement are truly representative of the thermal state of the
device being investigated. Thus measurement of the substrate isolation diode which is generally diffused across the area of the die yields a weighted average of the condition of the individual junctions across the die surface. Measurement of a more local source would yield a less generalized result.
For those MOS devices for which no useful parameter is available, simulation is accomplished using the thermal test die. The basis for this test die is a 25 mil square cell containing an isolated diode and a \(1 \mathrm{~K} \Omega\) resistor. The resistors are interconnected from cell to cell on the wafer before it is cut into multiple arrays of the basic unit cell. In use the device is powered via the resistors with voltage or current adjusted for the proper level and the voltage drop of the individual diodes is monitored as in the case of actual devices.
Prior to the thermal resistance test, the diode voltage/ temperature calibration must be determined. This is done by measuring the forward voltage at 1 mA current level at two different temperatures. The diode calibration factor is then:
\[
\begin{equation*}
K_{f}=\frac{T_{2}-T_{1}}{V_{2}-V_{1}}=\frac{\Delta T}{\Delta V} \tag{4}
\end{equation*}
\]
in units of \({ }^{\circ} \mathrm{C} / \mathrm{mV}\). For most diodes used for this test the voltage/temperature relationship is linear and these two measurement points are sufficient to determine the calibration.
The actual thermal resistance measurement has two alternating phases: measurement and power on. (See Figure 1.) The device under test is pulse powered with an ON duty cycle of \(99 \%\) and a repetition rate of \(<100 \mathrm{~Hz}\). During the brief OFF states the device is reverse-biased with a 1 mA current and the voltage
drop is measured. The series of voltage readings are averaged over short periods and compared to the voltage reading obtained before the device was first powered ON. The thermal resistance is then computed as:
\[
\begin{equation*}
R_{\theta J X}=\frac{K_{f}\left(V_{f}-V_{i}\right)}{V_{H} I_{H}}=\frac{K_{f} \Delta V}{P_{d}} \tag{5}
\end{equation*}
\]
where \(\mathrm{K}_{\mathrm{f}}=\) calibration factor
\(V_{i}=\) initial forward voltage value
\(\mathrm{V}_{\mathrm{f}}=\) current forward voltage value
\(\mathrm{V}_{\mathrm{H}}=\) heating voltage
\(I_{H}=\) heating current
The pulsing measurement is continued until the device has reached thermal equilibrium and the final value measured is the equilibrium thermal resistance of the device under test.
When the end result desired is \(\mathrm{R}_{\theta \mathrm{JA}}\) (still air), the device and the test fixture (typically a standard burn-in socket) are enclosed in a box containing approximately 1 cubic foot of air. For R \(\mathrm{RJC}_{\mathrm{Cl}}\) measurements the device is attached to a large metal heatsink. This insures that the reference point on the device surface is maintained at a constant temperature. Through the use of heaters attached to the metal fixture, the "case" temperature may be maintained at any specified value above ambient. The requirements for measurement of \(\mathrm{R}_{\theta \mathrm{JA}}\) (moving air) are rather more complex. They involve the use of a small wind tunnel with capability for monitoring air pressure, temperature and velocity in the area immediately surrounding the device tested. Standardization of this last test requires much careful attention.

Figure 1. Waveforms for Pulsed Thermal Resistance Test

THERMAL CHARACTERIZATION DATA FOR CERDIPS \({ }^{1}\)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Lead \\
Count
\end{tabular} & \begin{tabular}{c}
Width \\
(Inches)
\end{tabular} & \begin{tabular}{c}
Approximate \\
\(\mathbf{R}_{\theta J A}\) Range \\
(\({ }^{\circ} \mathrm{C} / \mathrm{W}\))
\end{tabular} & \begin{tabular}{c}
Approximate \\
\(\mathbf{R}_{\boldsymbol{\theta J C} \text { Range }}\) \\
(\({ }^{\circ} \mathrm{C} / \mathrm{W}\))
\end{tabular} \\
\hline 16 & 0.300 & \(66-89\) & 22 \\
\hline 20 & 0.300 & \(68-78\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 24 & 0.300 & \(55-57\) & \(13-14\) \\
\hline 24 & 0.600 & 49 & 11 \\
\hline 28 & 0.600 & 29 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 40 & 0.600 & \(36-37\) & \(7-9\) \\
\hline
\end{tabular}

