
United States Patent 19
Fernandes et al.

54

(75

73)

21
22

51
52)

58

56)

VERSATLE COMMUNICATIONS
CONTROLLER

Inventors: Roosevelt A. Fernandes, Chino Hills;
Patrick C. Fitz, Livermore, both of
Calif.

Assignee: Southern California Edison
Company, Rosemead, Calif.

Appl. No.: 84,303
Filed: Jun. 29, 1993
Int. Cl. .. H04J 3/22
U.S. C. 370/79; 370/85.8; 370/95.2;

340/825.06; 340/825.08; 364/221.5
Field of Search 340/825.06, 825.08,

340/825.15, 825.16; 370/79, 85.13, 85.8,
95.2

References Cited

U.S. PATENT DOCUMENTS

4,445,213 4/1984 Baugh et al. 370,194
4,549,291 10/1985 Renoulin et al. 370/89
4,642,760 2/1987 Yanai et al. 364/200
4,796,027 1/1989 Smith-Vaniz. 340,825.06
4,839,890 6/1989 Semerau et al. 370/84
4,888,769 12/1989 Deal .. 370/50
4,893,306 1/1990 Chao et al. ... 370/942
4,954,950 9/1990 Freeman et al. 364,200
4,979,169 12/1990 Almond et al. 370/79
5,012,469 4/1991 Sardana 370/95.3
5,012,470 4/1991 Shobu et al. ... 370/10.
5,072,444 12/1991 Breeden et al. .. 370,941
5,086,425 2/1992 Le Goffic et al. 370/84
5,086,426 2/1992 Tsukakoshi et al. .. 370/85.3
5,094,837 3/1992 Franklin et al. 370/60.1

St BSTAFON 1 s
^-

woCE DIGITIZER x 25

Riu

CBC X-25

sensor
MEANS

M
A :
s reside

R

s
SNA
HDLC

SU3SAICN 4

SUBSATION 5
wocE DIGIZER X.25 f

REMOTE X.25

SOC
SNA
Hc

SUBSiAOn 8

||||||||
USOO5490134A

11 Patent Number: 5,490,134
(45) Date of Patent: Feb. 6, 1996

5,103,447 4/1992 Takiyasu et al. 370/85.15
5,107,492 4/1992 Roux et al. 370/85.6
5,113,392 5/1992 Gupta et al. 370/84
5,117,425 5/1992 Ogata 370/10.1
5,121,390 6/1992 Farrell et al. ... 370/94.1
5,124,984 6/1992 Engel 370/94.1
5,153,884 10/1992 Lucak et al. 371/32
5,163,131 11/1992 Row et al. 395/200
5,182,748 1/1993 Sakata et al. 370/94.1
5,184,347 2/1993 Farwell et al. 370/94.1
5,184,348 2/1993 Abdelmouttalib et al. 370/95.1
5,187,708 2/1993 Nakatani et al. 370/85.1
5,241,539 8/1993 Obermeier 370/79

Primary Examiner-Douglas W. Olms
Assistant Examiner Russell W. Blum
Attorney, Agent, or Firm-Merchant, Gould, Smith, Edell,
Welter & Schmidt

57) ABSTRACT

A communication system uses controllers for bi-directional
protocol conversion. There is a plurality of remote signal
inputs comprised of supervisory control and data acquisition
(SCADA) signals, and/or remote terminal unit (RTU) sig
nals, and/or instrumentation monitoring signals, and/or
instrumentation control signals having different protocols.
The signals are either in synchronous and asynchronous data
formats and include voice inputs. Multiplexing such signal
inputs into a composite signal is effected for transmission
over electronic and physical communication media using
X.25 or higher protocol, at an aggregate transmission data
rate of 9.6 Kbps or faster. One or more controller can be
configured as the master of remote units. Such units can
perform remote signal input emulation; master/remote appa
ratus emulation, permits user-defined signal port control
access; and provides operational diagnostics of the units and
their associated communication link.

46 Claims, 19 Drawing Sheets

vcc MCRWWE

tiss OPTCs
CRESSEC WOICE
1C1,208

RCC Y

I
X.25
MCROWAWE

SOC
SNA
HLC symT TO

ROE RT. &
or 22, etc.

M1CROWAVE

FER cPTigs
COMESSE. W.
10:102.08

RCC 2 's

SCA)A

cowPUTER

SCA
CONEROl
S30

CE

X.25 X

X-25 a RCC
ROWAWE

8R OPICS
3.

se:

SNA i
HD.C. SYNTC

REMTs r &
OPTO 3, etc.

Y scan
CONRO
S30

MULTI-COMMUNICATION XEDIA CAPABILITY OF WCC

U.S. Patent Feb. 6, 1996 Sheet 1 of 19 5,490,134

|REATE MCROWAVE

FIBER OPTICS
COMPRESSED VOICE

SNA 101,102... 106
HDLC

RCC 1

SCADA

MCROWAVE
COMPUTER

FIBER OPTICS
SDLC
SNA

HDLC SYNTHETIC SCAN

REMOTERTU & CoNRol
OPTO 22, etc. SBO

MICROWAVE

FIBER OPTICS
COMPRESSED VOICE

SNA 101,1 O2... 106
HDLC

RCC 2

SCADA

MCROWAVE
COMPUTER

FBER OPTCS
SDLC
SNA

HDLC SYNTHETC SCAN
REMOTE RTU & CONTROL
OPTO 22, etc. SBO

MULTI-COMMUNICATION MEDIA CAPABILITY OF VCC

F.C. f.

5,490,134
Sheet 2 of 19

Feb. 6, 1996
U.S. Patent

V2 (f) /)/
JLNÉHWdIQÖGI W WOOLWS NOI LVJ S8 QS GILOWGIH

5,490,134
Sheet 3 of 19

Feb. 6, 1996
U.S. Patent

{{2 (f) /)/
JLNGHW?IQÖGH WIWO'OLVS NOILVALS8 () S TVÅHJONGIO

U.S. Patent Feb. 6, 1996 Sheet 6 of 19 5,490,134

DCP/MUXi

KERNE MUX
INTERFACE

OS/2 COMMUNICATION
DRIVER (KERNEL)

SOFTWARE
COMPONENTS

USER/KERNEL
INTERFACE

APPLICATION
PROGRAMS

OS/2 MULTI-TASKING VCC SYSTEM ARCHITECTURE
(TOP LEVEL)

FC 6

DATABASE
RECEIVER CONFIG.

COMMUNICATION
BUFFERS

READ/WRITE
BUFFERS

LOAD CONFIG.

X.25
DATABASE
RECEIVER

READ/WRITE
STATION DATA

STATION OUEUES

DATA BASE RECEIVER PROCESS

F.C.. 7

U.S. Patent Feb. 6, 1996 Sheet 7 of 19 5,490,134

REMOTE & REMOTE
SYNTHETC DCP/MUXi TERMINAL
MASTER DOWN LOAD UNTS

CONTROL/STATUS/DATA
X.25 PACKET

CONTROL/STATUS
(RTU PROTOCOL)

los/2 CoMMUNICATION DRIVER (KERNEL)
MEMORY
TRANSFER

OS/2 MUXi
COMMUNICATION

DRIVER

/
/
SEND/RECEIVE

PACKET

APPucation
PROGRAMS

X.25
DATA BASE
RECEIVER

RTU PROTOCOL
TRANSFER DATA BASE

RECEIVER

STATUS/CONTROL/MESSAGES
NBOUND CONTRO OUTE OUND STATUS

STATUs oUEUEs

DATA FLOW FOR WCC SOFTWARE COMPONENTS INTERFACE DIAGRAM

FIG. 6A

U.S. Patent Feb. 6, 1996 Sheet 8 of 19 5,490,134

os/2 APPLICATION
PROGRAMS

CENTRAL, EXE
4,

TSP DAL.EXE X25 DBX.EXE

X25 DBR.EXE CDC SR.EXE CDC SM.EXE O22 SM.EXE

OS/2 COMM. DRIVER
(KERNEL)

OS/2 MUXi
COMMUNICATION

DRIVER

MEMORY TRANSFER

REMOE REMOTE
SYNTHETIC MUXDCP. MG TERMINAL

MASTER CONTROL/STATUS/ 3.94:S UNTS DATA (X.25 RTU PROTOCOL) PACKET) - - -

FIC. 6 B

U.S. Patent Feb. 6, 1996 Sheet 9 of 19 5,490,134

STARTUP
PROTOCOL
CONVERTERS

STARTUP
PROTOCOL
CONVERTERS

FAILURE

DATA
COMMUNCATION

FAILURE STORE/ RECEIVE/
FORWARD SEND y CONTROL

SYSTEM FAILURE-REBOOT SYSTEM FAILURE-REBOOT

WCC
SHUT DOWN

WCC OPERATING STATES

FIC 3

CENTRAL.CFG

STARTUP LOG

NTAZE
BUFFERS

OUEUE OF BUFFERS

CONTROL DATABASE STORE AND FORWARD DATABASE
A

DATABASE
SETUP

INITIALIZATION DATA FLOW BLOCK DIAGRAM
CENTRAL.EXE

FIC 9

U.S. Patent Feb. 6, 1996 Sheet 10 of 19 5,490,134

STARTUP

DATABASE
RECEIVE

Y
CALL READY
ESTABLISHED READ DATA PLACE A CALL CLEAR CALL

DATA FLOW FOR DATABASE RECEIVER PROCESS

F.C. 1 O

COMMUNICATION BUFFERS DATABASE RECEIVER CONFIG. FILE

LOAD CONFIG.
FILE

COMMUNICATION
PORT

READ/WRITE
BUFFERS (X.25)

GET/PUT BUFFERS X.25 DATABASE
RECEIVER GET PENDING REO UEST

---------a

GE STATION
CONFIG.

UPDATE STATION
DATA

RTU OUEUE RU DATABASE

DATA FLOW FOR DATABASE TRANSMIT PROCESS
X.25 DBX.EXE

F.C. 1 1

U.S. Patent Feb. 6, 1996 Sheet 11 of 19 5,490,134

CONFIG. FE

REMOTE
MONTOR REMOTE
UNIT MONTOR

DISPLAY UNT

STATION
DATA

RTU DATABASE

DATA FLOW RMU EMULATION PROCESS
RMU EMU.EXE DATA FLOW

F.C. 12

STATION
CONFIG.

CONTROL

DATABASE RECEIVER CONFIG. FILE COMMUNICATION OUEUES

OPTO 22
SYNTHETIC
MASTER

GET INCOMING REQUEST

STATION
CONFIG.

WRITE
STATION

V
RTU DATABASE

DATA FLOW FOR OPTO 22 SYNTHETIC MASTER PROCESS

FC 13

BUFFER POOL

U.S. Patent Feb. 6, 1996 Sheet 12 of 19 5,490,134

RTU QUEUES CONFIG. FILE

CONFIGURATION
NFORMATION

CDC
SYNTHETC
MASTER

GET PENDING REO UEST
FOR RECEIVE/TRANSMIT

BUFFERS COMMUNICATION
PORT

WRITE RTU DATA READ STATION INFO.

RTU DATABASE

DATA FLOW CDC SYNTHETIC MASTER PROCESS

FIC. f 4

BUFFER POOL

COMMUNICATION
PORT DATABASE RECEIVER CONFIG. FLE

READ/WRITE
BUFFERS

CONFIGURATION
NFORMATION

CDC
SYNTHETIC

RECEIVE/TRANSMIT RTU
BUFFERS

READ
STATION
DATA

READ STATION
CONFIGURAON

NFO.

BUFFER POOL RTU DATABASE

DATA FLOW FOR CDC SYNTHETIC RTU PROCESS

F.C. 16

U.S. Patent Feb. 6, 1996 Sheet 13 of 19 5,490,134

DATABASE RECEIVER CONFIG. FE

CONFIGURATION
INFORMATION

COMMUNICATION
PORT TSP

READ/WRITE
CONTROL/DATA

COMMUNICATION
PORT VSAT

READ/WRITE
CONTROL/DATA

BUFFER POOL

RECEIVE/TRANSMIT
BUFFERS

GET STE
ADDRESS

ALL SITES FILE

DATA FLOW TSP DIAL PROCESS

FIC 16

EXIT WITH NOTE START PROCESS

-- GET CONFIG DATA

NTBUF

XXX INTOUE

CHECK MUX --

NIT RTU DB

y
GET PATH

RTU CONFIG DATA

STRUCTURE FOR CENTRAL.EXE

FIC. 1 7

5,490,134
Sheet 14 of 19

6, 1996
Feb.

S. Patent
U

8

/

(f)
I,
H.

AO EXHTE SVE TV | W/(]

WIE SNECHOSOCWOOTNEdO GEORIES@Tº IGE,JEFT T?TI (TOET

U.S. Patent Feb. 6, 1996 Sheet 15 of 19 5,490,134

PLACE CALL SEND TO DB

CEAR CALL X.25 MSG DECODE

PUTDEBUG DATA BASE RECW READ COM

WRITE COM GETBUF

PUTRUF GETOUE READ STATUS

SYSTEM OPERATING MODES

F.C. 19

MFC ACCR MFC DB MFC ADCR

MFC ACCR MFC SOEC
SEND TO-DB

MFC AFR MFC SOE

MFC SOEF MFC FR MFC CR MFC FC

SYSTEM ARCHITECTURE
SEND TO DB X.25 DBR

F.C. 2 O

U.S. Patent Feb. 6, 1996 Sheet 16 of 19 5,490,134

ERROR LOG s DATABASE TRANSMT

GET CONFIG DATA OPEN RTU DB

GET CONFIG DATA OPENOUE

GET PATH OPENBUF
ASCII TO BED OPEN PORT

SYSTEM MODES OF OPERATION

F.C. 2 1

SYSTEM

READ STATUS

GETBUF

READ COM

PUTDEBUG

RFC AFR

WRITE COM

PUTOUE DATA BASE TRANSMT

x 25 MessAGE DEcoDE
SYSTEM ARCHITECTURE

DATA BASE TRANSMIT OPERATING MODE

FC 22

PUTBUF

RFC FR

U.S. Patent Feb. 6, 1996 Sheet 17 of 19 5,490,134

WRITE COM

DISASTER SUB TRANSLATE ERROR CODE

SYSTEM ARCHITECTURE
WRITE COM

FC 2.3

STATE SUB DOSDEV/OCH

RTU CDC OPENRTU DB

OPENOUE

OPENBUF

OPEN COM

ERROR LOG CDC SM MAN

BEGIN THREAD

SYSTEM OPERATING MODE
MASTER RTU SYSTEM ARCHITECTURE

FIC 24

EXT WITH NOTE

GET CONFIG DATA

U.S. Patent Feb. 6, 1996

WAT FOR READ READY

ERROR LOG

EXIT WITH NOTE

CDC SR MAN
GET CONFIG DATA

READ COM

PUTDEBUG STRING

Sheet 19 of 19 5,490,134

OPEN RTU DB

OPENQUE

OPEN BUF

OPEN COM

PUTDEBUG

N POLL READ

STRUCTURE OF CDC SM.EXE PROCESS
CDC SYNTHEC RTU

F.C. 26

RFC STAT

RFC ANLG

RFC ACCM s

RFC DSET

RFC TRIP

RFC CLOSE

POLL READ

RFC SETPOINT

SYSTEM ARCHITECTURE

? RFC SBOO

M RFC ACCUM FREEZE

RFC DIRECT TRIP

- RFC DIRECT CLOSE

ERROR LOG

PUTBUF

WRITE COM

V PUDEBUG

STRUCTURE DAGRAM OF POLL READ ROUTINE

F.C. 27

5,490,134
1.

VERSATLE COMMUNICATIONS
CONTROLLER

BACKGROUND

Being able to communicate between remote stations and
a central control station effectively through communication
links is important to power-generating utilities.

This invention relates to a communication system. In
particular, the invention is concerned with such a system for
use between a central station and remote stations in a
power-generation system for utilities.

Utilities have difficulty incorporating more modern moni
toring and control equipment with their more efficient pro
tocols, without making expensive changes in existing Super
visory Control and Data Acquisition (SCADA) applications
Software. Utilities have therefore been constrained to use old
equipment specifications in the procurement of new power
System monitoring and control hardware.

This invention seeks to overcome the disadvantages of
existing monitoring and control communication networks.

SUMMARY

By this invention, there is provided a communication
controller which minimizes the prior disadvantages.

According to the invention, there is provided and appa
ratus for communicating signals having multiple different
protocols as a composite signal with at least one common
protocol, including monitoring and/or control through mul
tiple ports.

Multiple input means receives respective input signals in
protocols selected from multiple protocols. At least several
of the multiple signals having one of a different protocol
from the multiple protocols,

First controller means receive the inputted signals and
include means for multiplexing the input signals to a com
posite signal having a common protocol.

Output means receive the composite signal in the com
mon protocol and transmit the composite signal in the
common protocol through a communication medium to a
second location.

There is at least one second controller means with input
means for receiving the composite signal from the commu
nication medium. In the second controller there is means for
demultiplexing the composite signal into multiple output
signals having the respective multiple different protocols.
The communication is effected between multiple remote

stations and a central station. The first location receives
multiple input monitoring signals and transmits them to the
second location which is a central station for receiving the
monitoring signals as the composite signal. Also, the central
station can input the multiple control signals and transmit
them as a composite control signal. The control signal is
received at the remote station and is demultiplexed into the
multiple control signals.
At the central station, the output means present the

outputted signals as monitoring signals. The outputted sig
nals at the central station are substantially the same as the
inputted monitored signals at the remote station.

