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1. OVERVIEW

Concisely:

MINISSA (Michigan-Israel-Nijmegen Integrated Smallest

Space Analysis) provides internal analysis of a two-way symmetric matrix

of (dis)similarities by means of an Euclidean distance model using a

monotone transformation of the data.

Following the categorisation developed by Carroll and Arabie (1979)

the program may be fully described as:

Data: One mode

Model: Minkowski metric (restricted)

Two-way One set of points
Dyadic One space

Ordinal Internal
Unconditional

Complete

One replication

1.1 ORIGIN AND VERSIONS OF MINISSA

Two versions of the MINISSA program are available in the MDS(X)

series:

MINISSA(N):

MINISSA(M):

a fast, efficient version of the basic
Guttman-Lingoes MINI-SSA program, but
having a limited number of user options.
This version emanates from Nijmegen and
is part of Roskam's recently released
KUNST library of MDS programs. The
program is referred to simply as MINISSA
in the MDS(X) library.

based upon the original SSA program in the
Michigan (Guttman-Lingoes) series, and
contains a large number of user options.
It is, consequently, more bulky and
computationally more expensive than
MINISSA(N). It is referred to as SSA(M)
in the MDS(X) series.
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The basic form of the two programs is identical, therefore
this document describes the shorter MINISSA(N) version. The additional

options available in MINISSA(M) are described in Appendix 3.

1.2 BRIEF DESCRIPTION OF MINISSA (UG 3.5)

MINISSA performs what is known as the basic model of MDS by taking
(the lower triangle of) a square symmetric matrix whose elements are to
be transformed to give the distances of the solution. This transformation
will preserve the rank order of the input data. The model is formally
equivalent to that developed by Kruskal (1964) although MINISSA uses
a hybrid computational approach to the minimization problem, involving
techniques originated by both Kruskal and Guttman. This approach is
efficient and succeeds better than other programs in avoiding suboptimal

solutions (Lingoes and Roskam 1973).

1.3 RELATION TO OTHER PROGRAMS IN THE LIBRARY

The MINISSA method and algorithm form the basis of both MRSCAL
and MINICPA programs. In MRSCAL it is assumed that there is a linear
or power relation between the data and the solution distances, while in
MINICPA the data are treated as asymmetric, (as, for example, when
each row of the square data matrix consists of conditional probabilities).
In Carroll and Arabié's terminology MINICPA accepts two-mode, two-way
data, MINISSA, two-way, one-mode data, Output from MINISSA may be used
as input for PINDIS.



2. DESCRIPTION OF THE PROGRAM (UG 2.3)

Since MINISSA 1s described in some detail in the Users' Guide

chapter references are placed at the head of each section of the

description.,
2.1 DATA

MINISSA accepts as input the lower triangle (without diagonal)
of a square symmetric data matrix. Each entry of this input matrix is
a measure of (dis)similarity between the row—element and the column
element. Commonly these are pairwise ratings of similarity, but any
symmetric measure may be used, including correlations, covariances

and co—occurrences,

The aim of the algorithm is to position the elements as points
in a space of minimum dimensionality so that a measure of departure
from perfect fit between the (monotonically) rescaled data and the
distances of the solution (STRESS) is minimised. Perfect fit occurs
if a monotone transformation of the data can be found which forms a

set of actual distances.

2.,1.1 Example

Benjamin (1958) collected data on the social mobility of some 2600
subjects using thirteen occupational categories. Macdonald, who is
investigating the notion of social distance,uses the index devised by
Blau and Duncan (1967, p.43) to measure the dissimilarity in mobility
between occupational groups. (For a fuller description of this index
see section 2.3.3.4 of the Users' Guide). The measure, writes Macdonald
(1972, pp.213-14) may be interpreted as 'the percentage of the sons
of (group) A that would have to be reallocated jobwise for the sons of
A to match the sons of B". He assembles the index values into a lower
diagonal matrix, and these are included in the example described in
section 4. The scaling solution is discussed at length in Macdonald's

article.
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THE ALGORITHM

An initial configuration is input by the user, or ome is

generated by the program (see 2.3.2 below).
This configuration is normalised (see 2.2.2 below).

The distances between the points are calculated according to

the Minkowski metric chosen (see 2.3.3 below).,
The disparities or fitting-values are calculated (see 2.2.1).

STRESS, the index of badness—of-fit between the disparities

and the distances, is calculated.

A number of tests are performed to determine whether the

iterative process should continue, e.g.
Is STRESS sufficiently low ?

Has the improvement of STRESS over the last few iterations

been so small as to be not worth continuing ?
Has a specified maximum number of iterations been performed ?

If the answer to any of these is YES, then the configuration is

output as solution. If not, then

For each point on each dimension the direction in which it would
have to move for STRESS to be minimized is calculated as is the

optimal size of the move (the 'step-size').

The configuration is moved in accordance with 7 and the program

returns to step 2.



2.2.1 Minimizatiom, fitting values (UG 3.5.2)

In MINISSA there are two methods of finding the minimum STRESS
value., These are known in Guttman's (1968) terminology as soft and
hard squeeze methods. The program begins by using the soft squeeze
which minimizes raw STRESS and when this has reached a minimum
switches to the hard squeeze and minimizes STRESS1l. By convention

different fitting values (step 4) are used in the different phases.

2.2.1.1 Soft squeeze

Soft squeeze derives from a technique of Guttman's (1968). It
is particularly efficient at quickly reducing STRESS. Fitting values
are calculated using a procedure known as rank-image permutation.
These fitting values are known as d* (DSTARS) and have the property of
being strongly monotome with the data. That is to say that unequal
data values must be matched with unequal fitting values (formally if

* *
. > L]
Sij > SkZ then diJ dkl)

2.2.1.2 Hard squeeze

When a minimum has been reached using the soft squeeze the program
switches to the so-called hard squeeze, which is a simpler, more well-
behaved method. Fitting values are now calculated using a procedure
known as monotone regression and are known as g (DHATS). These have
the property of being weakly monotone with the data in that unequal
data may be matched with equal fitting values if in so doing STRESS
is reduced (formally, if sij > ékl then gij 3-8k2)'

To summarise:

SOFT SQUEEZE
(initial method)

HARD SQUEEZE
(second method)

Minimises: Raw Stress STRESS1
* A
Using: d (DSTAR) d (DHAT)
Relation to strongly weakly
data: monotone monotone
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Users who wish to vary the combination of fitting values with

methods are referred to SSA(M).

2.2.2 STRESS and normalization (UG 3.3)

In the so-called 'soft-squeeze' the program minimizes raw STRESS
(otherwise known as raw phi, or STRESSO) which is simply the sum of
the squared differences between the distances in the configuration
and the DSTAR's, i.e. i? (dij - d:j)z' Since this index might be

minimized by successive “scaling down of the overall size of the

configuration, the configuration is normalised after each iteration.

In the so-called 'hard-squeeze' however, STRESS1 is calculated

and minimized. STRESS1 is simply a normalized form of raw STRESS:
the normalizing factor being the sum of the squared distances in the
configuration. This removes the dependence of the original index on
the size of the configuration. Values for STRESS of both flavours

are output by the program.

2.2.2.1 Step-size and angle factor

At step 7, the algorithm computes the direction in which each
point should be moved in order to reduce STRESS. This is done by
calculating the partial derivation of STRESS with respect to each
point - the negative gradient. It is also important however correctly
to compute the optimal amount of movement in that direction. This
is the so-called ‘step-size'. This step-size may be changed at each
iteration. These changes are monitored by the 'angle factor', which
is in effect the cosine of the angle between successive gradients, i.e.
the correlation between them. This ensures that, as the program moves
towards convergence, and the gradient becomes less steep the step—-size
will decrease, so as to minimize the possibility of overshooting a
minimum STRESS value. MINISSA prints out at termination the final angle
factor. At this stage the value ought to be very small. If it is large,

then more iterations should be attempted.