THERMAL CHARACTERIZATION DATA FOR PLASTIC DIPs \({ }^{1}\)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Lead \\
Count
\end{tabular} & \begin{tabular}{c}
Width \\
(Inches)
\end{tabular} & \begin{tabular}{c}
Approximate \\
\(\mathbf{R}_{\theta \mathrm{JA} \text { Range }}\) \\
\(\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
\end{tabular} & \begin{tabular}{c}
Approximate \\
\(\mathbf{R}_{\theta \mathrm{OC}}\) Range \\
\(\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
\end{tabular} \\
\hline 16 & 0.300 & \(110^{*}\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 20 & 0.300 & \(81-123^{*}\) & \(32^{*}\) \\
\hline 24 & 0.600 & \(99-115^{*}\) & \(43-57^{*}\) \\
\hline 28 & 0.600 & \(85^{*}\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 40 & 0.600 & \(62-73^{*}\) & \(27-34^{*}\) \\
\hline
\end{tabular}
*In 1983 AMD will be introducing copper-lead-frame versions of all plastic packages. The copper-lead-frame versions will have better thermal characteristics than the current plastic packages measured above.

THERMAL CHARACTERIZATION DATA FOR SIDE-BRAZE AND TOP-BRAZE PACKAGES
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Lead \\
Count
\end{tabular} & Type & \begin{tabular}{c}
Approximate \\
\(\mathbf{R}_{\theta J A}\) Range \\
(\({ }^{\circ} / \mathbf{W}\))
\end{tabular} & \begin{tabular}{c}
Approximate \\
\(\mathbf{R}_{\boldsymbol{\theta J C}}\) Range \\
(\({ }^{\circ} \mathrm{C} / \mathrm{W}\))
\end{tabular} \\
\hline 40 & Side-Braze & \(27-35\) & \(6-7\) \\
\hline 48 & Side-Braze & 37 & 10 \\
\hline 52 & \begin{tabular}{c}
Top-Braze with \\
Heat-Spreader
\end{tabular} & 19 & 4 \\
\hline 64 & \begin{tabular}{c}
Top-Braze with \\
Heat-Spreader
\end{tabular} & 20 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Lead \\
Count
\end{tabular} & \begin{tabular}{c}
Approximate \(\mathbf{R}_{\boldsymbol{\theta J A}}\) \\
Range \(\left({ }^{\circ} \mathbf{C} / \mathrm{W}\right)\)
\end{tabular} & \begin{tabular}{c}
Approximate \(\mathbf{R}_{\boldsymbol{\theta}} \mathrm{JC}\) \\
Range \(\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
\end{tabular} \\
\hline 20 & \(66-72^{*}\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 28 & \(69^{*}\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 44 & \(52-57^{*}\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 52 & \(44^{*}\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline
\end{tabular}
*The \(\mathrm{R}_{\theta \mathrm{JA}}\) values listed for leadless chip carriers were measured with the chip carriers mounted in the appropriate burn-in sockets. This restricts convection of heat from the package and results in \(\theta\) values higher than might be expected in actual use.

THERMAL CHARACTERIZATION DATA FOR CERPAKS AND FLATPACKS 1
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Lead \\
Count
\end{tabular} & Type & \begin{tabular}{c}
Approximate \\
\(\mathbf{R}_{\theta \mathrm{JA}}\) Range \\
(\(\left.{ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
\end{tabular} & \begin{tabular}{c}
Approximate \\
\(\mathbf{R}_{\theta \mathrm{JC}}\) Range \\
\(\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
\end{tabular} \\
\hline 16 & Cerpak & \(113-159\) & \(10-17\) \\
\hline 20 & Cerpak & 119 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 24 & Cerpak & 99 & 8 \\
\hline 42 & \begin{tabular}{c}
Brazed \\
Flatpack
\end{tabular} & 63 & 8 \\
\hline
\end{tabular}

Note: 1. This data, while derived from actual measurements done on specific packaged devices, is only approximate and cannot be guaranteed because of the wide variation of die sizes and device power levels.