At the remote station, the output means present the
outputted signals as control signals, such that the outputted
signals are substantially the same as the inputted signals at
the central station.

10

5

20

25

30

35

40

45

50

55

60

65

2
There are also means for selectively communicating sig

nals representative of voice between selected different
remote stations independently of a central station.
A multiple input means to the controller means includes

multiple serial inputs. At least some of these inputs selec
tively have similar protocols with each other. The multiple
protocols can be received selectively in a synchronous or
asynchronous data format.
When the controller means has means for receiving voice

signals, the voice signals are digitized and multiplexed for
transmission in the common protocol. There is also means
for displaying the monitoring and control signals as the case
may be at either the remote stations or the central station.
Where there are multiple remote stations, these may be
controlled by a single central control station which receives
the monitoring signals. Either central stations may simply
monitor remote stations without having the ability to control
the remote stations,

The common protocol is at least as high as an X.25
protocol and the communication medium is selected to be at
least one of an electronic, fiber optic, satellite or physical
medium.
The facility of the controller permits monitoring and

control of the particular electrical apparatus through the
RTU.
The controller means is referred to as a versatile commu

nications controller (VCC) communicates and controls mul
tiple colocated or remote devices connected to various
Substation equipment, with some using different protocols.
The VCC also combines a plurality of digital data and
digitized voice signals into a composite signal. This is
communicated to one or more other locations where a
second VCC transforms the signal to a plurality of digital
data and voice signals, while compensating for signal path
delays.
The VCC provides an interface to substation monitoring

and control devices and emulates SCADA devices. The
VCC allows the network to use a protocol most suited to a
particular communication medium. It can simultaneously
allow compressed voice traffic using an internal voice com
pression card.
Each VCC can support a total of at least six asynchronous

and two synchronous serial devices simultaneously using
different individual protocols.

Multiple remote master locations can be used to monitor
the same device connected to the VCC. If desired only one
pre-designated master site can send a control signal through
it. At a given substation the VCC will allow local display of
all the data that can be remotely monitored, on its own CRT.
With the VCC several types of devices using different
protocols can be used on the network without requiring any
costly power system control application software changes.
The VCC allows communications, for example, between

remote devices via an X.25 satellite network with some of
the devices connected via a fiber optic or microwave link.
The VCC does this by establishing a Switched Virtual
Circuit on the network. Software programs running on the
VCC can read the incoming network data and translate this
information, depending on the target device, to the appro
priate protocol. This information is then forwarded to the
destination device for interpretation.
The VCC preferably uses an IBM OS/2 as the multi

tasking operating system. However, it can be adapted to
another multi-tasking operating system, such as, UNIX
providing adequate random access memory is provided.

5,490,134
3

Three software components are used:
(1) DCP/MUXi down load code that runs on the DCP/

MUXi serial communications board from Emulex Corp.
(2) OS/2 Communications Driver which is the kernel

level component that provides the means for application
programs to communicate with the DCP/MUXi;

(3) OS/2APs which provides a man/machine interface that
allows communication and control signals to be sent to the
equipment connected to the remote VCC.
The VCC allows simulation of the master controller at the

remotely controlled device location when satellite commu
nications is used and also simulates the Remote Terminal
Unit (RTU) at the master control site.
The VCC permits utilities to continue to get maximum use

from older substation equipment without limiting the new
monitoring and control equipment to older, less efficient
interface specifications. This also helps utilities to protect
the millions of dollars in existing power system control
applications software.
The VCC represents a hardware and software configura

tion for substation digitized compressed voice communica
tions, monitoring and control. It can also serve as a remote
substation display monitor for viewing the power flows
through incoming and outgoing circuits, currents, voltages
and other quantities. The monitored alarm, control and status
points can be displayed in a manner similar to the Regional
Control Center or master SCADA console displays.

In effect the VCC replaces all of the individual substation
analog meters and alarm status panels. This greatly assists
travelling operators and field technicians in substation fail
ure analysis and trouble shooting with help from the super
visory location viewing the same information.

This VCC relates to a multi-ported, multi-protocol, PC
AT based communications controller. The VCC is intended
to operate in the harsh electro-magnetic environment of a
substation and to interface with RTU's used to control and
monitor a variety of substation equipment.
The VCC acts as a universal communications and control

interface with other devices such as Opto-22 equipment
using different protocols.
At the master SCADA location identical VCC hardware

with complementary software presents a communication
and control link to the SCADA computers using the existing
or specified protocol in a transparent manner. This transpar
ency is provided by the VCC regardless of the wide range of
protocols, communication link time delays, and other varia
tions commonly found with substation equipment spanning
several decades.

Displays at the first location or second location can be in
real time or later time. Polling time intervals can be adjusted
as necessary for multiple second locations. Various common
protocols can be used. Data can be stored as monitored data
by multiple selected protocols. Without interrupting collec
tion of monitoring signals at the first location, the number of
monitoring signals at the first location can be changed.
The invention also includes the method of communication

and the system for communication.
The invention is further described with reference to the

accompanying drawings.

DRAWINGS

FIG. 1 is a block diagram depicting the multi-communi
cation media capability of the VCC and its ability to handle
multiple protocols.

10

15

20

25

30

35

40

45

50

55

60

65

4
FIGS. 2A and 2B are block diagrams of the VCC in

association with a communication link, respectively a
remote station and a central station which is a regional
station.

FIG. 3 shows the manner in which the VCC hardware is
configured for deployment at an RTU site.

FIG. 4 shows the VCC at a Regional Control Center site.
FIG. 5 is a flow diagram of the OS/2 Multi-Tasking VCC

System Architecture.
FIGS. 6A and 6B show the data flow for the VCC

software components interface diagram.
FIG. 7 shows the data base receiver process.
FIG. 8 shows the VCC operating states.
FIG. 9 shows the initialization data flow block diagram.
FIG. 10 shows the data flow for the database receiver

process.
FIG. 11 shows the data flow for the database transmit

process.
FIG. 12 shows the data flow for the RMU emulation

proceSS.

FIG. 13 shows the data flow for the Opto-22 synthetic
master process.

FIG. 14 shows the data flow for the CDC synthetic master
process.

FIG. 15 shows the data flow for the CDC synthetic RTU
process.

FIG. 16 shows the data flow for the TSP dial process.
FIG. 17 shows the structure for the CENTRAL.EXE.
FIG. 18 shows the structure for the X.25-DBR.EXE.

FIG. 19 shows the system operating modes.
FIG. 20 shows the system architecture (send to db

X.25 DBR).
FIG. 21 shows the system modes of operation.
FIG.22 shows the system architecture (data base trans

mit Operating Mode).
FIG. 23 shows the system architecture (write com).
FIG. 24 shows the system operating mode (master RTU

system architecture).
FIG. 25 shows the system operating mode (system archi

tecture-rtu cac).
FIG. 26 shows the structure of the CDCSM.EXE process

(CDC synthetic RTU).
FIG. 27 shows the system architecture (structure diagram

of poll read routine).

DESCRIPTION

To facilitate the description, the Applicant sets out a table
of acronyms as used in this application:

ACRONYM SUBJECT

ACDC Alternating current-to-direct current
AGC Automatic Generation Control
ASCII A data character data format, typically

the format produced by a keyboard output
BISYNC Bi-Synchronous Communications
BOIS Built-in Operating System
CDC Control Data Corporation
CPU Central Processing Unit
CTS Clear to Send
DIA Digital to Analog (converter)
DCIDC Direct current-to direct current

5,490,134
S

-continued

ACRONYM SUBJECT

DCD Digital Communication Devi
DCE Data Communications Equipment
DCPMUX Digital Communication Processord

Intelligent Multiplexer
DMA Demand Assigned Multiple Access
DN Digital Network Terminal Connector
DTE Data Terminal Equipment
DTR Data Terminal Ready
EMI Electromagnetic Interference
ESD Electro-Static Discharge
FCP Front-end Communications Processor
IBM International Business Machines

Corporation
IDE Internal Disk Equipment
IEEE Institute of Electrical and Electronic

Engineers
IO Input/Output (terminals)
Kbytes One thousand bytes (of data)
L&N Leeds & Northrop Corporation
Mbytes One million bytes (of data)
MHz One million hertz (or one million cycles

per second)
Opto-22 A model number, for a SCADA, as

manufactured by Opto
OS/2 A multi-tasking computer operating system
OSF2AP IBM OS/2 Operating System. Application
PC Personal Computer
PC-AT Personal Computer, having model number AT,

as manufactured by IBM
PCB Printed Circuit Board
RS-232C An interface standard, identifies

connector pin assignments/functions for
specific cables

RS-422 An interface standard, identifies cable
connector pin assignments/functions for
specific cables

RTS Ready to Send
RTS/CTS Ready to Send/Clear to Send
TSP Time & Space Processing
RAM Random Access Memory
ROM Read Only Memory
RTU Remote Terminal Unit
SBO Select-before-operate
SCADA Supervisory Control and Data Acquisition
SNA Synchronous Network Architecture (IBM)
SWC Surge Withstand Capacity
UNX A multi-tasking computer operating system
WCC Versatile Communications Controller
WDC Voltage -- Direct Current
WGA Very Good Graphic Display Matrix Array for

high resolution
X.25 Packet Switching Synchronous Multi-Layer

Protocol

Overall System
As illustrated in FIG. 2A, an apparatus system and

method for communicating monitoring and control signals
comprises multiple sensor means 1 for initiating and receiv
ing RTU input signals 2. The RTU input and output signals
3 can be any one or several protocols 4. The RTU 5 also
inputs and outputs signals 3 in one of several protocols 4.
The RTU input and output signals 3 are representative of
monitoring and control signals at a remote power utility
substation. These RTU input and output signals 3 would be
obtained from sensors and/or transducers or signal commu
nicating equipment governing the operation of equipment at
the remote substation.
The RTU input and output signals 3 are representative of

status and control signals at the remote substations. The
multiple input and output signals 3 have one protocol
selected from the multiple protocols 4. The selected protocol
4 is determined by the characteristics, for instance, of
monitoring and control at the remote substations. The con
trol signal 3 is for purposes of controlling the equipment at

O

15

20

25

30

35

40

45

50

55

60

65

6
the remote substation, and the control signals are sent in the
protocol 4 appropriate for the RTU at the remote substations.

There can be multiple first locations, (i.e., remote substa
tions) which have a first controller means 6A. Each of these
controller means 6A would receive monitoring signals from
the RTU 5 at the remote substations. The controller means
6A at each remote substation also outputs the control signals
3 to the RTU 5.
The controller means 6A at each of the remote substations

includes means 7A for multiplexing the inputted signals 3 to
provide a composite monitoring signal 8 having a common
protocol. The controller means 6A at the remote substations
also include means 7A for demultiplexing a composite
signal 8 in the common control protocol into control signals
3 to the RTU-5.

There are also output means 9 for transmitting and
receiving the composite monitoring and control signals 8 in
the common protocol. The transmission and receipt in the
common protocol is directed to a communication medium
10 to at least one second location as illustrated in FIG. 2B.
At the second location which is a central substation or
master station there is a second controller means 6B. There
is receiving means 9 for receiving the composite signal 8
from the communication medium 10. There is means 7B in
the second controller for demultiplexing the composite
signal 8 into multiple output signals 3.

There is also means for demultiplexing the composite
signal 8 into multiple signals 7 within the second controller
6B, to form a composite signal 11.
The output means is provided in the second controller

means 6B for presenting the output signals at the second
location as monitoring signals 11. There are means within
the first controller 6A for presenting the control signal at the
first location.

There is also means 13 for selectively communicating
signals representative of voice between different first loca
tions, namely remote substations, independently of the sec
ond locations, namely one or more central substations.

There are software means within the controller means 6
for selectively receiving and using control signals at one or
more remote substations. Such selected first controller
means 6A are able to monitor signals 8 from the central
Substation located at the second location.
The system also provides display means 14 associated

with the first controlling means 6A at the remote substations.
These displays can monitor data in an integrated mode at the
remote stations.

In the manner described, the output monitored signals 11
at the second controller means 6B are the same as the input
RTUsignals 3 at the first controller means 6A. In this sense,
the communication would be essentially transparent to the
RCC SCADA computer means 12. Thus, the central sub
station is effectively the same as a monitoring the RTU at the
remote substation.

Similarly, control signals which emanate from the second
location, namely, the central substation, are transmitted by
the second controller means 6B through the communication
medium 10 and to the first controller 6A. The control signals
are outputted by the first controller 6A to the RTU 5 as if
they had been generated by the central substation. In this
sense, the communication medium 10 between the first
controller 6A and the second controller 6B is essentially
transparent.
The first controller means 6A and second controller means

6B include inputs which are of a multiple serial nature. At
least some of the inputs 3 and 11, respectively, may selec
tively have similar protocols with each other. The multiple

5,490,134
7

protocols can include a synchronous or asynchronous data
format.
The common protocol 8 is at least as high as an X.25

protocol. The communication medium 10 is selected to be at
least of an electronic, fiber optic, satellite, radio, microwave
or physical mediums such as twisted copper wire. At the
remote stations, the sensor means 1 which can be associated
with the instruments can be integrated into the controller
means 64 at the remote stations.
The first controller means 6A includes means for polling

multiple sensor means 1 to obtain a polled input signal 2.
The second controller means 6B includes means for polling
multiple remote substation controller means 6A to obtain a
polled input signal 11. In this fashion, the second controller
means 6B at the central substation has the ability to selec
tively or randomly chose a particular signal to be monitored.
Polling can be affected regularly as required.

Further details of the system, apparatus and method are
now described with reference to the flow diagrams illustrat
ing the multiplexing and demultiplexing of signals in con
verting them between multiple different protocols and the
composite protocols.

In each of FIGS. 3 and 4, there is the Emulex Commu
nication Processor Board which acts to multiplex or demul
tiplex, as the case may be, signals between the selected
different protocol into a common X.25 protocol serial data
stream. The board used in the controller is obtained from
Emulex Corporation in Costa Mesa, Calif., but is modified
for efficient use of the phase lock loop feature of the MUXi
50.

With reference to FIG. 3, a controller at a remote substa
tion illustrates input signals from the RTU into the Emulex
card 50 along line 51. The signals flow through the I/O
Process 52 where the site specific RTU protocol is converted
to computer RTU Database format. The data then proceeds
to the Data Queue Process 53 and Dual Port Memory 54,
which act as a buffer. This process is initiated by a poll from
the Synthetic Master Process 55. The Synthetic Master
Process 55 stores the data in the RTU Database 57 following
along line 56. When a poll is received from the RCC VCC,
the data from the RTU Database follows line 58 to the
Database Transfer Process (Reader) 59 where it is converted
into X.25 protocol. From there, the data enters the Dual Port
Memory 54 and the Data Queue Process 53, which act as
buffers to the I/O process X.25 protocol 61. The data then
enters the I/O Process Protocol X.25 61 along line 60 for
transmission to the RCC VCC.
A voice line from the TSP Voice Digitized Phone 62

passes through a Voice Digitizer card 63 prior to entering the
I/O Process Protocol Digitized Voice 65 along line 64. The
voice data then enters the Data Queue Process 53 and Dual
Port Memory 54. The voice data is passed along line 66 to
the Digitized Voice Switching Process 67, where it is con
verted from digitized voice protocol to X.25. The data then
re-enters the Dual Port Memory 54 and Data Queue Process
53, which act as buffers for the I/O Process Protocol X.25
into a composite signal using X.25 protocol along lines 68
and 60, respectively. From there, the composite signal
follows line 69 through the SWC card to the VSAT Con
troller 70, where the signal is transmitted to the Central
(RCC) substation. Other communication lines 171 are pro
vided for the terminal DAC/DCE. A printer port is provided
along line 172.
The Regional Control Center VCC receives the X.25 data

through the VSAT Controller 70 and stores the same in a
buffer address for a particular remote RTU after it is de
muxed through a reverse process. When the SCADA com

10

15

20

25

30

35

40

45

50

55

60

65

8
puter 93 polls the colocated VCC, the RTU data is provided
from this database.
An incoming signal from the RCC VCC to the remote

VCC enters the SWC card and the Emulex Communication
Processor Board 50. Once in the I/O Process Protocol X.25,
the signal is demultiplexed into its components: the RTU
data (control functions, polling commands, etc.) and the
voice data. The RTU data follows line 60 into the Data
Queue Process 53 and the Dual Port Memory 54, which act
as a buffer to the Database Transfer Process (Reader) 59. At
the Database Transfer Process (Reader) 59, the data is
converted from X.25 protocol to computer RTU Database
format. The data then follows line 58 to the RTU Database,
where it interprets the command. The command data are
passed on to the Synthetic Master Process 55.

If the command is a control function for the RTU, the
Synthetic Master Process acts like the RCC SCADA com
puter and issues the control function command to the RTU.
The command enters the Dual Port Memory 53 and the Data
Queue Process 54, and then follows line 173 to the I/O
Process Protocol 52. As illustrated, this is a CDC Type-1
protocol. It can be a different protocol for a different RTU.
The data is converted here to the protocol being used by the
site's RTU (CDC Type-1 or Opto-22 or L&N or System
N.W.). The command data then follows line 51 out through
the SWC card and into the RTU. The RTU then performs the
command.