2.3 FURTHER OPTIONS IN MINISSA

2.3.1 Ties in the data

It is possible to treat ties in the data in two ways when calculating
STRESS. These are known as the primary and secondary approaches and are

chosen by the user, by means of the parameter TIES on the PARAMETERS card.

2.3.1.1 The primary approach (TIES (1))

The primary approach allows that if two data elements are equal
then the assigned fitting values may be unequal. The tie is broken if,
in so doing, STRESS is reduced. Substantively this approach regards ties
in the data as relatively unimportant. It is, of course, possible for
the program to capitalise on this approach to produce a 'good', though
degenerate configuration. If data contain a lot of ties and the program
is using the primary approach then long horizontal lines will appear in
the Shepard diagram. A number of such horizontal lines is a sign of

possible degeneracy in the solution.

2.3.1.2 The secondary approach (TIES (2))

On the other hand, the secondary approach regards the equality of
data elements as important information and requires that the fitting
values be equal for equal data. This constraint is more stringent than

the primary approach and will normally result in higher STRESS values.

2.3.1.3 The parameter EPSILON

A further approach to tied data is given by means of EPSILON on the
PARAMETERS card. Each pair of data values will be compared and, if the
difference between them is less than this value they will be regarded as
tied. This approach is recommended if the user wishes to place.little

emphasis on the smaller variationms in the data.

For a full description of options regarding ties and the preservation
of order information, see the Users' Guide section 3.2.3. The user wishing
to combine a particular approach to ties with a particular type of fitting
va.de is referred to the options available in SSA(M) described in Appendix 4

below.
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2.3.2 The initial configuration (UG 3.5.1 & A3.2)

The values of a 'good' starting point for the iterative process
include saving on machine time and avoidance of local minima. Two optioms

exist within MINISSA for the choice of initial configuration.

The user may supply a starting configuration. This may be a guess
at the solution, an a priori configuration or a solution to a previous
metric scaling. The matrix of coordinates is preceded by a READ CONFIG
control card, which will have associated with it an INPUT FORMAT card
to read real (F-type) values. The configuration may be input either
stimuli (rows) by dimensions (columns) or dimensions (rows) by stimuli
(columns). (In this latter case, the parameter MATFORM should be given
the value (1) on the PARAMETERS card).

Alternatively, the program will generate a starting configuration
with desirable numerical properties. This configuration is the usual
one in the Guttman-Lingoes—Roskam MINI programs and uses only the
ordinal properties of the data. It has been found to be particularly
useful in avoiding problems with local minima. Further details justifying
this choice of initial configuration will be found in Lingoes and Roskam
(1973, pp.17-19), and Roskam (1975, pp.37-44).

2.3.3 Distances in the configuration

The user may choose how the distances between the points in the
configuration are to be computed by the MINKOWSKI parameter. The
default of 2.0 gives the ordinary Euclidean metric and 1.0 gives a
'city-block' metric but any positive number may be used. It is however

unwise to use large values as there 1s then a risk of overflow.

2.3.4 The final configuration

When the iterative process is terminated, the current configuration
is output as the solution. If the metric is euclidean (i.e. MINKOWSKI (2))

then the configuratiocn is rotated to principal axes. It should be noted



that these axes are arbitrary from the point of view of interpretation,
but have certain desirable geometric properties. In particular the
coordinates of the points on the axes are uncorrelated. Furthermore

it is often helpful in deciding on the 'correct' dimensionality of the
solution to notice how much variation is associated with each axis.
This variation is given in the output by the value SIGMA which is the

standard deviation of the coordinates on each axis.

2.3.5 STRESS and dimensionality UG 3.7)

The estimation of the appropriate dimensionality of an MDS solution
is central to the analysis. Three methods are commonly used with MINISSA

in addition to that involving SIGMA alluded to above.

The first guideline asserts that the ratio between the number of
data elements and the number of latent parameters (i.e. coordinates) should
be at least two. This compression ratio should serve as a useful guide

when choosing the dimensionalities for a run of the program.

The second is a heuristic device analogous to the familiar '"scree
test" of factor analysis. STRESS should decrease with increasing
dimensionality until in n—-2 dimensions a perfect (though trivial) fit
will be achieved. If a graph is drawn of STRESS against dimensionality it
is a common occurrence to find an 'elbow' - a sharp decrease in STRESS
between dimensions occurring at some relatively low dimensionality.

At this value, to add dimensions will not significantly improve the fit
of data to solution so it is reasonable to attempt interpretation of this

solution.

If however 10 and 60 points are being used and the dimensionality is
less than or equal to 5 the program will print a value of Stress ! based

on an approximation to random data as detailed in Spence (1979).
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2.3.6 Local minima (UG 3.5.4)

For a given set of data each configuration will have an associated
STRESS value. The MINISSA procedure finds the 'best' configurationm,
by finding the partial derivatives of STRESS (with respect to the
coordinates). It is possible that a given STRESS value, although locally

the minimum attainable, may not be the real 'global' minimum.

As mentioned earlier both a good initial configuration and a hybrid
algorithm (such as MINISSA) tend to decrease the possibility of local
minima occurring. Relatively high STRESS values may be a sign of local
minima as would a decrease in STRESS in.decieasing dimensionality.

If the user suspects local minima, then it is suggested (s)he try a

number of different starting configurations.



3. INPUT PARAMETERS

All parameter keywords may be shortened to the first four letters.

All subsequent mis—spellings are ignored.

3.1 LIST OF PARAMETERS

Keyword Default Value

DATA TYPE 0 0:
1l:

MINIMUM ITERATIONS 6

EPSILON 0.0

MATFORM 0
0:
1:

TIES 1 1:
2:

MINKOWSKI - 2.0 1:
2

Function

The data are similarities
(high values mean high similarities
between points).

The data are dissimilarities
(high values mean high
dissimilarities between points).

Sets the minimum number of iterations
to be performed before the
convergence test.

Data are to be considered tied
if difference between them is less
than EPSILON.

(Only relevant when 'READ CONFIG'
is used.

The input configuration is punched
stimuli (rows) by dimensions
(columns).

The input configuration is punched
dimensions (rows) by stimuli
(columns).

Primary approach to ties in the data.
Secondary approach to ties in the
data.

Distances in the configuration are
measured by 'city-~block' metric.

Distances are measured by a
Euclidean metric.

- Any positive number may be used.
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3.2 NOTES

#
1. The control card {N OF STIMULI may be replaced by the card

# NO
N OF POINTS.

NO )

2. The following card is not valid:

#
N p OF SUBJECTS
NO

3. Note that the program expects real (F-type) numbers., The data
should be input as the lower half of a matrix without diagonal.
The INPUT FORMAT statement should read the longest row of this

matrix (i.e. n=-1 values when there are n stimuli).

4, Note that MINISSA will not accept negative values.

5. Program limits:
Maximum number of stimuli = 80
Maximum number of dimensions = 8

3.3 PRINT, PLOT AND PUNCH OPTIONS

The general format for printing, plotting and punching output is
described in the Overview. In the case of MINISSA, the available options

are as follows:

.12



3.3.1 PRINT options (output to line printer)

Option Form Description
INITIAL P X r matrix Initial configuration, either generated

by the program or printed by the user
(p = no. of stimuli).

FINAL p X r matrix Final configuration, rotated to
principal components.

DISTANCES lower triangular, Solution distances between points,

with diagonal calculated according to MINKOWSKI
parameter.

FITTING lower triangular, Fitting values: the disparities
with diagonal (DHAT) values.