\section*{Package Outlines}

\section*{METAL CAN PACKAGES}

Note. Standard lead finish is bright acid tin plate or gold plate.

MOLDED DUAL IN-LINE PACKAGES

P-8-1

P-14-1

P-10-1

P-16-1

\section*{PACKAGE OUTLINES (Cont.)}

HERMETIC DUAL IN-LINE PACKAGES

D-14-1

D-14-2

D-14-3

\section*{PACKAGE OUTLINES (Cont.)}

\section*{FLAT PACKAGES}

F-10-1

F-14-1

F-16-1

F-10-2

F-14-2

F-16-2

Note: Notch is pin 1 index on cerpack.

F-20-1

F-22-1

\section*{PACKAGE OUTLINES (Cont.)}

HERMETIC DUAL IN-LINE PACKAGES (Cont.)

D-64-3

\section*{PACKAGE OUTLINES (Cont.)}

\section*{SQUARE CHIP CARRIER FAMILY}

L-44-1

L-52-1

\section*{PACKAGE OUTLINES (Cont.)}

RECTANGULAR CHIP CARRIER FAMILY

L-28-2

L-32-2

\section*{Ordering Information}

All Advanced Micro Devices' products listed are stocked locally and distributed nationally by Franchised Distributors. See back of this book for the location nearest you. Please consult them for the latest price revisions. For direct factory orders, call local AMD Sales Office or Sales Representative. See the back of this book for the location nearest you.

\section*{Minimum Order}

The minimum direct factory order is \(\$ 100.00\) for a standard product.
The minimum direct factory order for Class B, burned-in, product is \(\$ 250.00\).

\section*{Proprietary Product Ordering, Package and Temperature Range Codes}

The following scheme is used to identify Advanced Micro Devices' proprietary products.

Package Style
\(D=\) Hermetic DIP
\(F=\) Flat Package
\(P=\) Molded DIP
\(L=\) Leadless Chip Carrier
\(X=\) Dice

Temperature Range
C = Commercial
\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(M=\) Military
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

Additional Processing
\(B=\) Burn-in (Signifies full MIL-STD-883
Class B product for military temperature range devices)

\section*{Second Source Product Ordering, Package and Temperature Range Codes}

An order number and marking system identical to the original manufacturer's is used for the Advanced Micro Devices' pin-for-pin and electrically equivalent circuit.
The following example is the ordering scheme for Advanced Micro Devices' second source to Texas Instruments' products.

Package Style
\(J=\) Hermetic DIP
\(N=\) Molded DIP
W = Flat Package \(\mathrm{X}=\) Dice

\section*{Temperature Range}

74 = Commercial
\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(54=\) Military
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

\section*{Additional Processing}
\(B=\) Burn-in (Signifies full MIL-STD-883 Class B product for military temperature range devices)

Advanced Micro Devices maintains a network of representatives and distributors in the U.S. and around the world. For a sales agent nearest you, call one of the AMD offices listed below.

\section*{U.S. AND CANADIAN SALES OFFICES}

\section*{SOUTHWEST AREA}

Advanced Micro Devices
360 N. Sepulveda, Suite 2075
El Segundo, California 90245
Tel: (213) 640-3210
Advanced Micro Devices
10050 N. 25th Street
Suite 235
Phoenix, Arizona 85021
Tel: (602) 242-4400
Advanced Micro Devices
4000 MacArthur Boulevard
Suite 5000
Newport Beach, California 92660
Tel: (714) 752-6262
Advanced Micro Devices
5955 De Soto Avenue, Suite 241
Woodland Hills, California 91367
Tel: (213) 992-4155
Advanced Micro Devices
9455 Ridgehaven Court
Suite 230
San Diego, California 92123
Tel: (619) 560-7030

NORTHWEST AREA
Advanced Micro Devices
2700 Augustine Drive, Suite 109
Santa Clara, California 95051
Tel: (408) 727-1300
Advanced Micro Devices
1873 South Bellaire Street
Suite 920
Denver, Colorado 80222
Tel: (303) 691-5100