If the command data is a polling request, the Synthetic
Master Process 55 reads the Stored RTU data in the RTU
Database 57 and sends it back along path 58 to be sent back
to the RCC. The Synthetic Master Process 55 polls the RTU
through the above process after a fixed interval so that when
the polling request comes from the RCC, the RTU Database
data is current. The demultiplexed voice data passes through
the buffers 53 and 54 to the Digitized Voice Switch Process
67. It is converted from X.25 to digitized voice protocol. It
is sent back to the buffers 53 and 54, and in turn, to the I/O
Process 65. It then passes to a Voice Digitizer card 64 which
converts the digital data to analog which is then outputted to
the phone 62.

In FIG. 4, there is an antenna for receiving satellite
communication in the common X.25 protocol and transmit
ting it into the controller at the RCC along line 71. This
signal contains both SCADA and voice data from multiple
RTU's at respective multiple first locations. This data gets
demultiplexed in the I/O Process (protocol X.25) 72 from
where it is passed to the Data Queue Process 3 and Dual Port
Memory 74 along line 75, 76, 77 and 78. The data is used
by several OS/2 processors, namely Database Transfer Pro
cess (Writer)79, 80 and 81, and the Digitized Voice Switch
ing Process 82.

For the voice data, the X.25 protocol is converted into
digitized voice protocol in the Digitized Voice Switching
Process 82. It then passes the data back to the Data Queue
Process 73 and Dual Port Memory 74. Then it is passed to
the I/O Process 83 which sends the data to a Voice Digitizer
card 84 which in turn converts digital data into analog voice
for the TSP Voice Digitizer Phone 85.
The SCADA data on the other hand gets converted from

X.25 protocol to computer RTU Database format in the
Database Transfer Process (Writer) 79, 80 and 81. The data
is then stored in the RTU Database 86. The individual
Synthetic RTU Process 87, 88, and 89, each representing an
RTU from a remote substation, polls the RTU Database 86
at a certain time interval. The SCADA data then passes
through the buffer of the Dual Port Memory 76 and the Data
Queue Process 73 to different I/O Processes 90, 91, 92.

5,490,134

These I/O processes convert the data from computer RTU
Database format into CDC-Type 1 protocol (or any other
protocol used by the RCC SCADA Computer 93). The
SCADA data is now usable by the RCC SCADA computer.
The control signals generated by the RCC SCADA com

puter to the remote RTU's would have the reverse process.
For illustrative purposes in FIG. 1, substation 1 can have

a remote substation monitoring and control RTU using a
CDCType 1 protocol, and a compressed voice digitizer with
a unique address. The RTU monitoring and control SCADA
traffic can be directed to Regional Control Center (RCC) 1,
while the voice traffic could be simultaneously directed to
RCC 2, at a second location.

Substation 5 could have an Opto-22 monitoring and
control unit which can be converted by the VCC to a X.25
protocol and the compressed voice simultaneously transmit
ted as before. The VCC converts all the inputs to an X.25
Satcomm network protocol for transmission over the satel
lite network. The VCC recognizes delays over the SatComm
network and compensates for it by emulating the RTU at the
master SCADA controller location and a second VCC at the
Regional Control Center emulates several remote RTU’s
providing immediate hand shaking with the SCADA Master
computer in a protocol transparent fashion.
VCC Hardware Configuration
The VCC has been built to take advantage of the mass

production volume of aPC-AT platform. Given the demand
ing environment of substation applications an industrialized
PC-AT compatible platform with a dustproof enclosure, and
passive backplane may be used to provide greater reliability.
For utility remote substation applications this invention
assumes use of the following hardware elements:

1. Industrialized PC-AT computer using a dust proof
enclosure, fan, passive back plane, complete with a central
processing unit(CPU), keyboard, monitor, floppy and hard
disk drives, and preferably driven by a nominal 48V DC or
130 V DC power supply.

2. An Emulex type multi-ported communications proces
sor expansion board. This board for satellite network appli
cations is configured for two synchronous and six asynchro
nous serial communication digitized data streams using an
RS-232C interface.

3. A digitized voice compression expansion card such as
a Time and Space Processing PC-AT voice digitizer.
The VCC has to withstand the EMI environment of a high

voltage substation. Both steady state and high voltage tran
sient or switching surges must be withstood by the equip
ment. Therefore the power supply and all external RS-232C
interface connectors must be connected to in-line switching
surge protection cards which are located at each input
connector interface. This protects all internal cards from
external surges propagating either through the interconnect
ing cables or coupled through space.

FIG. 2 shows the VCC element connections as a block
diagram. The 386/486 CPU, front-end Emulex communica
tions processor, voice digitizer board, and internal DC-DC
or AC/DC power supply. There are memory systems with at
least 4 MB of RAM, all connected to a passive back plane
architecture.
The VCC central processing unit, also known as the host

processor, is an 80386 class processor or better. A minimum
of 4 MB of RAM is provided for the multi-tasking OS/2
operating system used for the VCC. The host CPU is
selected to provide at least two serial ports (RS-232/RS-422)
with one parallel port. At a minimum the CPU is also
selected to provide 7 DMA channels, 3 timer channels, and
15 or more vectored interrupts. A programmable, battery
backed calendar and clock are located on the CPU board.

10

15

20

25

30

35

40

45

50

55

60

65

10
The host CPU is controlled by an AWARD type built-in

operating system (BIOS) located in on-board ROM. This
allows boot-up of the VCC with or without a keyboard. As
a communications controller, once the VCC is configured
for a particular substation or SCADA master site then the
key board could be locked away to avoid inadvertent dis
ruption of the communications function. Use of an OS/2
operating system for the VCC allows a single unit to monitor
and control several RTU's and a voice circuit with an X.25
interface with a satellite communications controller or an
SNA type environment.
Front-End Communications Processor
The VCC includes an Emulex Corp. DCP/MUXi Front

End Communications Processor (FCP) board (Model #DCP/
MUXi-8-512), installed in one of the expansion slots on the
PC/AT bus and with the appropriate OS/2 Driver and down
load and kernel software allows communication with up to
eight serial ports simultaneously. Two of the serial ports are
synchronous.
The DCP/MUXi is an intelligent multi-port board which

allows a single PC-AT using an OS/2 operating system to
support multiple tasks without degrading system perfor
mance. A normally equipped PC running under a multi-user
operating system cannot handle more than 3 serial ports
efficiently. This occurs because the overhead associated with
handling character I/O reduces processing power left to
handle application programs. The DCP/MUXi handles the
character I/O itself allowing the host processor to handle the
real time communication, control, display, and other appli
cation programs. The DCP/MUXiusing at least a 286 or 386
processor is selected with 512k or more of dual ported/dual
access shared memory to store I/O routines. The synchro
nous ports allow connection to mainframe SCADA comput
ers via an SNA, BISYNC, or X.25 connection. Ports con
figured for asynchronous operation can be connected to any
RS-232C device, such as, another PC, a modem, or a dumb
ASCII terminal. The DCP/MUXi supports an aggregate
throughput of 15,000 characters/sec. for all serial ports. The
synchronous ports can be individually configured as either
DTE or DCE. When the synchronous ports are used, the
corresponding clocks are set for DTE (incoming clocks).
The DCP/MUXi to PC interrupt level is set along with the
transparent mode interrupt level and the memory parity error
reporting is enabled.

Three control registers are used by the host PC to control
the CPU on the DCP/MUXi, depending on the switch
Settings. The control register settings must match the address
configured in the software and not conflict with any other
installed device. More than one DCP/MUXi can be used in
an OS/2 environment, but each must have a separate address
for control register 1. The number of DCP/MUXi boards that
can be installed is limited by the support software, available
back plane slots, and system power supply.

External interrupts from the serial ports normally come
into the DCP/MUXi and are vectored automatically. The
DCP/MUXi contains an Intel programmable timer/counter
device which acts as a source for interrupts and timeouts.
The DCP/MUXi has an Interrupt Mask Register, which
allows the local 286/386 processor to mask individual
interrupts, from the timers and host processor. The DCP/
MUXi contains memory that is shared by the host. The host
Software is used to select the size of the window that is
shared. The VCC uses a 512k window size. The DCP/MUXi
is installed in a 16 bit slot of the PC-AT.
The DCP/MUXi card in this VCC invention is connected

via a specially developed card to an eight serial port distri
bution interface for external I/O connections. Since the VCC

5,490,134
11

is to be used in an environment that requires protection of
each I/O port from electromagnetic transients, switching
surges, etc. the interface card serial ports fanning out of the
DCP/MUXi are connected to transient and switching surge
protection circuitry mounted on a printed circuit card and
in-line with each RS-232 serial port mounted on the chassis.
This allows up to eight external serial devices to be con
nected to the VCC with as many as six being asynchronous.
The serial ports on the VCC are configured as Data Terminal
Equipment ("DTE") ports for direct connection to modems
or any other Data Communications Equipment ("DCE"). If
the VCC has to be connected to a DTE device a null-modem
connector must be used. Shielded cables are used to the
external devices to reduce radio frequency interference
(RFI).
The DCP/MUXi board is configured for an OS/2 operat

ing system. A software distribution diskette is used to install
all the files necessary for installation of the driver. The VCC
is booted up normally as a PC-AT and login as root. The
distribution diskette is inserted in drive A. The files are
copied onto the hard drive with at least 80 MB of memory.
At least 4 MB of RAM is required for the OS/2 operating
system. Installation command scripts are used for the con
figuration files. In assigning a device number to the DCP/
MUXi in response to the command script the number of
DCP/MUXi boards installed in the VCC must be entered. In
order to go beyond the number of ports allowed by a given
DCP/MUXi, additional Emulex DCP/MUXicards may have
to be installed. For each board in the VCC both the DCPI
MUXi control register address and shared memory address
must be entered. These are initially set via switches for each
board. For the DCP/MUXi the shared memory address is set
by the driver. Attributes can be assigned to the VCC serial
ports, such as data rates through a particular port. The
DCP/MUXi down load code is used to install a desired
communications protocol. The whole process of installing
the "kernel' software can be automated. A particular proto
col conversion process, e.g. X.25 is made available repeti
tively to several devices attached to the VCC ports each
using a different protocol in a multi-user environment.

This hardware configuration allows use of software diag
nostics after the Emulex diagnostic monitor has been con
figured and loaded. Internal loopback tests can be conducted
for all the serial ports. The RS-232C modem controls
provide carrier monitoring via the Digital Carrier Device
("DCD") input signal. Loss of DCD signal generates a
hangup signal to all attached processes and input characters
will be ignored. Modem controls also provide hardware flow
control utilizing RTS/CTS handshaking, if desired. When a
port wishes to transmit, it asserts RTS. Transmission does
not begin until CTS goes true. When transmission is com
plete, CTS is dropped. Modem controls are normally
enabled but may be disabled by setting a particular flag bit.

All input conversions occur at the foreground level on the
DCP/MUXi. To minimize internal interrupt latency and
potential of input overruns or lost data, care must be taken
in implementing system flags. All output conversions occur
in the background level on the DCP/MUXi. Terminal input
takes priority over output. If terminal input saturates the
DCP/MUXi, a priority sequence can be assigned to the ports
Of the VCC.
The Emulex DCP/MUXi board is used to communicate

with the voice digitizer board over an RS-232C serial port to
transfer digitized voice data.
VCC Construction
The VCC uses a chassis with a passive backplane, Intel

80386 type processor, DC power supply, hard disk drive,

10

15

20

25

30

35

40

45

50

55

60

65

12
floppy disk drive, ventilation system, keyboard, monitor,
external controls, status alarms, port distribution cards,
switching surge protection cards, and RS-232 ports for
external device connection. The VCC chassis is an industrial
enclosure that can be mounted in a 19-inch rack, if desired.
Typically in a substation a 19-inch aluminum rack is used.
For example a Dracon center mount, double sided tray can
be used. The VCC slides between the channel uprights and
is fastened to the face of each vertical channel upright with
an angle bracket. The VCC is made up of a multi-slot
passive backplane. For substation applications a 48 V DC
power supply is used for the VCC to allow communication
and substation control even when AC power is unavailable.
The power supply and the RS-232 ports have an SWC rating
that meets the IEEE C37.90.1-1989 specification. An air
flow sensor is used to indicate presence or absence of forced
air movement.
The VCC has a minimum 80 MB IDE hard disk drive. The

system and applications software are stored on the hard disk
drive which is only used during start up, unless event driven
or other on-line diagnostic information is to be stored. The
VCC is dustproof and is fitted with a hinged dust cover over
the floppy drive. The 3.5 inch, 1.4 MB or better floppy disk
drive is used for loading or archiving system/applications
software.
The VCC internal electronics is cooled using positive

pressure fan cooling. The air is forced into the chassis
through a filter and directed across the expansion bus slots
to cool the CPU board, Emulex DCP/MUXi, TSP Voice
Digitizer and power supply electronics. The VCC is initially
configured through an external 101-key enhanced keyboard.
It is only needed during operational updates or configuration
changes. Otherwise it is locked away in a closed drawer.
The VCC connects to an external VGA monitor which is

rack-mounted. External controls include a power switch and
a reset switch. The power switch is used for powering
up/down the VCC system, and the reset switch provides
warm reboot capability.
The VCC cover door is latched to allow positive venti

lation. An internal speaker provides audible-only alarm
indications. The DC power supply connector is a male
connector on the VCC chassis.
Voice Digitizer
The VCC utilizes a Time and Space Processing(TSP)

PC-AT Voice Digitizer board in an expansion slot of the
PC-AT bus. A voice digitizer phone provides an interface
with the voice digitizer card in the VCC, which in turn is
connected to the DCP/MUXi through an RS-232C port. The
analog voice input to the handset connected to the VCC
voice port is digitized and encoded by the VCC voice
compression card as shown in FIG. 2.
The keyboard connector on the VCC system is a standard

15-pin female DIN connector. It is used to connect the
external keyboard to the host CPU.
The VGA monitor connector on the VCC is a 15-pin,

female high density D-subminiature connector. It connects
the external VGA monitor to the VCC VGA controller. The
VCC has port designations for the Voice Digitizer and other
asynchronous RTU ports, including the Ports having syn
chronous capability.
The VCC is constructed to meet the temperature, humid

ity, switching surge, transient, electro-static discharge, alti
tude, particulates, shock and vibration requirements for
substation equipment. The relative humidity conditions the
VCC meets is between 0–90% non-condensing.
To survive the electrical environment of a substation the

VCC is designed to withstand the oscillatory SWC test wave

5,490,134
13

of frequency range 1.0 MHz to 1.5 MHz, voltage range of
2.5kV to 3.0 kV crest value of first peak, envelope decaying
to 50% of the crest value of the first peak in not less than 6
micro-seconds from the start of the wave.
The fast transient waveshape to be applied to the VCC for

the test is a unidirectional wave. Its rise time from 10 to 90%
shall be no greater than 10 nano-seconds. The crest duration
above 90% shall be at least 50 nanoseconds. The decay time
from crest to 50% of crest value shall be 150 nano-sec
onds-50 nanoseconds. The crest voltage is between 4 kV
and 5 kV, open circuit.
The VCC incorporates industry standard ESD protection

in assembly and installation of the internal printed circuit
boards.
The VCC is designed to effectively operate in a dusty/

dirty substation environment.
The Voice Digitizer card is connected to the external

phone through a 15-pin female D-subminiature connector.
The cable assembly and buzz-down phone is supplied by
TSP. The second connector on the PC-ATVoice Digitizer is
the RS-232 serial port interface connector. This connector is
a 9-pin male D-subminiature and is used with the PC-AT
Voice Digitizer RS-232 Null-Modem cable assembly to
interface the Emulex DCP/MUXi front end processor. The
external phone interface connector mates with the Surge
Withstand Capability ("SWC) Circuit cardon all applicable
lines. The SWC rating meets the IEEE C37.90.1-1989
specification.
PC-AT Voice Digitizer Board
The Voice Digitizer Printed Circuit Board (“PCB') is

inserted in the expansion slot of the PC-AT processor bus to
provide voice communications simultaneously with SCADA
traffic through the DCP/MUXi. Power to the PCB is sup
plied through a 62 finger connector to the PC-AT bus. The
analog voice signals are routed through a DB-9 connector to
the four wire telephone and connections made to provide
on-hook/off-hook signals in the manner of a regular tele
phone. A third DB-25 connector and ribbon cable provides
an RS-232C serial interface to the DCP/MUXi. A push
button in the middle of the handset is depressed in the
manner of a radio telephone, and when released after the
speaker is done, alerts the receiver at the other end to
respond.
To accommodate the delay in signal transmission through

a satellite, a process is implemented to provide a tone at the
receiving end when the speaker is finished talking.

There are four basic functions provided by the PC-AT
Voice Digitizer PCB:

1. Voice and signalling interface designed to accommo
date the 4 wire TSP telephone or equivalent. Through this
interface analog voice signals, on-hook/off-hook signals,
and DC power are conveyed between the phone and Voice
Digitizer PCB.

2. Digital Speech Processing models the input analog
voice signals and converts them to a digital data stream at
selectable discrete rates of 3.6 kbps, 4.8 kbps, or 9.6 kbps
depending on available bandwidth. This data stream is
transmitted to the remote site. An incoming compressed
digital voice data stream is synthesized from the remote
voice digitizer, using a D/A model to convert back to analog
voice to drive the local handset receiver.