RESIDUALS lower triangular, The difference between the distances
with diagonal and the disparities.

HISTORY An iteration by iteration history

of STRESS and wvalues.

By default only the final configuration and the final STRESS values

are printed.
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3.3.2 PLOT options

Option

INITTAL

FINAL

SHEPARD

STRESS

POINT"

RESIDUALS

(output to line printer)

Description

Up to r(r-1)/2 plots of the
initial configuration. (r = no. of
dimensions).

Up to r(r-1)/2 plots of final
configuration (r = no. of dimensions).

The Shepard diagram of distances
plotted against data. TFitting values
are shown by *, actual data/distance
pairs by O. '

Plot of STREES values by iteratiocn.

Histogram of point contributions to
STRESS. -

Histogram of residual values.

By default, the Shepard diagram and the final configuration will be

plotted. Configuration plots are calibrated both from 0 to 100 and from O

to the maximum coordinate wvalue.

3.3.3 PUNCH options

Option
SPSS

FINAL

STRESS

Description

Outputs I (Row index), J (Column
index) and corresponding DATA,
DISPARITIES, DISTANCES, R¥SIDUALS
values in the format: (2I3, 4F12.0).

Outputs final configuration as stimulus
(row) by dimension (column) matrix.
Each row is prefaced by the stimulus
number. Format: (I4, rF10.0) where

r is the number of dimensions.

Outputs STRESS value by iteration.-

By default, none of these options is produced.



4. EXAMPLES

4.1 TEST RUNS

col 1 col 16
RUN NAME 8 POINT ZERO STRESS DATA
TASK NAME AS MADE FAMOUS BY USERS GUIDE
N OF STIMULIL 8
DIMENSIONS 2
INPUT FORMAT (7F4.0)
PARAMETERS TIES(2), DATA(1l)
READ MATRIX
<data>
PRINT ALL -
PLOT SHEP (2)
COMPUTE
FINISH
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col 1 col 16
RUN NAME OCCUPATIONAL DISSIMILARITY DATA
TASK NAME AS IN SEC. 2.1.1
N OF STIMULI 13
DIMENSIONS 5T01
PARAMETERS DATA (1)
INPUT FORMAT (12F5.0)
COMMENT THE GROUPS ARE:
1. TFARMERS
2. AGRICULTURAL WORKERS
3. HIGHER ADMIN ETC.
4., OTHER ADMIN ETC.
5. SHOPKEEPERS
6. CLERICAL WORKERS
7. SHOP ASSISTANTS
8. PERSONAL SERVICE
9. FOREMEN
10. SKILLED WORKERS
11, SEMI-SKILLED WORKERS
12. UNSKILLED WORKERS
13. ARMED FORCES (OR)
READ MATRIX
51.1
71.4 75.8
63.0 52.7 36.9
58.6 57.7 40.8 32.3
67.0 55,6 38.6 17.7 38.2
63.4 52.3 39.4 13.4 27.8 27.3
54,5 43.3 55.5 29.3 41.1 35.0 23.5
71.2 47.5 56.5 26.2 41.0 35.6 21.1 36.1
65.2 44.3 62.3 33.0 45.1 42.1 27.4 32.0 1l4.7
65.7 43,0 68.2 39.0 50.8 47.3 33.3 36.0 15.7 8.4
60.1 34.2 69.4 39.8 51.9 47.2 35.5 30.4 23.9 21,1 19.3
66.7 41.9 62.7 36.1 44.6 42.7 29,0 35.9 21.2 20,7 18.4 18.9

PLOT
COMPUTE
FINISH

SHEP (2)
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APPENDIX 1: RELATION OF MINISSA TO OTHER PROGRAMS

The MINISSA program merges the two main traditions of basic
non metric MDS: the Shepard-Kruskal approach (using monotone regression,
weak monotonicity and minimising STRESSl) and the Guttman-Lingoes
approach (using rank images, strong monotonicity and minimising raw
STRESS). The former was implemented in the original MDSCAL program, and
the latter in the G-L SSA-1 program. Both of these programs are now

outdated and have been withdrawn.

The basic model is now implemented as the default option by a
number of general purpose programs: KYST (the successor to MDSCAL),
TORSCA (for Torgerson Scaling) and ALSCAL-4 (the successor to POLYCON).
The chief advantages of MINISSA are its small size and speed of

computation and its resistance to suboptimal solutions.
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APPENDIX 2:

This appendix relies heavily on Roskam (1975a), which is used

with permission.

The MINISSA algorithm

Let the stimuli be indexed i,J = l,...4m
Let the coordinates be X; 08 = lyeee,r
The distance between two points i,j be

dij uJZ l X T Xig | (1)

where u = 1 (eity block)

or u = 2 (euclidean)

Let the dissimilarities be 6ij regarded as a lower triangle
matrix with diagonal 6ii undefined.

The set of coordinates § = {xia} we refer to as the configuration.

The STRESS, of the configuration is

1
= - (o] 2 . .
81 L@y md0t G
ij (2)
) d2,
.. 1]
1]
where d°. is
1]
ither d.. in which 5., >8 =di,>d
either ;i in whic case i ke = 945 K
or dij in which case sij > dkl => dij i-dkz



Alternatively we may, following Guttman, define the
coefficient of alienation (a product moment form), derived as follows,
Consider 'raw stress', which is equivalent to 'raw phi'

-~ o 2
di.) (3

ij b

The coefficient of aliemation, is then

o 2
= X .
K iz dis X454
1 - (4)
Y42, x ) @)
i3 145 1
Note that dzj =d,,>K=S§

ij

° 4" ST
df; = dj; ~K=8/T- U

Since S. > S. <> K. > K.
1 J 1 J

we may minimize either K or S, By convention

~

S is used with d

%
and K is used with d

The iterative procedure

. . . . s .
The iterative process is indexed by a superscript s. Thus X" 1is
the configuration at iteration s. At each iteration the first phase

. . o . . . . s+ . .
consists in finding an improved configuration X 1 which fits best the

o} . .
monotone values (d )S. The second phase then finds an improved set

of monotone values (do)S+l

which fit the distances ds+l obtained XS+1.

s+l
After the second phase we compute stress S .

The calculation of the monotonic transformation is detailed in

the Users' Guide 3.2.

8.
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The first phase is itself iterative nested within the s iteratioms.

These iterations are counted by t. The STRESS is minimized by a process

known as steepest descent. Specifically,

t+1 t §S t
= o

ia ia t dxi

()

a

where o is the optimal step size. This method calls for calculation of
the partial derivatives of S with respect to x. Two methods are used:

one with the so-called soft-squeeze, the other with the hard squeeze.

The soft squeeze approach

We find the derivatives of So (raw stress) with respect to X

by considering

*
B, - 2d.. -dr) 6)
od. . H ]
ij
Since adi. - ds: ) , Xig T Xal lu“l =1 C'l )u—l
uJ = N a J u di'
ad. . J
1]
where u is the Minkowski metric
3d" ki _ (kj.u u=2
ij = [T -8 fx -x V7, - x) (7
9%, ij J t Ja
*ka
ki _ . _ ki _ . . _ .
(where 87 =1 if k=TI and §° =1 if k = j and = O otherwise)

For convenience, we define

x. - x. |

_ ia ja :
iia T | 8)
]

H
—
(8
h
[a K

]
(@]
.

with w.. = ..
ija ij

.22



. . *
Thus: 38 = 2§ (8% = 6% @, - d7.) d5 w... (x.. - x,.)
) i ij ij” "ij Tija ia ja
s
From this we may derive
di.
= - Kja -
%§- 4 Z @ dk. ) waa (xka xJa)
*xa ] J

Now let C be the correction matrix

d*,
- _ kj : .
kj
(1f k = 3 ckja is arbitrary though undefined)

Putting (10) to zero and using (11) we get

¢ = § ija (xka - xja) " *ka § ckja N 3 ckja xja

1

= R X . .
*ka Z ckJa (Z CkJa xJa)
J J
Note that this equation is stationmary if {x} minimizes S.