NORTHWEST AREA (Cont.)
Advanced Micro Devices
One Lincoln Center, Suite 230
10300 Southwest Greenburg Road
Portland, Oregon 97223
Tel: (503) 245-0080
Advanced Micro Devices
Honeywell Ctr., Suite 1002
600 108th Avenue N.E.
Bellevue, Washington 98004
Tel: (206) 455-3600

\section*{MID-AMERICA AREA}

Advanced Micro Devices
500 Park Boulevard, Suite 940
tasca, Illinois 60143
Tel: (312) 773-4422
Advanced Micro Devices
9900 Bren Road East, Suite 601
Minnetonka, Minnesota 55343
Tel: (612) 938-0001
Advanced Micro Devices
3592 Corporate Drive, Suite 108
Columbus, Ohio 43229
Tel: (614) 891-6455
Advanced Micro Devices
8240 MoPac Expressway
Two Park North, Suite 385
Austin, Texas 78759
Tel: (512) 346-7830
Advanced Micro Devices
6750 LBJ Freeway, Suite 1160
Dallas, Texas 75240
Tel: (214) 934-9099

MID-ATLANTIC AREA
Advanced Micro Devices
40 Crossways Park Way
Woodbury, New York 11797
Tel: (516) 364-8020
Advanced Micro Devices
290 Elwood Davis Road
Suite 316
Liverpool, New York 13088
Tel: (315) 457-5400
Advanced Micro Devices
2 Kilmer Road
Edison, New Jersey 08817
Tel: (201) 985-6800
Advanced Micro Devices
107 Lakeside Drive
Horsham, Pennsylvania 19044
Tel: (215) 441-8210
TWX: 510-665-7572
Advanced Micro Devices
205 South Avenue
Poughkeepsie, New York 12601
Tel: (914) 471-8180
TWX: 510-248-4219
NORTHEAST AREA
Advanced Micro Devices
6 New England Executive Park
Burlington, Massachusetts 01803
Tel: (617) 273-3970
Advanced Micro Devices (Canada) Ltd.
2 Sheppard Avenue East
Suite 1610
Willowdale, Ontario
Canada M2N5Y7
Tel: (416) 224-5193

\section*{SOUTHEAST AREA}

Advanced Micro Devices
Parkway Center
One Parkway Drive Building
7257 Parkway Drive, Suite 204
Dorsey, Maryland 21076
Tel: (301) 796-9310
Advanced Micro Devices
7850 Ulmerton Road, Suite 1A
Largo, Florida 33541
Tel: (813) 535-9811
Advanced Micro Devices
4740 North State Road \#7
Suite 102
Ft. Lauderdale, Florida 33319
Tel: (305) 484-8600

\section*{Advanced Micro Devices}

6755 Peachtree Industrial Boulevard
Suite 104
Atlanta; Georgia 30360
Tel: (404) 449-7920
Advanced Micro Devices
8 Woodlawn Green, Suite 220
Woodlawn Road
Charlotte, North Carolina 28210
Tel: (704) 525-1875

\section*{INTERNATIONAL SALES OFFICES}

\section*{BELGIUM}

Advanced Micro Devices
Overseas Corporation
Avenue de Tervueren, 412, bte 9
B-1150 Bruxelles
Tel: (02) 7719993
TELEX: 61028

\section*{FRANCE}

Advanced Micro Devices, S.A
Silic 314, Immeuble Helsinki
74, rue d'Arcueil
F-94588 Rungis Cedex
Tel: (01) 687.36 .66
TELEX: 202053

GERMANY
Advanced Micro Devices GmbH
Rosenheimer Str. 139
D-8000 Muenchen 80
Tel: (089) 401976
TELEX: 05-23883
Advanced Micro Devices GmbH
Harthaeuser Hauptstrasse 4
D-7024 Filderstadt 3
Tel: (07158) 3060
TELEX: 07-21211
Advanced Micro Devices GmbH
Zur Worth 6
D-3108 Winsen/Aller
Tel: (05143) 5362
TELEX: 925287