3. The digital voice I/O and RS-232C control signals are
routed to the VCC via a serial interface.

4. Power is supplied to the PC-AT via the PC-bus con
lectO.

The standard compressed voice software, for example
used by the TSP series 5800, has been modified for use in the

10

15

20

25

30

35

40

45

50

55

60

65

14
VCC and to provide it with information on the operational
status of the voice digitizer and most important to preserve
satellite bandwidth, if the VCC is communicating with other
WCC's over a satellite network.
The VCC uses the following control signal protocol with

the Voice Digitizer PCB. The Voice Digitizer recognizes the
off-hook status and raises "DTR” while suppressing any data
output. The VCC acknowledges the call attempt by raising
DTR. The PC-ATVoice Digitizer generates a “Dial Tone' to
the caller, when the VCC raises DTR. If the VCC does not
acknowledge the call attempt by raising "DTR” the PC-AT
Voice Digitizer PCB generates silence to the caller. The
caller dials the number and the digitizer collects the digits.
After six or fourteen digits followed by a ten second timeout,
the Voice Digitizer passes the digits to the VCC as a string
of ASCII characters. The Voice Digitizer then waits for an
indication from the VCC indicating the connection has been
established. This indication is in the form of an ASCII
character string "com' sent to the Voice Digitizer by the
VCC. When a "call connection” is received, the calling
Voice Digitizer generates a ringing tone. It then sends
digitized voice to the connected VCC after detecting the
remote off-hook condition. During the call, the silence
suppression state is indicated by the PC-ATVoice Digitizer
by dropping “RTS" to the VCC, indicating the currently
buffered data is to be sent immediately without waiting for
the current block to be filled. Subsequently, the Voice
Digitizer PCB indicates arrival of voice data to the VCC by
raising “RTS". The VCC terminates a call to the Voice
Digitizer by dropping “DTR". The PC-AT Voice Digitizer
PCB card indicates call termination by dropping "DTR'.

For an incoming call the following control signal protocol
is used: The VCC will raise "DTR” causing the Voice
Digitizer to indicate an off-hook at the calling end and
generating a ringing tone. When the called party's phone
goes off-hook the PC-AT Voice Digitizer raises “DTR”
allowing voice communications to begin. Silence suppres
sion is indicated by raising or dropping "RTS'.

Call progress tones such as, ringing, busy, dial and
reorder, are not passed on to the VCC for transmittal in
order to save satellite bandwidth. Instead, a signalling frame
is generated by the local VCC causing the receiving end
VCCVoice Digitizer PC-AT to generate the appropriate call
progress tone, or is generated internally depending on the
state of the call.
VCC Architecture at RTU (FIG. 3)

FIG. 3 shows the manner in which the same VCC
hardware is configured for deployment at a number of RTU
sites, for example with a CDC Type 1 protocol, L&N
protocol, or Opto-22 protocol. All sites are also assumed to
have a compressed voice requirement for emergency com
munications, shown as a TSP Voice Digitizer Phone. The
SWC surge protection circuitry is designed to protect each
RS-232CDCP/MUXi input terminal connection. The Input/
Output process interfaces with the VSAT Controller using an
X.25 I/O process interface protocol and is physically con
nected through a Surge Withstand Capability PCB. The
substation RTU is similarly connected through a SWCPCB
to the Emulex Communication Processor Board RS-232C
interface. The DCP/MUXi processor handles the special
needs associated with simultaneous digital voice, remote
monitoring and control. Since the system has been devel
oped for a multi-tasking environment using OS/2, the vari
ous I/O processes shown in FIG.3 can occur simultaneously.
Through a Data Queue Process and Dual-port Memory that
is shared by both the VCC host computer and the CPU on
the Emulex Communication Processor Board, the various

5,490,134
15

tasks, including the Database Transfer Process and Digitized
Voice Switching Process can go on in parallel. The Synthetic
Master Process emulates the SCADA Master in code and
appears to the RTU as if it were co-located. While the I/O
ports are physical ports the dual- ported memory ports
shown are logical (virtual) ports. The Synthetic Master
Process through the Data Queue Process, and the Dual Port
Memory which acts as buffers accessed through interrupts
under program control, establishes the RTU Database
through the RTU Database Transfer Process Reader.
At regular intervals the Synthetic Master Process sends a

poll to the RTU to ask for data. The data from the RTU
passes through I/O Process Protocol: CDC type 1. The
process decodes the serial data into storable data. The
decoded data is sent through the Data Queue Process and the
Dual Port Memory acting as buffers. The data then passes
through the Synthetic Master Process which enters the data
into the RTU database and sets a flag. This flag alerts the
Database Transfer Process (Reader) indicating that there is
new information waiting in the RTU Database for it. The
Reader than picks up the data and reformats it into a form
required by the X.25 protocol. It then goes back through the
buffer zones to the I/O Process Protocol: X.25 which tags it
with a Logical Channel Number. The data then goes to the
VSAT Controller where it is reformatted for transmission
over the satellite.
VCC at RCC (FIG. 4)

FIG. 4 shows the VCC at a Regional Control Center
("RCC') site. The RCC can gain access to the individual
remote RTU Databases through the Synthetic RTU Process
emulation. Regardless of the protocol used by the Remote
RTU's the VCC I/O Process Protocol converts the RTU
Database to the required RCC SCADA Master protocol.
At the RCC site, the data comes from the satellite through

the VSAT Controller to the I/O Process (Protocol: X.25)
which tags the data with the proper address. The data goes
through the Data Queue Process into Dual Port Memory and
into the corresponding Data Transfer Process (Writer). There
it is broken from X.25 into a format suitable for the RTU
Database. The data then goes to the RTU Database and sets
a Timer. The RCC sends polls at regular intervals requesting
current data from the Synthetic RTU Process. The Synthetic
RTU Process then goes to the RTU Database and retrieves
the data. If the data time elapsed in the RTU Database is less
than the maximum specified, then the data goes through the
communications Processor to the RCC.

If the satellite network uses a Spread Spectrum Multiple
Access technique, encoded data allows simultaneous trans
mission of messages through VSAT Controllers at several
stations on a "private channel' to the hub satellite earth
station. Data or control signals from the hub station to the
remote VSATs are on a party line. The VSAT Controller
looks for the proper link address in all the messages going
by to get its own traffic. Messages going out of the VSAT
Controller's space processor have a "network header' in
front. These headers contain information on message length
and other administrative data. Each message also carries a
trailer which contains additional Forward Error Correction
bits. The I/O process places a header on the message and
also embeds a X.25 message.
Communication Between TRU and RCC
As shown in FIGS. 3 and 4 each VSAT Controller has an

assigned link number. A satellite network operator can
assign a link number to the VSAT Controller over the
satellite by sending a message which includes the link
number (LCN) and serial number of the VSAT Controller.
The X.25 address has 3 parts: Link number, physical port

10

15

20

25

30

35

40

45

50

55

60

65

16
number on the VSAT, and the subaddress. During setup of
a X.25 connection between two VSAT's the program uses
the entire 8 byte address. During the connection process, the
two ends select a one byte Logical Channel Number (LCN).
This LCN is a data tag used in the accurate delivery of data
packets. This results in a virtual channel on a shared
communications channel.
The logical ports enable communications within the VCC

between the VCC Host Computer processes and the Emulex
Communication Processor Board I/O processes. For
example, the process which handles the telephone traffic
communicates with the telephone via one port and commu
nicates with the X.25 network through another port. The I/O
process, which handles the X.25, uses several ports to
communicate with corresponding host processes, FIG. 4.
The Data Queue Process is used to write data into buffers

at required times. When the Reader is ready, data is removed
on a First-In-First-Out (FIFO) basis. The I/O processes and
Dual Port Memory use queues between them. The Synthetic
RTU Process and the Database Transfer Process (Writer)
also use queues between them to move data out to the RTU.
These queues are used during Select-Before-Operate com
mands.

Since the VCC uses an Industrial PC-AT this invention
allows emulation of the RTU function and a screen driver
with two display modes. The first mode displays the raw data
between the VCC and a RTU or between a VCC and an
RCC. It also shows X.25 data interspersed with data des
tined for the RTU Database. The second mode provides a
formatted display of the data in the RTU Database. This
allows a check of the communications between the VCC and
the attached RTU or RCC (depending on whether the VCC
is located at a RTU or RCC site). It also allows a check to
ensure data is flowing between the local VCC and the remote
VCC.
System Overview
The VCC communicates to local and remote asynchro

nous and synchronous serial devices. Standard devices
include the Very Small ApeRTUre Terminal (VSAT) and a
TSPVoice Digitizer (used for voice communications). Each
VCC is capable of supporting up to six additional serial
devices (one synchronous and five asynchronous devices).
With a second DCP/MUXi card, the number of physical
ports can be doubled. The VCC can also be configured to
handle multiple RTU's per physical port. If the RTU's are
small with infrequent scan requirements, hundreds of
devices can communicate with each physical port. These
additional ports are available for communication to a wide
range of serial equipment, the majority of which are RTU's.
The remote capabilities of the VCC afford it the ability to

communicate with devices that are connected via a satellite,
terrestrial, or hybrid networks. In this manner the VCC can
establish a Switched Virtual Circuit (SVC) to another VCC
on the network. Programs running on the VCC can then read
incoming network data and translate this information,
depending on the target device, to the appropriate protocol.
This information can then be forwarded to the serial device
for interpretation.
OS/2APs Overview (FIGS. 5 and 6)

FIGS. 5 and 6 identify three software components of the
VCC system.
The first, the DCP/MUXi, is the download code that

physically runs on the DCP/MUXi serial communications
board. The second, the OS/2 Communication Driver, is the
kernel level component that provides a means for applica
tion programs to communicate with the DCP/MUXi. And
finally, the OS/2APs, is a conglomerate of application pro

5,490,134
17

grams that provide the system with data retrieval capabili
ties, data forwarding capabilities, and data monitoring capa
bilities. In addition, the OS/2APs provide a man/machine
interface that supports operations on equipment, such as the
select-before-operate ("SBO”) function found on RTU
devices.

In general, the OS/2APs communicate with one another
(inter-process communication) via the RTU Database. This
Database is located in a shared memory segment and pro
vides a semaphore control scheme for multi-process access.
Access to each Database is limited to one active writer and
up to eight active readers. Data is deposited into the Data
base for later retrieval by another process.
The OS/2APs also communicate to the physical devices

attached to the VCC. This functionality is implemented
using a queue scheme. The queue is a linked list of 512 byte
buffers that is read via the MUXi Communication Driver.
Thus if an Application program wishes to send information
to the MUXi Communication Driver, it will allocate a buffer
and place this information on the queue.
Software
The role of each software component is discussed below:
CENTRAL.EXE is the start-up and configuration pro

gram. Its functions include setting up database shared
memory segments, allocating the appropriate semaphores
for database access control, setting up the buffer areas shared
memory segments, allocating the appropriate semaphores
for buffer area access control, and finally, starting up pro
cesses as defined in its configuration file central.cfg.
X25 DBR.EXE (database receiver)-FIG. 7 is respon

sible for receiving data from the appropriate X.25 Switched
Virtual Circuit (SVC). This process, on startup, obtains
configuration information from a file located in the desig
nated configuration directory. The X25 DBR process then
proceeds to open a communications channel with the DCP/
MUXi Down Load Code via the MUXi Communication
Driver. On completion, the X25 DBR process opens the
buffer area, starts a polling thread, and then opens the RTU
Database for writing. If X25 DBR is successful in estab
lishing a connection to the Database, the process then starts
receiving data from the established SVC.
X25 DBX.EXE (database transmitter) is responsible for

sending data to the appropriate remote database via a X.25
Switched Virtual Circuit (SVC). This process, on start-up,
obtains configuration information from a file located in the
designated configuration directory. The X25 DBX process
then proceeds to open a communication channel with the
DCP/MUXi download code via the MUXi Communication
Driver. On completion, the X25 DBR process opens the
buffer area, starts a polling thread, and then opens the RTU
Database for writing. If X25 DBX is successful in estab
lishing a connection to the Database, the process then sends
data, via the established SVC, to the remote host.
O22 SM.EXE (opto-22 Synthetic master) is responsible

for reading and writing information to and from an attached
RTU running the Opto-22 protocol. This process, on startup,
obtains configuration information from a file located in the
designated configuration directory. The O22 SM.EXE pro
cess first opens a communication channel with the appro
priate logical port. On completion, the O22 SM.EXE pro
cess opens the buffer area, opens the appropriate RTU
Database for writing, and then starts a polling thread. The
main processing loop of the O22 SM.EXE process checks
for incoming data in the appropriate queue (such data
includes SBO or status request commands from a remote
master), services the remote requests with aged data
obtained from the RTU Database, and periodically polls the
attached devices to update data stored in the RTU Database.

10

15

25

30

35

40

45

50

55

60

65

18
CDC SM.EXE (CDC Synthetic master) is responsible

for reading and writing information to and from an attached
RTU running the CDC44-500 type 1 protocol. This process,
on start-up, obtains configuration information from a file
located the designated configuration directory. The CDC
SM.EXE process first opens a communication channel with
the appropriate logical port. On completion the CDC
SM.EXE process opens the buffer area, opens the appropri
ate RTU Database for writing and then starts a polling
thread. The main processing loop of the CDC SM.EXE
process checks for incoming data in the appropriate queue
(such data includes SOB or status request commands from
a remote master), services the remote requests with aged
data obtained from the RTU Database, and periodically polls
the attached devices to update data stored in the RTU
Database.
CDC SR.EXE (Opto-22 Synthetic reader) process is

used to read data from a local RTU and store that informa
tion into the RTU Database.
TSP DIAL.EXE process is used to dial other nodes on

the network.
The specific role of each of the OS/2AP's software

modules is summarized below:

Item FileName Summary of Role

1 CENTRAL.EXE Allocate Shared memory and start-up
all remaining processes
Poll for incoming packets place them
in the appropriate RTU database
Transmit data packets to remote
hosts
Allow for man/machine interface to
WCC
Poll RTU for requested information,
simulates the O22 Protocol
poll RTU for requested information,
simulates the CDC Protocol
Polls colocated RTU to obtain
required information/confirm control
action
Dial a remote site over a X.25 SVC

2 X25 DBR.EXE

3 X25 DBX.EXE

4. RMU EMU.EXE

5 O22 SM.EXE

6 CDC SM.EXE

7 CDC SR.EXE

8 TSP DIAL.EXE

The general operation of the OS/2AP’and the rest of the
system can be best summarized in the data flow diagram
shown in FIG. 6A. This figure shows the data flow between
the various subsystems.

FIG. 6B diagrams the process than run on the VCC.
Although FIG. 6B shows seven processes running, this may
or may not be the case and depends on the devices attached.
This issue is best illustrated through example. The Central
.Exe program is used to start up all of the appropriate
processes described in its configuration file. The entries in
this file contain the protocol conversion routines used to
translate traffic coming from the X.25 network in the correct
protocol for the attached equipment. Thus, if a VCC only
had Opto-22 RTU equipment attached, its configuration file
would contain the following entries: An entry for 022
Sm.Exe, used for translating network traffic into Opto-22
protocol message; an entry for X25DBX.Exe, used to trans
mit status information from the 022-Sm.Exe process over
the X25 network; an entry for the X25DBR.Exe, used to
receive traffic from the X25 network and finally, if the
remote site was to support voice communications the pro
gram Tsp-Dial.Exe would be started to grant the attached
telephone access to the X25 network.
System States and Modes (FIG. 8)

FIG. 8 identifies states of operations for the OS/2APs.
Application programs wishing access to the VCC environ
ment are started by the Central.Exe process. This is depicted

5,490,134
19

as the initialize state shown in FIG. 8. After completing
initialization and starting the appropriate application proto
col conversion programs the system enters into a two
concurrent states depicted in FIG. 8.

If data communications failure is detected the protocol
conversion programs will call a procedure to initiate a
automatic reboot sequence.
Software Design
Central.Exe (FIG.9)
The Central.Exe program is used to allocate shared

memory segments (databases) to each station defined in the
central.cfg file. The Initialization Data Flow Block Diagram
shown in FIG. 9 shows that on start-up central obtains
information from Central.cfg. This information includes site
name, RTU's defined at the site and the binaries that are
necessary at this site for polling and monitoring data flow.
Once this information has been processed Central.CFG then
proceeds to create the buffer pool containing sixty four 512
byte buffers. This pool will be used by other OS/2AP's for
temporary data storage and allocating buffers to be placed on
the queue.

After the initialization of the buffer area is complete,
Central.Exe then allocates the necessary shared memory
segments for the RTU Databases.
There are two types of RTU Databases, Control and

Station. The Control Database is used to maintain system
wide data that needs to be accessible to all OS/2APs. This
information includes the number of stations monitored at
this VCC (a station is one serial line that can contain one or
more RTUs), an array of station numbers, database reader
count, database writer count, database monitor count, an
array of process identifiers of each reader, an array of
process identifiers of each writer, and some additional debug
information. The Station database, on the other hand, is used
to store RTU specific information, some of this information
includes an array of analog data points, an array of status
data and an array of pulse counter data. Station databases are
allocated on a per station basis.
Once all the memory for the databases has been allocated

Central.Exe then starts all of the protocol conversion pro
cesses as specified in the Central.Cfg. If start-up of these
process is successful the programs then starts a timer thread
and periodically polls the MUXi Communication Driver
with an empty receive buffer to verify its status. If this
operation fails Central will initiate an automatic reboot
procedure.
Database Receiver Process (FIGS. 7 and 10 to 17)
FIG 10 shows the data flow for the Database receiver

process of FIG. 7.
FIG. 7 shows the data flow diagram for the database

X25 DBR.EXE receiver process.
X25-DbX.Exe

FIG. 11 shows the data flow for the database transmit
process.
Rmu-Emu.Exe

F.G. 12 shows the data flow for the RMU Emulation
Process.
O22-Sm.Exe

FIG. 13 shows the Data Flow for the Opto-22 Synthetic
Master Process.
Cdc-Sr. Exe

FIG. 14 shows the data flow for the CDC Synthetic
Master process.