Alternatively, in matrix notation:

Let C, = {ija}
ga E {qka =) ckja’ in diagonal form}
2, = {Xja} Wlth kij = 1,.oo,m
-1
Then X = Q C x
—a <a ~a -—a

(9

(10)

(1)

(12a)

(12b)

023



8

.24

By an arbitrary definition of the diagonal elements of C

which makes

Gy Z ckja = z ija = mif u=2
J J
we may rewrite 12b as
1 S
a T *ka T | T (13)
4 gwkja Bxka

The soft-squeeze assumes that the matrix is symmetrical and S is
evaluated for 1 > j. The equation 13 is used as a steepest descent ‘
equation which is, however, monitored by an additional parameter B.
Letting t 1indicate the first phase iteration

(£+1) _ (&) _ 8 ® s |

a a

ZZWkja axka

(t=0,1,... ’tmax)

In actual calculation we obtain the product term by

B = -
S k§ (1 - dij / dkj) X iia (xka xja) (15)

gwkja

The hard squeeze

STRESS. )

Alternatively, we can define Sl (STRESSFORMl, 1

_ g N2
RRNCPPI ISy
ij
Sl =
) di.
ij

i > j.




o 13 1] 1]
and NF1 = ) d2,
. & 1]
ij
i.e. S1 = 52
NF1

The partial derivative of stress w.r.t. the coordinates is

as

1 = 1 Y Ye. (%, = x.) I = 1yeee,m (16)
- > 'kja *ka ja
axka NFlSl j
dk' )
where ija = (1 - E—% - Sl) wkja (k # 3)
kJ
ZY .= (1 - bS?) 2 W, . 3=1,.0.m; b=M)
F kja 1 3 kja =7

(NB. As with the soft squeeze the diagonal elements of

{ija} can be arbitrarily chosen without affecting validity of 16).

Setting 16 to zero we get

= £ Ty, x
*ka ka E kja “ja

where Ea is a diagonal matrix with elements gka = {Zija}
J
This is the hard squeeze version of 12b, and may be rewritten
as a steepest descent equation. In so doing we adjust the diagomnal
elements of Ea which will, of course, modify the column sums.
Without changing the definition of za we can replace

-1 -1
Exa by B Eka

.25
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Thus by a parallel derivation 10 - 16, we obtain

()
(e+1) _ _(e) B NS, 3s,

- X
a a a2
(1-bS) gwkja 0%,

(t)

In the actual calculation we evaluate the product term as ...

(t = 0,1,...tmax)

17

B 1 s 0
—_—] x| | x ) | @-82=4d ./d.)w. (x =-x,) | (18)
~hg2 : 1 ki’ kj kja a ja
(1 bSl) Zwkja kj
J
If the metric is euclidean, then w, . = 1,

kja

The stepsize factor (angle factor) B

Essentially the first phase iterations are a steepest descent

procedure. The gradient at o = a(t)

values 881 or asl as the case may be,
a ra
= ()

Let Yt = {gka }

then the steepest descent method may be written:

t

(t+l) (t) 0’1""’tmax (soft squeeze)
2 i M P

S (hard squeeze)

where a is the stepsize at iteration t.

The value of B 1is determined by:

B =1 (t
B = @ )
e, e-1) % B ) (£ > 1)

0)

w
]

is written Vt and consists of the

(19

(20)



where

et,t—l = Vt . vt-l

v [x [T vy 1

(£) _(t=1)
E Eagka gka

[ T @) ] {kz I gty

ka a aa

]é

(t > 1)

is the cosine of the angle between successive gradients.

(21)

(22)
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carefully at the graphs to see if the fit looks reasonable. When

the fit is bad this may be due to a number of causes, but most likely
it will be due to the fact that the model used in the Monte Carlo
simulation is not appropriate for the data set. In this case the use
of MSPACE may be unwarranted., Bad fits may also be signalled by

obtaining a minimum fit value greater than about 25, 1If the fit is

bad, this is very often due to the fact that the one dimensional stress

is "unusually” low. In this case, MSPACE will probably underestimate
the dimensionality. This kind of situation seems to arise most often
when the configuration is ellipsoidal, or cigar shaped. Frequently,

in this situation, the pattern of fit values over dimensionalities is

not concave upward but contains two minima,

.29
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1. OVERVIEW

Concisely: MRSCAL (MetRic SCALing) provides internal analysis
of a two-way data matrix by means of a Minkowski distance model

using either a linear or a logarithmic transformation of the data.

Following the categorisation developed by Carroll and Arabie
(1979) MRSCAL may be described as:

Data: One mode Model: Minkowski metric
Two-way One set of points
Dyadic One space
Unconditional Internal
Complete

One replication

1.1 ORIGIN AND VERSIONS OF MRSCAL

The MRSCAL program is the basic metric distance scaling program
in Roskam's MINI series. The MRSCAL program in the MDS(X) series is
based upon the 1971 and KUNST (1977) versions.

1.2 BRIEF DESCRIPTION OF MRSCAL

The MRSCAL algorithm is a metric counterpart to MINISSA. Its
aim is to position a set of stimulus objects as a set of points in a
space of minimum dimensionality in much the same way as MINISSA, except
that the d.stances in this space will be a linear (or optionally a
logarithmic) function of the dissimilarities between the stimuli.
In this it has obvious similarities to 'classic' MDS (Richardson 1938,
Young and Householder 1938) and to the linear (metric) scaling procedure
developed by Messick and Abelson (1956) and made more wideiy known
by Torgerson (1958). The MRSCAL algorithm however, utilises the iterative
procedures which Guttman, Lingoes and Roskam (1971) developed and also
allows the user additional optioms, both in the manner by which the

distances in the solution space are measured (see Section 2.2.2) and

.1
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in the form of the transformation function linking data to distances
in the solution (see Section 2.2.4) which make it both more general

and more robust than the original procedures.

1.3 RELATION OF MRSCAL TO OTHER PROGRAMS IN THE LIBRARY

MRSCAL is an exact metric counterpart to MINISSA, differing from

it in that it restricts the field of possible transformation of the

data to linear (or power) ones.

Qutput from MRSCAL may be input to PINDIS.



2. DESCRIPTION

MRSCAL is dealt with in Chapter 5 of the Users' Guide.

2.1 DATA

MRSCAL accepts as input the lower triangle (without diagonal) of
a square symmetric data matrix. Each entry of this matrix will be a
measure of the (dis)similarity between the row-element and the colummn
element. If the linear transformation option is chosen it should be
borne in mind that product moment correlations and covariances are not
generally acceptable in that they are only monotonically (and not

linearly) related to distance.

The aim of the algorithm is to position these elements as points
in a space of minimum dimensionality such that a STRESS-like measure
of departure from perfect fit (the coefficient of alienation) between
the (linearly) rescaled data and the distances in the solution is
minimised. A perfect fit occurs if a linear (or logarithmic)

transformation of the data is found which is a set of actual distances.

2.1.1 Example

Benjamin (1958) collected data on the social mobility of some 2600
subjects using thirteen occupatiomal categories. Macdonald, who 1is
investigating the notion of social distance, uses the index devised by
Blau aund Duncan (1967, p.43) to measure the dissimilarity in mobility
between occupational groups. (For a fuller description of this index
see section 2.3.3.4 of the Users' Guide). The measure, writes
Macdonald (1972, pp. 213-14) may be interpreted as ''the percentage of
the sons of (group) A that would have to be reallocated jobwise for
the sons of A to match the sons of B". He assembles the index values
into a lower diagonal matrix, and these are included in the examples
described in section 4. The scaling solution is discussed at length

in Macdonald's article.