\section*{HONG KONG}

Advanced Micro Devices
1303 World Commerce Centre
Harbour City
11 Canton Road
Tsimshatsui, Kowloon
Tel: (852) 3695377
TELEX: 50426

\section*{ITALY}

Advanced Micro Devices S.r.L.
Centro Direzionale
Palazzo Vasari, \(3^{\circ}\) Piano
1-20090 MI2 - Segrate (MI)
Tel: (02) 215 4913-4-5
TELEX: 315286

\section*{JAPAN}

Advanced Micro Devices, K.K.
Dai 3 Hoya Building
8-17, Kamitakaido 1-chome
Suginami-ku, Tokyo 168
Tel: (03) 329-2751
TELEX: 2324064

\section*{SWEDEN}

Advanced Micro Devices AB
Box 7013
S-172 07 Sundbyberg
Tel: (08) 981235
TELEX: 11602
UNITED KINGDOM
Advanced Micro Devices (U.K.) Ltd.
A.M.D. House,

Goldsworth Road,
Woking,
Surrey GU21 1JT
Tel: Woking (04862) 22121
TELEX: 859103

901 Thompson Place
P.O. Box 453

Sunnyvale,
California 94086
(408) 732-2400

TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE (800) 538-8450```

[^0]: Advanced Micro Devices has developed a set of bipolar high-performance memory-support products to maximize the speed and reliability of MOS dynamic RAM systems. This family is designed to provide, in the minimum package count, all the logic, interface and control functions required in the address and data paths of memory systems based on 16 K and 64 K devices.
 These TTL-compatible products are specified for use in equipment based on either bipolar or MOS CPUs. The Am2960 Series serves bipolar microprocessors such as the Am2901, Am29203, etc., while the AmZ8160 Series serves MOS microprocessors, such as the 16 -bit AmZ8000.

[^1]: *Correct if the CORRECT Input is HIGH, Detect if the CORRECT Input is LOW.
 ${ }^{* *} \operatorname{In}$ Code $\mathrm{ID}_{2-0} 001\left(\mathrm{ID}_{2}, \mathrm{ID}_{1}, \mathrm{ID}_{0}\right) \mathrm{DM}_{1}$ and DM_{0} are taken from the Diagnostic Latch.

[^2]: Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
 2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
 4. These are three-state outputs internally connected to TTL inputs. Input Characteristics are measured with output enables HIGH.
 5. "MIL" = Am2960XM, DM, FM. "COM'L" = Am2960XC, DC.
 6. Worst case ICC is at minimum temperature.
 7. These input levels provide zero noise immunity and should only be tested in a static, noise-free environment.

[^3]: *Data $\ln ($ or $L E \ln$) to Correct Data Out measurement requires timing as shown in Figure D opposite.

[^4]: *Unlisted CB combinations are no correction.

[^5]: *AC perfomance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

[^6]: *A0 Controls Byte Select Logic

[^7]: Parity $=F_{3} \forall F_{2} \forall F_{1} \forall F_{0} \forall S_{3}$
 $\forall=$ Exclusive OR

[^8]: Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
 2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

[^9]: *AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

[^10]: *AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

[^11]: ${ }^{*}$ If C_{i} of the least significant device is HIGH.

[^12]: $C_{O} \approx 5.0 \mathrm{pF}$, all outputs

[^13]: *Note that for the negative logic levels on the B port, an " H " represents a logic " 0 " while an " L " represents a logic " 1 ."

[^14]: *AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9 .

[^15]: $H=H I G H$
 $L=$ LOW
 $\uparrow=$ LOW-to-HIGH transition
 $C S=$ Connected to S output
 of higher order device
 $O P=x_{i}$ latches open for new data ($i=0,7$)
 $A R=$ Output as required per Booth's algorithm

[^16]: * AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9 .

[^17]: *AC performance over the operating temperature range is guaranteed by testing defined in Group A, subgroup 9.

[^18]: Note: $\mathrm{i}=0$ to 7 $\mathrm{n}=0$ to 2

[^19]: Note: Actual current flow direction shown

[^20]: *AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

[^21]: *AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

[^22]: *AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

[^23]: *AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

[^24]: *AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9 .