FIG. 15 shows the data flow for the CDC Synthetic RTU
process.
Tsp-Dial.Exe

FIG. 16 shows the data flow for the TSP Dial Process.

10

15

20

25

30

35

40

45

50

55

60

65

20
Central.Exe (FIG. 7)

FIG. 17 shows the structure of Central.Exe.
Check-Mux
The check mux routine is used to periodically check the

DCP/MUXi Communications Driver board to insure that it
is running.
Get-Config-Data

This function is used to open the configuration file and
readin its contents. A unsuccessful read of this file will result
in a return value of 1. This routine contains all of the
configuration information that will be read into the system.
It is therefore not a general purpose tool and must be
modified prior to adding a new configuration item. Each
configuration item is represented by a parameter string/value
pair. The parameter string is the name of the parameter as it
is found in the configuration file. The item(s) following the
string is the value assigned to the parameter.
The type, elements involved and parameter strings

defined for some key functions are shown to illustrate the
configuration set up items for a VCC:

Type Element name Parameter String

char site list file(16) site list file
char local site name32 local site name
char remote site name32; remote site name
USHORT secondary dual port, secondary dual

port
USHORT primary dual port, primary dual port
USHORT x25 address; X.25 address
USHORT wsat cable; WSAT cable
USHORT terminal unit cable, terminal unit

cable
ULONG msg. interval; msg. interval
ULONG call delay; call delay
char call list file 16 cal list file
USHORT keep alive interval keep alive

interval
USHORT keep alive time outkeep

alive time out
USHORT timer resolution timer resolution
USHORT cnfg. station number RTU station number

MAX STATIONS
USHORT station count
UCHAR RTU address MAXSTA- RTU addr vs

TIONS) station num
USHORT RTU poll interval; RTU poll interval
USHORT max ritu data age max rtu data age
USHORT baud rate; baud rate
USHORT program count
USHORT mux debug que count; max debug que

count
USHORT alarm print enable; alarm print enable
USHORT debug mux; debug mux
char program name MAX PRO- pgm, config and

GRAMS. 64) logdir
char config file name MAX pgm, config and

PROGRAMS. 64) logdir
char log directoryMAX PRO- pgm, config and

GRAMS. 64) logdir
char program titleMAX PRO- pgm, config and

GRAMS. 64) logdir
char customer account number 12 customer account

number
char customer passwd 12 customer password
char calling address 16) calling address
static debug cfg debug cfg
USHORT

Get Path
The get path function is used to obtain the location of the

file. Its arguments include path and the file name. Get
path returns a pointer to the file found or NULL if the file is
not found.
Init-Rtu-db

5,490,134
21

This routine is used to create the control data base and
defined by the structure control ritu struct. The control
database is used to contain information like the number of
station databases on the system, the local site name, and
debug queuing information. In addition to setting up the
control database this routine also allocates a shared memory
segment for each station. The station numbers are identified
in the Central.cfg file by the argument RTU station number.
Each station found in the configuration file will have a RTU
database allocated for it. The data structure used for this
database is ritu data struct. The important items to mention
are that the init ritu db routine sets the variable send to
RTU que number and send to MSTR que number to
sets of the sequence (0,1),(2,3)(4,5) etc... It also assigns all
the values found in the configuration files into the database.
Initbuf
The initbuf routine clears all memory, sets up the free list

(addresses of buffers not in use) and set up a buffer chain.
Initdue

This routine is used to initialize the que data struct. The
VCC has 20 separate queues and this routine initializes each
of the 20 queues to point to the first free buffer and sets the
que count to Zero.
Rtu-Config-Data

This routine is used to initialize all of the variables in the
RTU Database.
Start-Process

This routine is used to start up all processes specified in
the Central.cfg file.
Main

In addition to calling all of the modules include Central
sets up and initializes the buffer pool which is used by the
remaining application programs to communicate with the
MUXi OS/2 Communications Driver. The pool is main
tained as a series of sixty four 512 byte buffers. These
buffers can then be allocated to up to 20 separate queues.
X25-DbrExe (FIG. 18)

FIG. 18 shows the structure of X25 DBR.EXE
DosGetShrSeg

This routine is called to open up the queue in shared
memory. We then call openbuf and openque to initialize the
segment. This memory has already been allocated by Cen
tral.exe. Note that this segment is the size of que data
strct-1024 bytes. Que data strct has a buffer table which
is set to sixty four 512 byte buffers.
ASCI-To-BCd

This function is used to change an ASCII string, used to
represent the X.25 caller address, into its decimal equiva
lent.

This routine takes the first byte, subtracts 0x30, and stores
it into the first nibble. It then takes the second byte, pointed
to by the string, subtracts 0x30, and stores into the second
nibble. Nibble one is then left shifted by four bits and thus
becomes the MSN. The routine the logically or's the two
nibbles storing the result into the first byte of the bcd string
address.
At this point this routine is hard coded to a twelve byte

string, and lgth is not used. Bcd string therefor, should
contain enough storage space for the 6 byte value to be
stored.

This function returns a void.
Data-Base-Recv (FIG. 19)
The routine, FIG. 19, is responsible for reading informa

tion from the specified port. If the poll time has expired then
the routine will write a empty buffer to the port to insure that
communication is still up. This routine then checks all of the
stations control queues for a message. If getque returns a

10

15

25

30

35

40

45

50

55

60

65

22
buffer it is then sent to the COM Port. It then checks to see
if there is any incoming data to read from the port (other than
control data) this routine searches the database for the
correct RTU Database an loads the data. If there is data from
the communications line then this is entered into the Data
base.
Clear-Call
#include "port io\x25.h'
include “commtype.h'
void clear call (lgcl. prt)
int lgcl. prt;

This routine is used to clear a call from a given logical
port. On completion of the clear, this routine sets the X.25
state to X.25 IDLE, updates the X.25 t23 time variable,
and increments admin cnt by one.
Data-Base-RecV

If the poll time has expired then the routine will write an
empty buffer to the port to insure that communications is still
up. This routine then checks all of the stations control queues
for a message. If getque returns a buffer it is then sent to the
COM Port. It then checks to see if there is any incoming data
to read from the port (other than control data) this routine
searches the Database for the correct RTU Database an loads
the data. If there is data from the communications line then
this is entered into the database.
Getbuf

This routine is used to obtain a buffer from the pool
Getaue

This routine is used to obtain a buffer from the queue
Place-Call
#include "port ioW25.h'
#include “commtype.h'
void place call (lgcl. prt, site address, x25 addr)
char *site address;
int x25 addr,
int lgcl. prt;

This routine is used to place a call to a remote site. The
arguments passed to this routine include a pointer to the
Read-Status
include "port io\our lib.h”
short read status (short port)

This routine is used to check the status of the communi
cations board. If the I/O control fails this routine will exit.
If the status message-disaster cs field returned from the
board is anything other than zero this routine will exit.
Write-Con
include "port iofour lib.h'
write com(int port, struct bufstruct *message)
int port;
struct bufstruct message;

This routine is used to set up the port for a write. The first
order of business is to determine if the port is ready. If not
ready the routine will attempt twenty times and if not ready
will return 0. If the IOCTL fails on the port this routine will
exit. If the disaster status bit is set on the returned status
message this routine will call disaster sub. If this is suc
cessful the message will be written to the port and time
message data length will be returned. If the write IOCTL
fails debug information will be displayed and this routine
will exit.
X25-Msg-Decode
include "commtype.h'
void X.25 msg decode (buff, logical port)
struct bufstruct buff,
int logical port,

This routine take the first byte of the buffer data segment
and evaluates it to determine the message type. Valid types
include:

5,490,134
23

INCOMING CALL-Results in a message displayed
that indicates that we have an incoming call packet type.
CALL CONNECTED-Results in a message being dis

played to standard output that a call connected packet has
been received, and in addition the X25 state is set to
X25. CALL IN PLACE, and the error count is cleared.
CLEAR INDICATION-Results in a message being

displayed to standard output that a call clear indication
packet has been received, and includes the cause, diagnostic,
and origin strings. The X25 state is set to X25 IDLE.
CLEAR CONFIRMATION-Results in a message

being displayed to standard output that a clear confirmation
packet has been received, and includes the origin string as
part of the displayed output. The X25 state is set to
X25. IDLE.
RESET INDICATION Results in a message being dis

played to standard output that a reset packet has occurred,
and includes the cause, diagnostic, and origin strings. The
X25 state is set to X25 IDLE.
RESET CONFIRMATION Results in a message being

displayed to standard output that a reset confirmation packet
has occurred, and includes the origin string. The X25 state
is set to X25 IDLE.
RESTART INDICATION-Results in a message being

displayed to standard output that a restart indication packet
has been received, and includes the cause, diagnostic, and
origin strings.
RESTART CONFIRMATION-Results in a message

being displayed to standard output that a reset confirmation
packet has occurred, and includes the origin string. The
X25 state is set to X25. IDLE.
The default message that will be displayed for an

unknown packet is “UNKNOWN".
Open-Com (FIG. 18)
The open com function is used to establish a communi

cations link with the DCP/MUXi board. It is used as a means
to establish communications with the OS/2 MUXi Commu
nications Driver. Its role is to set the physical protocol, frame
protocol, and packet protocol as they apply to the commu
nication standard selected. In addition the bufstruct defines
essential data that is protocol specific as well as various
other port specific information such as the physical port id
and the logical port id.
The logical port is specified by the user. Open com first

opens the control port then proceeds to open the logical port.
It waits for the communications link to be established then
returns.

Returns: void
This routine will exit(l) with an unexpected halt message,

exit(2) if unable to open the control device or the logical
port.
Open-Rtu-Db (FIG. 18)

This function is used to setup the RTU Database. This
database has been previously created by the start-up process
Central.exe. The shared memory segment name is
“\sharemem\sta %04.db'where %04 is the format specifier,
used by utilities such as Sprint. The format specifier is
replaced with the station configuration number. That is all
RTU Databases are created on a per station basis and will be
initialized by open rtu db. Access to the RTU Databases
are maintained by the control database. The control database
was initialized by the start-up process Central.exe and was
given the name \sharemem\control.db. The control database
maintains such information as station count, reader count,
writer count.
Open ritu db searches the control database to make sure

that the database has been setup previously by Central.exe.

10

15

20

25

30

35

40

45

50

55

60

65

24
If the database exists a semaphore is requested and if
successful the address of the database is loaded into the
RTU data array offset by the RTU station number. The
control que number is then assigned to the que array for later
CCCSS.

The read write flag has three valid operations. First
there is the R flag. The R flag is used to open the RTU
Database for reading. The RTU currently supports up to
eight (8) processes. Open rtu db the validate that the
maximum number of readers (8)

Structures used with this module include the ritu data
struct and the control rtu struct
Openbuf (FIG. 18)

This routine allocates a buffer for data.
Openque (FIG. 18)

This routine allocates a buffer for the queue.
System Architecture (FIG. 20)

FIG. 20 shows the send to db X25 DBR system archi
tecture. The following routines exist.
KV-Accr (FIG. 20)
KV accr(rtu index, msgblock)
USHORT rtu index
struct RTU comm struct *msgblock
The information contained in this data packet is defined

under struct accum report struct. The structure details
each field and type. This routine is used to correctly format
the data and submit to the correct RTU Database.
The incoming data looks like:

point accul type length data

8 bits 8 bits 16 bits UCHAR*length

The data field comes in LSB first followed by the MSB.
This routine correctly formats the data (16 bit value), and
stores it into current countpoint if accum type is
ACCUM COUNTER else it stores the information into
frozen countpoint). For more information on frozen
count and current count see ritu data struct. This routine
uses point as an index into the frozen count and current
count and is incremented for each 2 byte data value. A
master that sent a multiple byte data field would have this
information stored at point n up to point n--(length/2), where
n is the value found in the first 8 bits of the data stream.
KV-Acr-Analog change report (FIG. 20)
KV acr(rtu index, msgblock)
USHORT ritu index
struct RTU comm struct *msgblock
The information contained in this data packet is defined

under struct analog report struct. This structure has details
on each field and type. This routine is used to correctly
format the data and submit it to the correct RTU Database.
The incoming data looks like:

point pad length data

8 bits 8 bits 16 bits UCHAR'length

The data field comes in LSB first followed by the MSB.
This routine correctly formats the data (16 bit value), and
stores the results into analog datapoint). For more infor
mation on analog data see ritu data struct. Please note
that this routine overwrites this value if more than 2 bytes of
data are present. Thus the data stored into analog data is
(data length}<<8)+data length-1).

5,490,134
25

KV-Adcr-ADC Reference Report (FIG. 20)
KV adcr(rtu index, msgblock)
USHORT ritu index
struct RTU comm struct *msgblock

This routine is a stub.
KV-Afr Analog Force Report (FIG. 20)
KV afr(rtu index, msgblock)
USHORT ritu index
struct RTU comm struct *msgblock
The information contained in this data packet is defined

under struct analog report struct. This structure for details
on each field and type. This routine is used to correctly
format the data and submit it to the correct RTU Database.
The incoming data looks like:

point data pad length

8 bits 8 bits 16 bits UCHAR*length

KV-Fc-Firmware Configuration (FIG. 20)
KV fe(rtu index, msgblock)
USHORT ritu index
struct RTU comm struct *msgblock

This routine is a stub.
KV-Icr-Indication Change Report (FIG. 20)
KV icrCrtu index, msgblock)
USHORT ritu index
struct RTU comm struct *msgblock
The information contained in this data packet is defined

under struct status report struct. See this structure for
details on each field and type. This routine is used to
correctly format the data and submits it to the correct RTU
Database.
The incoming data looks like:

point pad length data

8 bits 8 bits 16 bits UCHAR*length

The index into the status simple data array is point/8
where point is incremented by one for each data byte. This
effectively separates the data into 8 one byte values. The first
byte is stored into point/8, the second into point--/s, the last
in point-length/8. Thus only every eight data byte will be
stored. This routine stores the data into status simple data
point, if type is STATUS SIMPLE, into status 1 bit
data, if type is STATUS 1 BIT, and into status 2bit
change, if type is STATUS 2BIT. Simple status data is
stored starting at the location point/8 up to length--(point/8).
Each consecutive byte is loaded into the simple status
data array. One bit status data is stored into status 1 bit
data in a similar manner. Two bit status is loaded first byte
into status 2bit data array, and the second data byte is
logically ored with the status 2bit change array. Status
2bit change is a two dimensional array indexed by the
number of readers of that particular RTU Database.
KV-Ifr-Indication Force Report (FIG. 20)
KV ifr(rtu index, msgblock)
USHORT rtu index
struct RTU comm struct *msgblock
The information contained in this data packet is defined

under struct status report struct. See this structure for
details on each field and type. This routine is used to
correctly format the data and submit it to the correct RTU
Database.

10

5

20

25

30

35

40

45

50

55

60

65

26
The incoming data looks like:

point pad length data

8 bits 8 bits 16 bits UCHAR*length

This routine stores each consecutive byte into status
simple datapoint, if type is STATUS SIMPLE, into sta
tus 1 bit data, if type is STATUS 1BIT, and into status
2bit change, if type is STATUS 2BET. Simple status data
is stored starting at the location point/8 up to length--(point/
8). Each consecutive byte is loaded into the simple status
data array. One bit status data is stored into status lbit
data in a similar manner. Two bit status is loaded first byte
into status 2bit data array, and the second data byte is
logically ORed with the status 2bit change array. Status
2bit change is a two dimensional array indexed by the
number of readers of that particular RTU Database.
KV-Soec-SOE Change Report (FIG. 20)
KV soec(rtu index, msgblock)
USHORT ritu index
struct RTU comm struct *msgblock

This routine is a stub.
KV-Soef-SOE Force Report (FIG. 20)
KV acr(rtu index, msgblock)
USHORT rtu index
struct RTU comm struct *msgblock

This routine is a stub at this time.
KV-Soel-SOE Log Report (FIG. 20)
KV soel(rtu index, msgblock)
USHORT ritu index
struct RTU comm struct *msgblock

This function is a stub.
KV-Tb-Time Bias
KV th(rtu index, msgblock)
USHORT ritu index
struct RTU comm struct *msgblock

This routine is a stub.
Send-To-Db
void send to db(rx buf, ritu index)
struct bufstruct *rx buf,
USHORT rtu index;
The data sent this routine in the receive buffer is cast to

a struct RTU comm struct. The RTU comm struct has
more details. This information is then used to determine the
type of incoming data as it pertains to the RTU Database.
Funct.h has details. Once this is determined an conversion
function is called to translate the data into the correct format
and submit to the appropriate RTU Database, as specified by
rtu index.
Data Flow, System Operation and Architecture (FIGS. 11
and 20–22)
X25-DbX.Exe

data base transmit
This routine is responsible for reading incoming messages

to verify the other side is up and running. If a data message
arrives this routine will place it on the correct database
queue. It then proceeds to verify the current state of the call
to insure that it is "in place.” If it is then both analog data,
in message sizes that does not exceed max analog
points pre msg, and status will be forwarded to the correct
host. These messages are called reports.
A conversion function is operated on each of these data

types to create the correctly formatted report.
FIG.21 shows that X.25RTU Database transmitter system

architecture modes of operation.