2.2

THE ALGORITHM

The program proceeds as follows.

An initial configuration is input (or one may be generated by

the program (see 2.2.1 below)).
The configuration is normalised.

The inter-point distances are calculated according to the

Minkowski metric chosen by the user (see 2.2.2 below).
A set of fitting quantities are computed that are
i) a linear (or power) transformation of the data; and

ii) a least-squares best-fit to the distances (for details

see Appendix 2.)

The coefficient of alienation between the fitting-quantities

and the distances 1s computed.

A number of tests is performed to determine whether the iterative
process should continue; e.g. Is STRESS sufficiently low?

Has the improvement in STRESS over the last few iterations been
great enough to warrant continuing ? Has a specified maximum

number of iterations been performed ?

If not, then the gradient is computed. This gives for each
point on each dimension the direction in which that point
should be moved on that dimension in order that STRESS be

minimized.

If the gradient is zero then the configuration is output as

solution.

If not, then the points are moved in accordance with (7) and

the program returns to step 2.



2.2.1 1Initial configpration

The user may provide a starting configuration by means of the
control card READ CONFIG, with its associated INPUT MEDIUM and INPUT
FORMAT cards. 1In this case a coordinate for each point on each
dimension is input. This may be done either by stimuli (rows) by
dimensions (columns) or dimensions(rows) by stimuli (columns).

In this latter case the parameter MATFORM should be given the value 1
on the PARAMETER 1 card.

If this is not done, however, then the program constructs an
initial configuration from the original data by the Lingoes—Roskam
procedure which, as has often been shown, is a good initial approximation

of a solution and also has certain desirable geometrical properties.

2.2.2 Distances in the configuration (UG App. 2.2)

The user may choose the way in which the distance between the
points in the configuration is measured by means of the MINKOWSKL
parameter. The default value 2 provides for the ordinary Euclidean
metric where the distances between two points will be the length of
the line joining them. The user may specify any value for the parameter.
Commonly used values, however, include 1, the so-called 'city-block'
or 'taxi-cab' metric where the distance between the two points is the
sum of the differences between their co-ordinates on the axes of the
space, and infinity (in MRSCAL approximated by a large number (>25))
the so-called 'dominance' metric when the largest difference on any
one axis will eventually come to dominate all others. (Users are
warned that high values of MINKOWSKI are liable to produce program

failure due to overflow).

2.2.3 STRESS and the coefficient of alienation

The family of STRESS formulae for the MINI series is based on
the sum of the squared differences between the fitting-values and the
distances. In MRSCAL, since the fitting-values are at interval level,

a product-moment form is applicable, represented by MU which is the
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correlation between the distances and the fitting-values, and is hence
a measure of goodness of fit. 1In addition, a related badness of fit
measure very similar to STRESS is calculated, known as the coefficient

of alienation, K. The two measures used in MRSCAL are related by:

K = Y(1ww?)

2.2.3.1 Angle factor and step-size

At step 7, the algorithm computes the direction in which each
point should be moved in order to reduce STRESS. This is dome by
calculating the partial derivative of STRESS with respect to each
point - the negative gradient. It is also important, however correctly,
to compute the optimal amount of movement in that direction. This is
the so-called 'step-size'. This step-size may be changed at each
iteration. These changes are monitored by the 'angle factor', which
is in effect the cosine of the angle between successive gradients,

i.e. the correlation between them. This ensures that, as the program
moves towards convergence, and the gradient becomes less steep the
step~size will decrease, so as to minimize the possibility of
overshooting a minimum STRESS value. MRSCAL prints out at termination
the final angle factor. At this stage the value ought to be very small

if it is large, then more iterations should be attempted.

2.2.4 Linear and logarithmic transformations

The most common use of MRSCAL is to find a linear transformation
of the data which best fits a configuration of points in the chosen
dimensionality. The program will also, however, perform an analysis
using logarithmic transformations of the data values. In this case

the Shepard diagram will show a smooth exponential curve. The user must

specify which transformation is required. If no PARAMETERS card is

read and/or no specification of the transformation made, then no

analysis will be performed.



2.3 FURTHER FEATURES

2.3.1 The CRITERION parameter

In step 6 of the algorithm a number of stopping tests are
performed. One of these involves calculating the improvement in
fit between the present and the previous iteration. If the
improvement is less than the value given by CRITERION on the PARAMETERS
card, then the process is terminated and the current configuration is
output as solution. A large value for CRITERION will have the effect
of stopping the iterative process earlier than would otherwise be the
case. This allows the user to make more cheaply a number of

exploratory analyses.

2.3.2 The final configuration

When the iterative process is terminated, the current configuration

is output as the solution. If the metric is euclidean (i.e. MINKOWSKI (2))

then the configuration is rotated to principal axes. It should be noted
that these axes are arbitrary from the point of view of interpretationm,
but have certain desirable geometric properties. In particular the
coordinates of the points on the axes are uncorrelated. Furthermore

it is often helpful in deciding on the 'correct' dimensiomnality of the
solution to notice how much variation is associated with each axis.

This variation is given in the output by the value SIGMA which is the

standard deviation of the coordinates on each axis.

2.3.3 Dimensionality

As a general rule solutions should be computed in a number of
dimensionalities. Since a perfect fit will be obtained in n-2 dimensions
the trial dimensionalities should always be in dimensionalities less
the n~-3. As a guide to the choice of trial dimensionalities it is
recommended that the product of stimuli X dimensions should be less

than half the number of data elements.
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9.8

A further method is one superficially similar to the 'scree'
test of factor analysis. This involves examining the plot of stress
by dimensionality. - Since MU is a measure of goodness of fit the plot
will show an ascending function and the elbow test for appropriate
dimensionality may be performed. The 'appropriate' dimensionality,
i.e. one which interpretation may be attempted, is that at which the
graph shows an 'elbow', i.e. where the addition of extra dimensions is

otiose.



3. INPUT PARAMETERS

3.1 LIST OF PARAMETERS

Linear transformation is performed.

(ONLY RELEVANT WHEN 'READ CONFIG' IS USED)

The input configuration is punched:
stimuli (rows) by dimensions (columns).

The input configuration is punched:
dimensions (rows) by stimuli (columns).

Keyword Default Value Function
DATA TYPE 0 0: The data are similarities
: The data are dissimilarities.
LINEAR TRANSFORMATION 0 0: Linear transformation is not
performed
1:
1.0G TRANSFORMATION 0 0: Logarithmic transformation is not
performed
1: Llogarithmic transformation is
performed.
CRITERION 0.00001 Sets the criterion value for terminating
the iterations.
MINKOWSKI 2 Sets the Minkowski metric for the
analysis.
MATFORM 0
0:
1:
N.B. Either LINEAR TRANSFORMATION or LOG TRANSFORMATION

must be specified

99



col 1- col 16
RUN NAME OCCUPATIONAL DISSIMILARITY DATA
TASK NAME AS IN SEC. 2.1.1
N OF STIMULI 13
DIMENSIONS 5tol
PARAMETERS LINEAR(1), DATA(L)
INPUT FORMAT (12F5.0)
COMMENT THE GROUPS ARE:
1. FARMERS
2. AGRICULTURAL WORKERS
3. HIGHER ADMIN ETC.
4. OTHER ADMIN ETC.
5. SHOPKEEPERS
6. CLERICAL WORKERS
7. SHOP ASSISTANTS
8. PERSONAL SERVICE
9. FOREMEN
10. SKILLED WORKERS
11. SEMI-SKILLED WORKERS
12. UNSKILLED WORKERS
13. ARMED FORCES (OR)
READ MATRIX
51.1
71.4 75.8
63.0 52.7 36.9
58.6 57.7 40.8 32.3
67.0 55.6 38.6 17.7 38.2
63.4 52.3 39.4 13.4 27.8 27.3
54.5 43.3 55.5 29.3 41.1 35.0 23.5
71.2 47.5 56.5 26.2 41.0 35.6 21.1 36.1
65.2 44.3 62,3 33.0 45.1 42.1 27.4 32.0 1l4.7
65.7 43.0 68.2 39.0 50.8 47.3 33.3 36.0 15.7 8.4
60.1 34.2 69.4 39.8 51.9 47.2 35.5 30.4 23.9 21.1 19.3
66.7 41.9 62,7 36.1 44.6 42,7 29.0 35.9 21.2 20.7 18.4 18.9

PLOT

COMPUTE
FINISH

SHEP (1)




3.2 NOTES

#
N

1. The card
0

=z

} OF SUBJECTS is not wvalid with MRSCAL.