5,490,134
27

FIG. 22 shows the system architecture for the database
transmit mode.

This routine allocates a buffer for data
Openque

This routine allocates a buffer for the queue
Data-Base-Transmit

This routine is responsible for reading incoming messages
to verify the other side is up and running. If a data message
arrives this routine will place it on the correct database
queue. It then proceeds to verify the current state of the call
to insure that it is "in place.' If it is then both analog data,
in message sizes that does not exceed max analog
points pre msg, and status will be forwarded to the correct
host. These messages are called reports.
A conversion function is operated on each of these data

types to create the correctly formatted report.
Getbuf

This routine is used to obtain a buffer from the pool
Putbuf

This routine returns a buffer to the buffer pool.
Putdebug
#include “commtype.h'
void putdcbug(msg. type, lgcl. prt num,

buffer)
int msg. type, lgcl. prt num, serial num
struct bufstruct buffer;

This routine is used to place "buffer' on the queue that is
specified by the extern debug que number. This queue can
later be read to view the messages that presumably have
been sent to the driver. This routine overwrites the bufstruct
entries msg. type, port, count and msg. time with the
parameters passed to it (that is msg. type, lgcl. prt, and
Serial num respectively). msg. time is just the current
number of msg. type that has passed.
Read-Com
#include "port io/our lib.h'
int read com (port, message)
int port;
struct bufstruct *message;

This routine is used to issue a read command to the driver
and indicate the size of the data segment to be returned. This
routine checks the DCP/MUXi status, if down logs an error
and exits. It then checks the return value of return, stat
struct stat msg->disaster cs, if not Zero logs an error and
exits. The routine then proceeds to check the status message
to see if the DCP/MUXi is in the RDY state, if it is not the
return 0, otherwise read data from the port and return the
length of the data read. If the IOCT1 fails this routine logs
a message and returns a 0.
Read-Status

Serial num,

include "port iolour lib.h'
short read status(short port)

This routine is used to check the status of the communi
cations board. If the Ioctl fails this routine will exit. Based
on the status message->disaster cs field returned this rou
tine will exit.
Rfc-Afr
#include x25 dbxth
void rfc afr (rtu index, rdr indx, start point,
stop point, data buf)

10

15

20

25

30

35

40

45

50

55

28
USHORT rtu index, rdr indx, start point, stop point;
struct bufstruct *data buf;

This routine is used to format outgoing analog data. The
format of the outgoing data is defined in the structure
RTU comm struct. The routine uses the data buf as the
transmit buffer, however prior to transmission it will update
the data Igth to RTU COMM HEADER SIZE+ ANA
LOG REPORT HEADER SIZE, set the station number
to the value specified by the rtu index, set rtu control to
Zero, set the function to type AFR FC, add start point to
rtu info.analog offset (as defined in the ritu Database),
and then from the start point to the stop point the data is
added to the transmitted buffer, and stored in the analog
report.data field.
RfC-If
include x25 dbxth
void rfc afr (rtu index, rdr indix, data buf)
USHORT rtu index, rdr indx;
struct bufstruct *data buf,

This routine is used to format outgoing change data.
Change data of this form is referred to as Indication Force
Report. The format of the outgoing data is defined in the
structure RTU comm struct. The routine uses the data
buf as the transmit buffer, however prior to transmission it
will update the data gth to RTU COMM HEADER
SIZE--STATUS REPORT HEADER SIZE, set the sta
tion number to the value specified by the rtu index, set
rtu control to zero, set the function to type IFR FC, set the
status type to STATUS 2BIT, set the start point to zero
and update the report data with the information in status
2bit data.
System Architecture (FIG. 23)
Write-Com

FIG. 23 depicts the system architect for write com.
Stat-Sub

This routine prints out data from the return stat struct.
This information includes such items as status of the MUXi
registers. See return stat struct for details.
Translate-Error-Code

This routine translates error numbers into error strings for
logging into the error file.

Messages include:
the port has not been opened PORT NOT OPENED
the receive data is larger than DATA SIZE RECV

BUFFER TO BIG
We expected the receiver to be ready RECV NOT
READY

The buffer is larger than DATA SIZE XMIT
BUFFER TO BIG
We expected the xmitter to be ready XMIT NOT
READY

FIG. 24 shows the System Operating Mode for the CDC
Synthetic Master RTU System Architect for the CDC Syn
thetic Master Emulation.

FIG. 25 shows the System Operating Mode for the
RTU CDC System Architecture.
The program listing pertains to the data structures used in

the functions detailed in relation to the different programs
illustrated in various of FIGS. 17 to 25.

5,490,134
29 30

RTU-Comm-Struct

include 'structs.h"

35 USHORT station number

O

15

25

35

5,490,134
31 32

PATENT
98.33

UCHAR rtu control
UCHAR function

union comm msg union comm msg

Accum-Report-Struct

finclude "structs.h"

#define RTU COMM SIZE 512
struct accum report struct {

UCHAR point; f / point address that data refers to
UCHAR accum type; // frozen or not frozen (funct.h)
USHORT length; // number of bytes of data
UCHAR data (RTU COMM SIZE);

Analog-Report-Struct

finclude "structs. h"

#define RTUCOMM SIZE 512
struct analog report struct {

UCHAR point; A / starting point
UCHAR pad; f / not used
USHORT length; f f number of bytes of data
USHORT data (RTUCOMM SIZE/2); A / data segment

}

Bulfstruct

Struct bufstruct

USHORT buff ptr;
short data lgth;
short data offset;
char buff status;
char buff pad;

10

15

25

3 O

35

5,490,134
33 34

union

{

char data (DATA SIZE);
struct open struct
{

char control;
char physical port;
char logical port;
char packet protocol;
char frame protocol;
char phys protocol;
char protocol mode;
char recV intrp enbl;
char Xmit intrp enbl;
USHORT baud rate;
short read time out;
short xmit time out;
short reply time out;
short max recV que count;
short max Xmit que count;
short debug flag;
union

struct async open data
{

short max count; fk maximum number of
chts to receive k /

short eol count; A k number of possible
terminator chts in following list */

char eollist (16); / k list of End of Line
(terminator) chts */

short ignr count; A k number of characters
in the ignore list k/

char ignr list (16); f k list of chts to not
receive k /

O

15

25

3 O

35

st

{

St.

St.

S

{
/ k
k physical
k/
/k
k frame

/k
k packet
k/

5,490,134

} async

ruct tsp open data

short max count;
} tsp;

ruct dig open data

short max count;
dg;

ruct bisync open data

char poll addr8);
char select addr(8);
} bisync;
truct X25 open data

UCHAR frame window size;
USHORT frame time out;
UCHAR frame mode;

UCHAR packet window size;
USHORT packet time out;
USHORT local addresslgth; /* length in nibbles

UCHAR local address (MAX X25 ADDRESS LENGTH);

36

O

15

25

3 O

35

5,490,134
37 38

USHORT remote addresslgth; /k length in
nibbles k/

UCHAR remote address (MAX X25 ADDRESS LENGTH);
USHORT facilities lgth; /* length in bytes */
UCHAR facilities (MAX X25 FACILITIES LENGTH);
USHORT user data ligth; /* length in bytes */
UCHAR user data (MAX X25 USER DATA LENGTH);
USHORT lu max;
USHORT lumin;
UCHAR call placement flag;
UCHAR packet mode;
} X25;

struct lu2 open data

* physical
k/

'k frame

k/

USHORT frame time out;
USHORT no resp timeout;
ULONG phys unit ID;
UCHAR D, C addr;
UCHAR frame window size;
UCHAR frame mode;

f k --

k packet
k/

USHORT packet time out;
UCHAR local address;
UCHAR remote address;
UCHAR packet mode;
UCHAR open type;

O

5

20

25

30

35

5,490,134
39

UCHAR last open;
} lu2;

} prot;
) open data;

} protocol;

call clearing

#include "portio\x25. h"
struct call clearing {

unsigned char msg. type;
unsigned char cause;
unsigned char diagnostic;
unsigned char origin;

call placing

if include "x25. h"

struct call placing {
unsigned char msg. type;
USHORT remote address lgth;
unsigned char remote address (MAX X25 ADDRESS LENGTH)
USHORT facilities lgth;
unsigned char facilities (MAX X25 FACILITIES LENGTH)
USHORT user datalgth;
unsigned char user data (MAX X25 ADDRESS LENGTH)

cdc dat struct

finclude "structs.h"

struct cac dat struct {
UCHAR func : 4;

40

10

15

25

3 O

35

5,490,134
41 42

UCHAR rtu addr : 4;
union cdc msg union cdc. Insg;

cdc msg union

include struct. h.

#define CDC DATA SIZE 512
union cdc msg union

UCHAR data (CDC DATA SIZE);
struct sho select struct sbo select; // For trip

and close

Struct direct operate struct direct operate; //
Direct trip or Close

Struct setpoint struct setpoint; // Setpoint
struct scan3. Cmd struct scan3 cmd; // Scan 3

Command

sbo select struct {
UCHAR point; f / for Trip or Close command

struct direct operate struct {
UCHAR point; f / Direct Trip or Close

struct setpoint struct {
USHORT value msn : 4;
USHORT point : 4;
USHORT value lisb : 8;

};

struct scan3. Cmd struct

UCHAR start address;
UCHAR stop address;

O

5

25

30

35

5,490,134
43 44

comm msg union

struct relay command struct relay command
UCHAR point

UCHAR command;

USHORT value

struct direct operate struct direct operate
UCHAR point

struct comm setpoint struct comm setpoint
USHORT value msn : 4
USHORT point : 4
USHORT value lisb : 8

struct analog report struct analog report
UCHAR point
UCHAR pad

USHORT length

USHORT data (RTU COMM SIZE/2) / / 512/2
struct status report struct status report

UCHAR point

UCHAR status type
USHORT length

UCHAR data (RTU COMM SIZE)
struct accum report struct accum report

UCHAR point

UCHAR accum type
USHORT length

UCHAR data (RTUCOMM SIZE)

controlrtu struct

include "cen data. h"
MAX RTU 16
MAX READER 8
USHORT station count
USHORT station number (MAX RTU)

O

5

25

3 O

45

USHORT

USHORT

USHORT

USHORT

USHORT

USHORT

5,490,134
46

db reader count
reader pid (MAX RTUkMAX READER)
db writer count
Writer pid (MAX RTU)

db monitor count
monitor pid (MAX RTU)

USHORT debug gue number
USHORT max debug que count
UCHAR local site name (32)

que data struct

MAXQUE 20
NBUFS 64

BUFSIZE 512

SEGNAME "W\sharemem\ \que shar. seg"
SEMNAME "VVsem\\que. SEM"

QUE SEMNAME "W\sen\ \que&d. SEM"

f /

UNIT DATANAME "\\ sharemem\ \unitdata. seg"
unsigned quelist MAXQUE
unsigned que count (MAXQUE
unsigned emtlist
unsigned bufcnt
unsigned buftbl NBUFS)
union {

char *pointer
struct {

}

unsigned offset
unsigned segment

partial
} requester (NBUFS)

unsigned pid (NBUFS)
unsigned char pool (NBUFkBUFSIZE

128

O

15

20

25

3 O

35

5,490,134
47 48

return stat struct

#include "portio/com strc.h"
struct return stat struct

ULONG recV intrp flag; f k bit true (1) marks new
recV data ready k /
ULONG recv intrp enbl; ?k bit true (1) enables recV

intrpt for new data k/
ULONG Xmit intrp flag; ?k bit true (1) marks Ximit

ready k/
ULONG Xmit intrp enbl; /k bit true (1) enables Ximit

intrpt for new data k/
unsigned char admin intrp flag; /k bit 0 is flags

admin data ready k/
unsigned char admin intrp enbl; /k bit 0 true will

allow interrupt */
USHORT pool segment; A the base segment of the

buffer pool k/
Short dp pad (5); fk to pad out to

segment boundary k/
Short mux running; fk this cell is

incremented for each mux scan k /
/k k/
char logical port open;
char phys port number;
char x que max;
char x que cnt;
char r que max;
char rque cnt;
char Xmit status;
char recV status;
char x int status;
char rint status;
char port thlindx;

10

5

25

3 O

5,490,134
49 50

char XII it buff window;
USHORT xmit buff window offset;
char return stat struct pad2;
char recv buff window;
USHORT recv buff window offset;

/ k k/
char return stat struct pad3;
char x int buff window;
USHORT x int buff window offset;
char return stat struct pad4;
char rint buff window;
USHORT rint buff window offset;

/ k k/
short disaster lip;
short disaster cs;
short disaster ax;
short disaster bx;
short disaster cx;
short disaster dx;
short disaster di;
short disaster si;
short disaster es;
short disaster ds;
short disaster ss;
short disaster sp;
short disaster bp;
short disaster fl;

/ k k/
short phys seg;
short phys offset;
short virt seg;
short virt offset;
short size of dual;

10

5

25

3 O

35

51
5,490,134

S2

short local seg;
short help flags;

RTU-Data-Struct

This structure includes all the RTU data

information, necessary for storage. The definition of
this structure is as follows:

MAX READER 8
struct rtu info struct
UCHAR rtu onl
UCHAR rtu proc time
UCHAR rtu header (MAX READER)
ULONG last data time
USHORT Write access count;
USHORT read access count IMAX READER)
USHORT control send count
USHORT analog data (MAX ANL)
UCHAR analog flag (MAX READER)
sho store struct
struct sbo store struct {

UCHAR point; f / The selected point number
UCHAR state; f / The current state of the

point
UCHAR cmd; f / The issued command (functs.h)
UCHAR pad; f / pad to make structure uniform
USHORT value; f /
ULONG select time; // time located in GINFOSEG

status report struct

include "structs. h"

5,490,134
S3 54

#define RTUCOMM SIZE 512
struct status report struct {

UCHAR point;
UCHAR status type;
USHORT length;

UCHAR data (RTU COMM SIZE);

5,490,134
55

FIG. 26 shows the structure of the CDC SM.EXE Pro
cess for the CDC Synthetic RTU.
poll read
void poll read (recV data,rcv. lgth, rtu index)
struct cdc data struct recV data,
USHORT rcv. lgth, rtu index;

This routine is used to take a recV data buffer that was
read off appropriate port. The data contained in this routine
is described in the structure cdc data struct. This structure
supports type 1 CDC protocol. The rtu index as an index
into the sbo store array, which is an array of sbo store
structs. The rcv. lgth is the length of the data passed in the
recV data buffer.
The first item that this routine does is update two arrays,

modem rcv and modem cht rcv. The modem rcV array
is a count of the number of times that this routine has been
called. modem cht rcv is an array that contains the total
length of the data that has been submitted to this routine.

Next, this routine obtains a buffer from the buffer pool, if
none are available the this routine prints an error message
and returns. This routine then evaluates the type of function
calls the correct retrieving functions.
Type of Functions supported:
SCAN 1
Change the sbo store array member state to DESE

LECTED, Call rfc stat with start set to 0 and stop set to FF
(255, Collecting all data between points 0 and 255). Call
rfc anilg with start set to 0 and stop set to 255 to collect all
analog data at points 0 to 255. Correct the data length of the
data buffer and then transmit the data to Comm Driver for
transmission.
The data will be collected from the database based on the

"start 2bit chg' and "num 2bit chg' parameters found in the
stations configuration file. This parameters specify the loca
tion where data will be stored and then number of bits
(length) of data respectively. If start and stop are not within
the range (started start 2bit chg, stopgnum 2bit chg/8-
1) then they are adjusted to fall within the range. This
information is used to verify that the start and stop param
eters fall within the correct range.
SCAN 2:
Set the status of the sbo store array to DESELECTED.

Do a scan of status information only. Call rfc stat with start
set to 0 and stop set to 255.
SCAN 3
Set the status of the sbo store array to DESELECTED,

set the start, stop, transmit buffer start and transmit buffer
stop points to the value specified in the message. Call
rfc stat to obtain status information, call rfc accm to get
accumulator information, call rfc anlg to get analog infor
mation.
Direct-Setpoint

Set the state of sbo store to DESELECTED. Store all of
the data elements in the transmit buffer. Call rfc dset, if
return TRUE continue, else set transmit buffer function to
NO OPERATION and transmit the response.
No-Operation

Set the state of sbo store to DESELECTED and write an
empty buffer to the Comm port.
Control-Trip:

Set the transmit buffer to include the point, call rfc trip
and transmit the buffer.
Control-Close:

Set the transmit buffer to include the point, call rfc close
and transmit the buffer.
Setpoint

Set the transmit buffer to include point, value msn and
value lsb. Call rfc setpoint and transmit the buffer.

10

5

20

25

30

35

40

45

50

55

60

65

56
Operate

Call rife sboo if a return value of TRUE, transmit the
buffer, else set the transmit buffer func to NO OPERA
TION and transmit the buffer,
Reset:

Set the sbo store array member state to DESELECTED
and call rfc reset. If rfc reset returns a value of TRUE,
transmit the buffer, else set the transmit buffer func to
NO OPERATION and transmit the buffer.
Accumultir-Freeze

Set the sbo store array member state to DESELECTED
and call rfc accum freeze. If rfc accum freeze returns a
value of TRUE, transmit the buffer, else set the transmit
buffer func to NO OPERATION and then transmit

FIG. 27 shows the structure diagram of the poll read
routine.
Error-Log
#include "port io\our lib.h.”
void error log(msg, pgm name)
char msg), pgm name;

This routine is used to print out a message, msg, to the
logfile. The name of the log file will be pgm name, with all
leading characters ie "\" etc stripped off, followed by the
extension of "err'. If pgm name is not specified this
routine will default to creating a file in the current directory
with the name of compgms.er.
The message will be formatted as follows: pgm name

day month year hour minute second Message
This message is printed to the file and the file is closed.

This routine attempts to open the file in 'a' (append) mode
and if unable to do so after ten tries it just returns. This
should be addressed, to return a know value.
Pol-Read
void poll read (recV data,rcv. lgth, rtu index)
struct codc data struct recV data;
USHORT rcv lgth, rtu index;

This routine is used to take a recw data buffer that was
read off appropriate port. The data contained in this routine
is described in the structure cdc data struct. This structure
supports type 1 CDC protocol. The ritu index as an index
into the sbo store array, which is an array of sbo store
structs. The rcv lgth is the length of the data passed in the
recV data buffer.
The first item that this routine does is update two arrays,

modem rcv and modem cht rcv. The modem rCV array
is a count of the number of times that this routine has been
called. modem cht rcv is an array that contains the total
length of the data that has been submitted to this routine.

Next, this routine obtains a buffer from the buffer pool, if
none are available then this routine prints an error message
and returns. This routine then evaluates the type of function
calls the correct retrieving functions.

Type of Functions supported:
SCAN 1
Change the sbo store array member state to DESE

LECTED, Call rfc stat with start set to 0 and stop set to FF
(255, Collecting all data between points 0 and 255). Call
rfc anilg with start set to 0 and stop set to 255 to collect all
analog data at points 0 to 255. Correct the data length of the
data buffer and then transmit the data to Comm Driver for
transmission.

Please note that will be collected from the database based
on the "start 2bit chg' and "num 2bit chg' parameters found
in the stations configuration file. This parameters specify the
location where data will be stored and then number of bits
(length) of data respectively. If start and stop are not within
the range (start> start 2bit chg, stopgnum 2bit chg/8-

5,490,134
57

1) then they are adjusted to fall within the range. This
information is used to verify that the start and stop param
eters fall within the correct range ... SCAN 2:

Set the status of the sbo store array to DESELECTED.
Do a scan of status information only. Callrfc stat with start
set to 0 and stop set to 255.
SCAN 3
Set the status of the sbo store array to DESELECTED,

set the startstop, transmit buffer start and transmit buffer
stop points to the value specified in the message. Call
rfc stat to obtain status information, call rfc accm to
getaccumulator information, call rfc anlg to get analog
information.
Direct-Setpoint

Set the state of sbo store to DESELECTED. Store all of
the data elements in the transmit buffer. Call rfc diset, if
return TRUE continue, else set transmit buffer function to
NO OPERATION and transmit the response.
No-Operation

Set the state of sbo store to DESELECTED and write an
empty buffer to the Comm port.
Control-Trip:

Set the transmit buffer to include the point, call rfc trip
and transmit the buffer.
Control-Close:

Set the transmit buffer to include the point, callrfc close
and transmit the buffer.
Setpoint

Set the transmit buffer to include point, value msn and
value lsb. Call rfc setpoint and transmit the buffer.
Operate

Call rfc sboo if a return value of TRUE, transmit the
buffer, else set the transmit buffer func to NO OPERA
TION and transmit the buffer.
Reset:

Set the sbo store array member state to DESELECTED
and call rfc reset. If rifc reset returns a value of TRUE,
transmit the buffer, else set the transmit buffer func to
NO OPERATION and transmit the buffer.
Accumultir-Freeze

Set the sbo store array member state to DESELECTED
and call rfc accum freeze. If rfc accum freeze returns
value of TRUE, transmit the buffer, else set the transmit
buffer func to NO OPERATION and then transmit
Putbuf

Return a buffer to the buffer pool
Putdebug
include "commitype.h'
void putdebug(msg. type, lgcl. prt num, serial num,

buffer)
int msg. type, lgcl. prt num, serial num
struct bufstruct buffer;

This routine is used to place "buffer' on the queue that is
specified by the extern debug que number. This queue can
later be read to view the messages that presumably have
been sent to the driver. This routine overwrites the bufstruct
entries msg. type, port, count and msg. time with the
parameters passed to it (that is msg. type, lgcl. prt, and
serial num respectively). msg. time is just the current
number of ms that has passed.
Rfc-Accm
USHORT rfc accm (data buff, start, stop, rtu index)
char data buff;
USHORT stop, start, rtu index;

This routine checks to see that the start and stop points are
at least within the range specified by the start current
count, and counter ptcnt values located in the RTU Data
base. Thus if the start current count is greater than the
start parameter, then start current count will be used,
likewise if counter ptcnt -1 less than stop then counter

10

15

20

25

30

35

40

45

50

55

60

65

58
ptcnt-1 will be used. If the first point is less than or equal
to the last the data will be loaded into the buffer. Note (rfitz)
the data will be read from the start current count up to
counter ptcnt as it is written. This routine then applies the
same rule to the frozen count data.
The data elements accessed by this routine include:
current count is an array of 256.8 bit elements. This

routine reads each byte into the transmit buffer. fro
Zen count is an array of 256 8 bit elements. This
routine reads each byte into the transmit buffer.

Returns:
0 if counter ptcnt in the RTU Database is zero, otherwise

it returns the number bytes of data placed in the buffer.
Rfc-Accum-Freeze
void rfc accum freeze (point, value, ritu index)
USHORT point, rtu index, value;

This routine sets the following parameters, as defined in
RTU comm struct: function is set to ACFZ FC. A buffer
is then obtained from the buffer pool and this information is
then put on the control que by a call to put on cntl que.
Returns:
FALSE if unable to get a buffer from the pool, or unable

to place the buffer on the control queue, otherwise
returns TRUE.

Rfc-Anlg
USHORT rfc anlg(data buff, start, stop, ritu index)

char data buff;
USHORT stop, start, rtu index;

This routine checks to see that the start and stop points are
at least within the range specified by the start analog, and
analog ptcnt-1 values located in the RTU Database. Thus
if the start analog value is greater than the start parameter,
then start analog will be used, likewise if analog ptcnt-1
is less than stop then analog ptcnt-1 will be used. If the
first point is less than or equal to the last the data will be
loaded into the buffer.

Note: The data in the array will first masked with 0x0FF0
and the logically shifted by 4 bits. This same data is then
masked with 0x0F and logically shifted by 12 bits. These
two values are then logically ored and the result is then
loaded into the buffer. For example:
0000 OXXO-0000 OOXX
OOOOOOOX-OOOOXOOO
After the or you have
OOOOXOXX

This has caused the data from the LSByte to Move to the
MSByte and have bytes 1 and 2 move to LSB (ie position 0
and 1).

This routine then applies the same rule to the frozen
values data.
Returns:
0 if counter ptcnt in the RTU Database is zero, otherwise

it returns the number bytes of data placed in the buffer.
Rfc-Close
void rfc close(point, rtu index)
USHORT point, rtu index;

This routine sets the following parameters, as defined in
sbo store struct: point is set to the parameter point, state
is setto SELECTED, cmdis set to CLOSE CMD, and time
is set to the number of seconds currently being reported by
the system.
Rfc-Direct-Close
void rfc direct close(point, rtu index)
USHORT point, rtu index;

This routine calls rfc close to set the point and then calls
the routine rfc sboo to close the point and returns its return
value.

5,490,134
59

Return:
TRUE if Successful otherwise FALSE.

Rfc-Direct-Trip
void rfc direct trip(point, rtu index)
USHORT point, rtu index;

This routine calls rfc trip to set the point and then calls
the routine rfc sboo to close the point and returns its return
value.
Return:
TRUE if successful otherwise FALSE.

Rfc-Dset
void rfc dset(point, value, rtu index)
USHORT point, rtu index, value;

This routine sets the following parameters, as defined in
RTU comm struct: comm setpoint.point is set to the
parameter point, comm setpoint value is set to the param
eter value, and function is set to CDC DS FC. A buffer is
then obtained from the buffer pool and this information is
then put on the control que by a call to put on cntl que.
Returns:
FALSE if unable to get a buffer from the pool, or unable

to place the buffer on the control queue, otherwise returns
TRUE.
Rfc-Sboo
BOOL rfc sboo(rtu index)
USHORT rtu index;

This routine first insures that the point has already been
selected and that the point has not been selected for longer
that four seconds. If these conditions are true then the
routine obtains a buffer from the pool and sets the following
parameters, as defined in RTU comm struct: If the com
mand is SETPOINT CMD relay command-point is set to
the point defined in the sbo store array with the offset
rtu index, relay command.command is set to cmd and
relay command.value is set to value in a similar manner,
the value of function is set to SBOS FC. All other com
mands are assumed not to require the data stored in value
and therefore this value is ignored. This information is then
put on the control que by a call to put on cntl que. If this
operation fails we deselect the point and return FALSE.

If all is well, then operate the point. To do this, a transmit
buffer is obtained from the buffer pool and set the following
information: function is set to SBOO FC, relay com
mand.point is set to the point defined in the sbo store array
with the offset rtu index, and relay command.command is
set to cmd. Then set the state to DESELECTED and place
the buffer on the control queue.
Returns:
FALSE if unable to get a buffer from the pool, or unable

to place the buffer on the control queue, otherwise returns
TRUE.
Rfc-Setpoint
void rfc setpoint(point, value, ritu index)
USHORT point, rtu index, value;

This routine sets the following parameters, as defined in
sbo store struct: point is set to the parameter point, state
is set to SELECTED, cmd is set to SETPOINT CMD,
value is set to the parameter value, and time is set to the
number of seconds currently being reported by the system.
Rfc-Stat
USHORT rfc stat(data ptr, start, stop, ritu index)
char *data ptr;
USHORT stop, start, rtu index;

This routine loads the most recent status into the transmit
buffer pointed to by data ptr with change detect (2 bit
change), one bit change, and simple status. Status informa
tion with change detect is stored in the RTU Database with
the name of status 2bit data. The single bit change is stored
at the location status 1 bit data. The simple status is stored
at the simple status location.

5

10

15

20

25

30

35

40

45

50

55

60

65

60
Both status information and analog data are returned. This

data looks as follows:

analog simple status 1bit chg/data 2bit chg/data

data

The status 1 bit data array consists of 8 bit elements.
Data is stored into two consecutive 8bit elements thus each

1 bit status data element is 16 bits is size.
The status 2bit change array two dimensional consist

ing of 8 bit elements. Data is stored into each byte and is
indexed by the point number and reader number.

After each read of the status 2bit change data it is reset
to zero by this routine.
The status 2bit data array consists of 8 bit elements. Data

is stored into each byte thus each status data element is 8 bits
is size.
The status simple data array consists of 8 bit elements.

Data is stored into two of the 8 bit elements thus each status
data element is 16 bits is size.
Returns:
0 if counter ptcnt in the RTU Database is zero, other

wise it returns the number bytes of data placed in the buffer.
Rfc-Trip
void rfc trip(point, rtu index)
USHORT point, rtu index;

This routine sets the following parameters, as defined in
sbo store struct: point is set to the parameter point, state
is set to SELECTED, cmd is set to TRIP CMD, and time
is set to the number of seconds currently being reported by
the system as of Feb. 8, 1993.
Module Description
Name
Description
write com
#include "port io\our lib.h'
write com(int port, struct bufstruct *message)
int port;
struct bufstruct message;

This routine is used to set up the port for a write. The first
order of business is to determine if the port is ready. If not
ready the routine will attempt twenty times and if not ready
will return 0. If the I/O control fails on the port this routine
will exit. If the disaster status bit is set on the returned status
message this routine will call disaster sub.

If this is successful the message will be written to the port
and time message data length will be returned. If the write
I/O control fails debug information will be displayed and
this routine will exit.
Data

This section shall describe all of the global data elements
within the OS/2AP's subsystem. It shall discuss both data
elements internal to the OS/2AP's and data elements exter
nal to the OS/2AP's.

All configuration files begin with the root name of the
binary which uses them, for example, the binary cdc.
sm.exe configuration file is cdc. sm.cfg. The exception to
this rule is that the Central.exe program uses the sta????.cfg
files to initialize the RTU Databases, and records its trace
information in a file named INIT LSTTRC.
Data File: Central.Cfg

Table 6.2 shows the Central configuration file and its
layout.

61

TABLE 6.1

5,490,134

Item

Central CFG Configuration File

Attribute Name
Number of

fields

RTU station number
debug cfg
site list file
local site name
pgn, config and logdir

Data File: STA.CFG

62

Item Attribute Name Number of fields

1 terminal unit cable (int)
2 debug cfg 1 (int)
3 primary dual port (int)
4. RTU poll interval 1 (int)
5 RTU addr vs station num 2 (int) (int)
6 baud rate (int)

Table 6.5 CDC SMCFG Configuration File
Data File: CDC SR.CFG
Table 6.6 shows the CDC SRCFG configuration file and

Table 6.2 shows the STA2??? configuration file and its its layout
layout. 15

Item Attribute Name Number of fields

Item Attribute Name Number of fields 1 terEinal unit cable 1 (int)
2 debug cfg 1 (int)

1. RTU station number 1 (int) 3 primary dual port 1 (int)
2 debug cfg 1 (int) 20 4 RTU poll interval 1 (int)
3 RTU type 1 (string) 5 RTU addr vs station num 2 (int) (int)
4 station name 1 (string) 6 baud rate 1 (int)
5 start analog 1 (int)
6 start 2bit chg 1 (int)
7 analog pitcnt 1 (int) Table 6.6 CDC SR.CFG Configuration File
8 analog offset 1 (int) 25 1
9 num 2bit chg 1 (int) Data File: TSP DIAL.CFG o
10 analog points per card 1 (int) Table 6.7 shows the TSP DIAL configuration file and its
11 digital points per card 1 (int) layout.
12 poll type start stop 1 (int)
13 control and status 2 (int) (int)
14 control operate time (int) 30 Iter Attribute Name Number of fields
15 amlg pt and name 2 (int) (string)
16 anlg pt addr mult 3 (int) (real) 1. site list file 1 (string)

(real) 2 local site name 1 (string)
17 anlg pt upper lower 3 (int) (real) 3 X25 address 1 (int)

(real) 4. primary dual port 1 (int
35 5 vsat cable 1 (int)

Table 6.2 STA2???.CFG Station Configuration File
Data File: X.25 DBX.CFG Table 6.7 TSP DIAL.CFG Station Configuration File
Table 6.3 shows the X25 DBX configuration file and its Data File: INIT LSTTRC

layout. The INIT LSTTRC file is a trace of the Central start-up
process. The information in this file is for written and never

Item Attribute Name Number of fields read by Central.exe. It is intended for viewing purposes only.
- Advantages

1. site list file 1 (string) Advantages of the VCC include the following features: 2 local site name 1 (string)
3 x25 address 1 (int) 45 The VCC handles at least four protocols simultaneously
4. vsat cable 1 (int) through asynchronous and synchronous ports. A single
5 primary dual port 1 (int) internal card allows six asynchronous and two synchro
6 keep alive time out (int) t inal tions
7 RTU station number 1 (int) OS a COC

The VCC allows simultaneous compressed voice and
Table 6.3 X25 DBX.CFG Configuration File so SCADA traffic through separate ports with the ability to

- designate priority traffic under peak data throughput
Data File: O22 SM.CFG conditions.

la Table 6.4 shows the O22 SM configuration file and its The VCC can communicate simultaneously with RTU’s
youl. using CDC Type 1, CDC Type 2, L&N, Systems

55 Northwest, and other protocols. IBM 3270, SNA and
tem. Attribute Name Number of fields X.25 protocols can be handled simultaneously through

the multiple ports of the VCC.
i suit cable sing Multiple Control Centers using different computer sys
3 primary dual port (int) tems and communication protocols can access data from a
4. RTU poll interval 1 (int) 60 single substation RTU with only one designated to have
5 RTU addr ws station num 2 (int) (int) control. In this manner a single substation device can give
6 baud rate 1 (int) one master station data acquisition access, while another

master station can be given data access and control capa
Table 6.4 O22 SMCFG Configuration File bility through a different VCC port. Or one center can be
Data File: CDC SMCFG 65 given switching access, a second Automatic Generation
Table 6.5 shows the CDC SM configuration file and its

layout.
Control access and a third monitoring access only. All
through separate ports of the VCC.

5,490,134
63

Different locations can be given monitoring access only
with different scan rates and data subsets through
designated VCC ports.

The VCC an withstand the harsh EMI environment of a
substation and allow interface connections with RTU's,
Supervisory Alarm and Monitoring Panels, Program
mable Logic Controllers, Opto-22, Enunciator Alarm/
Data/Control and Compressed Voice systems through
separate ports.

A single VCC can simultaneously be connected to satel
lite, fiber optic, hardware, microwave, radio and other digital
communication technologies.
The VCC eliminates costly hardware/software modifica

tions of existing Power System Control Center appli
cations with the introduction of new substation moni
toring and control equipment using different protocols
or communication media with communication link
delays.