#
2, The card ‘N OF STIMULI may be replaced by
NO

{

#
the card {N OF POINTS

NO

3. a) The program expects input to be in the form of the lower

triangle of a matrix of real (F-type) numbers.

b) The INPUT FORMAT should read the longest, i.e. last, row of

this matrix.

4, Maximum no. of stimuli

Maximum no. of dimensions

#
¢}

3.3 PRINT, PLOT AND PUNCH OPTIONS

The general format for printing, plotting and punching output is

described in the Overview.

are as follows:

In the case of MRSCAL, the available options

11
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3.3.1 PRINT options

Option

INITIAL

FINAL

DISTANCES

FITTING

RESIDUALS

Form

P X r matrix

p X r matrix
lower triangular,
with diagonal

lower triangular,
with diagonal

lower triangular,
with diagonal

(output to line printer)

Description

Initial configuration, either generated
by the program or printed by the user
(p = no. of stimuli, r = no. of dimensions).

Final configuration, rotated to principal
components.

Solution distances between points,
calculated according to MINKOWSKI parameter.

Fitting values: the disparities
(DHAT) values.

The difference between the distances and
the disparities.

By default only the final configuration and the final STRESS values

are printed.



3.3.2 PLOT options (output to line printer)

Option Description
INITIAL Up to r(r-1)/2 plots of the initial

configuration. (r = no. of dimensions).

FINAL Up to r(r-1)/2 plots of final
configuration (r = no. of dimensions).

SHEPARD The Shepard diagram of distances plotted
against data. Fitting values are shown
by *, actual data/distance pairs by O.

STRESS Plot of STRESS by iteration.
POINT Histogram of point contributions to STRES:.
RESIDUALS Histogram of residual values (logged).

By default, only the Shepard diagram and the final configuraﬁion
will be plotted. Configuration plots are calibrated both from O to 100

and from O to the maximum coordinate wvalue.

3.3.3 PUNCH options

Option Description
SPSS Outputs I (Row index), J (Column index)

and corresponding DATA, DISPARITIES,
DISTANCES, RESIDUALS values in the
format: (214, 4F10.0).

FINAL Outputs final configuration as stimulus
(row) by dimension (colummn) matrix.
Each row is prefaced by the stimulus

number. Format: (I4,£F9.6) where r
is the number of dimensions.

STRESS OQutputs STRESS value by iteration.

By default, none of these options is produced.
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4. EXAMPLES

4.1 TEST RUNS

col 1 col 16
RUN NAME 8 POINT ZERO STRESS DATA
TASK NAME AS MADE FAMOUS BY USERS' GUIDE
N OF STIMULI 8
DIMENSIONS 2
INPUT FORMAT (7F4.0)
PARAMETERS LINE(1), DATA(L)
READ MATRIX
<data>
PRINT ALL
PLOT SHEP ()
COMPUTE
FINISH
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APPENDIX 1: RELATION OF MRSCAL TO SIMILAR PROGRAMS OUTSIDE MDS(X)

The earliest work in MDS assumed that the data dissimilarities
were direct estimates of Euclidean distances, and solved for the
coordinates of the space that generated them. This so-called "classic
MDS" thus assumes the distances are at the ratio level of measurement.
Later developments (Messick and Abelson, 1956) assumed that the data were
"relative'" distances = i.e. a linear function of the solution distances,
thus implying interval level of measurement - and therefore had to solve
additionally for the "additive constant" necessary to turn the data
into distance estimates (see Appendix 3). A surprisingly robust
procedure for implementing such "linear" or metric scaling is described

in detail in Torgerson 1958.

Similar procedures to those provided by MRSCAL are implemented

in the following package and programs:

(1) KYST (the successor to the original general purpose
package known as MDSCAL) provides options for
specifying linear and power transformations
relating data to the solution distances, and thus

implement linear and logarithmic scaling respectively.

(2) ALSCAL-4 (the successor to POLYCON and TORSCA) also
allows the user to specify ratio or interval levels
of measurement, which also implement classical and
linear scaling respectively. There is an additional
facility for the user to specify a polynomial
in degree 1 to 4 as the nearest equivalent to a

logarithmic transformation.
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APPENDIX 2: THE MRSCAL ALGORITHMS

This appendix is based on Roskam 1972 which is used with

permission.

Let: § = {Xia} 1=1l,.0e,m a8 =1,...,r

be a matrix of coordinates of n points in r dimensions.

The Minkowski distance between two points is

where u is the Minkowski parameter.

Let A = {Sij} be a matrix of observed dissimilarity values.

The matrix is symmetrical and may not contain missing values.

(Similarly z denotes a matrix of similarities).

~

Let D° = {dzj} be a matrix of values which is obtained by

applying any admissible transformation to A

~

o) . ..
We choose D~ to minimize

- [»] 2
D@y -9
1]

The minimizing d° is denoted d.

The STRESS of a configuration S1 is

, _ 5 2
STRESS, = ig <dij d‘ij)

a2,
74

@)

-~

(3



If the admissible transformations include a free choice of unit,

the d has the property

} @d.,. -d..) d,. =0 (4)
i 1] 1] 1]

Hence STRESSl is equal to the coefficient of aliemation

A

)2

(L dj5 4

K ={ ij
a2, ¥ @. .2
i§ ij ) (’13)

(5)

which is the sine of the angle between D and D° when considered as

vectors in a n(n~1)/2 dimensional space.

Alternatively MU, the coefficient of monotonicity is
o= /1-k* = v/1-¢8*

The MRSCAL procedure is double-phase

The first phase improves a configuration X so as to minimize K

. o
for a given D .

The second phase finds, for a given D the transformation D which

minimizes K.

The phases are repeated iteratively. K is evaluated after c:he

second phase.

The first phase is itself iterative, at the end of which MU is

evaluated.

Iterations are indexed superscript (s): the iterations within the

first phase by ¢.
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The first phase

In the first phase we seek to minimize S. The formula from
which X(S) is obtained by finding the derivatives of K w.r.t. X and

setting these to zero.