At the remote substation end the VCC simulates the
master SCADA computer and at the Regional Control
Center location it simulates the remote RTU. In this
way it can provide a transparent interface to the power
system control software applications with the ability to
allow synchronized local polling, Select-Before-Oper
ate, and other RTU functions via either satellite or land
lines.

The VCC allows local displays of entire substation data
transmitted to the master control SCADA site.

Time stamped synchronized sequence-of-events data can
be obtained using the VCC via satellite synchronization
of all VCC's throughout the Power System.

The VCC provides remote diagnostic capability of the
communications link and connecting RTU or other
terminal equipment.

The VCC can be reconfigured over the satellite and
software upgrades can be downloaded from a central
site. This is made possible through secure password
access. A watchdog timer allows rebooting after power
supply or other interruptions without manual interven
tion.

By establishing virtual switching circuits the VCC's can
be used on a network to establish compressed voice
connections between remote WCCs.

It permits dynamic poll synchronization to lock in on a
new poll reference time after, for example, select
before-operate sequence.

The VCC is capable of operating from an AC or 48/130
VDC nominal power supply source and meets the IEEE
switching surge withstand.

The VCC has a hard drive or semi-conductor
memory back-up to facilitate turn-on and turn-off situa

tions.
The VCC allows synchronous and asynchronous commu

nications through individual ports and permits imple
mentation of logical functions involving priority of
traffic at a protocol level above the X.25.

General
Many different forms of the invention are possible. Dif

ferent embodiments of the system can have the character
istics of detecting a transient in at least one of the multiple
input signals and means for communicating a detected
transient signal; the display being in a selected real time or
late time display; limiting the selected second controller
means from communicating control signals to first locations;
adjusting a polling time interval for transmitting signals;

10

15

20

25

30

35

40

45

50

55

60

65

64
transmitting monitored data by multiple selected common
protocols; storing a sequence of events leading to a transient
for later transmission; and remotely altering the number of
control signals without interrupting collection of the moni
toring signals. The scope of the invention is to be determined
solely by the following claims.
We claim:
1. Apparatus for communicating signals having multiple

different protocols as a composite signal with at least one
common protocol comprising:

multiple input means for receiving respective input sig
nals in different protocols selected from the multiple
protocols, the inputted signals being representative of
monitoring signals at a first location,

first controller means for receiving the inputted signals
and including means for multiplexing the input signals
to a composite signal having a common protocol, and

output means for receiving the composite signal in the
common protocol and for transmitting the composite
signal in the common protocol through a communica
tion medium to a second location.

2. Apparatus as claimed in claim 1 including at least one
second controller means at the second location, input means
in the second controller means for receiving the composite
signal from the communication medium, means in the
second controller means for demultiplexing the composite
signal into multiple output signals having the respective
multiple different protocols, output means for presenting the
outputting signals as monitoring signals, and the first loca
tion being a remote station and the second location being a
central station.

3. Apparatus for communicating signals having multiple
different protocols as a composite signal with at least one
common protocol comprising:

multiple input means for receiving respective input sig
nals in a protocol of the multiple protocols, the inputted
signals being representative of control signals at a first
location, at least several of the multiple signals having
one of a different protocol from the multiple protocols,

first controller means for receiving the inputted signals
and including means for multiplexing the inputted
signals to a composite signal having a common proto
col, and

output means for receiving the composite signal in the
common protocol and for transmitting the composite
signal in the common protocol through a communica
tion medium to a second location.

4. Apparatus as claim in claim 3 including at least one
second controller means at the second location, input means
in the second controller means for receiving the composite
signal from the communication medium, means in the
second controller means for demultiplexing the composite
signal into multiple output signals having the respective
multiple different protocols, output means for presenting the
outputted signals as control signals, the first location being
a control station and the second location being a remote
station.

5. Apparatus for communicating signals having multiple
different protocols as a composite signal with at least one
common protocol comprising:

multiple means for receiving respective input signals in
different protocols of the multiple protocols and out
putting output signals in a protocol of the multiple
protocols, the inputted signals being representative of
monitoring signals and the outputted signals being
representative of control signals respectively at mul
tiple first locations,

5,490,134
65

multiple first controller means at respective first locations
for receiving the inputted signals and including means
for multiplexing the inputted signals to a composite
monitoring signal having a common protocol and
including means for demultiplexing a composite con
trol signal in the common protocol into multiple signals
in the multiple control protocols, and

means for transmitting and receiving the monitoring and
control signal in the common protocol through a com
munication medium to at least one second location.

6. Apparatus as claimed in claim 5 including at least one
second controller means at the second location, input means
in the second controller means for receiving the composite
monitoring signal from the communication medium, means
in the second controller means for demultiplexing the com
posite monitoring signal into multiple output monitoring
signals having the respective multiple different protocols,
and means for multiplexing multiple control signals in
multiple protocols into a composite control signal in a
common protocol, the first location being a remote station
for transmitting monitoring signals and the second location
being a central station for transmitting control signals.

7. Apparatus as claimed in claim 2 wherein the output
signals at the second location represent the monitoring
signals in a substantially same manner as the input signals at
the first location.

8. Apparatus as claimed in claim 4 wherein the output
signals at the second location represent the control signals in
a substantially same manner as the input signals at the first
location.

9. Apparatus as claimed in claim 6 wherein the output
signals at the second location represent the monitoring
signals in a substantially same manner as the input signals at
the first location.

10. Apparatus as claimed in claim 1 wherein the first
controller means includes multiple serial inputs and wherein
at least some of the inputs selectively have substantially the
same protocols with each other.

11. Apparatus as claimed in claim 3 wherein the first
controller means includes multiple serial inputs and wherein
at least some of the inputs selectively have substantially the
same protocols with each other.

12. Apparatus as claimed in claim 5 wherein the first
controller means includes multiple serial inputs and wherein
at least some of the inputs selectively have substantially the
same protocols with each other.

13. Apparatus as claimed in any one of claims 1, 3 or 5
wherein the first controller means includes means for receiv
ing the multiple protocols selectively in a synchronous or
asynchronous data format, and including means for process
ing such data format into the composite signal having a
common protocol.

14. Apparatus as claimed in any one of claims 1, 3 or 5
wherein the controller means includes means for receiving
voice signals, and including means for digitizing the voice
signal and for multiplexing the digitized voice signal for
transmission in the common protocol.

15. Apparatus as claimed in any one of claims 1, 3 or 5
including means for displaying at the second location signals
representative of the input signals communication from at
least one first location.

16. Apparatus as claimed in any one of claims 2, 4 or 6
including means for displaying at the first location signals
representative of signals emanating from the second loca
tion.

17. Apparatus as claimed in any one of claims 1, 3 or 5
wherein the common protocol is includes an X.25 protocol

O

15

20

25

30

35

40

45

50

55

60

65

66
and the communication medium is selected to be at least one
of an electronic, fiber optic, or satellite medium.

18. Apparatus as claimed in any one of claims 2, 4 or 6
wherein the common protocol is includes an X.25 protocol
and the communication medium is selected to be at least one
of an electronic, fiber optic, or satellite medium.

19. Apparatus as claimed in claim 1 including sensor
means at the first location, the sensor means being integrated
into the controller means.

20. Apparatus as claimed in claim 5 including sensor
means at a first location, the sensor means being integrated
into the first controller means.

21. Apparatus as claimed in any one of claims 1 to 6
including means for polling the multiple input means receiv
ing the respective input signals in the selected protocol
thereby to obtain a polled input signal.

22. Apparatus for communicating signals comprising:
multiple input means for receiving respective input sig

nals in different protocols selected from multiple pro
tocols, the inputted signals being representative of
monitoring signals at a first location being a remote
station,

first controller means for receiving the inputted signals
and including means for multiplexing the input signals
to a composite signal having a common protocol,

output means for receiving the composite signal in the
common protocol and for transmitting the composite
signal in the common protocol through a communica
tion medium to a second location being a control
station,

at least one second controller means at the second loca
tion, input means in the second controller means for
receiving the composite signal from the communica
tion medium, means in the second controller means for
demultiplexing the composite signal into multiple out
put signals having the respective multiple different
protocols, and

output means for presenting the outputted signals as
monitoring signals, such that the outputted signals at
the central station are substantially the same as the
inputted signals received by the respective multiple
input means.

23. Apparatus for communicating signals comprising:
multiple input means for receiving respective input sig

nals in different protocols, the inputted signals being
representative of control signals at a first location being
a control station,

first controller means for receiving the inputted signals
and including means for multiplexing the inputted
signals to a composite signal having a common proto
col,

output means for receiving the composite signal in the
common protocol and for transmitting the composite
signal in the common protocol through a communica
tion medium to a second location being a remote
station,

at least one second controller means at the second loca
tion, input means in the second controller means for
receiving the composite signal from the communica
tion medium, means in the second controller means for
demultiplexing the composite signal into multiple out
put signals having the respective multiple different
protocols, and

output means for presenting the outputted signals as
control signals, such that the outputted signals at the

5,490,134
67

remote station are substantially the same as the inputted
signals received by the respective multiple input
c2S.

24. Apparatus for communicating signals comprising:
multiple means for receiving respective input signals in

different protocols and outputting output signals in
different protocols, the inputted signals being represen
tative of monitoring signals and the outputted signals
being representative of control signals respectively at
multiple first locations,

multiple first controller means at respective first locations
for receiving the inputted signals and including means
for multiplexing the inputted signals to a composite
monitoring signal having a common protocol and
including means for demultiplexing a composite signal
in the common protocol into multiple control signals in
the multiple protocols,

output means for transmitting and receiving the composite
monitoring and control signal in the common protocol
through a communication medium to at least one
second location,

second controller means at the second location, input
means in the second controller means for receiving the
composite signal from the communication medium,
means in the second controller means for demultiplex
ing the composite signal into multiple output signals
having the respective multiple different protocols, and
including means for multiplexing multiple signals in
multiple protocols into a composite signal in the com
mon protocol,

output means for presenting the outputted signals at the
second location as monitoring signals and control sig
nals at the first location respectively, the first locations
being a remote station for transmitting monitoring
signals and the second location being a central station
for transmitting control signals, and

means for selectively communicating signals representa
tive of voice between selected different first locations
independently of the second locations.

25. Apparatus for communicating signals comprising:
multiple means for receiving respective input signals in

different protocols and outputting output signals in
different protocols, the inputted signals being represen
tative of monitoring signals and the outputted signals
being representative of control signals respectively at
multiple first locations,

multiple first controller means at respective first locations
for receiving the inputted signals and including means
for multiplexing the inputted signals to a composite
monitoring signal having a common protocol and
including means for demultiplexing a composite signal
in the common protocol into multiple control signals in
the multiple protocols,

output means for transmitting and receiving the composite
monitoring and control signal in the common protocol
through a communication medium to at least one
second location,

second controller means at the second location, input
means in the second controller means for receiving the
composite signal from the communication medium,
means in the second controller means for demultiplex
ing the composite signal into multiple output signals
having the respective multiple different protocols, and
including means for multiplexing multiple signals in
multiple protocols into a composite signal in the com
mon protocol, and

10

15

20

25

30

35

40

45

50

55

60

65

68
output means for presenting the outputted signals at the

second location as monitoring signals and control sig
mals at the first location respectively, the first locations
being a remote station for transmitting monitoring
signals and the second location being a central station
for transmitting control signal.

26. Apparatus for communicating signals comprising:
multiple means for receiving respective input signals in

different protocols and outputting output signals in
different protocols, the inputted signals being represen
tative of monitoring signals and the outputted signals
being representative of control signals respectively at
multiple first locations,

multiple first controller means at respective first locations
for receiving the inputted signals and including means
for multiplexing the inputted signals to a composite
monitoring signal having a common protocol and
including means for demultiplexing a composite signal
in the common protocol into multiple control signals in
the multiple protocols,

output means for transmitting and receiving the composite
monitoring and control signal in the common protocol
through a communication medium to at least one
second location,

second controller means at the second location, input
means in the second controller means for receiving the
composite signal from the communication medium,
means in the second controller means for demultiplex
ing the composite signal into multiple output signals
having the respective multiple different protocols, and
including means for multiplexing multiple signals in
multiple protocols into a composite signal in the com
mon protocol,

output means for presenting the outputted signals at the
second location as monitoring signals and control sig
nals at the first location respectively, the first locations
being a remote station for transmitting monitoring
signals and the second location being a central station
for transmitting control signals, and

means associated with the first controller means for
displaying monitored data in an integrated manner to
the first locations.

27. A method for communicating signals having multiple
different protocols as a composite signal with at least one
common protocol comprising:

receiving respective input signals in different protocols
selected from the multiple protocols, the inputted sig
nals being representative of monitoring signals at a first
location,

receiving in a first controller means the inputted signals
and including multiplexing the input signals to a com
posite signal having a common protocol, and

transmitting the composite signal in the common protocol
through a communication medium to a second location.

28. A method as claimed in claim 27 including at least one
second controller means at the second location for receiving
the composite signal from the communication medium,
denultiplexing in the second controller the composite signal
into multiple output signals having the respective multiple
different protocols, presenting the outputted signals as moni
toring signals, and the first location being a remote station
and the second location being a central station.

29. A method for communicating signals having multiple
different protocols as a composite signal with at least one
common protocol comprising:

inputting respective multiple input signals in a protocol
selected from the different multiple protocols, the

5,490,134
69

inputted signals being representative of control signals
at a first location,

receiving in a first controller means the inputted signals
and including multiplexing the inputted signals to a
composite signal having a common protocol, and

transmitting the composite signal in the common protocol
through a communication medium to a second location.

30. A method as claimed in claim 29 including at least one
second controller means at the second location for receiving
the composite signal from the communication medium,
demultiplexing in the second controller the composite signal
into multiple output signals having the respective multiple
different protocols, presenting the outputted signals as con
trol signals, the first location being a control station and the
second location being a remote station.

31. A method for communicating signals having multiple
different protocols as a composite signal with at least one
common protocol comprising:

inputting multiple signals in different protocols being
representative of monitoring signals at multiple first
locations,

outputting multiple signals being representative of control
signals at the multiple first locations,

receiving in multiple first controller means at the respec
tive multiple first locations the inputted monitoring
signals and including multiplexing the inputted moni
toring signals to a composite monitoring signal having
a common protocol,

receiving in the multiple first controller means at the
respective multiple first locations a composite control
signal having a common protocol and demultiplexing
the composite signal in the common protocol into
multiple control signals in the multiple protocols, and

transmitting the composite monitoring signal in the com
mon protocol through a communication medium to a
second location.

32. A method as claimed in claim 31 including at least one
second controller means at the second location for receiving
the composite monitoring signal from the communication
medium and for outputting a composite control signal,
demultiplexing in the second controller the composite moni
toring signal into multiple output monitoring signals having
the respective multiple different protocols, presenting the
outputted monitoring signals at the second location, multi
plexing in the second controller multiple control signals in
different protocols into a composite control signal in a
common protocol, the first locations being remote stations
for transmitting the composite monitoring signals and for
receiving the composite control signal and the second loca
tion being a central station for receiving the composite
monitoring signal and for transmitting the composite control
signal.

33. A method as claimed in claim 28 wherein the output
signals at the second location represent the monitoring
signals in a substantially same manner as the input signals at
the first location.

10

15

25

30

35

40

45

50

55

70
34. A method as claimed in claim 30 wherein the output

signals at the second location represent the monitoring
signals in a substantially same manner as the input signals at
the first location.

35. A method as claimed in claim 32 wherein the output
signals at the second location represent the monitoring
signals in a substantially same manner as the input signals at
the first location.

36. A method as claimed in claim 29 including inputting
the signals serially and wherein at least some of the inputs
selectively have substantially the same protocols with each
other.

37. A method as claimed in claim 32 including inputting
the signals serially and wherein at least some of the inputs
selectively have substantially the same protocols with each
other.

38. A method as claimed in claim 31 including inputting
the signals serially and wherein at least some of the inputs
selectively have substantially the same protocols with each
other.

39. A method as claimed in any one of claims 27, 29 or
31 wherein the first controller means receives the multiple
protocols selectively in a synchronous or asynchronous data
format, and including processing such data format into the
composite signal having a common protocol.

40. A method as claimed in any one of claims 27, 29, or
31 wherein the controller means receives voice signals, and
digitizing the voice signal and multiplexing the digitized
voice signal for transmission in the common protocol.

41. A method as claimed in any one of claims 27, 29 or
31 including displaying at the second location signals rep
resentative of the input signals communicated from at least
one first location.

42. A method as claimed in any one of claims 28, 30 or
32 including displaying at the first location signals repre
sentative of signals emanating from the second location.

43. A method as claimed in any one of claims 27, 29 or
31 wherein the common protocol includes an X.25 protocol
and the communication medium is selected to be at least one
of an electronic, fiber optic, or satellite medium.

44. A method as claimed in any one of claims 28, 30, or
32 wherein the common protocol include an X.25 protocol
and the communication medium is selected to be at least one
of an electronic, fiber optic, or satellite medium.

45. A method as claimed in any one of claims 27 to 32
including polling the multiple input means receiving the
respective input signals in the selected protocol thereby to
obtain a polled input signal.

46. A method as claimed in any one of claims 27 to 32
including selecting input signals from the multiple input
means receiving the respective input signals in the selected
protocol thereby to obtain a selected input signal.