Let xt be chosen so that

I )4, -afait J of a5t =0 (6)
5 j i i
at0 o g7t
i] i]
t=0 s-1
X. = X.
ia ia
A0

At the end of the first phase - i.e. at or short of convergence

of the t iterations we have

s tmax
.. = d
ij
s max
X. = x,
ia ia
Now let
2 2
. <iZ d;s 0d;.)
K- = 1- JZZZ , (7)
ds. ad. .)
i3 ij ij
where
d.. = dF. and d?. = d?fl
1] ij ij i]j



Using (6) we find K" = s

g )2
. t iZ “ij ~ 4y
K~ = STRESS; = J (8)
L.
ij *H
where
a.. =at.; da=a%t
13 1]
Note the STRESS] = STRESS iff t = O
Since D° is invariant under multiplication by a constant o
and since KF is independent of o we may minimize - using (8). Note
that K- = S® if o is chosen so that (6) is satisfied.
Differentiating K" (omitting the t index for simplicity)
K (1 S|
3. - (L (d; —0di) = 945 9
1]
where
L = ) (d,, -ad,.)?
i ij ij
= 2
¥ o= ],
1]
: _ L
i1.e. K = T
Differentiating dij w.r.t. X
2, gkt - gk x, -x %
~il = | 2212 | sign (x. = x.) (10)
oxy d.. ia  Tja

8 =1 1f k=i and le = 0 otherwise.
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Define

X, - X.
. E{I_l_a___ﬁi} G =1
ija d..
1]
W, . is any arbitrary value; we choose w,, =1
iip iip

Combining (9) (10) and (11) and expanding 6kl GkJ we

obtain the negative gradient.

oK K _ a2_ _
0X. L [ (-s*-ud J) Vi (Xia XJa)
ia J —a'
ij
Next define
1 ad Kk ad. .
Yia T3 ¢td 2 1 Voka T —Eil w + (1 - K w..
J k %k * ij .
And
_ 2 _ 1 - w2
U = })d d; 5 /} 5 =3 (1 - k%)
1]
So
1] z dik dl '|
Y.. =6 —w - w + U w
ija " dik ika dij ija ija

Using 13 and 15 we may rewrite 12 as

K _ oK _
% = T ) Yija (s T %ja)
ia j
Note that the diagonal ija may be freely chosen. In (16)

they have no effect since they are multiplied by (xia - xja) = 0.

Setting to zero, we obtain

aun

(12)

(13)

(14)

(15)

(16)

17



which, using (11) and (15) is equal to

_ 1
Xia = I Vija ja (18)
U 2 w. . ]
> Tija
J
Following Guttman we solve iteratively by setting
s-1,t
<L Yy ok (19)
ia > 'ija Tja
UE i3 J
- ja
J
where s identifies dij = d?;l in the formula for y and U
and t identifies x, = x°  there and in the formulae for w. .
ia ia ija
and for dij' Note that o is a dummy coefficient which drops out
when the derivative is put to zero.
For an euclidean metric wija = 1 and (19) simplifies accordingly.
The process in (19) seems to converge, but for unknown reasomns.
The second phase
The second phase minimizes
s “s-1 2
Z(dij—ad - B) s =1,... (20)
This is a simple regression problem solved by
Z(d..a.._ag) ~ Ao
oy of = i o (d=dzl (21)
= d a7)

~ _ ,\2
) (d;; - %
where R =R = d -a° d

where ( ) denotes the arithmetic mean over 1,j.
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In order to begin the process Xs=1 (the initial configuration)

is defined following Guttman and Lingoes (1971)

Os=0
D is set to A

All d.. are set to max d?.
ij ij

The matrix C =

d? dd
c,, = &7 (—“‘ - —-1-J> 2~
ij a a

The initial configuration consists of the first r dimensions of a

principal components rotation of C.
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1. OVERVIEW

Concisely: MVNDS (Maximum Variance Non-Dimensional Scaling)
provides internal analysis of (dis)similarity measure in lower triangle
or full format by a non-dimensional model using a monotone transformation

of the data.

Alternatively, following the categorisation developed by Carroll

and Arabie (1979) the program may be described as:

Data: One mode Model: Distance (obeying triangle
Dyadic inequality, but non-dimensional)
Symmetric or One set of points
non-symmetric One '"space"
Complete

1.1 ORIGIN, VERSIONS & ACRONYMS

MVNDS was developed by Shepard and Cunningham of Stanford University
and University of California, San Diego. The present program is based

on the 1973 version of the original program.

1.2 MVNDS IN BRIEF

The program takes data‘in the form of a full square matrix, or lower
triangle, of (dis)similarity measures and seeks to transform them
monotonically into a set of distances which can be made to satisfy the
triang’e inequality, subject to having the maximum possible variance
in magnitude. The resulting 'distances" will constitute a metric but

the structure or dimensionality of the spanning space will be undefined.

1.3 RELATION OF MVNDS TO OTHER PROGRAMS IN MDS(X)

The MVNDS program takes data in the same form as MINISSA, MRSCAL
and, in effect, produces a momotonic transformation of the data. It

differs from other MDS programs in producing distances which are not

10.
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necessarily capable of a spatial representation, and in allowing the
user to vary the importance which monotonicity is to be ascribed in

obtaining an acceptable solution.
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2. DESCRIPTION

2.1 DATA

The program accepts data in one of two forms. Any (dis)similarity
coefficients in lower triangular form such as would be acceptable to

MINISSA, MRSCAL (q.v.) etc., are also acceptable to MVNDS.

The user is also allowed the option of inputting a full matrix
of (dis)similarity measures. This means that the program is faced with
two measures of the (dis)similarity between object j and object k. These
it averages by taking the geometric mean (the square root of the product)

of the two values. The analysis is then performed with one set of values).

2.2 THE MODEL

The basic aim of the MVNDS program is to generate from a given data
set a set of coefficients/numbers which satisfy three conditions. First,
they must satisfy the metric axioms of positivity, symmetry and triangle
inequality; secondly they should be as close as possible to a perfect
monotone transformation of the original data, and thirdly, subject to

the previous constraints, they should have the maximum possible variance.

2.2.0.1 The metric axioms

If a set of dissimilarity coefficients satisfy the metric axioms
they may be regarded as a set of distances between points in a space
of some construction, although the nature of the space is undetermined.
Simply the axioms require that all the distances be non-zero and positive;
that the distance between point i and point j is the same as that
between point j and point i (actually that the matrix is symmetric) and,
most importantly that the distance between two points via any third
point cannot be shorter than the direct distance between the two. This

last property is the so-called triangle inequality.
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The prime purpose of the program, therefore, is to generate a
set of distances satisfying these axioms from some monotone transformation
of the data. The further requirement that these distances have maximum
variance is justified in Cunningham and Shepard (1974) as being likely
to generate a set of distances representable in a space of low

dimensionality.

The user is given the option of weighting the importance assigned
by the program to the conditions of metricity, monotonicity and maximum
variance. This is done by use of the keywords VARIANCE, MONOTONICITY
and TRIANGLES on the PARAMETERS card. These keywords should be given
an argument of non-zero real (F-type) values. These will reflect the
importance which the user wishes the program to assign to each condition.
The default options are VARIANCE(1.¢), MONOTONICITY(2.0) and TRIANGLES(100.0)
which assign relatively little importance to the variance obtained,
slightly more to violations in the order of the distances but virtually
forces the program to make the solution obey the triangle inequality
by weighting any violations extremely heavily in the badness-of-fit
criterion. Since this is the main purpose of the program this weighting
factor is increased as the number of iterations increases. This balance,
with satisfaction of the triangle inequality heavily weighted is the
usual mode of use of the program. The VARIANCE and MONOTONICITY weights

should be adjusted to reflect the particular concerns of the user.

In general values of between 50 and 300 for TRIANGLES, and for
MONOTONICITY of between 1.5 and 10 are appropriate for most data.
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2.3 FURTHER FEATURES

2.3.1 The search procedure

The user is expected to specify the mean value of the solution
distances. This is specified by use of the keyword MEAN on the
PARAMETERS card. The iterative procedure then seeks the optimum set
of distances which satisfy the three constraints but only considers
solutions with the specified mean. Thus, if a particular mean value

produces a badly-fit solutiomn other mean values should be tried.

2.3.1.1 1Initial values and local minima

Since the possible solution values are constrained in this way
it is likely that the solution will be close to the global minimum
(Cunningham and Shepard 1974). Thus the initial values are formed from

a linear function of the (dis)similarity measures.

2.3.2 Uses of the MVNDS program

The aim of MVNDS is to produce from the original data a set of
distances which are "better behaved" in the sense that they obey the
triangle inequality property. Whilst this is a necessary condition
which other more restrictive measures, such as Euclidean and hierarchical
clustering (ultra metric) distances must obey, it is not sufficient

to guarantee that they can be thus represented.

Consequently, MVNDS is used both in its own right, when attention
is focussed primarily on the shape of the re-scaling function (since
it tends to be more regular than that produced from the basic non-metric
distance model); and as a first stage to produce a set of distances
which can then be submitted to further analysis of représentation.
Commenly, metric scaling (MRSCAL) and hierarchical clustering (HICLUS)
are used for this purpose. Alternmatively, graphic analysis techniques

(Flament 1963) can be used to analyze the distances.
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3. INPUT PARAMETERS

3.1 LIST OF PARAMETERS

Keyword Default Function
DATA TYPE 0 0: Input data is a lower triangle
of similarities.
1: Input data is a lower triangle
of dissimilarities.
2: Input data is a full (a)symmetric
matrix of similarities.
3: Input data is a full (a)symmetric
matrix of dissimilarities.
MEAN 10 <any positive number>
Sets the required mean distance.
TRIANGLES 100.0 <any positive number>
Sets the initial weight for triangle
violations.
MONOTONICITY 2.0 <any positive number>
Sets the weight for violations of
monotonicity requirement.,
VARIANCE 1.0 <any positive number>
Sets the weight for evaluation of
variance in the solution.
3.2 NOTES
1. The data should consist of real (F-type) numbers.

2, The following cards are not valid with MVNDS:

#
{N OF SUBJECTS
NO

DIMENSIONS



3.3 PROGRAM LIMITS

Maximum number of stimuli

3.4 PRINT, PLOT AND PUNCH OPTIONS

3.4.1 PRINT options

Option Form
DISTANCES P XPp

(lower triangle)

FITTING PXP
(lower triangle)

RESIDUALS PXp
(lower triangle)

VIOLATIONS PXp
(lower triangle)

HISTORY

3.4.2 PLOT options

Option
SHEPARD

RESIDUALS

POINT

STRESS

50

Description

The final solution distances are
printed.

The fitting values are printed.

The residual values are printed.

The matrix is printed, each entry of
which records the number of times the
particular pair is involved in a
violation of the triangle inequality.

An iteration by iteration history of
the STRESS values is printed.

Description
The Shepard diagram is plotted.

A histogram of residual values is
produced.

A histogram of the point contributions
to the badness—of-fit criterion is
produced.

A plot of the STRESS values at =sach
iteration is produced.

10.
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3.4.3 PUNCH options

Ogtion
SPSS

FINAL

STRESS

Description

A card-image file containing the
following values is output in a fixed
format:

§ = stimulus pair index
DATA = the data value corresponding
to I,J
DIST = the solution distance between
1,J
DISP = the corresponding fitting valt
RESID = the corresponding residual value

The lower—triangular distance matrix
is produced in a fixed format.

The STRESS values at each iteration
are output in a fixed format.

No punched output is produced by default.



4, EXAMPLES

4,1 Test Run

col 1

RUN NAME MVNDS TEST DATA

TASK NAME ROTHKOPF MORSE CODE CONFUSION DATA

COMMENT THE DATA ARE TAKEN FROM ROTHKOPF ANALYSED IN

N OF STIMULI
PARAMETERS
COMMENT

INPUT FORMAT
READ MATRIX

PRINT
PLOT
COMPUTE
FINISH

CUNNINGHAM AND SHEPARD (1974)

26

DATA(2)

WE ASSUME DEFAULT VALUES FOR THE
REMAINING PARAMETERS

(26F3.0)

<data follow here>

VIOLATIONS
SHEPARD, POINT

10
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APPENDIX 1:

MVNDS is the original and only program to perform this type

of analysis.
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APPENDIX 2:

A2.1 The Model
Define

A = {5jk} G,k = 1,00.,p

as a matrix of similarity coefficients between objects j,k.

We seek:
D = {djk}
such that
d.. = O la
33 (1a)
c1jk = c1kj (1b)
djk > 0 (1c)
>
o+ 2 4y (1d)
Further we require that
dige 2 4 =2 S5 2 Gy (2)
and that subject to 1d and 2 in particular
var (D) = max (var (D)) (3)

If we consider D as a vector di i=1,...,m)
where m = p(p - 1)/2 in R™ the m-dimensional space of réal numbers

then each of the set of p(p - 1) (p - 2)/2 linear equalities
of the form

dop * dpg 2 dyg (1d)



defines a closed half-space in R. We may arbitrarily define djj =0

and consider only positive distances to satisfy (1a) and (lc).

If we further require D to have a user specified, fixed

arithmetic mean, d, then the solution lies on the hyperplane

m
} d, =md (4)
i

which intersects the region leaving a closed convex polyhedral

region 4.

We therefore seek that point in § which satisfies (2) and
(3). Any point satisfying (2) satisfies the set of inequalities

d >4d > d > ceee 2d

m— ml-— m2-— 24 )

2 1

which defines m - 1 closed half-spaces

d; -d,_; >0 (6)

and the solution lies in the intersection of these with 4.
If the intersection is empty then we define the departure from

monotonicity as

~ 2
g (d, - d.) (7)

m

where di is a best-fitting-monotone function, (Kruskal 1964b, 1971;
Miles 1959)being momotonically related to S and minimizing L.

The optimum point in § subject to (3) is that at which a

function f

f(g) = [‘var g ] - W [ L (g) ] v (8)
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defined on B° is at a maximum.

The function expands to

17 2 _ 1% A
£@) = =] @ - - =] @ =d (8a)
i i
where Wy is pre-specified.
A2.2 The Method
Given (8) the problem is to find
max { £(d) | de@C & } (9)

d

The procedure is iterative with iterations counted as superscript s.

ds+1 - ds + as gs (10)
where
s _ s | of .o
% _’{gi ISE?-} l"l,-'o,m (11)
and

s . .
¢ 1s the step-size
. s .
The procedure terminates when the length of g~ is =~ zero.

However, we seek fmax subject to the constraint that it

be within &.

Thus, at each iteration g is projected onto md to

preserve to prespecified mean.



Also, we have to satisfy the triangle inequality constraint

namely (p(p-1)(p=2)/2) inequality constraints of the form

dj td o -d, >0 (12)

We arrange these in arbitrary order, assigning to each an

index q (¢=1,...,p(p-1)(p-2)/2.

We define C

Cor = 1 (r=j or k) q=1,...,p(p-1)(p-2)/2
_ . ) - . r=l,...,m
C { cqr : cqr 0 (r#j, kor )} } (13)
cqr =1 (r=1)
and
m
c = 2 c . d
q ; 4+ 1

We define a new loss function

F@ = 2@ - 21 ()? (14)
c <0
q

where w, 1is user specified

2
Thus
=g s ot E (15)
” ” dd
which, considered for each element of d,
F 23 -M@-a5H- 7 .. (16)
dad ® ot m ' W c<o ¥ 9
1 q
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In order to ensure convergence two technical requirements

are sufficient. We require o be chosen so that

F(@® + of g%) = max {F())° + ag®} an
Q

and that W, + © gs the number of iterations increases.

A2.3 The initial wvalues

d; =b(1 -5 +d (18)
s
where
0<b < s d -
max {s.} - s
i
with m
s,
. T
i




